
libalf: the Automata Learning Framework⋆

Benedikt Bollig1, Joost-Pieter Katoen2, Carsten Kern2, Martin Leucker3,
Daniel Neider2, and David R. Piegdon2

1 LSV, ENS Cachan, CNRS,2 RWTH Aachen University, 3 TU München

Abstract. This paper presentslibalf, a comprehensive, open-source library
for learning formal languages.libalf covers various well-known learning tech-
niques for finite automata (e.g. Angluin’sL∗, Biermann, RPNI etc.) as well as
novel learning algorithms (such as for NFA and visibly one-counter automata).
libalf is flexible and allows facilely interchanging learning algorithms and
combining domain-specific features in a plug-and-play fashion. Its modular de-
sign andC++ implementation make it a suitable platform for adding and engi-
neering further learning algorithms for new target models (e.g., Büchi automata).

1 Introduction

The common objective of all learning algorithms is to generalize knowledge gained
throughout a learning process. In such a process, the learning algorithm is confronted
with classified examples. They are utilized to derive some kind of hypothesis which is
able to classify new examples in conformance with the examples already seen. Typi-
cally, learning algorithms are grouped intoonlineandofflinealgorithms. Online learn-
ing techniques are capable of actively asking queries to some kind ofteacherwho is able
to classify these queries. Offline algorithms, on the other hand, are passively provided
with a set of classified examples from which they have to buildan apposite hypothesis.

In recent years, learning algorithms have become increasingly popular for various
application domains and have been successfully used in different fields of computer sci-
ence, reaching from robotics over pattern recognition (e.g., in bioinformatics) to natural
language recognition. Especially in the area of automatic verification, learning tech-
niques have proved their great usefulness. They were used for minimizing partially
specified systems [1], model checking blackbox systems (e.g., [2]), and for improving
regular model checking (e.g., [3]). To put it bluntly, automata learning is en vogue.

The need for a unifying framework collecting various types of learning techniques
is, thus, beyond all questions. In addition, it is desirableto have possibilities of easily
exchanging or extending the implemented learning algorithms to compare assets and
drawbacks for certain user applications. For users’ convenience a library should provide
additional features, such as means for statistical evaluation or loggers. Unfortunately,
existing learning frameworks only partly cover these requirements.

The main objective of this paper is to present a new library called theautomata
learning framework(libalf for short).libalf unifies different kinds of learning
techniques into a single flexible and easy-to-extend library with a clearly structured
user interface. We would likelibalf to become a comprehensive compendium of
learning techniques to which everybody has access and can contribute in a public do-
main fashion.
⋆ This work is partially supported by the DAAD (Procope 2009).

2 Related work

A large number of learning algorithms can be found in the literature. Usually, the most
important and influential ones are implemented again and again, but often asquick-
and-dirty implementations, which are only meant to be a proof-of-concept of the re-
searcher’s theoretical work. Typically, this implies a lack of extensibility and compara-
bility as the authors did not have time to bother for a clear, extensible design. We are
only aware of two learning libraries that aim for the objectives mentioned above; note
thatJava PathFinder (cf. [4]) also contains a learning submodule (implementing
Angluin’s L∗ algorithm), but this software seems to be too restricted formost cases.

TheLearnLib library [5] allows learning of deterministic finite-state automata.
It is available as a dedicated, password-protected server located at the University of
Dortmund and can be accessed via the Internet. TheLearnLib implements Angluin’s
L∗ algorithm for inferring DFA and some slight variants for deriving Mealy machines.

The Rich Automata Learning and Testinglibrary [6] (RALT) has been developed
in Java yielding a platform independent solution. It also implements L∗ and three
relatives for inferring Mealy machines. Regrettably,RALT seems not publicly available.

However, two requirements that seem to be crucial for many user application are
clearly missing: Firstly, both libraries are limited to learning Mealy machines in an An-
gluin setting, but in many environments different learningsettings occur. Beyond that,
a way to augment the libraries with new learning algorithms,in particular for additional
kinds of automata models, is clearly missing. Secondly, asLearnLib can be only
accessed remotely andRALT is not available, it seems impossible to assess their perfor-
mance; in fact, we were not able to experimentally evaluate or benchmarklibalf to
neither existing library in any appropriate manner. To the best of our knowledge libalf
is currently the only available automata learning library that is competitive and flexible
enough for real world applications.

3 A library for learning automata: libalf

Table 1. Algorithms available inlibalf.

Online algorithms Offline algorithms

Angluin’s L∗ (2 variants) Biermann (2 variants)
NL∗ [7] RPNI
Kearns / Vazirani DeLeTe2
Visibly 1-counter automata [8]

Thelibalf library is an actively developed
and stable open source library1 for learning
and manipulating formal languages; it puts
the emphasis on learning deterministic and
non-deterministic finite-state machines, but
can be easily augmented with new automata
classes (for instance,libalf already supports learning of visibly one-counter au-
tomata). As of today,libalf comprises a total of nine learning algorithms, cf. Table 1.

libalf consists of a coreC++ library and is complemented by two additional com-
ponents:liblangen (a library to generate random regular languages) andAMoRE++
(aC++ automata library, among others featuring the antichains algorithm described in
[9]). Although written inC++, libalf fits seamlessly into diverse environments: it
runs onMSWindows, Linux, andMacOS (in 32- and 64-bit) and features a platform
independentJava interface (using the Java Native InterfaceJNI). In addition, the so-
calleddispatcherimplements a network-based client-server architecture, which allows
one to runlibalf remotely, e.g., on a high-performance machine.

1 libalf is freely available onhttp://libalf.informatik.rwth-aachen.de/.

2

The key objectives oflibalf arehigh flexibility andsimple extensibility. High
flexibility, on the one hand, means thatlibalf lets the user easily switch between
learning algorithms and information sources (often only bychanging a single line of
code2). This allows one to experiment with different learning techniques, making it
possible for the user to choose the algorithm best suited forher setting. Moreover,
libalf’s visualization and logging facilities enable researchers to gain a deeper un-
derstanding of the differences of existing and new algorithms.

Simple extensibility, on the other hand, mainly refers tolibalf’s structuredC++
class hierarchy, especially the learning algorithms and automata models. That allows
developers to easily enrichlibalf with additional features such as new learning al-
gorithms, advanced automata classes, domain-specific optimizations, etc.

Obviously, developing a flexible and easy-to-use library while preserving high ex-
tensibility was one of the implementation’s most challenging tasks. A comparison of
important learning libraries tolibalf is given in Table 2.

Table 2. Overview over the most important learning libraries in comparison tolibalf.

libalf LearnLib RALT

Algorithms online / offline online online
currently 9 1 (L∗) 1 (L∗)

Hypotheses DFA, NFA, Mealy, visibly one-counter, etc. DFA,Mealy DFA, Mealy
Open source yes no n/a
Availability C++, Java (JNI) C++ Java

source code, binary, dispatcher via Internet connection only n / a
Specifics filters, normalizers, statistics, visualization filters, statistics, visualization visualization

Technical details. In libalf wordsw ∈ Σ
∗ (i.e., queries) are represented as lists

of symbols, where each symbol is a 32-bit integer. Thus, the maximal size|Σ| of an
alphabetΣ is 2

32. For hypotheses, on the other hand,libalf provides generic but
simple interfaces such that new automata classes can easilybe added. However, the
AMoRE++ library can be used if a more powerful automata library is needed.

libalf’s main components are thelearning algorithmsand the so-calledknow-
ledgebase. The knowledgebase is an efficient storage for language information and col-
lectsqueriesandclassificationsthereof; inlibalf a classification can be anyC++
object, but in most algorithms it is a Boolean value. Using anexternal storage has the
advantage of being independent of the choice of the learningalgorithm. So it becomes
possible to quickly interchange different learning algorithms or run them (even concur-
rently) on the basis of the same knowledgebase (i.e. queriesare only conducted once
and are then available to any learning algorithm). Clearly,this helps the user experiment
and decide which algorithm to use in her specific setting.

Additionally, libalf features two types of domain-specific optimizations:filters
andnormalizers. Filters are a means for reducing the number of queries askedto the
teacher. The idea is that in many cases the classification of aquery can be decided with-
out consulting the teacher just by applying simple domain-specific knowledge; take,
for instance, well-formedness of XML-documents as such a criterion. If a query can
already be answered by a filter, it is not passed on to the teacher and the number of
queries actually asked to the teacher is reduced. Moreover,filters can be composed by
logical connectors (and, or, not).

2 Visit our website for aJava online demo on how to employlibalf in a user application.

3

In contrast,normalizersare a means to reduce memory consumption during the lear-
ning phase. A normalizer defines a domain-specific equivalence relation∼⊆ Σ

∗ × Σ
∗

over all words and only stores data for one representative ofeach equivalence class (i.e.
data for equivalent queries is only queried and stored once). This does not only reduce
the consumed memory, but also the number of queries conducted. By subtyping the
respective interface, a user can easily define her own domain-specific optimizations.

Finally,libalf comprises auxiliary components to ease application development
and debugging: alogger (an adjustable logging facility an algorithm can write to),ex-
tensivestatisticsand methods to produceGraphViz visualizations. All oflibalf’s
components are designed to be used in a plug-and-play mannerand, to this end, no
knowledge about the libraries implementation is required.

4 Conclusion
libalf is a new, comprehensive open-source learning framework, which is easy to
use and extend. It gathers several on- and offline learning techniques. The main features
of our library and other approaches described previously are summarized in Table 2.

Our learning library is currently used and extended for inferring CFMs from MSC
specifications [10] and for learning attractor sets in infinite games (D. Neider, RWTH
Aachen). Moreover, there are requests for usinglibalf for searching through source
code to find similar code fragments, so-called clones, (E. J¨urgen, TU Munich) and for
learning black box systems from log files.

For future work, we plan to augmentlibalf with additional learning algorithms,
e.g., learning using homing sequences or Trakhtenbrot’s algorithm, and to integrate
learning techniques for other important language classes,such as transducers, Büchi
automata etc. Another ongoing work puts different learningalgorithms in comparison.
In this project, we compare different online and offline learning algorithms and evaluate
their average time complexity. The results obtained so far look very promising.

References

1. Oliveira, A.L., Silva, J.P.M.: Efficient Algorithms for the Inference of Minimum Size DFAs.
Machine Learning44(1/2) (2001) 93–119

2. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: TACAS. Volume 2280
of LNCS., Springer (2002) 357–370

3. Habermehl, P., Vojnar, T.: Regular Model Checking Using Inference of Regular Languages.
ENTCS138(3) (2005) 21–36

4. Giannakopoulou, D., Pasareanu, C.S.: Interface Generation and Compositional Verification
in Java Pathfinder. In: FASE. Volume 5503 of LNCS. (2009) 94–108

5. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating
behavioral models. STTT11(5) (2009) 393–407

6. Shahbaz, M.: Reverse Engineering Enhanced State Models of Black Box Software Compo-
nents to Support Integration Testing. PhD thesis, Laboratoire Informat. de Grenoble (2008)

7. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-Style Learning of NFA. In: IJCAI
2009, AAAI Press (2009) 1004–1009

8. Neider, D., Löding, C.: Learning Visibly One-Counter Automata in Polynomial Time. Tech-
nical Report AIB-2010-02, RWTH Aachen (January 2010)

9. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algorithm for
checking universality of finite automata. In: CAV. Volume 4144 of LNCS. (2006) 17–30

10. Bollig, B., Katoen, J.P., Kern, C., Leucker, M.: Learning Communicating Automata from
MSCs. IEEE TSE To appear.

4

