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Abstract—When learning real-time programming, the novice
is faced with many technical difficulties due to low-level C
libraries that require considerable programming effort even for
implementing a simple periodic task. For example, the POSIX
Real-Time standard only provides a low level notion of thread,
hence programmers usually build higher level code on top of the
POSIX API, every time re-inventing the wheel.

In this paper we present a simple C library that simplifies real-
time programming in Linux by hiding low-level details of task
creation, allocation and synchronization, and provides utilities
for more high-level functionalities, like support for mode-change
and adaptive systems. The library is released as open-source and
it is currently being employed to teach real-time programming
in university courses in embedded systems.

I. I NTRODUCTION

A huge number of embedded control applications requires
the execution of periodic activities, which cyclically perform
the same computation on different data at specific rates deter-
mined by the system characteristics. A periodic task typically
consists of three main phases: input, processing, and output.
In the input phase, the data to be processed are accessed from
a shared memory buffer or acquired from an external device
(e.g., a camera, a keyboard, or an interconnection network)
and stored in some local data structure. In the processing
phase, data are elaborated according to a given algorithm (for
example for filtering, classification, or recognition), while in
the output phase data are stored in another shared buffer or
transferred into an external device (e.g., a motor, a transceiver,
or a graphic display).

To generate a periodic execution at a precise activation rate,
such a sequence of phases is normally inserted in a loop,
whose last instruction is a synchronization call that suspends
the task until the arrival of an event generated by a timer.
Figure 1 illustrates a typical structure of a periodic activity
implemented with awhile loop terminating when a given
condition becomes true. Thewait_for_activation()
call inserted before entering thewhile loop is a synchro-
nization primitive that suspends the execution until an explicit
activation is invoked; hence, it allows activating the taskupon
a given instruction that can be executed by the system or
by another task. Thewait_for_period() call inserted at
the end of the loop is another synchronization primitive that
suspends the execution until the next activation time. In this

case the re-activation must be triggered by a timer, properly
programmed to interrupt at the next activation time.

TASK sample_task()
{

< l o c a l v a r i a b l e s >

wait_for_activation();
while (condition) {

< t a s k body>
wait_for_period();

}
}

Figure 1. Sample structure of a periodic task.

In more complex real-time systems, many periodic tasks
run concurrently, together with aperiodic tasks that deal with
external or internal events. Tasks may be activated, suspended
or killed dynamically depending on the state of the system;
they may need to access shared memory; in some cases, they
require the dynamic adaptation of run-time parameters.

Linux is one of the most popular operating systems, and
it is being widely used in embedded systems domain for
implementing real-time applications. The advantages of Linux
are well known: it is widely available as open source; it is
supported by a large community of developers; and it imple-
ments the POSIX interface, including the real-time extensions.
Many “real-time improvements” of Linux have been proposed
as academic open source projects (e.g., RT-Linux [17], RTAI
[16], XENOMAI [20], Linux Preemption patch [18], and
SCHED_DEADLINE [11]). In this paper we concentrate on
projects that use standard APIs, like the POSIX real-time
interface [3].

Unfortunately, programming real-time applications in Linux
using the POSIX interface is cumbersome. In fact, POSIX
threads represent a general, but also a low-level programming
paradigm. Higher level abstractions must be implemented by
the programmer, and even a simple entity, like a periodic
thread, requires careful coding. An example of periodic thread
implemented with the POSIX RT API is shown in Figure 2.
The programmer must spend a significant effort to implement
the periodic activation mechanism, passing parameters to the
thread, dealing with time operations (there is no interfacefor
summingstruct timespec variables), identifying dead-
line miss situations (not shown in the code), or measuring the
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void *thread_body(void *arg)
{

struct timespec next, period;
sem_t *s_act;
< l o c a l v a r i a b l e s >

< read pa ramete r s from arg>
sem_wait(s_act);

clock_gettime(CLOCK_MONOTONIC, &next);
while (condition) {

< t a s k body>
< n e x t = n e x t + per iod >

clock_nanosleep(CLOCK_MONOTONIC,
TIMER_ABSTIME, &next, 0);

}
}

Figure 2. A periodic thread in POSIX RT.

execution time of task instances.
Another problem is that typical task models and abstrac-

tions used in the real-time scheduling theory do not find
a corresponding abstraction in the library functions. There
is no abstraction for a “periodic” task, nor for the concept
of deadline. Also, as we will discuss in Section II-A, the
mechanisms provided by the kernel are sometimes too general
and do not have a corresponding theoretical problem. Such
mismatch between theory and practice is, in our opinion, one
of the reasons that has slowed down the introduction of proper
real-time techniques in everyday programming.

To overcome such difficulties, programmers write their own
libraries for supporting higher level abstractions, everytime
reinventing the wheel. This is particularly annoying when
teaching real-time systems programming to novices. Linux is
perfect as a platform for educational purposes. However, when
using the bare POSIX API, students must necessarily focus on
the low-level details and put extra care on identifying all corner
cases of thread synchronization. As a consequence, explaining
complex programming techniques, likemode changes[15] or
adaptive tasks[6], [8], becomes extremely difficult.

a) Contributions of this paper:In this paper, we present
a library for real-time programming in Linux, calledPtask,
to manage a set of periodic and aperiodic soft real-time tasks
under the Linux operating system. The main purpose of this
library is to teach real-time programming in university courses
on embedded systems. Therefore, we aimed at simplifying
real-time programming by providing a clean interface, rather
than achieving efficiency and performance optimization. To
achieve these objectives, we designed our library trying to
provide a close mapping between the provided API and the
task models and techniques found in the real-time scheduling
theory.

Library functions are implemented on top of the POSIX
thread (Pthread) library [3]. The library exploits the Linux
priority scheduler to execute tasks under the Rate Monotonic
or Deadline Monotonic priority assignments. In addition, it
provides convenient functions for dealing with time, support
different types of tasks, allocate tasks on multi-core systems,
checking deadlines, and measuring tasks’ execution time.

Finally, it also provides support for higher level programming
techniques, like group scheduling and mode-changes.

Since the library is released as open source code, the
interested students and practitioners can improve their code
or take inspiration for their own situations. The library is
currently used in several courses at the University of Pisa.

The rest of the paper is organized as follows. Section II
provides a brief overview of the Linux schedulers, summa-
rizing the available kernel mechanisms for managing tasks,
handling timers, and accessing shared resources under priority
inheritance protocols. Section IV-B presents the adopted task
model and parameters. Section IV describes thePtask library
with all the available functions. Section V concludes the
chapter and states some perspectives.

II. BACKGROUND ON THEL INUX SCHEDULER

The current standard Linux kernel (version 3.8) provides a
modular and flexible scheduling architecture because it can
support many differentscheduling modules, managed as a
prioritized hierarchy. When the kernel needs to select a task
to be executed on a processor, it looks at each scheduling
module in a priority order, until it finds a task to be executed.
The official kernel provided by Linus Torvalds includes at least
2 scheduling modules: the Completely Fair Scheduler (CFS)
and the real-time scheduler, which has priority over CFS.

The CFS is a non real-time, best effort fair scheduler that
can be selected by specifying the constantSCHED_OTHER
when creating processes and threads. It is the standard Linux
time-sharing scheduler that is intended for all processes that do
not require real-time service. It uses a peculiar priority aging
mechanism to ensure fairness among tasks.

The real-time scheduling module provides two scheduling
policies, compliant with the POSIX RT standard:

• SCHED_FIFO: is a priority-based scheduler where
threads with the same priority are managed by a FIFO
policy. Under this scheduler, a thread runs until either it
terminates, it is preempted by a higher priority thread, it
is blocked by an I/O request, or it executes a cancellation
call.

• SCHED_RR is a priority-based scheduler where threads
with the same priority are managed by a Round-Robin
policy. Under this scheduler, a thread runs until either it
terminates, it is preempted by a higher priority thread, it
is blocked by an I/O request, it executes a cancellation
call, or it consumes the available time quantum. The
Round-Robin time quantum depends on the system and
cannot be defined by the user. However, the length of the
time quantum can be retrieved by calling the function
sched_rr_get_interval().

Linux provides 99 priority levels, where level 1 denotes the
lowest priority and level 99 the highest priority (note, however,
that the POSIX standard requires to ensure only 32 levels).
Each priority is associated with a queue, in which all threads
with the same priority are enqueued. The thread at the head
of the queue with the highest priority level is selected as the
running task.



SCHED_FIFO andSCHED_RR are referred to as real-time
policies and can be used only from the superuser (root).
For example, a Rate Monotonic preemptive scheduler [13]
can be easily implemented by assigning each periodic task
a priority inversely proportional to its period. Similarly, a
Deadline Monotonic preemptive scheduler [12] can be eas-
ily implemented by assigning each periodic task a priority
inversely proportional to its relative deadline.

Recently, a new scheduling module, namely
SCHED_DEADLINE [11], has been proposed as a patch
to the Linux kernel to provide the Earliest Deadline First
(EDF) algorithm [13] along with a Constant Bandwidth
Server (CBS) [1], [2] to support resource reservation. The
SCHED_DEADLINE module is supposed to run at the highest
priority level in the sequence of scheduling modules.

A. Multi-processor scheduling

The POSIX RT interface does not directly address multi-
processor scheduling. The reason is probably due to the fact
that, when the interface was standardized, multi-processor
RT systems where not widely popular. Recently, multi-core
platforms are available even in embedded systems. For this
reason, Linux provides non-standard extensions to the POSIX
API to support multi-core scheduling, through the concept of
affinity. Every thread is associated with aCPU bit-maskthat
tells the system the processors on which the thread can be
executed. Each bit of the mask represents a processor and a bit
set to 1 means that the thread can execute on the corresponding
processor.

By default, a thread is associated with a mask having all bits
set to 1. This means that by default Linux implementsglobal
scheduling, i.e. a thread can migrate across all processors.
In particular, the RT scheduling module implements global
fixed priority scheduling. The user can set a different mask
at creation time or during the thread life-time by using the
following functions:

int pthread_setaffinity_np(pthread_t thread,
size_t cpusetsize, const cpu_set_t *cpuset);

int pthread_attr_setaffinity_np(pthread_attr_t *attr,
size_t cpusetsize, const cpu_set_t *cpuset);

wherecpuset is theaffinity mask.
In our opinion, such a generic interface is ill-conceived.

In the real-time literature, multi-processor schedulers can be
categorized intoglobal, partitioned, or clusteredschedulers
[10].

In global scheduling, a task can execute in any processor
and all ready tasks are enqueued in one single logical ready
queue: this corresponds to the default behavior of Linux, where
all bits in the CPU mask are set to 1. In partitioned scheduling
each task is assigned only one processor: this corresponds to
setting only one bit to 1 in the mask.

In clustered scheduling, the set of processors is divided into
disjoint clustersof processors, and every task is assigned to a
single cluster. This corresponds to setting a subsets of bits of
the mask to 1; moreover, two threads belonging to the same
cluster are assigned the same mask; two threads belonging to

different clusters do not share any processor, so their masks
have no bits in common.

Global scheduling has been extensively studied in the
literature and efficient schedulability tests for fixed priority
scheduling have been proposed [4]. Partitioned scheduling
instead reduces to single processor schedulability for each task.

In Linux, the CPU bit mask can be set in an arbitrary
way, but such a generic model has never been studied in the
literature, and we doubt it has ever been used in practical
situations, due to the difficulty of analyzing the resulting
schedule. Nevertheless, it can be a source of confusion for
novice programmers that are not aware of the theoretical
background in multi-processor scheduling.

B. Time management in POSIX

POSIX provides thestruct timespec data type to
store time information.

struct timespec {
time_t tv_sec; // seconds
long tv_nsec; // nanoseconds

};

However, it does not provide any interface for manipulating
such a data structure. The POSIX RT interface provides timers
and clocks:

• CLOCK_REALTIME: it maintains a value that is as close
as possible to the absolute time. However, it may be
discontinuous, because it can be adjusted by the system
and by the user.

• CLOCK_MONOTONIC: it represents the elapsed time
from an unspecified initial instant. It is not affected by
adjustments, hence it is the best solution for measuring
the time elapsed between two events. However, it can be
subject to automatic adjustments by the NTP protocol.

• CLOCK_MONOTONIC_RAW: it is similar to
CLOCK_MONOTONIC, but it gives access to a low-level
raw hardware timer and it is not subject to adjustments
by the NTP protocol.

It also provides clocks specific to processes and threads.
In particular,CLOCK_THREAD_CPUTIME_ID measure the
execution time of a thread. Time can be read by using the
following function:

int clock_gettime(clockid_t clk_id,
struct timespec *t);

which stores int the value of the clock specified byclk_id.
Periodic behavior can be implemented by using the following
function:

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *request,
struct timespec *remain);

which suspends the execution of the calling thread until clock
clk_id reaches the time specified byt. If flag is equal to
zero, the timet is interpreted as relative to the current time; If
flag is equal toTIMER_ABSTIME, the timet is interpreted
as an absolute value. If the thread is awakened before the set
time, the remaining time is stored inrem. An example of



implementation of a periodic task using this interface is shown
in Figure 2.

C. Resource Access Protocols

The pthread library permits to model critical sec-
tions of code to be executed in mutual exclusion through
the mutex mechanism, which uses a semaphore vari-
able of typepthread_mutex_t to protect a shared re-
source from simultaneous accesses. Ifmux is a mutex
semaphore,pthread_mutex_init(&mux, NULL) ini-
tializes the semaphore with default values. Then, critical
sections can be accessed according to the following scheme:

pthread_mutex_lock(&mux);
< c r i t i c a l s e c t i o n >

pthread_mutex_unlock(&mux);

A mutex semaphore can be initialized in
three different modes using specific attributes.
To do so, a variable, say myatt, of type
pthread_mutexattr_t, must be defined and then
initialized by pthread_mutexattr_init(&myatt).
Then a protocol can be set using
pthread_mutexattr_setprotocol(&myatt,
protocol), where protocol can have one of the
following values:

• PTHREAD_PRIO_NONE
This is the classical mutual exclusion mechanism using
binary semaphores for accessing critical sections. This
method suffers from priority inversion phenomena [7]
that may introduce unbounded blocking in the execution
of high-priority tasks.

• PTHREAD_PRIO_INHERIT
This method accesses shared resources using the Priority
Inheritance Protocol [19], which prevents priority inver-
sion by increasing the priority of a task holding a resource
to the maximum priority among those tasks blocked on
the same resource.

• PTHREAD_PRIO_PROTECT
This method accesses shared resources using the Imme-
diate Priority Ceiling Protocol (also known as Highest
Locker Priority [7]). According to this method each
resourceRk is assigned a ceilingC(Rk) equal to the
highest priority among the tasks usingRk. Then, a task
entering a critical section related toRk executes at a
priority level equal to the ceilingC(Rk).

If using Immediate Priority Ceiling, aceiling value must be
associated with each semaphore and it must be equal to the
highest priority among the threads using it. The code fragment
in Figure 3 shows the set ofpthread calls required to initialize
a semaphore using the Immediate Priority Ceiling protocol.
As you can see, the code is cumbersome to write and to read.
Unfortunately, this is true for many other parts of the POSIX
API, and it one of the reasons that forces many programmers
to implement their own wrapper interface to POSIX.

pthread_mutex_t mux;
pthread_mutexattr_t myatt;
pthread_mutexattr_init(&myatt);
pthread_mutexattr_setprotocol(&matt,

PTHREAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&myatt, ceiling);
pthread_mutex_init(&mux, &myatt);
pthread_mutexattr_destroy(&myatt);

Figure 3. Creating and setting the protocol for a mutex.

III. TASK MODEL

A real-time periodic task, denoted byτi, is a portion of
code cyclically executed several times on different data. Each
execution instance, identified as a job and denoted byτi,j
(j = 1, 2, . . .) is triggered at a precise time instant, called the
job activation time. Note that the activation of any consecutive
jobs of a periodic taskτi is exactly separated by the same
interval, called thetask period. In general, the following
parameters are typically defined on a periodic task:

• Worst-case execution time(WCET) Ci of task τi: it is
the longest possible execution time of any job on the
considered hardware platform.

• Activation timeai,j : it is the absolute time at which job
τi,j becomes active (i.e., ready to execute).

• Period Ti: it is the separation interval between any two
consecutive job activation times of taskτi.

• Relative deadlineDi: it is the maximum time (relative
to the activation time) within which any job of taskτi
should complete its execution.

• Priority Pi: it is a number specifying the relative impor-
tance of taskτi with respect to the others and used by
the scheduler to select the task to execute among the set
of active tasks ready to run.

• PhaseΦi: it is the activation time of the first job of task
τi (Φi = ai,1). Note that, all the subsequent jobs of a
periodic task are activated at precise time instants given
by

ai,j = Φi + (j − 1)Ti.

• Absolute deadlinedi,j : it is the maximum absolute time
within which job τi,j should complete its execution. It is
computed as

di,j = ai,j +Di.

A periodic taskτi activated at timeΦi is said to beschedulable
by a given scheduling algorithmA if and only if both the
following conditions are met:

1) eachjob of τi is activated at timeai,j = Φi+(j−1)Ti;
2) eachjob of τi is completed no later thandi,j = ai,j+Di.

A setΓ of n periodic tasks is said to be schedulable by a given
scheduling algorithmA if and only if all tasks are schedulable.

Note that meeting the first condition is a responsibility of
the operating system, which has to manage dedicated timers
to wake up each job at the given activation time. On the
other hand, meeting the second condition is a responsibility of
the application designer, who has to perform an appropriate



schedulability analysis to guarantee that all the tasks are
schedulable by the selected scheduling algorithm.

IV. T HE ptask LIBRARY

In this section we present theptask library along with some
example of usage. The library is divided into modules, so our
presentation will follow the same division. We first state the
design principles that guided our implementation:

• Simplicity of usage: the library must be easy to use,
so that the students can concentrate on the theoretical
concepts and test their knowledge with simple examples;

• Task model presented in the research literature must
be immediately mapped on simple code structures, so
that there is a direct correspondence between theoretical
model and implementation;

• Advanced techniques must be readily available in the
library, so that students can use them and test the
mechanisms without particular regard to the low-level
synchronization;

• The library must be open-source and accessible to the
students that can then study the internal mechanisms and
a standard and safe implementation.

The ptask library has been written in standard C (ISO/IEC
9899:2011). The reason for choosing C is that it is by far the
dominant language in embedded system development; there-
fore the students are exposed to a language and a development
environment similar to what they will find in industry. The
ptask library avoids the use of dynamic memory, except for a
few initialization functions that are meant to be called before
the application starts executing.

In order to achieve the second objective, when necessary
ptask restricts the power of the POSIX library, so that the
theoretical concepts find a more direct correspondence with
the abstractions provided by the library. For example,ptask
forces the programmer to select a scheduler for the entire
application: in fact, the library needs to be initialized bycalling
function ptask_init(scheduler), wherescheduler
is the scheduling policy to be used in the program (see Section
IV-D). Therefore, all tasks will be created using the same
scheduling policy.

This restriction corresponds to what is usually explained in
the first part of a course in Real-Time Systems, in which there
is only one scheduling discipline for the entire system. In this
way, the students are introduced to the concepts in a step-by-
step fashion. Once the students progress in their knowledge,
they can change the scheduling discipline for single tasks
by using appropriate functions, thus implementing multi-level
scheduling applications.

A. Time management

The library provides a set of simple functions to manip-
ulate timing data in moduleptime.h. The basic time data
type is tspec_t, which is simply mapped into astruct
timespec. In addition time can be expressed by aptime_t,
which is mapped into along and needs an (implicit) unit.
It is possible to sum and subtracttspec_t variables, and

typedef struct _tst {
tspec_t period; /* period */
tspec_t rdline; /* relative deadline */
tspec_t phase; /* initial phase */
int priority; /* from 0 to 99 */
int processor; /* processor id */
int act_flag; /* ACT activates the task */
int measure; /* if 1, measures exec time */
void *arg; /* pointer to a task argument */
rtmode_t *modes; /* pointer to the mode struct */
int mode_list[RTMODE_MAX_MODES]; /* mode list */
int nmodes; /*< num of modes for the task */

} task_spec_t;

Figure 4. Task parameters.

to convert to and fromptime_t by using the following
functions:

tspec_t tspec_add_delta(const tspec_t *a,
ptime_t delta, int units);

tspec_t tspec_add(const tspec_t *a, const tspec_t *b);
ptime_t tspec_to(const tspec_t *t, int unit);
tspec_t tspec_from(ptime_t t, int unit);

whereunit is the time granularity and can beSEC (seconds),
MILLI, MICRO, or NANO. In this way, time specification is
more natural and readable. For example, a time variable of 125
milliseconds can be specified simply astspec_from(125,
MILLI).

B. Task model and structure

In the ptask library, the code of a task is specified using a
C function similar to the one shown in Figure 1, where the
keyword TASK is an alias forvoid. A task is created by
calling one of the following two functions:

int task_create(void (*task)(void),
int period, int drel, int prio, int aflag);

int task_create_ex(void (*task)(void),
task_spec_t *tp);

The first function allows the user to create a task by passing
the most important parameters directly as arguments. This
function is presented first to the students, so that they can
immediately implement a simple periodic thread in their first
test programs.

The second function allows a more advanced use by taking
as input thetask_spec_t structure, which contains all task
parameters. Both functions return a integer that represents the
task id (a number in[0, MAX_TASKS]), or a negative value
in the case of an error.

The complete list of parameters in thetask_spec_t
structure is shown in Figure 4. They will be described as we
progress in the presentation of the library.

When creating a task, the library actually creates a thread
by calling thepthread_create() passing the address of
an internal function calledptask_std_body(), which in
turns calls the user-specified function. The body of such an
internal function is shown in Figure 5. The library keeps a list
of task descriptorsstruct task_par in the array_tp[]
and the index of the current task in the thread-specific variable



1 static void *ptask_std_body(void *arg)
2 {
3 struct task_par *pdes = (struct task_par *)arg;
4 ptask_idx = pdes->index;
5 if (_tp[ptask_idx].measure_flag)
6 tstat_init(ptask_idx);
7

8 pthread_cleanup_push(ptask_exit_handler, 0);
9

10 if (_tp[ptask_idx].group != NULL)
11 tgroup_wait(_tp[ptask_idx].group,
12 _tp[ptask_idx].phase);
13 else if (_tp[ptask_idx].act_flag == 1)
14 wait_for_activation();
15 else
16 clock_gettime(CLOCK_MONOTONIC,
17 &_tp[ptask_idx].at);
18

19 (*pdes->body)();
20

21 pthread_cleanup_pop(1);
22 return 0;
23 }

Figure 5. Code of the internal thread function.

ptask_idx (line 4 in Figure 5). A thread-specific variable
optimizes the access to the internal descriptor.

Each task is associated with an internal private semaphore
that is used to control the task activation and suspension.
Parameteract_flag allows to configure the way the task
is started. If act_flag is set to 0, the task is started
immediately (as with the pthread API); ifact_flag is set
to 1, the task immediately blocks on its private semaphore
waiting for an explicit activation.

After checking all relevant flags, the user-specified function
is called (line 19). Theptask_exit_handler() is a
function that cleans and releases all resources that have been
allocated in the library for creating this tasks, like internal
descriptors, the task semaphore, etc. It is automatically called
when the task exits, thanks to the cleanup mechanism provided
by the pthread API (line 8 and 21).

Periodic tasks can be grouped together to implement syn-
chronous or asynchronous periodic task sets. To implement
both models,ptask provides thetgroup_t structure and an
appropriate synchronization mechanisms is implemented using
functiontgroup_wait() (line 11 and 12). The use of such
structure is better explained with a simple example. In Figure
6 we implemented two periodic tasks belonging to the same
group. Task T1 has period equal to 300 msec, deadline equal to
period and phase equal 0; T2 has period equal to 600 msec,
and phase 100 milliseconds. Initially both tasks block on a
special semaphore for the group using thetgroup_wait()
function (see Figure 5).

The group is activated when the user calls
tgroup_activate(); from that instant, each task
waits for an interval equal to its phase before starting
execution.

int main ()
{
tgroup_t group;

ptask_init(SCHED_FIFO);
tgroup_init(&group, 2);

task_spec_t param = TASK_SPEC_DFL;
param.period = tspec_from(300, MILLI);
param.priority = 10;
param.group = &group;
param.phase = tspec_from(0, MILLI);
int T1 = task_create_ex(task_body, &param);

param.period = tspec_from(600, MILLI);
param.priority = 10;
param.group = &group;
param.phase = tspec_from(100, MILLI);
int T2 = task_create_ex(task_body, &param);
...
tgroup_activate(&group);
...

}

Figure 6. Task group

C. Measurements and deadline checks

Worst-case and average case execution times of a task can
be measured by setting themeasure flag equal to 1. Then,
the statistical data of taskτi can be obtained by calling:

tspec_t tstat_getwcet(int i);
tspec_t tstat_getavg(int i);

Measurement is based on the use of the
CLOCK_THREAD_CPUTIME_ID clock id of the
POSIX API and it is performed automatically
within the wait_for_period() and the
wait_for_activation() functions.

These functions also detect and count deadline misses by
simply measuring the time elapsed from the job activation time
until the time the job is suspended at the end of its cycle.
Therefore, when a deadline miss occurs, the task continues
executing and the event is detected only when one of the two
functions is invoked by the task.

The current version of the library does not allow detecting
a deadline miss at the deadline instant. Also, currently it is
not possible to constrain the execution time of a task to be
within a certain budget. Implementing such features requires
the use of POSIX RT signals along with thesetjump()
andlongjump() functions. Work in this direction has been
carried out by Cucinotta and Faggioli [9], who proposed the
OML library for supportingtiming exceptions in the
C language and provided an implementation over the Linux
kernel.

D. Multi-processor scheduling

In the ptask library we decided to restrict to two possible
models: global scheduling and fully-partitioned scheduling. To
use global scheduling theSCHED_GLOBAL_FP constant must
be passed to theptask_init() initialization function. To
select partitioned scheduling, theSCHED_PART_FP constant



has to be passed toptask_init(). In this second case, it is
possible to specify the processor on which the task is allocated
by setting theprocessor parameter in thetask_spec_t
structure and using thetask_create_ex() function. By
default, the created task is allocated on processor 0. The
number of available processors can be obtained by calling
ptask_getnumcores(). Later, it is possible to migrate a
task by using the functiontask_migrate(int i, int
p).

E. Mutual exclusion

In Section II-C we discussed the POSIX RT interface for
creating a mutex and setting a protocol for accessing shared
resources. However, once again the interface does not specify
the system behavior in a multi-processor systems. Recently,
Brandenburg and Bastoni [5] have shown that using simple
priority inheritance in a multi-processor environment does not
reduce priority inversion: they illustrated an example in which
using priority inheritance in a multi-core Linux based system
the blocking time can be as high as in a single processor
environment without priority inheritance. They proposed two
solutions:migratory priority inheritanceandpriority boosting.
The first one consists of migrating the blocking task on the
processor that hosts the highest priority blocked task. However,
this approach requires support from the kernel, and hence it
is outside the scope of this paper.

Priority boostingconsists in using the priority ceiling pro-
tocol and assigning each resource a ceiling higher than the
priority of any other task. This increases the blocking timeof
higher priority tasks, even if they do not use any resource, and
hence it is not optimal. However, this is a safe method that
can be analyzed using the same methodology as in the M-PCP
protocol [14].

Theptask library provides two simple functions to initialize
mutex semaphores, one for the priority inheritance protocol
and one for the priority ceiling protocol:

int pmux_create_pi(pthread_mutex_t *m);
int pmux_create_pc(pthread_mutex_t *m, int c);

The computation of the correct ceiling for a certain resource
is difficult to automatize using a library. Therefore, choosing
simplicity over transparency, we let the user select the best
ceiling depending on the task accessing the resource and the
platform (single or multiprocessor).

F. Mode change

Many control systems can be modelled as a set ofoperating
modes[15]. Each mode represents a state of the system, and
produces a different behavior. A finite state machine governs
the transition between different modes.

Each mode is associated a set of tasks, and each task can be
associated with different modes. LetM = {M1, . . . ,Mn} be
the set of modes of the system, and letTi = {τi,1, . . . , τi,ni

}
be the set of tasks associated with modeMi. When the system
is in a certain modeMi, the tasks inTi are active, while
the other tasks are suspended. When the systemchanges

mode from Mi to Mj , the transition involves the following
operations:

1) the tasks inTi − Tj must be suspended;
2) the tasks inTj − Ti must be activated;
3) the tasks inTi ∩ Tj remain active.

The exact sequence of suspensions and activations can be
different, depending on the specificmode change protocol.

Usually, mode changes are difficult to implement, since
they require a careful coordination between the tasks by using
non trivial synchronization protocols. In theptask library we
provide an automatic mechanism for supporting mode changes
using theidle-protocol. The mechanism is implemented by a
task managerthat runs at the highest priority and upon a mode
change request performs the following steps:

1) All tasks in Ti − Tj are suspended at the end of their
job cycle;

2) The task manager waits for the latest end of the period
of any suspended task;

3) The new tasks inTj − Tj are activated.

The interface for implementing the mode change is very
simple and it is better explained by the example reported in in
Figure 7. In this example the system consists of two modes,
MODE_ON andMODE_FAIL. In modeMODE_ON, two tasks
are present; in modeMODE_FAIL only the first task is present.

The mode structure is initialized in the main, by declaring
and initializing a data structurertmode_t with 2 modes
(lines 12 and 15). Then, when creating the task, we need
to pass a parameter structure, where theparam.modes
field points to the rtmode_t structure (lines 18 and
26); the param.nmodes field contains the number of
modes associated with the task (lines 19 and 27) and the
param.mode_list[] field contains the identifiers of the
modes associated with the task (lines 20, 21 and 28). Then,
the first time we have to set the system in the initial mode
by calling rtmode_change() (line 31) and specifying the
initial mode; this activates all tasks in that mode. Then,
every time we need to change mode (according to some state
machine), we need to callrtmode_change().

Note that the code of the task remains the same: the
mode change protocol is implemented within functions
wait_for_period() andwait_for_activation(),
automatically and transparently.

Function rtmode_change() sends the id of the new
mode over a communication channel, implemented as a
circular array. On the other side of the channel, the task
manager is awaken and performs the mode change protocol.
The communication channel ensures that requests for mode
changes are enqueued and served in a FIFO order; no new
request of change can be performed before the previous one
has completed.

Different mode change protocols can be implemented by
changing the task manager; the possibility of implementing
some of the more complicated mode change protocols de-
scribed in [15] is currently under investigation.



1 void taskbody()
2 {
3 wait_for_activation();
4 while (1) {
5 printf("Task T%d is running\n",
6 get_taskindex());
7 wait_for_period();
8 }
9 }

10

11 int main() {
12 rtmode_t mymodes;
13 task_spec_t param;
14

15 rtmode_init(&mymodes, 2);
16 param = TASK_SPEC_DFL;
17 < s e t main t a s k pa ramete r s>
18 param.modes = &mymodes;
19 param.nmodes = 2;
20 param.mode_list[0] = MODE_ON;
21 param.mode_list[1] = MODE_FAIL;
22 int T1 = task_create_ex(taskbody, &param);
23

24 param = TASK_SPEC_DFL;
25 < s e t main t a s k pa ramete r s>
26 param.modes = &mymodes;
27 param.nmodes = 1;
28 param.mode_list[0] = MODE_ON;
29 int T2 = task_create_ex(taskbody, &param);
30 ...
31 rtmode_change(&mymodes, MODE_ON);
32

33 < s t a t e machine code>
34 }

Figure 7. Mode change interface

V. CONCLUSIONS AND PERSPECTIVES

The current trend in embedded systems shows that hardware
is evolving more rapidly than software, causing a strong need
for methodologies able to achieve portability, modularity, and
scalability of performance. Surprisingly, such a growth in
hardware complexity was not balanced by a corresponding
evolution of the control software for a predictable an efficient
management of the computational resources. In particular,
the POSIX RT interface for programming real-time systems
suffers from aging and it is not adequate to today complex re-
quirements, as it does not permit to easily implement concepts
and abstractions available in the real-time theory.

We presentedptask , a C library that provides a simple
interface to program soft real-time activities and expresshigh-
level concepts, like periodic tasks, time synchronization, and
mode changes, through simple and transparent abstractions.
The library has been originally designed for educational
purposes, but we believe it can also be quite useful to
practitioners. The library is available as open source codeat

https://github.com/glipari/ptask.
As a future work, we plan to extend the library to include

other mechanisms and abstractions. One one hand, we would
like to support other schedulers, likeSCHED_DEADLINE
[11]; on the other hand, we plan to integrateptask with the
OML library [9] for supporting timing exceptions. In addition,
we plan to extend the interface to support clustered scheduling.
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