
Information Tracking in Games on Graphs

Dietmar Berwanger1 and Lukasz Kaiser2

1 LSV, CNRS & ENS Cachan, France
2 RWTH Aachen, Germany

Abstract When seeking to coordinate in a game with imperfect infor-
mation, it is often relevant for a player to know what other players know.
Keeping track of the information acquired in a play of infinite duration
may, however, lead to infinite hierarchies of higher-order knowledge. We
present a construction that makes explicit which higher-order knowledge
is relevant in a game and allows us to describe a class of games that
admit coordinated winning strategies with finite memory.

1 Introduction

The paradigm of games is intrinsically linked to uncertainty. Most fundamental
concepts in non-cooperative game theory are aimed at reducing the uncertainty
that a player may have about the intended choices of other players. Ideally,
the postulate that all participants in a game act rationally allows to deduce
meaningful predictions about their choices. However, the outcome of a decision
situation is often interrelated not only with decisions of fellow players, but also
with moves of nature which does not subsume to rationality assumptions.

In this paper, we discuss a model of games with imperfect information where
several players coordinate against nature. The games are played by moving for an
unbounded number of rounds along the edges on a graph. To make their choice,
the players receive observations that may allow them to reduce the uncertainty
about the current position of the play without identifying it, in general; obser-
vations received by different players are unrelated. The game graph has finitely
many positions among which some are marked as forbidden. The goal of the
grand coalition of players is to never reach a forbidden state, regardless of the
moves of nature. Our model is a variant of the one introduced by Peterson and
Reif [10] which incorporates imperfect information into the well-studied frame-
work of infinite Gale-Stewart games on finite graphs [5, 9] and has important
applications to various fields of computing science, notably distributed control
theory of discrete-event systems and the verification of reactive systems; for
a comprehensive account on algorithmic questions regarding this basic model,
see [4].

Games on finite graphs are succinct descriptions of infinite extensive games.
In particular, the knowledge that a player may acquire in the course of a play
under imperfect information is not represented explicitly. Such an explicit rep-
resentation cannot be straightforward as the amount of information generated
during an infinite play is unbounded; already to maintain a counter for the num-
ber of played rounds may require unbounded resources. On the other hand, as

the game is supported by a finite graph, i.e., only finitely many factual situa-
tions can occur, one may hope to identify a reduced, possibly finite, amount of
relevant knowledge that is sufficient to play optimally.

Our investigation addresses two questions, one of epistemic and one of more
technical nature.

(i) Which information do players need to acquire during a play to ensure a
win against nature in coordination with the other players?

(ii) In which games is the grand coalition able to coordinate on finite-state
winning strategies, and how to construct them?

We should emphasise that our problem setting assumes explicit pre-play co-
ordination among the players of the grand coalition. This is in contrast to the
question of how a player can do his part to achieve an outcome for which he
shares a common interest with the other players, considered, for instance in [2].

The pre-play coordination setting has pragmatic justifications and a rela-
tively long history in computing science. The initial model of games with imper-
fect information on graphs introduced in [10] was conceived as an extension of
the alternating Turing-machine model of Chandra, Kozen, and Stockmeyer [3],
firstly from the existential-universal duality to more than two players, and then
beyond the assumption of perfect information. The manifest motivation for these
extensions was to capture concurrent computation among processes equipped
with shared and private variables in terms of games. The technical concern of
the paper was to synthesise a winning strategy, i.e. a program for a process
– or a set of programs for a system composed of several processes under the
control of the system designer– in such a way that it guarantees a successful
global run regardless of the variable assignments that cannot be observed. The
authors proved that the problem can be solved algorithmically for one player
against nature, and presented an instance with two plyers against nature where
the problem already becomes undecidable.

After a period of discouragement in face of the general undecidability result,
the research on games with partial information experienced increasing atten-
tion since the late eighties with the foundation of supervisory control theory
([12, 14, 15, 17]) at the one hand, and the development of automata-theoretic
methods for the verification of reactive systems ([11, 16, 8, 7]). The modelling
paradigm supporting the game-theoretic approach to these frameworks consists
in associating the internal states of a computational component with decision
points and the possible transitions in the system with moves in a sequential
game. Then, the specification of correct behaviour of a component is interpreted
as a utility function of the associated player and the question of whether the
component can be implemented to comply with the specification translates into
the question of whether the player can ensure to win in the resulting game. As
the model targets non-terminating systems, the plays are typically unbounded,
or infinite; to cope with such games, utility functions are in general described
by automata and often feature only two values: win or lose. The basic solution
concept is that of a finite-state winning strategy. For systems involving several
component, the focus lies on distributed winning strategies; the main problem

2

consists in constructing a profile of strategies such that their interplay results in
a win. Thus, at the moment of choosing a strategy the controllable components
are seen as one player in strict competition with the uncontrollable environment.
However, when the strategy is executed, the components act as if they were in-
dividual players, none has access to the observation of the others. Accordingly,
(distributed) finite-state winning strategies for the controllable part of a system
translate into implementations of components that ensure correct behaviour of
the system regardless of the behaviour of the environment.

Imperfect information arises naturally in computational models as an effect
of locality of components, internal variables, privacy constraints, or incomplete
specifications. One highly non-trivial issue regarding uncertainty in computa-
tional systems is whether the different players have the means to synchronise
their moves. The general approach of solving games with imperfect information
in the synchronous setting is the power-set construction proposed in [13] for
solving games for one player against nature. Several system architectures have
been identified, where the problem for several players can be reduced to the one
player setting, with the general pattern that the information available to players
can be ordered. See [18, 1, 8], for more background. Asynchronous composition
raises additional difficulties already in the case of one player against nature per-
forming unobservable moves, and thus the classes of games for which distributed
winning strategies can be effectively constructed are even more restrictive. A
comprehensive classification of the current state of research is presented in [6].

Our objective is to explore why games that involve two or more players
with imperfect information may be undecidable in the synchronous setting. The
determining factor in the undecidability arguments presented in [13] and [1]
seems to be that along the course of a play, the agents need to keep track of
increasingly many details about the current state of the game. What makes the
process intractable is not the uncertainty that a player has about the effect
of previous moves on his own state of knowledge, but the fact that he needs
to take into account what other players know, and what they know about the
knowledge of others and so on. Indeed, the information acquired by players can
be represented effectively for any finite stage of the game, but it may require
infinite resources to maintain the derived knowledge along a non-terminating
play.

The description of a game in the distributed-systems perspective carries the
characteristics of a pure coordination game in the sense of non-cooperative game
theory: all participating players have the same utility, and the resolution of un-
certainty about past moves raises similar problems as when a player chooses his
actions on the basis of rationality assumptions. The twist is in the way of ask-
ing the question: while the game-theoretic issue consists in describing individual
strategic choices that compose to efficient outcomes, the fundamental problem
in distributed systems is that of decomposing a global winning strategy in such
a way that the individual agents can execute it on basis of the information that
they can access.

3

Nevertheless, we argue that coordinated strategies are significant in the game-
theoretic perspective. Firstly, the existence of such winning strategies is a con-
dition for the existence of Pareto-efficient solutions to the classical coordination
problem. Secondly, the questions regarding the memory required for storing the
knowledge acquired in a coordination game may be of technical interest beyond
the applications to computational systems. Finally, the investigations on coor-
dinated strategies may lead to new insights about the focality of a solution, for
instance, if there exists a unique coordinated winning strategy.

The technical contribution of this paper is a generalisation of the power-set
construction proposed by Reif [13] which replicates the determinisation of non-
deterministic automata over finite words and underlies virtually all approaches
to solving games with imperfect information today. The key concept is that of
information tracking, a process that unravels a given game graph to a certain
degree keeping the balance between two antagonistic constraints: to maintain
possibly few information types – these are induced by the past play and may
grow beyond any limit over time –, and to distinguish possibly many bisimula-
tion types – these are relevant for the future of the play. Essentially, the tracking
of a game corresponds to the minimal bisimulation quotient of its representa-
tion as an extensive game. We show that in every game with finite tracking the
knowledge accumulated during the game can be represented in a finite way and
recovered by strategy automata, which implies that these games admit solutions
in distributed strategies. On the other hand, we point out that there is no sim-
ple criterion for determining the size of the tracking for a given game graph.
Nevertheless, our analysis shows that the knowledge structure for a game can
be constructed on the fly, yielding a semi-decision algorithm for the synthesis
of strategy automata in graph games with imperfect information and several
players.

To keep the analysis simple, we work with a particularly simple winning
condition: a safety condition that requires that players avoid a designated bad
state forever (one may think of minesweeper). We introduce the basic model
of games with imperfect information on graphs in Section 2. In Section 3, we
discuss several notions of game equivalence to establish the link between graph
games and games in extensive form. Finally, in Section 4 we present our tracking
construction and conclude presenting two examples with implications for the
computational complexity of the strategy construction problem.

Acknowledgement. The authors gratefully acknowledge partial support from the
games program and the lint eurocores project of the European Science Foun-
dation.

2 Games with imperfect information on graphs

Notation. When we speak about situations that involve n players, we refer to a
list of elements x = (xi)i<n, one for each player, as a profile. For any such profile
we write x−i to denote the list (xj)j<n,j 6=i of elements in x for each player

4

except i. Given an element xi and a list x−i, we denote by (xi, x−i) the profile
(xi)i<n. Similarly, for a coalition of players I ⊆ {0, . . . , n − 1}, we write xI to
denote (xi)i∈I . The grand coalition is {0, . . . , n−1}. We do not regard nature as
a player. For clarity, we will always use superscripts to specify to which player,
or coalition, an element belongs. If not quantified otherwise, we usually refer to
player i meaning any player.

A graph with edge labels from a fixed alphabet A is a structure G = (V,∆)
over a set V of nodes with an edge relation ∆ ⊆ V ×A×V . Between two nodes v
and w, there may be multiple edges (v, a, w) with different labels a. We write
∆(v, a) to designate the set {w : (v, a, w) ∈ ∆} of a-successors to a node v ∈ V .
A path in G is a sequence v0, a0, v1, a1, . . . alternating between nodes and edges
such that v`+1 ∈ ∆(v`, a`); for a finite path of length `, the sequence ends with
the node v`. A node u is a root for the graph, if every node v ∈ V is reachable
via a path starting from u. A tree is a graph with a unique root v0 ∈ V from
which every node is reachable via precisely one path. The depth of a node is the
length of this path. Notice that, in contrast to arbitrary graphs, we do not allow
multiple edges in trees: for every v ∈ V, a ∈ A, there is at most one predecessor w
such that (w, a, v) ∈ ∆.

Game graphs. We consider games played by n players, 0, 1, . . . , and n − 1,
against nature. Beforehand, we fix a set Ai of actions available to Player i and
a set Bi of observations of Player i. We denote by A the set of action profiles
and by B the set of observation profiles.

A game graph is a structure G = (V,∆, (βi)i<n) with a set V of positions, a
move relation ∆ ⊆ V ×A×V and an observation function βi : V → Bi for each
player i < n. We refer to G as a game tree if (V,∆) is a tree. For convenience,
we will assume that each position in a game graph has at least one outgoing
move for every action profile, i.e., ∆(v, a) 6= ∅, for all v ∈ V and all a ∈ A. This
implies, in particular, that all game trees are infinite.

To play on a game graph, the n players interact with nature in forming a path
by moving a token along the edges. At the beginning, the token is at a designated
initial position v0 ∈ V known to all participants. The game is played in rounds;
in every round, each player i chooses an action ai ∈ Ai. Then, according to the
current position v of the token and the joint profile a of actions, nature chooses
a successor v′ ∈ ∆(v, a) to which the token is moved. Here, each player i receives
the observation βi(v′) and the play continues with v′ as the current position.
Notice that the players are neither informed about the current position of the
token, nor about the action chosen by other players.

Formally, a play starting from a designated position v0 ∈ V in G is an infinite
sequence π = v0, a0, v1, a1, . . . alternating between positions and action profiles
with (v`, a, v`+1) ∈ ∆, for all ` ≥ 0. An initial play is a prefix v0, a0, . . . , a`−1, v`
of a play. We extend the observation function from positions to (initial) plays
π = v0, a0, v1, a1, . . . by setting βi(π) = βi(v0), βi(v1), . . .

A strategy for Player i is a partial function si : (VA)∗V → Ai that assigns
an action to every initial play such that si(π) = si(π′) for any plays π and π′

that induce the same sequence of observations βi(π) = βi(π′). We denote the

5

set of all strategies of Player i with Si and the set of all strategy profiles by S.
A play (or an initial play) π = v0, a0, v1, a1, . . . follows the strategy si ∈ Si, if
ai` = si(v0, a0, v1, . . . , a`−1, v`) for every index ` > 0. For a coalition I ⊆ C, the
play π follows a profile sI of strategies, if it follows all strategies si of players
i ∈ I. The set of possible outcomes of a strategy profile sI is the set of plays
that follow sI .

We are particularly interested in strategies implemented by finite-state ma-
chines. A strategy automaton for Player i over a game graph G is a structure
(M,m0, µ, σ) consisting of a finite set M of memory states with an initial state
m0, a memory update function µ : M × (Ai × Bi) → M and a choice function
σ : M ×Bi → Ai. We extend µ to sequences of actions-observations of Player i
along initial plays starting with µ(βi(v0)) := m0 and setting

µ(a0, b1, . . . , b`−1, a`−1, b`) := µ(µ(a0, b1, . . . , b`−1), a`−1, b`).

Depending on the current memory state and on the observation at the present
position, the choice function prescribes an action at every position, thus imple-
menting the strategy

si(v0, a0, . . . , v`−1, a`−1, v`) := σ(µ(βi(v0), a0, . . . , a`−1, β
i(v`)), βi(v`)).

A strategy with finite memory is one that can be implemented by a strategy
automaton.

Winning. A winning condition over a game graph G is a set W ⊆ (VA)ω of
plays. A game G = (G,W) consists of a game graph and a winning condition.
We say that a play π on G is winning in G if π ∈ W ; a strategy profile sI is
winning in G, if all its possible outcomes are so.

To describe winning conditions in a more succinct way, and to relate games
played on different graphs under similar conditions, we refer to a finite alpha-
bet C of colours and a colouring function γ : V → C and describe winning
conditions over G as sets W ⊆ Cω comprising all plays v0, a0, v1, a1, . . . with
γ(v0), γ(v1), · · · ∈W . Strictly speaking, colouring functions do not belong to the
game form, but to the winning condition. However, it is technically convenient to
include the colouring in the description of the game graph. Therefore, whenever
we refer to a game graph throughout the paper without further specification, we
mean a game graph expanded with a colouring function (G,∆, (βi)i<n, γ).

As part of the description of a game, the colouring function is available to the
players. However, if a player is uncertain about the current position, he may not
know its colour either. In contrast to this, we say that a colouring is observable
by player i, if βi(v) 6= βi(v′) whenever γ(v) 6= γ(v′).

A (simple) safety game is a game with two colours assigned by γ : V →
{safe,#} that are observable to all players, describing the winning condition
W = {safeω}. Hence, a play is winning if, and only if, it avoids the positions
coloured by #. For simplicity, we assume that the symbol # belongs to the
observation alphabet of every player and that βi(v) = # for a player i precisely
when γ(v) = #.

6

Questions. Given a safety game, we ask the following questions:
– Winner determination: does there exists a coordinated winning strategy for

the grand coalition ?

– Distributed winning: Does there exist a distributed finite-state winning strat-
egy, that is, a winning strategy profile s where si can be implemented by a
finite-state automaton, for every player i ?

– Strategy construction: If distributed winning strategy profiles exist, construct
one.
We restrict our attention to safety conditions as they are the simplest win-

ning conditions that are genuinely infinite, and because they feature a notion of
forbidden move which is helpful for forming intuitions.

Before we proceed let us point out that the simultaneous moves are just a
syntactic convenience. Equivalently, we could consider games where the players
take turns. The questions in which we are interested have no concurrent content.

3 Equivalences between games

We aim at enriching the structure of a game to obtain an explicit representation
of the knowledge that a player can derive from the history. To relate games played
on different structures, we introduce different notions of game equivalence.

Definition 1. Let G be a game. Two strategies si, ri ∈ Si are payoff equivalent
if, for all t−i ∈ S−i, the outcome of (si, t−i) is winning if, and only if, the outcome
of (ri, t−i) is winning. The game G is embeddable into a game G′, if there exists
a function f that maps the strategies for each player i in G to strategies for the
same player in G′, such that
(i) a profile (s0, . . . , sn−1) ∈ S is winning if, and only if, (f(s0), . . . , f(sn−1)) is

winning, and

(ii) two strategies si, ri ∈ Si are payoff equivalent, if, and only if, their images
f(si) and f(ri) are so.
We say that two games G,G′ are (normal-form) equivalent if G is embeddable

into G′ and, vice-versa. In this case, we write G ≡ G′.

We remark that ≡ captures equivalence up to renaming of strategies and
removal of redundant ones: consider two games G ≡ G′ and transform each of
them by keeping only one strategy from each payoff-equivalence class. Between
the residual games Ĝ and Ĝ′ obtained in this way, there exist injective embed-
dings. By the Cantor-Bernstein-Schröder argument, it follows that there exists
an isomorphism between the normal forms of Ĝ and Ĝ′, that is, a bijective em-
bedding.

Normal-form equivalence is in general too coarse to speak about the sequen-
tial structure of a game, but sufficient to preserving the questions about ex-
istence of a coordinated winning strategy. Modal bisimulation induces a much
finer equivalence which will allow us to operate on the internal structure of a
game graph.

7

Definition 2. A bisimulation between two game graphs G and G′ is a binary
relation Z ⊆ V × V ′ that preserves the colours and the observations, i.e.,

if (v, v′) ∈ Z then γ(v) = γ′(v) and βi(v) = βi(v′), for all i < n,

and that satisfies the following back-and-forth condition:
– for all (v, v′) ∈ Z, a ∈ A, and every w ∈ ∆(v, a), there exists a position
w′ ∈ ∆(v′, a) such that (w,w′) ∈ Z, and

– for all (v, v′) ∈ Z, a ∈ A, and every w′ ∈ ∆(v′, a), there exists a position
w ∈ ∆(v, a) such that (w,w′) ∈ Z.

For designated initial positions, we say that G, v0 is bisimilar to G′, v′0 and write
G, v0 ' G′, v′0, if there exists a bisimulation between G and G′ that contains
(v0, v′0).

Lemma 3. If two game trees T and T ′ are bisimilar, then the games (T,W)
and (T ′,W) are equivalent, for every winning condition W .

Proof. Let T ' T ′ be game trees with the usual notation, and let W ⊆ Cω be
an appropriate winning condition.

To witness that the games (T,W) and (T ′,W) are equivalent, we set out
with a bisimulation relation Z ∈ T × T and extract two functions z : T → T ′

and z′ : T ′ → T such that {(v, z(v)) : v ∈ V } and {(z(v′), v′) : v′ ∈ V } are
bisimulations. We proceed by induction over the depth of positions. For the roots
u, u′ of T and T ′, set z(u) = u′ and z′(u′) = u. Assuming that the values of z
and z′ have been defined for all positions of depth up to `, consider an arbitrary
position v of depth ` and let v′ = z(v). Then, for every a-successor w ∈ ∆(v, a),
choose an a-successor w′ ∈ ∆′(v′, a) such that (w,w′) ∈ Z and set z(w) := w′.

Clearly, {(v, z(v)) : v ∈ V } is a bisimulation relation with the additional
property that, for any initial play π = v0, a0, v1, a1, . . . over T , the image z(π) =
z(v0), a0, z(v1), a1, . . . is a play over T ′ which induces the same sequence of
colours and observations, that is, γ(π) = γ′(z(π)) and βi(π) = β′i(z(π)) for all
players i. Analogously, we construct a bisimulation function z′ : T ′ → T for the
converse direction.

Now, we can translate each strategy si on T into a strategy s′i on T ′ by
setting s′i(π′) = s(π), for every initial play π′ that is the image of some initial
play π over T ′; for every other initial play π′ over T ′, we choose a companion
τ ′ := z(z′(π′)) and set s′i(π′) = s′i(τ ′). The mapping si → s′i constructed
in this way has the property that every profile of strategies sI for a coalition
I ∈ {0, . . . , n− 1} has the same set of possible outcomes, in terms of colours, as
its image s′I . This implies that the translation s→ s′ is an embedding of T into
T ′ that preserves payoff equivalence. An embedding for the converse direction
can be constructed analogously. This concludes the proof that the games (T,W)
and (T ′,W ′) are equivalent for any winning condition defined in terms of colours.

ut

Definition 4. The unravelling of a game graph G from a position v0 is a game
tree T (G, v0) with the following ingredients:

8

– the set of positions consists of all initial plays in G, v0,

– the move relation consists of edges (π, a, π′), for all plays π = v0, a0, . . . , v`
and π′ = v0, a0, . . . , v`, a`, v`+1 with a` = a.

– the observation function of Player i maps every play v0, a0, . . . , v` to βi(v`),
and

– the colouring function maps every play v0, a0, . . . , v` to γi(v`).

Obviously, the projection T (G, v0) 7→ G, v0 that sends every initial play to
its last position defines a bisimulation between T (G, v0) and G, v0. Extending
this projection to entire plays allows us to view any winning condition W over
a game graph as a winning condition over its unravelling, and thus speak of
(T (G, v0),W) as the unravelling of the game (G, v0,W).

Lemma 5. Every game is equivalent to its unravelling.

Proof. The bijection f that maps every initial play π = v0, a0, v1, . . . v` on a
graph game G to the sequence

f(π) = v0, (v0, a0, v1), (v0, a0, v1, a1, v2), . . . , (v0, a0, v1, . . . , v`)

of its prefixes, which corresponds to an initial play in the unravelling of G, in-
duces embeddings of strategies from G into its unravelling and vice versa by
setting s′i(f(π)) := s(π) and si(π) := s′i(f−1(π)), respectively. These embed-
dings preserve payoff equivalence and thus witness that the games on G and its
unravelling are equivalent. ut

Proposition 6. If two game graphs G, v0 and G′, v′0 are bisimilar, then the
games (G, v0,W) and (G′, v′0,W) are equivalent, for any winning condition W .

Proof. By Lemma 5, each of (G, v0,W) and (G′, v′0,W) is equivalent to its
unravelling. As bisimilar game graphs unravel to game trees that are again
bisimilar, and thus equivalent under any winning condition defined in terms
of colours, according to Lemma 3, transitivity of game equivalence implies that
(G, v0,W) ≡ (G′, v′0,W). ut

The unravelling of a game reflects the sequential order of decisions and ac-
tions in more detail than a finite graph. The extensive form of a game is a
representation that additionally makes the information structure of a game ex-
plicit.

Definition 7. An extensive game form T = (T,∆, (∼i)i<n) consists of a tree
over a set T of positions with a move relation ∆ ⊆ T × A × T , and a profile of
equivalence relations ∼i∈ T × T , called indistinguishability relations.

An extensive-form strategy for Player i is a function f i : T → T that maps
every position of T to an action ai ∈ Ai such that f i(v) = f i(v′), whenever
v ∼i v′. Plays, consistency of a play with a strategy, and possible outcomes are
defined as for game graphs, by identifying initial plays with positions in the tree.

9

An extensive game is an extensive game form equipped with a winning condition,
which we describe in terms of a colouring function γ : T → C as a set W ⊆ Cω.

The equivalence classes of ∼i are called the information sets of Player i; the
family of all information sets of a player forms his information partition.

Notice that the general notion of indistinguishability allows to describe games
that do not correspond to any game on graphs. This is because our definition of
graph games with synchronous moves makes an implicit assumption of perfect
recall: each player is aware of the number of previous rounds, of his previous
own actions and observations, and any information that has been once available
is never forgotten.

Formally, an indistinguishability relation ∼i satisfies perfect recall if every
pair of nodes that are distinct but indistinguishable for Player i satisfies the
following conditions:

(i) v and v′ are of the same depth in T , and

(ii) for the unique w, a and w′, a′ with ∆(w, a) = v and ∆(w′, a′) = v′, we have
w ∼i w′ and ai = a′i.

We will be interested in unwrapping the information sets represented in a
graph game.

Definition 8. Let T = (T,∆, (βi)i<n) be a game tree. The indistinguishability
relation of Player i on T is defined by

π ∼i π′ if αi(π) = αi(π′) and βi(π) = βi(π).

The indistinguishability relation of Player i on a game graph G, v0 is his indis-
tinguishability relation on the unravelling of G, v0.

Lemma 9. The indistinguishability relation on a game tree T is the coars-
est equivalence relation that satisfies perfect recall and refines the observational
equivalence relation {(π, τ) : β(π) = β(τ)}.

This follows because ∼i is reflexive and closed under the following propaga-
tion rule:

if w ∼i w′ then, for all action profiles a, a′ that agree on the action
of Player i and for all successors v = ∆(w, a) and v′ = ∆(w′, a′) with
βi(v) = βi(v′), we have v ∼i v′.

Definition 10. The extensive form Ext(G, v0) of a game graph G, v0 is the ex-
tensive game form (T,∆, (∼i)i<n) obtained by unravelling the game graph from
the initial position v0 and expanding it with the indistinguishability relations of
all players on the unravelling.

Notice that, in spite of their similar shape, graph games and extensive forms
induce different notions of strategies. Intuitively, extensive-form strategies can be
seen as mappings from information sets to actions whereas game-tree strategies
are mappings from sequences of observations to actions. On the other hand, in

10

the extensive form ∼i can distinguish between positions reached with the same
sequence of observations, but with different actions, which is not possible in
graph games. We show that, the games are nevertheless equivalent in the sense
in which we are interested.

Lemma 11. Every game is equivalent to its extensive form.

Proof. By Lemma 5, we know that every game is bisimilar – and thus equivalent
– to its unravelling. Accordingly, it is sufficient to prove the statement for games
on (infinite) trees.

Let G = (V,∆, (βi)i<n,W) be a graph game on a tree and let Ext(G) =
(V,∆, (∼i)i<n,W) be its extensive form. As the two games have the same set of
positions, and because all strategies in the extensive form respect the observation
equivalence of G, by construction of ∼i, the identity mapping from strategies of G
to strategies of Ext(G) is readily an embedding that respects payoff equivalence.

To construct an appropriate strategy embedding from Ext(G) to G for the
reverse direction, let ri be a strategy in the extensive game. We shall construct
a strategy si for G by induction over the length of initial plays, such that

– si agrees with ri on all initial plays π of length at most ` that follow ri, that
is, si(π) = ri(π), and

– si does not distinguish between any initial plays π, π′ of length at most ` that
are observationally equivalent in G, i.e., if βi(π) = βi(π′) then si(π) = si(π′).

To begin with, we set si(v0) = ri(v0), for the root v0 of the game tree. As an
induction hypothesis, let us assume that si has been defined for all initial plays
of length up to `. To extend the definition to plays of length `+ 1, consider, for
each sequence β ∈ (Bi)` of observations, the set Πβ of all initial plays π with
βi(π) = β that follow ri. By induction hypothesis, all plays π′ ∈ Πβ also follow
si and hence αi(π) = αi(π′). Thus, Player i cannot distinguish the plays by his
own actions or observations, i.e., π ∼i π′. As ri respects ∼i, we can therefore
pick an action aiβ = ri(π), for an arbitrary representant π ∈ Πβ , provided the
set is non-empty; otherwise we choose an arbitrary action aiβ ∈ Ai. Now, for
every play π of length `+ 1 with βi(π) = β, we assign si(π) := aβ .

Clearly, si respects observation equivalence induced by βi and is thus a valid
strategy for Player i in the graph game G. Moreover, every initial play that follows
si agrees with ri on the continuing action. Accordingly, the sets of outcomes of
(si, t−i) and (ri, t−i) are the same in the two games, for all strategies t−i ∈ S−i
of the other players, which shows that the mapping ri 7→ si is an embedding
that preserves payoff equivalence. ut

Lemma 12. If two extensive game forms T and T ′ are bisimilar, then the games
(T ,W) and (T ′,W) are equivalent for every winning condition W .

The proof follows the lines of Lemma 3.

11

4 Tracking structure

Definition 13. Let T = (T,∆, (βi)i≤n, γ) be a game tree and let ' be a maxi-
mal bisimulation relation over its expansion (T , (∼i)i≤n) with the indistinguish-
ability relations of all players. Then, the tracking Tr(T) of T is the game graph

G = (V, ∆̂, (β̂i)i<n, γ̂)

obtained as a quotient of T by ' with

– positions corresponding to the equivalence classes of ';

– moves ∆̂ := {([π], a, [π′]) : (τ, a, τ ′) ∈ ∆ for any τ ' π and τ ′ ' π′},
– observations β̂i([π]) = βi(π), for each player i,

– colouring function γ̂([π]) = γ(π), and

– initial position corresponding to the equivalence class of the root of T .

The tracking Tr(G, v0) of a game graph, is the tracking of its unravelling.

Clearly, every game is bisimilar to its tracking; in fact, the two games have the
same extensive form and the identity function induces payoff-preserving mutual
embeddings.

Lemma 14. Every game is equivalent to its tracking.

Moreover, we argue that the tracking of a game is rich enough for allowing to
store in its elements all the information needed to distinguish information sets,
at least with respect to safety conditions.

Theorem 15. For every safety game with finite tracking, if the grand coalition
has a winning strategy, it also has one with finite memory.

Our proof proceeds in two stages.

Definition 16. For an extensive-game tree T , the knowledge-equivalence x ≈i y
for a player i is the transitive closure of {(x, y) ∈ T × T : x ∼i y or x ' y}.

For each player i, the knowledge equivalence thus induces the finest partition
into classes closed under indistinguishability and bisimulation with respect to
the extensive form.

Proposition 17. For any extensive game with safety condition, if the grand
coalition has a winning strategy, then it also has one that does not distinguish
between knowledge-equivalent positions, i.e., there exists a winning strategy s
with si(x) = si(y) whenever x ≈i y, for all i < n.

Proof. Let T be an extensive game with the usual notation, and let t be a
winning strategy for the grand coalition. To construct a ≈i-invariant winning
strategy, we define a profile s of strategies that map every (play of an) ≈i-class
[π] of a position π ∈ T to an action in Ai maintaining the following property:

12

[≈i =⇒ ∼i] for any pair of plays π ≈i π′ of the same length that follow s,
we have π ∼i π′.

This is done simultaneously for all players, by induction on length of initial
plays. For the root of the game tree, we set si([v0]) = ti(v0), for all players. For
every initial play π of length ` and each player i, if si([π]) is not yet assigned,
all representatives of [π] of length ` that are reachable with si are ∼i-equivalent,
by induction hypothesis, and hence ti maps them to the same action ai. We set
si([π]) := ai, and argue that the invariant propagates to plays of length `+1: if a
pair of prolongations τ ≈i τ ′ of two plays π ≈i π′ is reached via s in round `+ 1,
we have either directly τ ∼i τ ′ or τ ' τ ′, and in this case indistinguishability
follows from βi(τ) = βi(τ ′).

Finally, we argue that the profile s is winning. Towards a contradiction sup-
pose that, after an initial play τ , an unsafe successor with observation # is
reached upon taking the recommended action profile a = s(π), and let π be the
representative of [τ] responsible for the assignment of the action. Then, there
exists a finite path alternating between ∼i and '-edges leading from τ to π
which propagates the property that a-actions avoid unsafe positions. A contra-
diction. ut

To reason in terms of knowledge equivalence within a game graph G rather
than in its extensive form, let Ki be the partition induced by ≈i in Ext(G, v0)
and let the knowledge set Ki(π) of a play π be the unique set K ∈ Ki with
π ∈ K. Intuitively, the predicate Ki(π) reflects the knowledge that a player may
need to acquire in order to play a safety game on G, v0.

As the knowledge equivalence ≈i on a game tree is coarser than the bisimu-
lation ' that generates its tracking, we can conclude that any two initial plays
which end at the same position of a tracked game Tr(G, v0) are knowledge equiv-
alent.

Lemma 18. The knowledge-set predicate is positional in every tracked game
Tr(G, v0) : for all initial plays π, τ that end at the same node v in Tr(G, v0), we
have Ki(π) = Ki(τ).

Accordingly, we can project Ki from the extensive form Ext(G, v0) of a game
(G, v0) to its tracking Tr(G, v0) by setting Ki(v) to be the (name of the) set
K(π) for any play π that ends at v. Notice that this projection would not be
well-defined on arbitrary games. It is here where we exploit that the tracking of
a game has enough structure to receive the knowledge predicate.

In the next step, we argue that, if each player i could observe the predicate
Ki(v), strategies that depend only on this observation at the current position
would be sufficient. To make this more precise, consider an observation alphabet
consisting of (names of) knowledge sets with the intended meaning βi(v) :=
Ki(v).

Corollary 19. If the grand coalition has a winning strategy in a safety game
(G, v0), it also has a memoryless strategy on the tracking game Tr(G, v0) with
knowledge-set observations.

13

Proof. If the grand coalition wins on Ext(G, v0), it also has a winning profile s
of strategies si that depend only on Ki(π), according to Proposition 17. Any
such strategy yields a memoryless winning strategy on Tr(G, v0) by choosing the
action si(Ki(v)), for any play that ends at a position v. ut

As it appears, the knowledge predicate would be very helpful for finding
winning strategies in a safety game. This raises the question of whether and
how it can be derived from directly from a game graph rather than from its
tracking. The following lemma points out that this can be accomplished with
finite resources, for games with finite tracking.

Lemma 20. If the tracking of a game G, v0 is finite, then for every player i,
there exists a finite-state automaton over Ai ×Bi that recognises the knowledge
set K(π) of any initial play π = v0, a0, v1, a1, . . . , a`, v` upon input of its action-
observation sequence ai0, β

i(v1), ai1, β
i(v2), . . . , ai`, β

i(v`).

Proof. Let s be a winning strategy profile for the grand coalition that is invariant
under knowledge-equivalence as in Proposition 17 and Corollary 19. On basis of
this profile, we construct for each player i, a deterministic finite-state automaton
that runs along the plays over (G, v0) accepting the actions and the observations
of the player as follows.

The state set Q consists of the finitely many (names of) knowledge sets in K,
the initial state is Ki(v0), and the transition δ(K, ai, bi) leads to the knowledge
set K ′ of any initial play π′ that follows s and prolongs a play π with Ki(π) = K
by the action ai and the observation bi.

To see that the transition function is well-defined and does not depend on
the choice of the representatives π, π′, one shows by induction over the length of
plays according to the profile s, that the following invariant holds:

for any pair π, τ of initial plays that follow s and end at positions in the
same knowledge set K, any pair of continuations π′, τ ′ along the action
profile (si(Ki))i<n and with the same observation profile (bi)i<n, agrees
on the knowledge set, for each player.
Now, if the automaton constructed for Player i runs along an initial play

π = v0, a0, v1, a1, . . . , a`, v` that follows the strategy s receiving the action-
observation sequence ai0, β

i(v1), ai1, β
i(v2), . . . , ai`−1, β

i(v`), it assumes the state
Ki(π), which we regard as the output of the automaton. ut

If we add to the automaton constructed for Player i, a choice function return-
ing si(K) at every internal state K ∈ Ki, we readily obtain a strategy automaton
that implements si, for each player i. The profile of automata resulting from the
construction is thus a distributed finite-state winning strategy.

This concludes the proof of Theorem 15.
Notice that in the above proof, it is essential that all players follow the

strategy s (or, equivalently, the strategy automaton that implements it); if any
player j deviates from this strategy, the internal state K of the automata of
other players i will in general not correspond to the current knowledge set.

We conjecture that if a game has finite tracking, then finite memory is suffi-
cient for general regular strategies over the original game.

14

4.1 Finite and infinite tracking

In this section we discuss examples and algorithmic applications of the tracking
construction.

Proposition 21. Let (G,W), v0 be a finite safety game with finite tracking.

(i) The winner determination problem of establishing whether the grand coali-
tion has a winning strategy is decidable.

(ii) The distributed winning problem of determining whether the grand coali-
tion has a finite-state distributed winning strategy and its construction vari-
ant can be solved in nondeterministic polynomial time with respect to the
size of the tracking.

Proof. The tracking (G′, v′0) = Tr(G, v0) can be constructed incrementally by
traversing the (minimal bisimulation quotient of the) game graph G, v0 in a
breadth-first manner while maintaining the knowledge sets and introducing a
fresh copy of a position if, and only if, it is not knowledge-equivalent to a pre-
viously visited one. This process terminates in time linear in the size of the
tracking.

To verify that a winning strategy exists, it is sufficient to guess a mapping
from knowledge sets to actions, for each player, and test whether it corresponds
to a winning strategy. The testing can be done in linear time with respect to
the size of the tracking. using the standard propagation procedure. Overall,
this yields a generic complexity of nondeterministic polynomial time. Every dis-
tributed winning strategy found in this way translates into a a profile of strategy
automata, one for each player.

The above proof sketches a semi-decision algorithm for solving safety games
in general, even if it is not known that the tracking is finite. Essentially, the
tracking predicate can be constructed on the fly.

Proposition 22. There are finite safety games with two players that require
infinite memory.

To see an example of such a game, consider the graph depicted in Figure 1.
Here, Player 1 and Player 2 play against nature with actions in A1 = A2 = {o, x},
and receive observations B1 = B2 = {•,¬,#}. All moves that are not repre-
sented in the picture are meant to lead to a sink position (not represented either)
where both players receive the fatal observation # and lose; the observation ¬
is left void in the picture.

The plays have a similar scenario for both players: they need to perform
action o until receiving the observation •, then, perform a number of x action,
and finally switch back to o, forever. (The option of playing x will be ruled out
soon.) Thus, for each player, the question is how many x actions to perform
after observing •. Accordingly, the strategies available to player i correspond to
functions f i : ω → ω with f(n) = m meaning, that if • occurs after n steps, play
x for precisely m rounds.

15

|

|

•|•

|

|

•|

|• |

|

|

|

•|•

|

|

o|o o|oo|o

x|x

o|o

o|o

o|o o|o

o|o

x|x

x|x

o|o

o|o

x|o
x|x

o|x

x|x

o|x

o|x

o|o

o|o

Figure 1. A game that requires infinite memory

The game graph gives us even more clues about which choices the players
could make. One important detail is that Player 2 receives • either in the same
round as Player 1, or in the subsequent one. In the former case, the two players
need to perform the same number of x actions. Hence, any safe strategy must
satisfy f1(n) = f2(n), for all n. In the latter case, Player 2 must produce one
more x-action than Player 1, implying f2(n+ 1) = f1(n) + 1, for all n. Finally,
we can observe that, if Player 2 receives • in the first round, his only choice is
to produce one x. Hence, f2(0) = 0. But to satisfy all these constraints, there
is only one pair of strategies that can be safely chosen f i(n) = n. Thus, this
unique winning strategy for the coalition needs unbounded memory.

Figure 2 represents a fragment of the extensive form of the game in our exam-
ple; it can be seen that no two nodes where the players receive the •-observation
in the same round are bisimilar with respect to the indistinguishability relation.
This is because the alternating ∼ 1-∼2 paths leading to the the leftmost po-
sition in the tree have different length at each level. The leftmost position is
identifiable as the only one which is reachable via a ∼1-∼2 alternation and that
has no ∼2 indistinguishable companion in a different bisimulation class.

Proposition 23. The question of whether a game graph has finite tracking is
undecidable.

16

|

•|•

|

|

|

|

|

•|

|•

|

|

|

|

|

•|•

|

|

|

|

•|

|•

|

|

|

|

•|•

|

|

|

•|

|•

|

|

|

•|•

|

|

•|

|•

|

| | | | | | | |

o|o o|o

x x

o o

o o

o o

o o

o o

x o

o x

o x

o o

o o

o o

o|o o|o

x x

x x

o o

o o

o o

x o

x x

o x

o x

o o

o|o o|o

x x

x x

x x

o o

x o

x x

x x

o x

o|o o|o

x x

x x

x x

x o

x x

x x

o|o

o|o

o|o

1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1

1 2 1 2 1 2 1

1 2 1 2 1 2 1

1 2 1 2 1 2 1

Figure 2. Extensive form of the game in Figure 1 (excerpt)

17

To see this, we modify our counting example from Figure 1 by replacing the
test for the (unary) successor relation with a test for a correct transition between
two configurations of a Turing machine.

LetM = (Q,Σ, q0, δ, F) be a Turing machine over state space Q with initial
state q0 ∈ Q, final states F ⊆ Q, tape alphabet Σ, and a deterministic transition
function δ : Q × Σ → Q × Σ × {−1, 0, 1}. The intention is to encode every
configuration of the machine as a word w(cq)w′ ∈ Σ∗ × (Σ ×Q)Σ∗ where ww′

is the contents of the tape, q the current state, and the length of |w| indicates
the current head position with contents c. Accordingly, we choose Σ ∪Q as an
action alphabet for both players, and {•,¬,]} as the observation alphabet as
before. The game graph features a test that the players produce the fixed initial
configuration with empty tape when the play starts with a •-observation for
both players. All later simultaneous •-observations lead to a testing that both
players produce the same configurations and finally, if Player 2 receives the •-
observation after Player 1, we have a test that the configuration described of
Player 2 succeeds the one described by Player 1, except when the current state
is accepting in which case the test for equality applies.

In this scenario, the intended winning strategy for the coalition is the one that
produces the n-th configuration of the machine M upon observing • in round
n. This profile can be implemented with a finite-memory strategy, if and only
if the machine M halts. In that case, a simple diagonalisation argument shows
that the amount of different memory states that need to be distinguished, and
thus the size of the tracking graph, is not bounded by any computable function.
Finally, the game admits a winning strategy, if and only if the machine halts on
the empty tape – this problem is undecidable.

Corollary 24. There exists a family of safety games for which the grand coali-
tion has finite-state distributed winning strategies, but the amount of required
memory grows faster than any computable function.

References

[1] A. Arnold and I. Walukiewicz, Nondeterministic controllers of nondetermin-
istic processes, in Logic and Automata, vol. 2, Amsterdam University Press, 2007.

[2] D. Berwanger, Infinite coordination games, in Logic and the Foundations of
Game and Decision Theory (LOFT9), Texts in Logic and Games, Amsterdam
University Press, 2010. To appear.

[3] A. K. Chandra, D. Kozen, and L. J. Stockmeyer, Alternation, J. ACM, 28
(1981), pp. 114–133.

[4] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, Algorithms
for omega-regular games with imperfect information., in Proc. of the 20th Inter-
national Workshop on Computer Science Logic (CSL), 15th Annual Conference
of the EACSL, vol. 4207 of LNCS, Springer, 2006, pp. 287–302.

[5] D. Gale and F. M. Stewart, Infinite games with perfect information, Annals
of Mathematics Studies, 28 (1953), pp. 245–266.

18

[6] P. Gastin, N. Sznajder, and M. Zeitoun, Distributed synthesis for well-
connected architectures, Form. Methods Syst. Des., 34 (2009), pp. 215–237.

[7] T. A. Henzinger, Games in system design and verification., in Proc. Theoretical
Aspects of Rationality and Knowledge (TARK-2005), 2005.

[8] O. Kupferman and M. Y. Vardi, Synthesizing distributed systems, in Proc.
Logic in Computer Science (LICS 2004), 2001.

[9] R. McNaughton, Infinite Games Played on Finite Graphs., Ann. Pure Appl.
Logic, 65 (1993), pp. 149–184.

[10] G. L. Peterson and J. H. Reif, Multiple-Person Alternation, in Proc 20th
Annual Symposium on Foundations of Computer Science, (FOCS 1979), IEEE,
1979, pp. 348–363.

[11] A. Pnueli and E. Rosner, On the synthesis of a reactive module, in Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM Press, 1989, pp. 179 – 190.

[12] P. J. Ramadge and W. M. Wonham, Supervisory control of a class of discrete
event processes, SIAM J. Control Optim., 25 (1987), pp. 206–230.

[13] J. Reif, The complexity of two-player games of incomplete information, Journal
of Computer and System Sciences, 29 (1984), pp. 274–301.

[14] K. Rudie and W. M. Wonham, Supervisory control of communicating processes.,
in Proc. PSTV 1990, Tenth International Symposium on Protocol Specification,
Testing and Verification, L. Logrippo, R. L. Probert, and H. Ural, eds., North-
Holland, 1990, pp. 243–257.

[15] K. Rudie and W. M. Wonham, Think Globally, Act Locally: Decentralized Su-
pervisory Control, IEEE Trans. Autom. Control, 37 (1992), pp. 1692–1708.

[16] W. Thomas, On the Synthesis of Strategies in Infinite Games., in STACS 95,
Proc. Symposium on Theoretical Aspects of Computer Science, 1995, pp. 1–13.

[17] S. Tripakis, Undecidable problems of decentralized observation and control on
regular languages., Inf. Process. Lett., 90 (2004), pp. 21–28.

[18] I. Walukiewicz, A Landscape with Games in the Background, in Proc. Logic in
Computer Science (LICS 2004), 2004, pp. 356–366.

19

