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Abstract—We consider the linear-time model checking prob-
lem for boolean concurrent programs with recursive procedure
calls. While sequential recursive programs are usually modeled
as pushdown automata, concurrent recursive programs involve
several processes and can be naturally abstracted as pushdown
automata with multiple stacks. Their behavior can be understood
as words with multiple nesting relations, each relation connecting
a procedure call with its corresponding return. To reason about
multiply nested words, we consider the class of all temporal logics
as defined in the book by Gabbay, Hodkinson, and Reynolds
(1994). The unifying feature of these temporal logics is that
their modalities are defined in monadic second-order (MSO)
logic. In particular, this captures numerous temporal logics over
concurrent and/or recursive programs that have been defined so
far. Since the general model checking problem is undecidable, we
restrict attention to phase bounded executions as proposed by La
Torre, Madhusudan, and Parlato (LICS 2007). While the MSO
model checking problem in this case is non-elementary, our main
result states that the model checking (and satisfiability) problem
for all MSO-definable temporal logics is decidable in elementary
time. More precisely, it is solvable in (n + 2)-EXPTIME where
n is the maximal level of the MSO modalities in the monadic
quantifier alternation hierarchy. We complement this result and
provide, for each level n, a temporal logic whose model checking
problem is n-EXPSPACE-hard.

I. INTRODUCTION

The verification of finite-state (boolean) sequential programs
is by now well understood. In its most classical form, the
program is abstracted as a finite automaton A, and a property ϕ
is specified in a temporal logic such as LTL [25]. In the linear-
time framework, model checking amounts to the question if
all executions of A satisfy ϕ.

Nowadays, most programs are distributed in nature and
involve recursive procedure calls. In order to model such
programs more accurately, finite-state models have been ex-
tended with several pushdown stacks. When reasoning about
the behaviour of such multi-stack systems, it is natural and
convenient to consider an execution as a word with multiple
nesting relations. The word itself reflects the order of atomic
actions as observed during an execution. In addition, each
nesting relation associates with a push operation (which corre-
sponds to a procedure call) its corresponding return position.
Over multiply nested words, one may then formalize properties
such as “process p is not allowed to call a procedure while
being in the scope of an active procedure call of process q”,

which do not have a natural interpretation over simple words
without nesting relations.

However, it is folklore that even simple verification tasks
such as reachability are undecidable for systems involving
two or more stacks. Therefore, any model checking task can
only cover an approximation of the system behavior. There
have been several and, partially, orthogonal approaches to
defining meaningful abstractions. The simplest one restricts to
executions with a bounded number of contexts, each involving
only actions of one particular stack [26]. This underapproxi-
mation does not consider any interaction of processes within
a procedure call, which motivated La Torre et al. to define the
more liberal notion of phases [17]. A phase does not constrain
push operations, whereas pop actions are required to belong
to some dedicated process. Orthogonal approaches are due to
[20], [22], where the number of scopes is bounded (a call and
its return are separated by a bounded number of contexts), and
[9], [5], which assumes an ordering of the stacks and postulates
that a pop operation is subject to the first non-empty stack.

Model checking multi-stack systems has recently received
a lot of attention [17], [4], [8], [10], [21], [6], [7]. In
[17], it was shown that model checking is decidable for
monadic second-order (MSO) properties under the restriction
of bounded phases. However, the problem is non-elementary
(since it is already non-elementary without stacks). So, the
focus has since moved to temporal logics. Previous works on
temporal logic for multi-stack systems differ in the choice of
the behavioural restriction described above (context-, phase-,
scope-bounded, ordered), but also in the concrete temporal
logic adopted for the model checking task. While [4], [6]
consider properties over strings such as classical LTL rather
than multiply nested words, [21] introduces a temporal logic
that allows one to identify call and return positions of a given
process and to distinguish between linear successors (referring
to the word structure) and abstract successors (involving the
nesting edges). As a matter of fact, there is so far no agreement
on a canonical temporal logic for nested words, not even for
those with one single nesting relation [1], [2]. Therefore, we
consider the class of all temporal logics as defined in the
book by Gabbay, Hodkinson, and Reynolds [12], which sub-
sumes virtually all existing formalisms. The unifying feature



of these temporal logics is that their modalities are defined
in MSO logic. Not only does this capture temporal logics
over (multiply) nested words, but it also includes numerous
temporal logics that have been designed for concurrent non-
recursive programs and that are typically interpreted over
partial orders such as Mazurkiewicz traces (cf. [13] and the
references therein). In [8], it is shown that satisfiability and
model checking for any MSO-definable temporal logic are
decidable in EXPTIME when restricting to phase bounded
executions. The phase bound τ has to be fixed, though. It was
left open if the problems are still elementary if τ is part of the
input. This is an important issue, as an elementary procedure
would allow for a gradual adjustment of τ at the cost of only
an elementary blow-up.
Contribution. In this paper, we show that the model checking
problem for multi-stack systems wrt. phase bounded execu-
tions is indeed decidable in elementary time. More precisely,
it is solvable in time (n + 2)-fold exponential in the number
of phases and the size of the temporal formula where n is the
maximal level of the MSO modalities in the monadic quantifier
alternation hierarchy.

Our result is in stark contrast to the non-elementary lower
bounds of the branching-time model checking problem [14],
[7] and of model checking against MSO logic. It is optimal for
the first level n = 0, which contains the 2-EXPTIME-complete
emptiness problem of multi-stack automata [17], [19]. For
all other levels, we provide a temporal logic whose model
checking problem is n-EXPSPACE-hard.

Two key ideas are pursued in the proof of the upper
bound. First, we translate, in polynomial time, a temporal
logic formula into an MSO formula in a certain normal
form. The construction is based on Hanf’s locality theorem
and independent of the number of phases. Second, we show
that an MSO formula in normal form can be transformed
into a tree automaton in (n + 1)-fold exponential space. The
tree automaton works on tree encodings of multiply nested
words and can then be checked for emptiness. One of its key
ingredients is a tree automaton recovering the direct successor
relation of the encoded multiply nested words. We show that
such an automaton can be computed in polynomial space,
avoiding the generic doubly exponential construction given
in [17]. The use of this tree automaton for the direct successor
relation is the main difference from [8]. There, the nested
word is interpreted in its tree encoding and then the resulting
formula is translated into a tree automaton. This results in a
non-elementary blowup since the quantifier alternation rank of
the interpretation increases linearly with the number of phases.

To prove the lower bound, we also proceed in two steps. It is
first shown for a restricted version of the satisfiability problem
of temporal logics over labelled grids, and then reduced to the
satisfiability problem for temporal logics over nested words.
Outline. Section II introduces crucial notions such as multiply
nested words and MSO-definable temporal logics, Section III
presents the upper bound of the satisfiability problem, Sec-
tion IV develops our lower bound, and Section V transfers
these results to the model checking problem. We conclude in

Section VI, giving directions for future work.

II. PRELIMINARIES

Let Γ be an alphabet, i.e., a non-empty finite set. For
an integer n ∈ N, we let [n] = {1, 2, . . . , n} and [n]0 =
{0, 1, . . . , n}. The function tower : N2 → N is inductively de-
fined by tower(0,m) = m and tower(#+1,m) = 2tower(!,m),
for all #,m ∈ N. We let poly(n) denote the set of polynomial
functions in one argument.

A. Multiply Nested Words

Definition 1 We define a word over Γ to be a finite Γ-labelled

linear order w = (P,≤,λ), i.e., (P,≤) is a finite, non-empty,

linearly ordered set and λ : P → Γ is a mapping. By !, we

denote the immediate successor relation, i.e., ! = < \ <2.

Furthermore, the minimal and maximal elements of P with

respect to ≤ are denoted by min(P,≤) and max(P,≤), resp.

Most of the time one can think of P as an initial segment of
N and of ≤ as the restriction of the natural ordering of N to
the set P .

Definition 2 Let (P,≤) be a finite linear order. A nesting
relation ≺ over (P,≤) is a binary relation such that, for all

i, j, i′, j′ ∈ P , the following conditions hold:

1) if i ≺ j, then i < j
2) if i ≺ j, i′ ≺ j′, and i ≤ i′, then i < i′ < j′ < j or

i < j < i′ < j′ or (i = i′ and j = j′).

If i ≺ j, then we say that i is a call with matching return j.

The idea is that the linear order (P,≤) describes the execution
of some recursive program. Then i ≺ j shall mean that, at
time i, the execution calls some procedure and, at time j,
the control is returned to the calling program. Having this in
mind, condition 1 expresses that every return occurs after its
matching call. Condition 2 ensures that no position is both, a
call and a return, every call has exactly one matching return
and vice versa, and calls and matching returns are well nested.
We will consider words with not only one, but with σ ∈ N

many nesting relations.

Definition 3 For σ ∈ N, a σ-nested word over Γ is a tuple

ν = (w,≺1,≺2, . . . ,≺σ) where w = (P,≤,λ) is a word

over Γ and, for all s ∈ [σ], ≺s is a nesting relation over (P,≤)
such that we have, for all 1 ≤ s < s′ ≤ σ and i, j, i′, j′ ∈ P :

i ≺s j and i′ ≺s′ j
′ imply i %= i′ and j %= j′ . (1)

We define ≺ =
⋃

s∈[σ] ≺s and identify isomorphic nested

words.

The condition (1) restricts the interplay of the different nesting
relations. It ensures that no position of the word can be
call (return, resp.) of two distinct nesting relations. Note that
i1 ≺s i2 ≺s′ i3 is possible for s %= s′, i.e., a position can
be both, a return and a call, but only with respect to distinct
nesting relations (the case s = s′ is excluded by condition 2
of Definition 2).
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Fig. 1. The nested word ν = (w,≺1,≺2) from Example 1. Note that the
relation ≺1 (≺2, resp.) is represented by the edges above (below) the word
w.

Example 1 Figure 1 is an illustration of the 2-nested word
ν = ([12],≤,λ,≺1,≺2) where ≤ is the natural ordering on
[12], λ(i) = ai for all i ∈ [12], ≺1 = {(1, 2), (4, 9), (5, 8)},
and ≺2 = {(2, 6), (7, 12), (8, 10)}.

In order to make the satisfiability problem decidable, we adopt
the notion of a phase. The latter is an interval in a nested word
in which all returns refer to the same nesting relation.

Definition 4 Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a nested word.

A phase of ν is a subset I ⊆ P for which the following

conditions hold:

1) there exist i, j ∈ P such that I = {k ∈ P | i ≤ k ≤ j}
2) for all i, i′ ∈ P , j, j′ ∈ I , and s, s′ ∈ [σ] with i ≺s j

and i′ ≺s′ j′, we have s = s′.

Let τ ∈ N. We call ν a τ -phase nested word if there exist

phases I1, I2, . . . , Iτ of ν with P = I1 ∪ . . . ∪ Iτ . The set of

τ -phase σ-nested words is denoted by NWτ (Γ,σ).

Example 2 Consider the nested word ν from Example 1.
It can be divided into the four phases {1, 2, 3, 4, 5}, {6, 7},
{8, 9}, and {10, 11, 12}. Hence, ν is a 4-phase nested
word. Note that the phases {1, 2}, {3, 4, 5, 6}, {7, 8, 9}, and
{10, 11, 12} also witness this property. However, ν is no 3-
phase nested word since no two of the positions 2, 6, 8, and
10 can belong to the same phase.

Among the possible divisions of the τ -phase σ-nested word ν
into different phases, the greedy division will serve as a
canonical example: We define the mapping phν : P → [τ ]
where phν(i) is the minimal number s ≥ 1 such that the
restriction of ν to the positions {1, . . . , i} is an s-phase nested
word. Then, for all s ∈ [τ ], Is = ph−1

ν (s) is a phase of ν, and
we have P = I1 ∪ . . . ∪ Iτ . Note that Iτ = ∅ if and only if ν
is a (τ − 1)-phase nested word.

B. Monadic Second-Order Logic and MSO-definable Tempo-

ral Logics

We fix an alphabet Γ and a natural number σ. Furthermore,
we fix the set {x, y, z, . . .} of individual variables and the set
{X,Y, Z, . . .} of set variables. We will define a logic that is
capable of expressing properties of σ-nested words over Γ.

Definition 5 The class MSO(Γ,σ) of MSO formulas is given

by the following grammar, where a ∈ Γ, s ∈ [σ], x, y are

first-order variables, and X is a set variable:

ϕ ::= (λ(x) = a) | x! y | x ≺s y | x = y | x ∈ X

| calls(x) | rets(x) | min(x) | max(x)

| ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x : ϕ | ∃X : ϕ

The set FO(Γ,σ) ⊆ MSO(Γ,σ) contains all formulas without

second order quantification ∃X . We use usual abbreviations

such as ∀x : ϕ for ¬∃x : ¬ϕ.

Now, let ν = (P,≤,λ,≺1, . . . ,≺σ) be a σ-nested

word and ϕ(x1, . . . , xk, X1, . . . , X!) be a formula with free

variables from {x1, . . . , xk, X1, . . . , X!}. Furthermore, let

i1, . . . , ik ∈ P and I1, . . . , I! ⊆ P . Then we write

ν, i1, . . . , ik, I1, . . . , I! |= ϕ if ϕ evaluates to true when

interpreting the variables by i1, . . . , ik and I1, . . . , I!, resp.

In particular, we have ν, i |= (λ(x) = a) if λ(i) = a.

Furthermore, ν, i |= calls(x) if there exists j ∈ P with i ≺s j
and ν, i |= min(x) if i = min(P,≤). The semantics of the

atomic formulas rets(x) and max(x) is defined analogously.

If ϕ is a sentence, then we denote by L(ϕ) the set of σ-nested

words ν with ν |= ϕ.

Definition 6 An MSO(Γ,σ)-formula is an m-ary modality if

it has one free individual variable x and m free set variables

X1, . . . , Xm. An MSO(Γ,σ)-definable temporal logic is a

tuple TL = (B, arity, !−") where B is a finite set of modality

names, the mapping arity : B → N specifies the arity of

every modality name from B, and !−" : B → MSO(Γ,σ)
is a mapping such that !M" is an m-ary modality whenever

arity(M) = m for M ∈ B.

The formulas F of the temporal logic TL are defined by the

grammar

F ::= M(F, . . . , F
︸ ︷︷ ︸

arity(M)

)

where M ranges over B. The size |F | of a temporal formula

F is its number of subformulas.

Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a nested word and F ∈
TL be a formula. The semantics F ν,TL of F in ν is the set

of positions from P where F holds. The inductive definition

is as follows: If F = M(F1, . . . , Fm) where M ∈ B is of

arity m ≥ 0, then F ν,TL = {i ∈ P | ν, i, F ν,TL
1 , . . . , F ν,TL

m |=
!M"}. We write ν, i |=TL F for i ∈ F ν,TL and ν |=TL F
for ν,min(P,≤) |=TL F . By L(F ) we denote the set of all

σ-nested words ν with ν |=TL F .

Note that a temporal formula F can be part of different
temporal logics and, therefore, can have several semantics.
However, if we only deal with one temporal logic TL, then
we often write F ν instead of F ν,TL and ν |= F instead of
ν |=TL F .

Example 3 The Boolean connectives negation and conjunc-
tion can be expressed by

!¬"(X1, x) = ¬(x ∈ X1)
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and

!∨"(X1, X2, x) = (x ∈ X1) ∨ (x ∈ X2) .

Let us also consider the modality N1. Intuitively, N1 F means
that the formula F holds for the immediate successor of
the current position with respect to the nesting relation ≺1.
Formally, we can set

!N1"(X1, x) = ∃y : (x ≺1 y ∧ y ∈ X1) .

Example 4 A wide range of temporal logics have been de-
fined for nested words and concurrent systems. Their until

operator usually depends on what is considered a path between
two word positions and, more specifically, on a notion of
successor. In the classical setting of words without nesting re-
lations, one naturally considers the direct successor following
the linear order. The situation is less clear in the presence of
one or more nesting relations. In [1], Alur et al. identify three
different kinds of successors in singly nested words, namely
the linear, call, and abstract successor. Each of them comes
with a separate until operator.

Towards nested words with multiple nesting relations, Atig
et al. consider only the linear successor [4], [6], while La
Torre and Napoli also define modalities that correspond to
linear, call, and abstract successors [21]. As an example, we
consider the abstract until. An abstract s-path in a nested word
is a path that does not choose a linear direct successor from

a call position or to a return position (wrt. ≺s). The modality
Ua

s for the abstract until is then given by

!Ua
s"(X1, X2, x) =

∃Y ∃z :
(

z ∈ X2 ∧ Y ⊆ X1 ∧

∀y : (y ∈ Y ∨ y = z) →
(

y = x ∨ ∃y′ (y′ ∈ Y ∧ ϕs(y′, y))
)
)

where

ϕs(y
′, y) = y′ ≺s y ∨ (¬calls(y

′) ∧ ¬rets(y) ∧ y′ ! y) .

Indeed, all the modalities considered in [1], [4], [6], [21] are
MSO-definable. However, they appear to be just a few of many
other possibilities. For example, one may define an abstract
path including two or more nesting relations, or include past-
time counterparts of until modalities, which are not present
in [21]. Such extensions can be realized in our framework
by giving their definition in MSO. An elementary upper
bound of the satisfiability and model checking problem follows
immediately from our result, without changing anything in the
decidability proof.

Note that the emptiness problem of a 2-stack automaton
is undecidable (since a Turing machine can be simulated
using two stacks). It follows that the satisfiability problem
of MSO(Γ,σ) and the model checking problem of every non-
trivial temporal logic is undecidable as well. La Torre et al.
[17] proposed the restriction of these problems to τ -phase
words and showed that, under this restriction, the emptiness
problem as well as the satisfiability problem of MSO(Γ,σ)

are decidable. Here, we define the satisfiability problem for
temporal logics, restricted to a given number of phases τ :

Definition 7 Let TL be some MSO(Γ,σ)-definable temporal

logic. The satisfiability problem of TL is the set of pairs (F, τ)
where F ∈ TL is a formula and τ ∈ N such that there exists

some τ -phase σ-nested word ν with ν |= F .

We now introduce a measure of the complexity of monadic
formulas: the monadic quantifier alternation hierarchy. In this
definition, we use the following convention: We say “ϕ can be
transformed into ψ” if, using the usual rules for renaming of
bound variables and regrouping of quantifiers (e.g., α∨∃x : β
can be transformed into ∃x : (α∨β) if x does not occur freely
in α), we can obtain ψ from ϕ.

Definition 8 We introduce the following two definitions:

1) An MSO(Γ,σ)-formula ϕ belongs to MΣn(Γ,σ) if it can

be transformed into the form

∃X1 ∀X2 . . . ∃/∀Xn : ψ0

where Xi are tuples of individual and set variables and

ψ0 is a first-order formula. It belongs to MΠn(Γ,σ) if it

can be brought into the form

∀X1 ∃X2 . . . ∀/∃Xn : ψ0 .

2) Let L be some fragment of MSO(Γ,σ) such as FO(Γ,σ)
or MΣn(Γ,σ) etc. An MSO(Γ,σ)-definable temporal

logic TL = (B, arity, !−") is L-definable if !M" ∈ L
for all modality names M ∈ B.

It is easily seen that any formula from MΣn(Γ,σ) or from
MΠn(Γ,σ) can be brought into the required form in polyno-
mial time.

Examples 3 and 4 (continued): We have !∨", !¬", !N1" ∈
MΣ0(Γ,σ) and !Ua

s" ∈ MΣ1(Γ,σ).

III. UPPER BOUND

In this section, we show that the satisfiability problem of
every MΣn(Γ,σ)-definable temporal logic belongs to (n +
2)-EXPTIME. In the remainder of the section, we assume that
P is an initial segment of {1, 2, . . .} and that ≤ is the natural
ordering over P for every word w = (P,≤,λ).

A. From Temporal Logics to MSO

The first step in our solution of the satisfiability problem
is a translation of the temporal formula into an MSO(Γ,σ)-
formula of a particular form (see Prop. 1). We start with a sec-
ond measure for the complexity of formulas from MSO(Γ,σ),
the full quantifier alternation hierarchy (cf. Definition 8):

Definition 9 An MSO(Γ,σ)-formula ϕ belongs to ΣM
n if it

can be transformed into the form

∃X1 ∀X2 . . . ∃/∀Xn : ϕ0
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where Xi are tuples of individual and set variables and ϕ0 is

quantifier-free. It belongs to ΠM
n if it can be brought into the

form

∀X1 ∃X2 . . . ∀/∃Xn : ϕ0 .

Examples 3 and 4 (continued): We have !∨", !¬" ∈ ΣM
0 ,

!N1" ∈ ΣM
1 , and !Ua

s" ∈ ΣM
3 .

It is easily seen that ΣM
m ⊆ MΣm(Γ,σ) and MΣm(Γ,σ) %⊆

ΣM
n for any m,n ∈ N. However, as the following theo-

rem states, every MΣn(Γ,σ)-definable temporal logic is also
ΣM

n+1-definable without changing the semantics of temporal
formulas. This result is achieved by applying Hanf’s locality
principle.

Theorem 1 Let ϕ = ϕ(x,X1, . . . , Xm) be an MΣn(Γ,σ)-
modality. Then there exists a modality ψ ∈ ΣM

n+1 such that,

for any σ-nested word ν, any tuple X = (X1, . . . , Xm) of

sets of positions, and any position x, we have

ν, x,X |= ϕ ⇐⇒ ν, x,X |= ψ .

Proof: Let ϕ be a first-order formula. Since our logic
does not speak about the linear order ≤ directly, it handles σ-
nested words as “structures of bounded degree”. This allows
us, using Hanf’s theorem [15], [11], to translate ϕ into a
Boolean combination of first-order formulas of the form

∃x1, . . . , xn α

where α is a Boolean combination of atomic formulas involv-
ing the variables x1, . . . , xn and formulas of the form

∀y (β →
∨

1≤j≤n

y = xj) and ∀y ¬β (2)

where β can be any of the formulas xi ! y, y ! xi, y ≺s xi,
and xi ≺s y.

If, e.g., β = (xi ! y), then the former of the two formulas
above can be replaced by max(xi)∨

∨

1≤j≤n xi!xj and ∀y ¬β
by max(xi). This allows us to eliminate all occurrences of
formulas of the form (2) in α. Hence the first-order formula ϕ
is equivalent to an existential first-order formula.

It follows that, in order to solve the satisfiability problem of
an MSO(Γ,σ)-definable temporal logic, it suffices to decide
the satisfiability problem of MSO(Γ,σ)-formulas of a certain
form.

Proposition 1 Let TL = (B, arity, !−") be some MΣn(Γ,σ)-
definable temporal logic. From a temporal formula F of TL,

one can compute in time poly(|F |) an MSO(Γ,σ)-formula

without free variables

ψ = ∃X (ψ1(X) ∧ ∀y ψ2(y,X))

(where X is a tuple of set variables) such that ψ1 ∈ ΠM
n+1,

ψ2 ∈ ΣM
n+1, and, for any nested word ν, we have ν |=TL F if

and only if ν |= ψ.

B. The Encoding of Nested Words as Trees

Definition 10 Let Λ be an alphabet. A Λ-tree is a structure

T = (V,E0, E1, #) where V %= ∅ is the finite set of nodes,

E0, E1 ⊆ V × V are sets of edges (E0 is the left-successor

relation, and E1 the right-successor relation), and # : V → Λ
is the labelling function. Furthermore, there is a node u ∈ V
(the root) such that, for every node v, there is a unique path

in (V,E0 ∪E1) from the root u to v. Finally, every node has

at most one successor wrt. E0, and at most one successor

wrt. E1. The set of all Λ-trees is denoted by TΛ.

If T = (V,E0, E1, #) is a Λ-tree, X1, . . . , Xm ⊆
V , and x1, . . . , xn ∈ V , then we define a new tree
(T,X1, . . . , Xm, x1, . . . , xn) = (V,E0, E1, #′) over the alpha-
bet Λ × {0, 1}m+n as usual: For v ∈ V , we set #′(v) =
(#(v), b1, . . . , bm, c1, . . . , cn) with

• bi = 1 if and only if v ∈ Xi for i ∈ [m] and
• ci = 1 if and only if v = xi for i ∈ [n].

Note that a tree over Λ×{0, 1}m+n is of this form if and only
if, for all 1 ≤ i ≤ n, there is a unique node whose bit ci is set
to 1. Hence the set of these trees forms a regular tree language
that can be accepted by a (nondeterministic bottom-up) tree
automaton with 2n states. Let ν = (P,≤,λ,≺1, . . . ,≺σ)
be a σ-nested word. Following [17], we will now describe
its encoding as a tree tree(ν) = (V,E0, E1, #). First, the
nodes of the tree are the positions of ν. The position j is
the right-successor of the position i if i and j are matching
call and return positions. Moreover, the left-successor of i is
its immediate successor in ν provided that this is no return
position. Formally, we have V = P ,

(i, j) ∈ E1 ⇐⇒ i ≺ j , and

(i, j) ∈ E0 ⇐⇒ i! j and there does not exist k with k ≺ j .

It remains to describe the labelling of the nodes j of the tree.
Any such label #(j) will be a tuple. The first component of #(j)
is the letter λ(j) ∈ Γ. For calls, the second component is the
number s of the nesting relation, otherwise it is 0. Similarly,
for returns, the third component is the number s′ of the nesting
relation, otherwise it is 0. Finally, in the fourth component of
#(j), we want to store the phase to which j belongs in the
greedy division of ν, i.e., the number phν(j). In summary,
we have #(j) =

(

λ(j), s, s′,phν(j)
)

∈ Γ × [σ]0 × [σ]0 × N

where

• s > 0 if and only if there exists k ∈ P with j ≺s k and
• s′ > 0 if and only if there exists i ∈ P with i ≺s′ j.

If ν is a τ -phase nested word and j is a position in ν, then
phν(j) ∈ [τ ]. Hence, in this case, tree(ν) = (V,E0, E1, #) is
a tree over the alphabet Γ× [σ]20 × [τ ].

Example 1 (continued): The encoding of the 2-nested word
from Example 1 is depicted in Fig. 2.

Our decision procedure will work with these tree encodings
and not with nested words. It is therefore important to describe
those trees that are actually encodings of nested words. Such
a description was obtained by La Torre et al. [17]. (Note that
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(a1, 1, 0, 1)

(a2, 2, 1, 1)

(a3, 0, 0, 1)

(a4, 1, 0, 1)

(a5, 1, 0, 1)

(a6, 0, 2, 2)

(a7, 2, 0, 2)

(a8, 2, 1, 3)

(a9, 0, 1, 3)

(a10, 0, 2, 4)

(a11, 0, 0, 4)

(a12, 0, 2, 4)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Fig. 2. The tree encoding of the nested word from Figure 1

the proof in [17] only considers tree encodings whose labels
belong to Γ× [τ ], but the extension to our encodings tree(ν)
can be handled in the same spirit.)

Theorem 2 ([17]) From τ ∈ N, one can construct in

time tower2(poly(τ)) a tree automaton Bτ with L(Bτ ) =
tree(NWτ (Γ,σ)).

C. Tree Automata for Possibly Negated Atomic Formulas

The ultimate goal is to construct, from an MSO(Γ,σ)-
formula ϕ(x1, . . . , xk, X1, . . . , X!), a “small” tree
automaton Bϕ that accepts a tree of the form
(tree(ν), x1, . . . , xk, X1, . . . , X!) (where ν is a τ -phase
σ-nested word) if and only if ν, x1, . . . , xk, X1, . . . , X! |= ϕ.
The simplest such formulas ϕ are the atomic formulas
λ(x) = a, x! y, x ≺s y, min(x) etc. and their negations that
we handle in this section.

Proposition 2 Given a possibly negated atomic MSO(Γ,σ)-
formula ϕ not of the form x ! y or max(x)1 and τ ∈ N,

one can construct in space poly(τ) a tree automaton Bϕ with

the following property: Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a τ -

phase nested word, i, j ∈ P , and I ⊆ P . Then (tree(ν), i, j, I)
is accepted by Bϕ if and only if ν, i, j, I |= ϕ.

Proof: Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a σ-nested
word, i, j ∈ P and I ⊆ P . Then ν, i, j, I |= min(x) if
and only if i is the root of the tree tree(ν). From the label
of i in (tree(ν), i, j, I), one can immediately tell whether
ν, i, j, I |= (λ(x) = a) and similarly for the formulas calls(x),
rets(x), x ∈ X , x = y, and for their negations.

1Note that ϕ has at most two free individual and one free set variable.

Note that i ≺s j is equivalent to (i, j) ∈ E1 and i ∈ calls.
Hence the above automata for calls(x) and for ¬calls(x)
together with standard automata techniques allow us to handle
the formulas x ≺s y and ¬(x ≺s y).

Note that i is no immediate predecessor of j if and only
if j ≤ i or there exists a position k with i < k < j. Since
[17] proves the claim for the formula ϕ = (x ≤ y) (which is
not part of our logic), standard automata techniques allow us
to handle ¬(x ! j). Similar arguments apply to the formula
¬max(x).

The real difficulty comes with the remaining atomic for-
mulas ϕ of the form x ! y or max(x). We could, of course,
simply complement the automaton B¬ϕ from Proposition 2.
But this requires exponential space.

In a first step, we will construct a tree automaton accepting
(tree(ν), X, x) if and only if X is the set of positions of ν
preceding x in ν. To this aim, we use the new characterisation
of the order relation ≤ of ν in the tree tree(ν) from Lemma 1.

Definition 11 Let T = (V,E0, E1, #) be a tree over the

alphabet Γ× [σ]20× [τ ]. For v ∈ V , we let phase(v) denote its

phase, i.e., the number t ∈ [τ ] with #(v) = (a, s, s′, t). Then

the phase word pw(v) ∈ [τ ]+ is defined by induction:

pw(v) =



















phase(v) if v is the root of T

pw(u) if (u, v) ∈ E0 ∪ E1 and

phase(v) = phase(u)

pw(u)phase(v) if (u, v) ∈ E0 ∪ E1 and

phase(v) %= phase(u)

Intuitively, the phase word of v recalls the sequence of the
phases on the path from the root to the node v where stuttering
is deleted.

If ν is a τ -phase nested word, then any phase word from the
tree tree(ν) begins with 1 and its entries increase properly. On
the set of these phase words, we define a strict linear order:
(s1, . . . , sm) ! (t1, . . . , tn) if and only if

• sm < tn or
• sm = tn and (s1, . . . , sm−1) " (t1, . . . , tn−1).

For instance, (1, 2, 4) ! (1, 5) and therefore (1, 2, 4, 6) "

(1, 5, 6).

Lemma 1 Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a τ -phase σ-

nested word, x, y ∈ P , and tree(ν) = (P,E0, E1, #) be the

tree encoding of ν. Then x < y if and only if

(1) pw(x) ! pw(y) or

(2) pw(x) = pw(y) and x is a predecessor of y in tree(ν)
or

(3) pw(x) = pw(y) and there exist positions z, x′, y′ ∈ P
such that x′ %= y′, (z, x′), (z, y′) ∈ E0 ∪ E1, x′ is a

predecessor of x and y′ one of y and

(z, x′) ∈ E0 if and only if
(

|pw(x)|− |pw(z)| even ⇐⇒ phν(x
′) = phν(y

′)
)

.

Based on this lemma, one can prove the following.
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Lemma 2 From τ ∈ N, one can construct in space poly(τ)
a tree automaton B satisfying the following property: Let ν =
(P,≤,λ,≺1, . . . ,≺σ) be a τ -phase nested word, x ∈ P , and

X ⊆ P . Then (tree(ν), x,X) is accepted by B iff X = {y ∈
P | y ≤ x}.

Proof: One first builds a tree automaton B′ that accepts
(tree(ν), x,H) if H is the set of positions y of tree(ν) that
are incomparable with x and satisfy

• the direct predecessor of y belongs to H or
• the direct predecessor z of y is a predecessor of x and

y is a return ⇐⇒





|pw(x)|− |pw(z)| is even
⇐⇒

phν(x
′) = phν(y)





where x′ is the direct successor of z on the path to x.

Now B is obtained from B′ as follows (recall that B runs
on trees of the form (tree(ν), x,X)):

• It guesses a set H ⊆ P and verifies that (tree(ν), x,H)
is accepted by B′.

• It verifies that X contains precisely those positions y that
satisfy

(1) pw(x) ! pw(y) or
(2) pw(x) = pw(y) and x is a predecessor of y or
(3) pw(x) = pw(y) and y ∈ H .

By Lemma 1, B accepts the correct trees (tree(ν), x,X).
Based on this automaton, one can easily construct tree

automata for the formulas x! y and max(x).

Proposition 3 Given a formula ϕ of the form x ! y or

max(x) and τ ∈ N, one can construct in space poly(τ)
a tree automaton Bϕ satisfying the following property: Let

ν = (P,≤,λ,≺1, . . . ,≺σ) be a τ -phase nested word and

i, j ∈ P . Then (tree(ν), i, j) is accepted by Bϕ iff ν, i, j |= ϕ.

Proof: Running on (tree(ν), i, j), the tree automaton
Bx!y proceeds as follows:

(1) It guesses sets X,Y ⊆ P and verifies that X = {x ∈ P |
x ≤ i} and Y = {x ∈ P | x ≤ j}.

(2) It verifies that Y \X = {j}.

Similarly, running on (tree(ν), i), the tree automaton Bmax(x)

guesses a set X ⊆ P and verifies X = {x ∈ P | x ≤ i} and
X = P .

By Lemma 2, these automata can be constructed in space
poly(τ) and accept the correct encodings of τ -phase nested
words.

D. The Decision Procedure

We need one final lemma for the translation of temporal
formulas into tree automata:

Lemma 3 From a tree automaton B over Λ × {0, 1}, one

can construct a tree automaton B′ with L(B′) = {T ∈ TΛ |
(T, v) ∈ L(B) for all v ∈ T} in space poly(|Q|+ |Λ|).

Proof: Let Q be the set of states of B. The states of B′

are pairs (M1,M2) of subsets of Q. Its transition relation is

defined in such a way that, on the tree T , the tree automaton
B′ can reach the state (M1,M2) if and only if

(i) M1 is the set of states p ∈ Q that B can reach on (T, ∅).
(ii) For all positions v of T , there is a state p ∈ M2 such

that B can reach p on (T, {v}).

The state (M1,M2) of B′ is accepting iff M2 is a set of
accepting states of B.

The main difficulties of the translation of a temporal formula
into a tree automaton have been mastered in the above Propo-
sitions 1, 2, and 3. It remains to assemble these ingredients
using quite standard arguments:

Theorem 3 Let TLn be an MΣn(Γ,σ)-definable temporal

logic. From a formula F from TLn and τ ∈ N, one can

construct in space towern+1(poly(|F |+ τ)) a tree automaton

BF over the alphabet Γ with the following property: For any

τ -phase σ-nested word ν, we have

ν |= F ⇐⇒ tree(ν) ∈ L(BF ) .

Proof: By Prop. 1, we can construct a formula ψ =
∃X (ψ1(X) ∧ ∀y ψ2(y,X)) that is (over σ-nested words)
equivalent to F . Recall that ψ1 ∈ ΠM

n+1 and ψ2 ∈ ΣM
n+1.

We can compute in polynomial time a formula ψ′
2 =

∃X1 ¬∃X2 . . . ¬∃Xn+1 : ψ0, where ψ0 is quantifier-free and
Xi are tuples of individual and set variables, which is logically
equivalent to ψ2. Even more, we can assume that ψ0 is a posi-
tive Boolean combination of possibly negated atomic formulas.
Note that |ψ′

2| (and therefore |ψ0|) is polynomial in |ψ|. Using
Propositions 2 and 3 and standard constructions (for union
and intersection) from automata theory, we can transform ψ0

into a tree automaton Bψ0
in space poly(|ψ| · τ). The desired

tree automaton Bψ2
is obtained from Bψ0

by a sequence
of n complementations and n + 1 projections. Hence this
construction can be carried out in space towern(poly(|ψ| · τ))
and the size of Bψ2

is bounded by towern+1(poly(|ψ| · τ)).
Then, by Lemma 3, we can also translate ∀y ψ2(y,X) into
a tree automaton of size towern+2(poly(|ψ| · τ)). Since a
formula belongs to ΠM

n+1 iff its negation belongs to ΣM
n+1,

we similarly obtain a tree automaton Bψ1
for ψ1 of size

towern+2(poly(|ψ| · τ)) in space towern+1(poly(|ψ| · τ)).
Finally, by standard automata techniques for intersection and
projection, we obtain the tree automaton for ψ.

Theorem 4 Let n ≥ 0 and TLn be some MΣn(Γ,σ)-
definable temporal logic. Then the satisfiability problem of

TLn is in (n+ 2)-EXPTIME (where τ is encoded in unary).

Proof: Let τ ∈ N and F be a temporal formula from
TLn. First construct the tree automaton BF from Theorem 3.
Furthermore, let Bτ be the tree automaton from Theorem 2.
Since n ≥ 0, the number of states of both these automata is
bounded by towern+2(poly(|F |+ τ)).

Note that we have L(BF ) ∩ L(Bτ ) = ∅ if and only if
F is not satisfiable by any τ -phase nested word. This can
be decided in time polynomial in |BF | · |Bτ |, i.e., in time
towern+2(poly(|F |+ τ)).
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IV. LOWER BOUND

In this section, we show that there exist MΣn(Γ,σ)-
definable temporal logics whose satisfiability problem is
n-EXPSPACE-hard. In order to present a plain and modular
proof, we proceed in two steps. First of all, we show a lower
bound on a restricted version of the satisfiability problem
of temporal logics over labelled grids. Secondly, we reduce
this satisfiability problem to the satisfiability problem for
MΣn(Γ,σ)-definable temporal logics over nested words.

A. Labelled Grids

In this section, we introduce the notion of labelled grids.
We also define MSO and temporal logics which are evaluated
over labelled grids.

Definition 12 A labelled grid over Γ is a tuple G = (k,m, µ)
where k,m ≥ 1 specify the number of rows and columns,

resp., and µ : [k] × [m] → Γ is a mapping. The elements of

dom(G) = [k]× [m] are called cells. Furthermore, we define

the horizontal and the vertical successor relations:

Sh = {((r, c1), (r, c2)) | c2 = c1 + 1} ⊆ dom(G)2

Sv = {((r1, c), (r2, c)) | r2 = r1 + 1} ⊆ dom(G)2

Definition 13 The set MSOG(Γ) of MSO formulas ϕ over

labelled grids is given by the following grammar, where a ∈ Γ:

ϕ ::= µ(x) = a | x Sh y | x Sv y | x = y

| x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

For a grid G, (r1, c1), (r2, c2) ∈ dom(G), and a ∈ Γ, we

have G, (r1, c1) |= µ(x) = a if µ(r1, c1) = a. Furthermore,

we have G, (r1, c1), (r2, c2) |= x Sh y if (r1, c1) Sh (r2, c2);
the other connectives are as expected. If ϕ is a sentence, then

we denote by L(ϕ) the set of grids G with G |= ϕ.

Definition 14 An MSOG(Γ)-definable temporal logic is de-

fined similar to an MSO(Γ,σ)-definable temporal logic (see

Definition 6). If TLG is an MSOG(Γ)-definable temporal logic

and F ∈ TLG, then we write G |= F if G, (1, 1) |= F .

The sets FOG(Γ), MΣG
n (Γ), and MΠG

n (Γ) are defined like

the corresponding fragments of the logic MSO(Γ,σ) (see

Definitions 5 and 8). If TLG is some MSOG(Γ)-definable

temporal logic, then the satisfiability problem of TLG is the set

of pairs (F,m) where F ∈ TLG is a formula and m ∈ N such

that there exists some grid G with m columns and G |= F .

Let M be a Turing machine whose language is
n-EXPSPACE-complete. We can assume that M
works in space Fn(m) where F0(m) = m and
F!+1(m) = F!(m) · 2F!(m). Now let w be an input of M
of length m − 3. We then consider grids with m columns
whose cells carry tape symbols or states or endmarkers. For
the hardness of the satisfiability problem, one then expresses
about a grid G with m columns

• that the initial configuration with input w is the inscrip-
tion of the first row and

• that the inscription of the grid, read row by row, is a
successful computation of M .

The first statement can easily be expressed using the modality
!Sh"(x,X1) = ∃y : xSh y ∧ y ∈ X1. The main problem with
the second statement is that one has to relate positions x and
x + Fn(m) (in the sequence of labels of the grid read row
by row). This is easy for n = 0 since then, x + F0(m) is
the position directly below x: y = x + F0(m) if and only if
G, x, y |= (xSv y). Adopting the technique from [24], [27],
[13], one can then show by induction (with ϕ0 = (xSv y)):

Lemma 4 For all n ≥ 0, there exists a formula ϕn(x, y) ∈
MΣG

n (Γ) such that, for all grids G = (k,m, µ) and cells

(r1, c1), (r2, c2) ∈ dom(G), we have

G, (r1, c1), (r2, c2) |= ϕn

⇐⇒ (r2 − 1)m+ c2 = (r1 − 1)m+ c1 + Fn(m) .

Using this formula ϕn ∈ MΣG
n (Γ), one can build a 0-

ary modality from MΠG
n (Γ) expressing that the sequence

of labels of the grid G is an accepting computation of the
Turing machine M . Together with the modalities for Boolean
connectives and Sh (see above), one obtains

Theorem 5 For every n ≥ 1 and alphabet Γ with |Γ| ≥ 2,

there exists an MΠG
n (Γ)-definable temporal logic TLG with

an n-EXPSPACE-hard satisfiability problem.

B. Representing Labelled Grids by Nested Words

Our goal is a polynomial reduction of the satisfiability
problem of a MΠG

n (Γ)-definable temporal logic expressing
properties of labelled grids to the satisfiability problem of
an MΠn(Γ,σ)-definable temporal logic which is evaluated
on nested words. For this purpose, we represent a grid
G = (k,m, µ) over Γ by a 2m-phase 2-nested word νG
over the alphabet Γ 3 {⊥}. Note that we insert artificial
blocks of ⊥ since, by this means, it is technically easier to
navigate within νG. More precisely, the 2m-phase 2-nested
word νG = (P,≤,λ,≺1,≺2) over Γ 3 {⊥} is defined as
follows: The set of positions is given by P = [k] × [2m]
and, for all (i, j) ∈ P , we have λ(i, j) = µ(i, j/2) if j is even
and λ(i, j) = ⊥ otherwise. For all (i1, j1), (i2, j2) ∈ P , we
have (i1, j1) ≤ (i2, j2) if

j1 < j2
or (j1 = j2 is odd and i1 ≤ i2)
or (j1 = j2 is even and i2 ≤ i1) .

The nesting relations ≺1 and ≺2 are defined as follows:

≺1 = {
(

(i1, j1), (i2, j2)
)

∈ P 2 | i1 = i2, j2 = j1 + 1 even}

≺2 = {
(

(i1, j1), (i2, j2)
)

∈ P 2 | i1 = i2, j2 = j1 + 1 odd}

Example 5 Consider the grid G = (3, 3, µ) from Fig. 3. The
corresponding nested word νG is also depicted in Fig. 3. The
upper and lower edges visualize the nesting relation ≺1 and
≺2, resp.
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a b c

d e f

g h i

⊥ ⊥ ⊥ g d a ⊥ ⊥ ⊥ h e b ⊥ ⊥ ⊥ i f c

Fig. 3. The grid G and the nested word νG from Example 5.

Proposition 4 There exists a sentence grid ∈ MΠ1(Γ,σ)
such that, for all nested words ν over the alphabet Γ 3 ⊥,

we have ν |= grid if and only if there exists a grid G over Γ
with νG = ν.

Note that the horizontal successor of a node of the grid is
the ≺2 ◦ ≺1-successor in the nested word and the vertical
successor is the direct predecessor in the nested word. From
this interpretation, we get

Lemma 5 From a modality ϕ(x,X1, . . . , Xn) ∈ MΠG
n (Γ),

one can compute a modality ϕ# ∈ MΠn(Γ, 2) such that the

following holds for all grids G = (k,m, µ), all positions

(r, c) ∈ dom(G), and all sets I1, . . . , In ⊆ dom(G):

G, (r, c), I1, . . . , In |= ϕ ⇐⇒ νG, (r, 2c), I
′
1, . . . , I

′
n |= ϕ#

where I ′i = {(r, 2c) | (r, c) ∈ Ii} for all i ∈ [n].

Now let n ≥ 1 and let TL = (B, arity, !−") be some
MΠG

n (Γ)-definable temporal logic. Then define a MΠn(Γ, 2)-
definable temporal logic TL# = (B#, arity#, !−"#) as fol-
lows:

• B# = B 3 {GRID,N1}

• arity# # B = arity, arity#(GRID) = 0, arity#(N1) = 1

• !M"# = (ϕ# ∧ (λ(x) %= ⊥) for M ∈ B with
!M" = ϕ(x,X1, . . . , Xn), !GRID"# = grid, and
!N1"# = ∃y : (x ≺1 y ∧ y ∈ X1).

Then the following holds:

Lemma 6 If TL is an MSOG(Γ)-definable temporal logic,

F ∈ TL, and G is a grid, then G |=TL F if and only if

νG |=TL# N1 F .

Now, we are able to prove the main theorem of this section:

Theorem 6 For all n ≥ 1, alphabets Γ with |Γ| ≥ 3, and

σ ≥ 2, there is an MΠn(Γ,σ)-definable temporal logic whose

satisfiability problem is n-EXPSPACE-hard.

Proof: It suffices to only consider the case σ = 2. By
Theorem 5, there exists an MΠG

n (Γ)-definable temporal logic
TL whose satisfiability problem is n-EXPSPACE-hard. It
follows from Prop. 4 and Lemma 6 that, for every F ∈ TL
and m ≥ 1, there exists an m-column grid G with G |=TL F
if and only if there exists a 2m-phase 2-nested word ν with

ν |=TL# GRID ∧ N1 F . The temporal logic TL# and the
formula N1 F can be constructed in linear time. Hence, we
polynomially reduced the satisfiability problem of TL to the
satisfiability problem of the MΠn(Γ, 2)-definable temporal
logic TL#.

V. MODEL CHECKING

This section deals with the model checking problem: do
all runs of a system satisfy a given temporal-logic formula?
As a system model, we consider σ-stack automata. There are
essentially two approaches of presenting such automata. In
[17], stacks are included explicitly. Here, following [3], we let
automata run directly on nested words. Note that we extend the
model straightforwardly to also handle nested words where a
position can be both a call and a return (from different stacks).

Definition 15 A σ-stack automaton over Γ is a tuple A =
(Q,∆, ι, F ) where

• Q is the finite set of states,

• ι ∈ Q is the initial state,

• F ⊆ Q is the set of final states, and

• ∆ ⊆ Q ×
(

{#} ∪ ([σ] × Q)
)

× Γ × Q is the transition
relation.

Reading a position i of a nested word, transition
(q, C, a, q′) ∈ ∆ lets the automaton move on from the current
state q to the target state q′ if i is labeled with letter a. In
addition, the transition is guarded by C ∈ {#} ∪ ([σ] × Q).
This allows A to retrieve, from a return position, the state
reached after executing the corresponding call. In a sense, this
is equivalent to reading a stack symbol previously pushed.
More precisely, if C = (s, q) ∈ [σ]×Q, then we require that
i is a return from stack s and that q is the state reached at
position j with j ≺s i. If, on the other hand, C = #, then i
should not be a return at all.

Let ν = (P,≤,λ,≺1, . . . ,≺σ) be a σ-nested word where
we suppose P = {1, . . . , n}. A run of A on ν is a mapping
ρ : P → Q such that

(

ι,#,λ(1), ρ(1)
)

∈ ∆ and, for every
i ∈ {2, . . . , n},

(

ρ(i− 1), Ci,λ(i), ρ(i)
)

∈ ∆

where

Ci =

{

(s, ρ(j)) if j ≺s i

# if there are no s, j such that j ≺s i

(note that Ci is well-defined by Definitions 2 and 3). The run
ρ is accepting if ρ(n) ∈ F .

The set of σ-nested words for which there is an accepting
run is denoted by L(A). The restriction of L(A) to τ -phase
words is denoted by Lτ (A).

Let TL be some MSO(Γ,σ)-definable temporal logic. The
model checking problem of TL is the set of all triples (A, F, τ)
where A is a σ-stack automaton, F ∈ TL is a temporal
formula, and τ ∈ N such that every τ -phase nested word
accepted by A satisfies F . In order to use our techniques from
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the satisfiability problem, we need the following translation of
σ-stack automata into tree automata:

Theorem 7 ([17]) From a σ-stack automaton A and τ ∈ N,

one can construct in time tower1(|A|·tower1(poly(τ))) a tree

automaton BA such that L(BA) = tree(Lτ (A)).

Combining this result with Theorem 3, we obtain:

Theorem 8 Let n ≥ 0 and TLn be some MΣn(Γ,σ)-
definable temporal logic. Then the model checking problem of

TLn is in (n+ 2)-EXPTIME (where τ is encoded in unary).

From Theorem 6, we can infer that, for n ≥ 1, there
is some MΣn(Γ,σ)-definable temporal logic for which the
model checking problem is n-EXPSPACE-hard.

VI. CONCLUSION

In this paper, we showed that the satisfiability and the model
checking problem of bounded-phase multi-stack systems are
decidable in (n + 2)-EXPTIME for all MΣn(Γ,σ)-definable
temporal logics. Moreover, we identified temporal logics, for
which the problems are n-EXPSPACE-hard.

It was shown in [6], [21] for very specific temporal logics
(cf. Example 4) that model checking bounded-scope multi-
stack systems is in EXPTIME. Note that such an upper bound
cannot be achieved under the phase-bound restriction, since the
corresponding emptiness problem of multi-stack automata is
already 2-EXPTIME-hard. Ordered multi-stack systems were
considered in [4], establishing a 2-EXPTIME upper bound
for linear-time properties that do not allow one to reason
about nesting edges. Recall that the notions of bounded phases,
bounded scopes, and ordered stacks are orthogonal. It will be
worthwhile to study if our techniques can be used to show tight
upper bounds for all MSO-definable temporal logics when
restricting to bounded scopes or ordered stacks.

Extensions of the shared-memory model were considered
in terms of pushdown automata communicating via first-
in first-out channels. It was shown that natural restrictions,
partly based on the notion of bounded phases, allow for
decidable reachability and model checking problems (against
MSO properties) [18], [23], [16]. However, temporal logics
for this kind of systems have, to our knowledge, not been
explored. It is actually very unclear in that case how to define
“canonical” temporal operators such as an until. Therefore, our
generic approach may serve here as a starting point as well.
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