| i bal f: the Automata L earning Framewor k*

Benedikt Bollig', Joost-Pieter KatoénCarsten Kerf, Martin Leucke?,
Daniel Neidef, and David R. Piegdon

1 LSV,ENS Cachan, CNRS,? RWTH Aachen University, > TU Miinchen

Abstract. This paper presentsi bal f, a comprehensive, open-source library
for learning formal languageki bal f covers various well-known learning tech-
niques for finite automata (e.g. Angluirls, Biermann, RPNI etc.) as well as
novel learning algorithms (such as for NFA and visibly oexstter automata).

I i bal f is flexible and allows facilely interchanging learning aifams and
combining domain-specific features in a plug-and-play itashits modular de-
sign andC+ implementation make it a suitable platform for adding angdien
neering further learning algorithms for new target modelg.(Blichi automata).

1 Introduction

The common objective of all learning algorithms is to gefieeaknowledge gained
throughout a learning process. In such a process, the tepatgorithm is confronted
with classified examples. They are utilized to derive sonné kif hypothesis which is
able to classify new examples in conformance with the examplready seen. Typi-
cally, learning algorithms are grouped irdaline andofflinealgorithms. Online learn-
ing techniques are capable of actively asking queries teedona ofteachemwho is able
to classify these queries. Offline algorithms, on the ottzardh are passively provided
with a set of classified examples from which they have to balépposite hypothesis.

In recent years, learning algorithms have become incrghspopular for various
application domains and have been successfully used erelift fields of computer sci-
ence, reaching from robotics over pattern recognition (@dpioinformatics) to natural
language recognition. Especially in the area of automatitfigation, learning tech-
niques have proved their great usefulness. They were useahifdmizing partially
specified systems [1], model checking blackbox systems, (€]y, and for improving
regular model checking (e.g., [3]). To put it bluntly, autatalearning is en vogue.

The need for a unifying framework collecting various typésearning techniques
is, thus, beyond all questions. In addition, it is desirablbave possibilities of easily
exchanging or extending the implemented learning algmstho compare assets and
drawbacks for certain user applications. For users’ coievee a library should provide
additional features, such as means for statistical evatluat loggers. Unfortunately,
existing learning frameworks only partly cover these regmients.

The main objective of this paper is to present a new libratiedahe automata
learning framework(l i bal f for short).l i bal f unifies different kinds of learning
techniques into a single flexible and easy-to-extend libwith a clearly structured
user interface. We would likeéi bal f to become a comprehensive compendium of
learning techniques to which everybody has access and cdritede in a public do-
main fashion.

* This work is partially supported by the DAAD (Procope 2009).

2 Reated work

A large number of learning algorithms can be found in theditere. Usually, the most
important and influential ones are implemented again anthabat often asquick-
and-dirty implementations, which are only meant to be a proof-of-ephof the re-
searcher’s theoretical work. Typically, this implies alad extensibility and compara-
bility as the authors did not have time to bother for a clegtersible design. We are
only aware of two learning libraries that aim for the objeei mentioned above; note
thatJava Pat hFi nder (cf. [4]) also contains a learning submodule (implementing
Angluin’s L* algorithm), but this software seems to be too restrictedrfost cases.

TheLear nLi b library [5] allows learning of deterministic finite-statetamata.
It is available as a dedicated, password-protected seocatdd at the University of
Dortmund and can be accessed via the Internet'Ha nLi b implements Angluin’s
L* algorithm for inferring DFA and some slight variants for dérg Mealy machines.

The Rich Automata Learning and Testitigrary [6] (RALT) has been developed
in Java yielding a platform independent solution. It also implentse® and three
relatives for inferring Mealy machines. Regrettalill T seems not publicly available.

However, two requirements that seem to be crucial for maey application are
clearly missing: Firstly, both libraries are limited to taang Mealy machines in an An-
gluin setting, but in many environments different learngsgtings occur. Beyond that,
a way to augment the libraries with new learning algorithimparticular for additional
kinds of automata models, is clearly missing. Secondly,.@ar nLi b can be only
accessed remotely afRALT is not available, it seems impossible to assess their perfor
mance; in fact, we were not able to experimentally evaluateeachmark i bal f to
neither existing library in any appropriate manner. To thsttof our knowledge libalf
is currently the only available automata learning librdrgttis competitive and flexible
enough for real world applications.

3 Alibrary for learning automata: | i bal f

Thel i bal f library is an actively developed Table 1. Algorithms available i i bal f .

and SIabl_e Ope_n source Iibrér@or Iearn_ing Online algorithms Offline algorithms
and mampu!atmg fOI’mfi| languages_; IJ_[pu{%ngluin’s L* (2 variants) Biermann (2 variants)
the emphasis on learning deterministic andgL* [7] RPNI

non-deterministic finite-state machines, buﬁg?g;‘;l’_{iﬁ';?g;aummata [S]DeLeTez

can be easily augmented with new automata
classes (for instancé,i bal f already supports learning of visibly one-counter au-
tomata). As of today, i bal f comprises a total of nine learning algorithms, cf. Table 1.
I i bal f consists of a cor€+t library and is complemented by two additional com-
ponents| i bl angen (a library to generate random regular languages vitRE++
(a C+ automata library, among others featuring the antichaigsridhm described in
[9]). Although written inC+, | i bal f fits seamlessly into diverse environments: it
runs onMSW ndows, Li nux, andMac CS (in 32- and 64-bit) and features a platform
independendava interface (using the Java Native Interfadd). In addition, the so-
calleddispatcherimplements a network-based client-server architectunégiwallows
onetorurl i bal f remotely, e.g., on a high-performance machine.

Y1i bal f is freely available omt t p: / /| i bal f. i nf or mati k. rwt h- aachen. de/ .
2

The key objectives of i bal f arehigh flexibility and simple extensibilityHigh
flexibility, on the one hand, means thait bal f lets the user easily switch between
learning algorithms and information sources (often onlychgnging a single line of
code). This allows one to experiment with different learningheitjues, making it
possible for the user to choose the algorithm best suitedhéorsetting. Moreover,

I i bal f’s visualization and logging facilities enable researsttergain a deeper un-
derstanding of the differences of existing and new algorith

Simple extensibility, on the other hand, mainly refers idal f 's structuredC+
class hierarchy, especially the learning algorithms artdraata models. That allows
developers to easily enridh bal f with additional features such as new learning al-
gorithms, advanced automata classes, domain-specifiniaptions, etc.

Obviously, developing a flexible and easy-to-use librarylevhreserving high ex-
tensibility was one of the implementation’s most challengiasks. A comparison of
important learning libraries tbi bal f is given in Table 2.

Table 2. Overview over the most important learning libraries in camgon tol i bal f.

I'i bal f LearnLi b RALT
Algorithms online/ offline online online

currently 9 1) 1(L™)
Hypotheses DFA, NFA, Mealy, visibly one-counter, etc. Diealy DFA, Mealy
Open source yes no n/a
Availability C+, Java (INI) C+ Java

source code, binary, dispatcher via Internet connectibnon n/a
Specifics filters, normalizers, statistics, visualization filters, statistics, visualization visualization

Technical details. In | i bal f wordsw € X* (i.e., querieg are represented as lists
of symbols, where each symbol is a 32-bit integer. Thus, tagimal size|X| of an
alphabetX is 232, For hypotheses, on the other hahdbal f provides generic but
simple interfaces such that new automata classes can e&asaylded. However, the
AMbRE++ library can be used if a more powerful automata library isteee

I i bal f’s main components are thearning algorithmsand the so-calle@now-
ledgebaseThe knowledgebase is an efficient storage for languagenetion and col-
lects queriesand classificationghereof; inl i bal f a classification can be arg+
object, but in most algorithms it is a Boolean value. Usingeaternal storage has the
advantage of being independent of the choice of the leaagyithm. So it becomes
possible to quickly interchange different learning algforis or run them (even concur-
rently) on the basis of the same knowledgebase (i.e. quargesnly conducted once
and are then available to any learning algorithm). Cle#nlg,helps the user experiment
and decide which algorithm to use in her specific setting.

Additionally, | i bal f features two types of domain-specific optimizaticfiigers
andnormalizers Filters are a means for reducing the number of queries asktuk
teacher. The idea is that in many cases the classificatiogquéry can be decided with-
out consulting the teacher just by applying simple domaieetfic knowledge; take,
for instance, well-formedness of XML-documents as suchitergon. If a query can
already be answered by a filter, it is not passed on to the ¢easid the number of
queries actually asked to the teacher is reduced. Morefilters can be composed by
logical connectorsand, or, not).

2 Viisit our website for alava online demo on how to empldyi bal f in a user application.

3

In contrastnormalizersare a means to reduce memory consumption during the lear-
ning phase. A normalizer defines a domain-specific equicaleslation~C X* x X*
over all words and only stores data for one representatieacii equivalence class (i.e.
data for equivalent queries is only queried and stored ofi¢#3 does not only reduce
the consumed memory, but also the number of queries cordiuBiesubtyping the
respective interface, a user can easily define her own despeaific optimizations.

Finally,| i bal f comprises auxiliary components to ease application dpvedmt
and debugging: dogger (an adjustable logging facility an algorithm can write tey;
tensivestatisticsand methods to produdg@raphViz visualizations. All ofl i bal f’s
components are designed to be used in a plug-and-play mandeto this end, no
knowledge about the libraries implementation is required.

4 Conclusion

I'i bal f is a new, comprehensive open-source learning frameworichnik easy to
use and extend. It gathers several on- and offline learnatmtques. The main features
of our library and other approaches described previouslysammarized in Table 2.

Our learning library is currently used and extended forririfigg CFMs from MSC
specifications [10] and for learning attractor sets in inéirgames (D. Neider, RWTH
Aachen). Moreover, there are requests for usingal f for searching through source
code to find similar code fragments, so-called clones, (Egeli, TU Munich) and for
learning black box systems from log files.

For future work, we plan to augmeht bal f with additional learning algorithms,
e.g., learning using homing sequences or Trakhtenbrajsrighm, and to integrate
learning techniques for other important language classesh as transducers, Buchi
automata etc. Another ongoing work puts different learrmtygprithms in comparison.
In this project, we compare different online and offline féag algorithms and evaluate
their average time complexity. The results obtained saofak ery promising.

References

1. Oliveira, A.L., Silva, J.P.M.: Efficient Algorithms fohe Inference of Minimum Size DFAs.
Machine Learningi4(1/2) (2001) 93-119

2. Groce, A., Peled, D., Yannakakis, M.: Adaptive model &meg. In: TACAS. Volume 2280
of LNCS., Springer (2002) 357-370

3. Habermenhl, P, Vojnar, T.: Regular Model Checking Usinfglence of Regular Languages.
ENTCS138(3) (2005) 21-36

4. Giannakopoulou, D., Pasareanu, C.S.: Interface Geoerahd Compositional Verification
in Java Pathfinder. In: FASE. Volume 5503 of LNCS. (2009) @8-1

5. Raffelt, H., Steffen, B., Berg, T., Margaria, T.. LearbLia framework for extrapolating
behavioral models. STTTL(5) (2009) 393—-407

6. Shahbaz, M.: Reverse Engineering Enhanced State ModBlack Box Software Compo-
nents to Support Integration Testing. PhD thesis, Labomtoformat. de Grenoble (2008)

7. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Anglttyle Learning of NFA. In: IJCAI
2009, AAAI Press (2009) 1004—-1009

8. Neider, D., Loding, C.: Learning Visibly One-CountertAmata in Polynomial Time. Tech-
nical Report AIB-2010-02, RWTH Aachen (January 2010)

9. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Adftains: A new algorithm for
checking universality of finite automata. In: CAV. Volumetlof LNCS. (2006) 17-30
10. Boallig, B., Katoen, J.P., Kern, C., Leucker, M.: Leagi@ommunicating Automata from

MSCs. IEEE TSE To appear.

4

