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Abstract. We study a class of parity games equipped with counters
that evolve according to arbitrary non-negative affine functions. These
games capture several cost models for dynamic systems from the litera-
ture. We present an elementary algorithm for computing the exact value
of a counter parity game, which both generalizes previous results and
improves their complexity. To this end, we introduce a class of ω-regular
games with imperfect information and imperfect recall, solve them using
automata-based techniques, and prove a correspondence between finite-
memory strategies in such games and strategies in counter parity games.

1 Introduction

Games with ω-regular winning conditions, and especially parity games, are a
fundamental model for program verification and synthesis [12]. Such winning
conditions allow to express reachability, safety, and liveness properties. However,
when specifying, for instance, that for each request Qi there will be finally a
response Ri, one is often interested not only in the existence of a response Ri – a
qualitative property, but also that the response will occur in at most k seconds
after the request – a quantitative constraint.

Quantitative questions about reactive systems have been approached in sev-
eral ways. One possibility is to extend a temporal logic with new, quantitative
operators as, for instance, the “prompt” operator for LTL proposed in [11]. While
the existence of a response Ri is formulated in LTL by FRi, the Prompt-LTL
formula FpRi expresses that the waiting time is bounded. Realizability for this
logic was solved in [11] and optimal bounds on the waiting time for Prompt-
LTL formulas were established in [14]. Another possibility is to consider formulas
which evaluate to numbers rather than truth values. The quantitative version of
CTL with discounts studied in [6], and the quantitative µ-calculus investigated
in [7] follow this direction.

Both model-checking and realizability problems for most of these logics are
reduced to solving games with additional quantitative features. Several classes
of such games have therefore been investigated [3,4,5,9], to provide better al-
gorithms for existing logics and to suggest new formalisms with good algorith-
mic properties. One relevant example is the synthesis of optimal strategies in
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request-response games [9]. Here, the problem of minimizing the waiting time
for a response is investigated, considering different ways to accumulate waiting
costs. In one model, the penalty for waiting k many steps is k2, to discourage
long waiting times. This illustrates that cost functions that depend only linearly
on the time may not be sufficient for certain applications.

In this work, we introduce a model of counter parity games in which counters
are updated by arbitrary non-negative affine transformations along the moves
of a play. When a play ends, the counters are used to determine the payoff,
whereas on infinite plays, a parity condition is applied. For example, the time
since the last request Qi can be stored in the counter ci, which will be reset
every time the response Ri arrives. The maximum value reached by ci is then the
maximal waiting time for Ri. Similarly, one can express arbitrary Prompt-LTL
conditions. It is also possible to have another counter, di, which will increase
by ci every time the request Qi is active, and will also be reset on Ri. Note
that this is an affine update and that ci + 2di stores the waiting time squared,
and thus allows to simulate the cost model from [9]. Affine functions also allow
to swap counters and multiply them by constants, which can be used, e.g., to
model process migration and pricing. This could be used to extend the scope
of formal analysis of online algorithms [1]. Moreover, counter parity games are
a strict generalization of counter-reset games used in [8] to approximate the
quantitative µ-calculus over a class of hybrid systems. For model-checking this
logic, only a non-elementary algorithm was known so far [8] – our results both
allow for a more general class of games and provide better complexity bounds.
In [10], counter parity games are used for proving decidability of the counting
µ-calculus, an extension of the quantitative µ-calculus to structured transition
systems, such as graphs generated by regular tree grammars or by pushdown
automata.

2 Counter Parity Games

To define counter parity games, let us fix a natural number k of counters and
let Fk be the set of k-dimensional affine functions f over non-negative integers:

f : Nk → Nk, f(c) = A · c+B

for some matrix A ∈ Nk×k and some vector B ∈ Nk. Note that we only consider
functions Nk → Nk, thus the coefficients are also assumed to be non-negative.

A counter parity game G = (V, Vmax, Vmin, E,Ω, λ) with k counters is played
by two players, Maximizer and Minimizer, on a directed graph (V,E). The vertex
set is partitioned into vertices Vmax of Maximizer and vertices Vmin of Minimizer.
Vertices are colored by the priority function Ω : V → {0, . . . , d − 1}, edges
are labeled by affine functions, i.e., E ⊆ V × Fk × V , and terminal vertices
T = {v | vE = ∅} are labeled by λ : T → {+,−} × {0, . . . , k − 1}.

The k counters are represented by a vector c ∈ Nk of k natural numbers. We
write ci for the i-th component of c, i.e., the i-th counter. At the beginning of
a play, all counters are 0, thus c = 0k. Throughout a play, counters are updated



according to the labels of the edges: if the current value of the counter vector is
c and an edge (u, f, v) is taken, then the new value is f(c). Maximizer moves at
positions Vmax, while Minimizer moves at Vmin.

A play π = v0f0v1f1v2 . . . is a sequence of vertices and edge labels such
that, for each i ≥ 0, (vi, fi, vi+1) ∈ E. For infinite plays π, the payoff p(π) is
determined by the parity condition given by Ω: it is −∞ if the minimal priority
seen infinitely often in Ω(v0)Ω(v1) . . . is odd, and ∞ if it is even. Finite plays
π end at a terminal vertex t and p(π) is determined by λ(t) and the current
counters: it is s ci if λ(t) = (s, i) and the current vector is c. The objective of
Maximizer is to maximize the payoff, whereas Minimizer seeks to minimize it.

A strategy of Maximizer is a function f : (V Fk)∗Vmax → Fk × V , such that,
for each prefix π of a play, if f(πv) = (f, w) then (v, f, w) ∈ E; analogously,
we define strategies of Minimizer f : (V Fk)∗Vmin → Fk × V . We say that f
uses memory M if there exists a m0 ∈ M , a function update : M × Fk × V →
M , and a function fM : M × V → Fk × V such that f(v0f0v1 . . . fn−1vn) =
fM (update∗(v0f0v1 . . . fn−1vn,m0), vn), where update∗ is defined inductively by
update∗(ε,m) = m and

update∗(v0f0v1 . . . fkvk+1,m) = update(update∗(v0f0v1 . . . vk,m), fk, vk+1).

The size of the memory is |M | and a finite-memory strategy is one that uses a
finite memory M .

Strategies can be identified with labelings of the infinite tree T (G, v0) ob-
tained by unfolding the arena of G from v0. This allows to speak about regular
sets of strategies, i.e., sets which are recognized by non-deterministic parity tree
automata over T (G, v0). We assume that the reader is familiar with this standard
way of identifying strategies with labelings of the infinite tree. We will also use
algorithms for alternating automata on infinite trees, which are more precisely
recalled in the technical report [2].

A counter parity game G is determined if the supremum of the payoffs that
Maximizer can achieve coincides with the infimum of the payoffs that the Mini-
mizer cannot avoid, that is, if

sup
f∈Σmax

inf
g∈Σmin

p(αf,g(v)) = inf
g∈Σmin

sup
f∈Σmax

p(αf,g(v)) =: valG(v),

where Σmax and Σmin are the sets of all strategies of Maximizer and Minimizer,
and αf,g(v) is the unique play consistent with both f and g.

As counter parity games are a special case of quantitative parity games on
infinite arenas (we can encode counter values in the vertices and adjust the
edges accordingly), and it was shown in [7] that quantitative parity games are
determined on arenas of arbitrary size, we obtain the following corollary.

Proposition 1 ([7]). Every counter parity game G is determined: for each ver-
tex v the value valG(v) exists.

However, these results do not imply that the value of a counter parity game
can actually be computed, nor do they give any insight into the structure of



strategies in the game. Our main technical result, stated below, identifies good
regular over-approximations for the strategies of Minimizer. Let us denote by

2EXP(f) the family of functions 22
O(f)

and, for a counter parity game G and
a strategy g of Minimizer, let us write valg G(v) = supf∈Σmax

p(αf,g(v)) for the
supremum of all payoffs Maximizer can get when playing against g.

Theorem 2. Let G = (V, Vmax, Vmin, E,Ω, λ) be a counter parity game with
k counters, and let v0 ∈ V . One can compute a constant m = 2EXP(k) and a
regular set Σ of strategies of Minimizer, recognized by a non-deterministic parity
tree automaton of size 2EXP((|V |+km)3) and with polynomial index, such that:

– for every strategy g 6∈ Σ, valg G(v0) =∞, and
– for every memory M strategy g ∈ Σ, valg G(v0) < 2EXP(|M |2 · (|V | · 2k)4).

Note that the set Σ is only an over-approximation of the strategies of the
Minimizer which guarantee a bounded payoff – only finite-memory strategies
from Σ have this property. The following example illustrates why this is a cru-
cial constraint. It also shows that the exact set of strategies which guarantee a
bounded payoff is not regular, which is why we compute an over-approximation.

λ = cv0 v1

c+ 1

c = 0

Fig. 1. Counter Parity Game with Value 0.

Example 3. Let G be the 1-counter parity game depicted in Figure 1. Minimizer’s
vertices are drawn as squares and Maximizer’s as circles. The game proceeds as
follows: Minimizer can either increment the single counter c or reset it, and then
Maximizer can decide to continue or to exit and take the current value of c. The
priorities in the game are all odd, thus Maximizer must exit at some point.

Clearly, Minimizer can reset c at each step and thus valG(v0) = 0. But which
strategies g of Minimizer guarantee valg G(v0) <∞? Of course, these are exactly
the strategies that do not allow c to grow beyond some bound B, i.e., alternate
the two possible moves (c = 0) and (c+ 1) according to the pattern

(c+ 1)n1(c = 0)+(c+ 1)n2(c = 0)+(c+ 1)n3(c = 0)+ · · · ,

such that, for some B ∈ N, ni < B for all i. But this set, i.e., the set of all
strategies g which guarantee that valg G(v0) <∞, is not regular.

To over-approximate the strategies which guarantee a bounded payoff, we
will put in Σ all strategies that take the reset move (c = 0) infinitely often.



Note that this disregards the restriction on the number of (c+1)-moves between
resets. All finite-memory strategies from Σ indeed guarantee a bounded value,
because the number of increments between resets cannot exceed the memory
size. However, consider the infinite memory strategy g∗ which plays according
to the pattern above with ni = i. This strategy is in Σ, but valg∗ G(v0) =∞.

We prove Theorem 2 in the following sections. Let us first state that it can
be used to decide boundedness and compute the value of counter parity games.

Corollary 4. Given a finite counter parity game G with initial vertex v, one
can decide whether valG(v) = ∞ in 2EXPTIME, if the number of counters is
fixed, and in 4EXPTIME otherwise. The value valG(v) can be computed exactly
in 4EXPTIME if the number of counters is fixed and in 6EXPTIME otherwise.

3 Marks for Counter Updates

In this section, we make the first step towards proving Theorem 2 and intro-
duce marks for counter update functions. Marks are an abstraction and allow to
determine whether a counter increased with respect to other counters or not.

Notation. When referring to a sequence s, we write s[i] for the i-th element of
s. We always count from 0, i.e., s[0] is the first element of s. For a set I ⊆ N
of indices, we write s|I to denote the sub-sequence of s consisting only of the
elements with indices in I. We refer to a sequence of fixed finite length as a vector.
For a vector s, we write s>0 to denote the vector t with t[i] := 1 if s[i] > 0 and
t[i] := 0 otherwise. Finally, we write [n] to denote the set {0, . . . , n− 1}.

Let k be the dimension of the counter vector c ∈ Nk. We consider all counter
update functions f : Nk → Nk that admit marking in the following sense.

A mark is a mapping m : {0, 1}k × [k] → {⊥} ·∪ [k] ·∪ P([k]). A function
f : Nk → Nk has mark m if the following hold for all c ∈ Nk, i ∈ [k].

(i) If m(c>0, i) = ⊥ then f(c)[i] = 0.
(ii) If m(c>0, i) = j ∈ [k] then f(c)[i] = cj .
(iii) If m(c>0, i) = D ∈ P([k]) and D 6= ∅ then f(c)[i] > maxj∈D cj .
(iv) If m(c>0, i) = ∅ then f(d)[i] = C > 0 is constant for all d with d>0 = c>0.
(v) f(c)[i] depends only on the counters from m(c>0, i) = D,

i.e., there exists a function f ′i such that f(c)[i] = f ′i(c|D).

Note that (iv) could be seen as special case of (v), but we distinguish whether
the constant is 0, as in (i), or not. Intuitively, a mark determines, depending on
which counters are 0 and which are not, whether the result will be 0, always stay
equal to another counter, or increase over other counters.

In particular, if m(d, i) = D then, after applying the counter update function,
the (value of) counter i will be strictly greater than each of the counters from
D. We write m≥(d, i) for the set D of counters such that the value of ci after
the update will be greater or equal to the values of the counters in D, i.e.,



m≥(d, i) := ∅ if m(d, i) = ⊥, m≥(d, i) := {l} if m(d, i) = l, and m≥(d, i) := D
if m(d, i) = D ∈ P([k]). Additionally, we write m>0(c>0) for the vector d>0 if d
results from the application of a function f with mark m to the vector c. Observe
that f(c)[i] = 0 if, and only if, m(c>0, i) = ⊥ or m(c>0, i) = l and cl = 0, and
thus m>0(c>0) = f(c)>0 is computable from c>0 and m.

Example 5. Consider two counters c0, c1 and the update function f assigning
c0 +c1 to c0 and 2 ·c0 to c1. This function has the following mark m: m(0, 0, i) =
⊥, m(0, 1, 0) = 1 as c0 + c1 = c1 if c0 = 0, and m(1, 0, 0) = 0 analogously;
m(0, 1, 1) = ⊥ as 2 · 0 = 0, but m(1, 0, 1) = m(1, 1, 1) = {0} as 2 · c0 > c0 for
c0 > 0. Finally, m(1, 1, 0) = {0, 1} as c0 exceeds both counters in this case.

Not only affine functions can be marked. For example, the function which
updates ci to max(cj , cl) + 1 also has a mark, and thus our results also hold for
such functions (in fact, a markD expresses a lower bound of maxD+1). Note also
that not all functions admit a marking. For example, if we updated c1 to c0 · c1
above, we would not be able to assign a mark. In particular, m(1, 1, i) is not
definable, because whether the counter increases or stays unchanged depends
on whether ci > 1 and not just on whether ci > 0. The methods we present
generalize to more involved markings, but we do not introduce them here as we
are interested in one class of functions, for which the above marks suffice.

Lemma 6. Let f : Nk → Nk be affine. There exists a mark mf for f .

Another important property of marks (see [2] for the proofs) is that, when
functions are composed, their marks can be composed as well.

Lemma 7. Let f1 and f2 be counter update functions with marks m1 and m2.
A mark m = m1 ◦m2 for f(c) = f2(f1(c)) can be computed from m1 and m2.

Let us denote by M the set of all marks, which is finite, by definition. For

a fixed number k of counters, |M| ≤
(
2k + k + 1

)2k+log k

= 2EXP(k). Moreover,
by the above lemma, the composition ◦ induces a computable finite semigroup
structure on M. It follows that languages of sequences of marks with definable
properties are regular. For example, the language of all sequences m0m1 . . .mn ∈
M∗ such thatm = m1◦· · ·◦mn satisfies, for a fixed C, i and d, that C ⊆ m≥(d, i),
is regular. This means that, for a fixed set of counters C and starting information
about which counter is 0, we can determine in a regular way whether ci will be
at least as large as some counter from C.

To access marks, we extend counter parity games by the appropriate marking.
Let G be a counter parity game with k counters. The marked counter parity game
Gm = (Vm, V

′
max, V

′
min, Em, Ωm, λm) is a game with k counters defined as follows.

– Vm := V × {0, 1}k (storing which counters are greater than 0).
– V ′max = {(v, x) ∈ Vm | v ∈ Vmax}, V ′min = Vm \ V ′max.
– Em ⊆ Vm × (Fk ×M)× Vm stores the marks and updates the c>0-vectors:

Em := {((u, x), (f,mf ), (v,m>0
f (x))) | (u, f, v) ∈ E, x ∈ {0, 1}k}.

– Ωm(v, x) = Ω(v) and λm(v, x) = λ(v).



4 Second-Life Games

In this section, we introduce the class of second-life games with imperfect in-
formation and a specific kind of imperfect recall, which are essential for the
construction in the next section. The construction of a second-life game starts
with a game graph G with perfect information for two players, Player 0 and
Player 1. The second-life game arena consists of several copies of this graph.
Plays begin in the main instance of G, which we call first life, and proceed as
usual by moving a token along the edges of the graph. However, when Player 1
is in turn to move, he may switch to a copy of G, a second life, without informing
Player 0. If a terminal position is reached in the first life, the play simply ends.
In contrast, if this happens in a second life, the play returns to the first life, and
Player 0 forgets the part of the history spent in the second life. This part of the
history is nevertheless relevant for the winning condition.

Let G = (V, V0, V1, E) be a game arena with E ⊆ V × A × V for a set A of
actions, and let T = {t ∈ V : tE = ∅} denote the set of terminal vertices in G.
The second-life game S(G,W ) is a game with the set of actions

A‖ := A ∪ {Return} ∪ {Call(a) | a ∈ A}

and over the arena (V ′, V ′0 , V
′
1 , E

′), with

V ′ := V ∪ (V × V );

V ′0 := V0 ∪ {(u, v) | u ∈ V0} ∪ {(t, v) | t ∈ T, v ∈ V }, and V ′1 := V ′ \ V ′0 ;

E′ := E ∪ {((u, v), a, (u′, v)) | (u, a, u′) ∈ E}
∪ {(u,Call(a), (v, v)) | u ∈ V1, (u, a, v) ∈ E} (CALL)

∪ {((t, v),Return, v) | t ∈ T} (RETURN)

Winning conditions for second-life games have the form W ⊆ Aω‖ .
A play α is a – possibly infinite – alternating sequence of vertices and actions,

α = v0a0v1a1v2 · · · , such that (vi, ai, vi+1) ∈ E′, for any index i. A finite play is
one that ends at a terminal vertex. Every finite play is winning for Player 0; an
infinite play is winning for Player 0 if, and only if, its action trace belongs to W .

Notice that all the moves of the arena G are available in the second-life game,
regardless of whether the play is in the first or in a second-life copy. Additionally,
when Player 1 moves at a vertex of the first-life copy G, he can choose to switch
to a second-life copy via a Call(·) action.

The intended information structure of second-life games is captured by a
constraint on strategies of Player 0. We postulate that Player 0 is not informed
about whether the current vertex is in the main copy or in some other component.
Furthermore, after any Call-Return sequence, Player 0 forgets the part of the play
between Call and Return.

Here, and in the following, a Call-Return sequence is a sequence of the form

u · Call(a) · (v, v) · a1 · (v1, v) · · · (t, v) · Return · v.



For any finite path π starting at a vertex v in the main copy, we define the path
π̂ obtained by replacing every Call-Return sequence u · Call(a) · · ·Return · v by
u · a · v, then replacing the remaining last Call(a) by a (if such a last Call exists),
and finally projecting every occurring (u, v) to u.

Now, strategies of Player 0 are functions f : (V ′A‖)
∗V ′0 → A × V such

that, for every π ending in a vertex of Player 0 we have f(π) = f(π̂). Thus,
Player 0’s strategies respect the information constraint described above. Strate-
gies of Player 1 are not restricted in any way.

Notice that, for every play α, the sequence α̂ corresponds to a play in the main
copy. However, W is given over A‖. Nonetheless, Player 0 has no information
about whether he is moving in one of the second-life components or in the main
copy, and immediately after noticing that the play continues after a terminal
(which means it must have been in a second-life component), he forgets this and
all that happened in the component. Accordingly, any strategy of Player 0 can
be viewed as a strategy over the vertex set V with actions A, i.e., as a strategy
of Player 0 for the arena G.

Our main result on second-life games, proved using automata techniques
(c.f. [2]), states that the set of winning strategies of Player 0 is regular and an
automaton recognizing it can be constructed effectively.

Theorem 8. Let G be an arena with positions V and W a regular winning
condition recognized by a deterministic parity automaton A. The set of winning
strategies of Player 0 in the second-life game S(G,W ) can be recognized by a

non-deterministic parity tree automaton of size at most 2O(|A|9+|V |3).

5 The Unboundedness Game

In the next step, we consider a marked counter parity game and check whether
its value is unbounded, i.e., ∞, or not. To do this, we transform the marked
game into a second-life game, where Minimizer takes the role of Player 0.

From the definition of the value of a counter parity game, there are two ways
for the value to be ∞: Maximizer may have a winning strategy with respect
to the parity condition, or a sequence f0, f1, · · · of strategies which ensure ar-
bitrarily high payoffs. Via the reduction to second-life games, we combine the
sequence of strategies for the latter situation into a single strategy. Intuitively,
Maximizer will get the option to decide to try to reach a terminal position to
“save” a payoff, and then continue increasing the counters. If in such a game
Maximizer has a strategy to save higher and higher payoffs, or to win via the
parity condition, this corresponds to a value of ∞. We exploit that marks form
a finite semigroup to show that this can be formulated as a regular objective.
Intuitively, the reason why we rely on second-life games with imperfect infor-
mation and recall for Minimizer is that we need to avoid that Minimizer learns
about whether Maximizer attempts to win by parity or by reaching arbitrarily
high payoffs. If Minimizer had this information, he could adapt his strategy and
neglect the other way of ensuring payoff ∞.



Let Gm be a marked counter parity game with arena G and terminal ver-
tices T . The unboundedness game Gu is the second-life game S(Gm,W ) using
V0 := Vmin and V1 := Vmax and with the winning condition W described below.

Recall that, if we remove all Call-Return sequences from a path in Gu, we
obtain a path in Gm that we call the main part. For better readability, we describe
the winning condition in terms of both edge- and vertex-labels (functions/marks
and priorities, respectively). Technically, this can be avoided by adding the color
of the source vertex to the action label.

We describe the winning condition for Maximizer, i.e., Player 1, which is
sufficient since regular languages are closed under complementation. Maximizer
wins a play α if, and only if, the main copy is visited infinitely often, no terminal
vertex inside the main copy is seen, and

– the main part satisfies the parity condition of Gm, or
– there exists a counter d such that, from some point onwards, counter d is

increased in the main part, then a Call is taken and a Return from a terminal
where a payoff greater than d would be obtained in the original counter
game, and after the Return this is repeated, ad infinitum.

d↗

d ∈ m≥(ci), λ = ci

d↗

d ∈ m≥(cj), λ = cj

By properties of marks, finite sequences of marks after which a counter d
has been increased form a regular language d↗. Also, finite sequences starting
with a Call and ending with a Return from a vertex with λ = c such that, for
the sequence of marks in between, counter c is, at the end, greater than d at the
beginning, form a regular language c>d. Thus, the later part of W is the union
of the main part satisfying the parity condition and the play being of the form
A∗‖ · (d↗ ·c

>d)ω. This is ω-regular.
Let us calculate the size of the automaton for the above condition. To check

the language d↗, |M| states suffice for a deterministic finite word automaton
(using composition on the marks), and the same holds for c>d. Checking d↗ ·c>d
can thus be done with O(|M|) many states by a non-deterministic automaton.
By considering Büchi acceptance with the same accepting states, we get a Büchi
automaton for the language (d↗ ·c>d)ω with O(|M|) states. If we add a new
initial state and take a copy of the automaton for (d↗ ·c>d)ω for every d < k,
we build a nondeterministic Büchi automaton of size O(k · |M|) which accepts
a play if it is won via some counter. (It waits in the initial state until the
actual d is correctly guessed and then moves to the respective copy.) For the
parity part, we need an automaton of size |Ω(V )| < |V |. Taking the union of
the two, we get a non-deterministic parity automaton of size O(|V |+ k|M |) and
index |V |. After determinization, the deterministic parity automaton for W has

size 2O(|V |(|V |+k|M|) log(|V |+k|M |)) = 2O((|V |+k|M|)3).
Combining this with Theorem 8, we can conclude that the set of winning

strategies of Minimizer in the unboundedness game can be recognized by a non-



deterministic parity tree automaton of size

2
O
((

2O((|V |+k|M|)3)
)9

+|V |3
)

= 2EXP
(
(|V |+ k|M|)3

)
. (1)

What remains to be shown is the connection between the value of G and the
existence of a winning strategy of Minimizer in Gu, i.e., that the set of winning
strategies of Minimizer in Gu satisfies the conditions from Theorem 2. We will
use Ramsey’s theorem for a finite path π in Gu or G played consistently with
a strategy using memory of size K0. We write π as a sequence of vertices and
memory states with edges labeled with the corresponding marks:

π = (v0, q0)
m0−→ (v1, q1)

m1−→ (v2, q2) · · · mn−2−→ (vn−1, qn−1),

where each vi is a vertex and each qi is a memory state (and qi+1 = update(qi, vi)
according to the strategy). The path π induces a complete edge-colored undi-
rected graph over [n], in which an edge i, j is colored by (m, vi, qi, vj , qj), where
m is the composition of the marks mi ◦mi+1 ◦ · · · ◦mj−1. Let l be the number
of such colors for Gu and memory size K0:

l = |M| · |Vu|2 ·K2
0 = |M| ·K2

0 · (|Vm| · |Vm|)2 = |M| ·K2
0 · (|V | · 2k)4.

We write R = R(3, 3, · · · , 3︸ ︷︷ ︸
l times

) for the Ramsey-number for 3-cliques with l colors.

As R ≤ 3l! [13], we get that R = 2O(l).
Recall that a mark m is idempotent if m = m ◦ m. The following lemma

(see [2]) is used in the next proof. To simplify notation, we write i ∈= m(c>0, j)

if i ∈ m(c>0, j) or i = m(c>0, j).

Lemma 9. Let m be an idempotent mark. Then, for all initial values c, and all

i < k: if i 6∈= m(c>0, i), then i will not appear in any m(c>0, j).

In the following, we show that, if g is a winning strategy of Minimizer in Gu
with memory M , then valg G(v) is bounded.

Proposition 10. Let g be a strategy of Minimizer winning in Gu from v and
using memory M .Then, supf∈Σmax

p(αf,g(v)) < 2EXP(M2 · (|V | · 2k)4).

Proof. Let g be such an M -memory winning strategy. Consider the set of paths
of length at most R. We fix K as the maximal counter value plus 1 occurring
anywhere on these paths when starting with initial counter values c = (a, · · · , a),
where a is the maximal number occurring in any update function’s matrices A
or B. A rough upper bound can be computed as follows: after one application
of any of the update functions, the maximal value is at most a · a · k (the sum of
all counters initialized with a, each weighted with a). After two steps, we get at
most k ·a ·k ·a ·a = k2a2+1. After R steps, we thus get K ≤ kRaR+1+1 = 2O(R),
and by the approximation of R above, K ≤ 2EXP(M2 · (|V | · 2k)4).



Note that, because of imperfect information and imperfect recall, g can also
be viewed as a strategy for G. Consider thus, towards a contradiction, a play α
in G that is consistent with g and that has a payoff ≥ K. Let further β be the
corresponding play in Gu in which Maximizer never takes a Call, i.e., β consists
only of a main part. We distinguish two cases: if α is infinite, then so is β.
Because g is a winning strategy for Minimizer in Gu, β – and thus α – violates
the parity condition. But then the payoff for α is −∞, a contradiction. If α is
finite but has a payoff ≥ K, we first observe the following (proved in [2]).

Claim. Every play consistent with g and with payoff ≥ K has a suffix (∗):

(v, q) (v, q)
λ = cxmid me

with mid idempotent, such that for some j with j ∈= mid ◦me(cx): j ∈ mid(j).

By the above claim, it follows that α contains a cycle that can be repeated
arbitrarily many times by Maximizer. As repeating the cycle increases the payoff,
repeating the cycle, taking a Call towards the Return, then repeating the cycle
and taking the Call again, and so on, is a witness for a win of Maximizer in Gu.
Because of imperfect information and imperfect recall, this witness is consistent
with g, contradicting the assumption that g is winning for Minimizer. ut

To prove the other item in Theorem 2, we show that Maximizer can achieve
arbitrarily high payoffs against non-winning strategies of Minimizer in Gu.

Proposition 11. For every strategy g of Minimizer in Gu that is not winning
from v, valg G(v) =∞.

Proof. Let g be an arbitrary strategy of Minimizer that is not winning from v in
Gu. This means that there exists a consistent play α(g) won by Maximizer. Note
that Gu is not necessarily determined, but G is determined (cf. Corollary 1).
Thus, it suffices to show that, for every natural number N ∈ N, Maximizer
has a strategy to ensure a payoff > N against g in G. Recall that strategies
of Minimizer in G correspond to strategies in Gu. Let thus g and N be given.
Maximizer can play as follows: play as in α(g) until the first Call occurs. Skip the
Call-Return sequence. If α(g) is won via the parity condition, do this infinitely
often. Otherwise, wait until the winning counter d has reached a value > N and
a Call occurs. Take the Call and realize the payoff as required. ut

We can now prove Theorem 2. Indeed, let Σ be the set of strategies win-
ning for Minimizer in Gu. By Equation 1 it is recognized by an automaton of
the claimed size (with m = |M|). Then, by Proposition 11, the first item of
Theorem 2, holds, and by Proposition 10 the second item is true.



6 Outlook

The presented algorithm allows to solve a general class of counter parity games,
which capture several cost models for dynamic systems. These cost models are
also used in many online algorithms, thus it may be beneficial to apply affine
counter parity games in this domain, in the spirit of [1]. A crucial part in our
proof is played by games with imperfect information and imperfect recall – a
class which has been studied in classical game theory, but so far received little
attention in computer science. This motivates a future more systematic study of
ω-regular games with imperfect recall.
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