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Abstract

We give a new construction of formulas in Hanf normal form that are equivalent to
first-order formulas over structures of bounded degree. This is the first algorithm
whose running time is shown to be elementary. The triply exponential upper bound
is complemented by a matching lower bound.
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1 Introduction

Various syntactical normal forms for semantical properties of structures are
known. For example, every first-order definable property that is preserved un-
der extensions of structures is definable by an existential first-order sentence
( Loś-Tarski [26,22]). Gaifman’s normal form is another example that formal-
izes the observation that first-order logic can only express local properties [10].
A third example in this line is Hanf’s theorem, giving another formalization
of locality of first-order logic (at least for structures of bounded degree) [14,7].
Finally, we should also mention the normal form by Schwentick and Barthel-
mann [24] that rejoins the two formalizations of locality by Gaifman and by
Hanf.

Gaifman’s and Hanf’s theorems have found applications in finite model theory
and in particular in parametrized complexity. Namely, they lead to efficient
parametrized algorithms deciding whether a formula holds in a (finite) struc-
ture [25,19,8,9,16,3,21,17,18] and even to more general algorithms that list all
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the satisfying assignments [5,15]. Hanf’s theorem was also used in the transfor-
mation of logical formulas into different automata models [27,13,24,2,11,1,12].

In [4], it was shown that passing from arbitrary formulas to those in  Loś-Tarski
or Gaifman normal form leads to a non-elementary blowup. The same paper
also proves that for structures of bounded degree, the blowup for Gaifman’s
normal form is between 2- and 4-fold exponential, and that for  Loś-Tarski
normal forms (for a restricted class of structures) is between 2- and 5-fold
exponential.

This paper shows that Hanf’s normal form can be computed in three-fold
exponential time and that this is optimal since there is a necessary blowup
of three exponentials when passing from general first-order formulas to their
Hanf normal form. We remark (as already observed by Seese [25]) that the
first construction of Hanf normal forms [6] is not effective since satisfiability
of first-order formulas in graphs of bounded degree is undecidable, also when
we restrict to finite structures [28]. Only Seese [25] gave a small additional
argument showing that Hanf normal forms can indeed be computed. But his
algorithm is not primitive recursive. This was improved later to a primitive-
recursive algorithm by Durand and Grandjean [5] and (independently) by
Lindell [21]. Their papers do not give an upper bound for the construction
of Hanf normal forms, but on the face of it, the algorithm seems not to be
elementary. 1 Their algorithm is a quantifier-elimination procedure that only
works if the signature consists of finitely many injective functions (following
Seese, one can bi-interpret every structure of bounded degree in such a struc-
ture, so this is no real restriction of the algorithm). Differently, our algorithm
follows the original proof of Hanf’s theorem very closely by examining spheres
of bounded diameter, but avoiding the detour via Ehrenfeucht-Fräıssé-games.

Acknowledgement We would like to thank Luc Segoufin and Arnaud Du-
rand for comments on an earlier version and for hints to the literature that
improved this paper.

2 Definitions and background

Throughout this paper, let L be a finite relational signature and let Lm denote
the extension of L by the constants c1, c2, . . . , cm. Let A be an Lm-structure.
We write a ∈ A when we mean that a is an element of the universe of A.
Furthermore, ā denotes a tuple (a1, . . . , an) of length n of elements of some

1 In the meantime, A. Durand has informed us of ongoing work aiming at an ele-
mentary upper bound for their algorithm.

2



structure A and x̄ is the list of variables (x1, . . . , xn). In both cases, n will be
determined by the context. Finally, we define a distance (from N ∪ {∞}) on
the universe of A setting distA(a, b) = 0 iff a = b and distA(a, c) = d + 1 if
there exists b ∈ A with distA(a, b) ≤ d, there is some tuple in some of the
relations of A that contains both, b and c, and there is no such b ∈ A with
distA(a, b) < d, and distA(a, b) = ∞ if distA(a, b) 6= d for all d ∈ N. Next, the
degree of a ∈ A is the number of elements b ∈ A with distA(a, b) = 1, the
degree of A is the supremum of the degrees of a ∈ A.

Let A be an L-structure, ā = (a1, . . . , an) ∈ A, and d > 0. Then BA
d (ā) is the

set of elements b ∈ A with distA(ai, b) < d for some 1 ≤ i ≤ n. 2 The d-sphere
around ā is the Ln-structure

SA
d (ā) = (A ↾ BA

d (ā), ā) .

A d-sphere (with n centers) is an Ln-structure (A, ā) with SA
d (ā) = A. The Ln-

structure (A, ā) is a sphere if there exists d > 0 such that (A, ā) is a d-sphere;
the least such d is denoted d(τ) and is the radius of (A, ā). The d-sphere τ is
realised by ā in A if

τ ∼= SA
d (ā) .

If two L-structures A and B satisfy exactly the same first-order sentences,
then we write A ≡ B. If they satisfy the same sentences of quantifier rank ≤ r,
then A ≡r B. Provided the degrees of A and B are finite, both these concepts
can be characterized using the number of realisations of spheres.

Theorem 2.1 (Hanf [14]) For any L-structures A and B, we have A ≡ B
whenever any sphere in A or B is finite and any sphere is realised in A and
in B the same number of times or ≥ ℵ0 times.

This result was sharpened by Fagin, Stockmeyer & Vardi (see also Ebbinghaus
& Flum [6]) to characterize the relation ≡r:

Theorem 2.2 (Fagin et al. [7]) For all r, f ∈ N there exist d,m ∈ N (where
d depends on r, only) such that for any L-structures A and B of degree ≤ f ,
we have A ≡r B whenever any d-sphere with one center is realised in A and
in B the same number of times or ≥ m times.

Proof of both theorems. The proof proceeds by showing that the respec-
tive counting property implies that duplicator has a winning strategy in the
Ehrenfeucht-Fräıssé-game [6,20]. This then implies the respective equivalence
of A and B. 2

2 In the literature, one usually defines BA
d (ā) as the closed ball. Here, we prefer to

consider the open ball which slightly simplifies some later calculations.
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This theorem has (at least) three different applications: The first applica-
tion (and its original motivation in [7]) is a technique to prove that certain
properties P are not expressible in first-order logic: One provides two lists
of structures Ar and Br where Ar has the desired property and Br does not.
Furthermore, for any r, Ar and Br satisfy the counting condition from Theo-
rem 2.2 with d and m determined by r and the degree f of Ar and Br. This
implies Ar ≡r Br and therefore the property P cannot be expressed by a
first-order sentence of quantifier rank r. Since this holds for all r, the property
is not first-order expressible. The simplest such property is connectivity of a
graph where Ar can be chosen a circle of size max(m, 2d) and Br a disjoint
union of two copies of Ar (m and d are the constants from Theorem 2.2 for
f = 2).

The second application is an efficient evaluation of first-order properties on
finite structures of bounded degree [25,9,5]: The idea is to count the number
of realisations of spheres up to the threshold m and, depending on the vector
obtained that way, decide whether the formula holds or not (we will come
back to this aspect later in this section).

The third application is a normal form for first-order sentences [6]. For a finite
d-sphere τ with n centers, let sphτ (x̄) denote a formula such that (A, ā) |= sphτ

iff SA
d (ā) ∼= τ . A Hanf sentence asserts that there are at least m realisations

of the finite sphere τ with one center. Formally, it has the form

∃x1, x2, . . . , xm :
∧

1≤i<j≤m

xi 6= xj ∧ ∀x :









∨

1≤i≤m

x = xi



 → sphτ (x)





which we abbreviate as

∃≥mx : sphτ (x) .

A sentence is in Hanf normal form if it is a Boolean combination of Hanf
sentences.

Let ϕ and ψ be two formulas with free variables in x1, . . . , xn. To simplify
notation, we will say that ϕ and ψ are f -equivalent if, for all structures A of
degree ≤ f , we have

A |= ∀x1∀x2 . . . ∀xn : (ϕ↔ ψ) .

Corollary 2.3 (Ebbinghaus & Flum [6]) For every sentence ϕ and all f ∈
N, there exists an f -equivalent sentence ψ in Hanf normal form.

Proof. Let r be the quantifier rank of ϕ and let d and m denote the numbers
from Theorem 2.2. Then there are only finitely many d-spheres of degree ≤ f

with one center; let (τ1, . . . , τn) be the list of these spheres. Now we associate
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with every structure A of degree ≤ f a tuple tA ∈ {0, 1, . . . ,m}n as follows:
For 1 ≤ i ≤ n, let tAi denote the minimum of m and the number of a ∈ A
with SA

d (a) ∼= τi. Note that there are only finitely many tuples tA. Now ψ is
a disjunction. It has one disjunct for every t ∈ {0, 1, . . . ,m}n for which there
exists a structure A of degree ≤ f with A |= ϕ and t = tA. This disjunct is
the conjunction of the following formulas for 1 ≤ i ≤ n:







∃=tix : sphτ (x) if ti < m

∃≥mx : sphτ (x) if ti = m.

2

Note that ϕ is satisfiable if and only if the disjunction ψ is not empty. Hence an
effective construction of ψ would allow us to decide satisfiability of first-order
formulas in structures of degree ≤ f which is not possible [28].

We now turn to finite structures. Clearly, the disjunction ψ as in the above
corollary is also equivalent to ϕ for all finite structures of degree ≤ f . But in
this context, we can also define another disjunction ψfin by taking only those
t ∈ {0, 1, . . . ,m}n for which there exists a finite structure A of degree ≤ f with
A |= ϕ and t = tA (cf., e.g., [20, page 101]). As above, an effective construction
of ψfin would allow us to decide satisfiability of first-order formulas in finite
structures of degree ≤ f which, again, is not possible [28].

Despite the fact that the proof of Corollary 2.3 is not constructive, Seese
showed that some sentence ψ as required in Corollary 2.3 can be computed.

Theorem 2.4 (Seese [25, page 523]) From a sentence ϕ and f ∈ N, one
can compute an f -equivalent sentence in Hanf normal form.

Proof. Let β express that a structure has degree ≤ f . Then search for a
tautology of the form β → (ϕ ↔ ψ) where ψ is a sentence in Hanf normal
form. Since the set of tautologies is recursively enumerable, we can do this
search effectively. And since we know from Theorem 2.2 that an f -equivalent
sentence in Hanf normal form exists, this search will eventually terminate
successfully. 2

Note that Seese’s procedure to compute ψ is not primitive recursive. A prim-
itive recursive construction of a Hanf normal form was described by Durand
and Grandjean [5] and independently by Lindell [21]. They present a quantifier
elimination scheme and do not rest their reasoning on Ehrenfeucht-Fräıssé-
games. But so far, no elementary upper bound for the running time of their
algorithm is known. The main result of this paper is an elementary procedure
for the computation of a Hanf normal form. This is achived by a new (direct)
proof of Corollary 2.3 that does not use games.
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The effective constructions of Hanf normal forms led Seese [25], Durand and
Grandjean [5] and Lindell [21] to efficient algorithms for the evaluation of first-
order queries on structures of bounded degree. Seese showed that sentences
in Hanf normal form can be evaluated in time linear in the structure and the
Hanf normal form. Consequently, the set of pairs (A, ϕ) with A a structure of
degree ≤ f and ϕ a sentence with A |= ϕ can be decided in time

g1(|ϕ|, f) + g2(|ϕ|, f) · |A| (1)

where g1(|ϕ|, f) is the time needed to compute the Hanf normal form and
g2(|ϕ|, f) is its size 3 (it can be shown that the function g2 is elementary
since the radiuses appearing in the Hanf normal form can be bound). Since
Seese’s construction is not primitive recursive, the function g1 is not primitive
recursive. The constructions by Durand and Grandjean and by Lindell show
that g1 can be replaced by a primitive recursive function g′1. Since they get
another Hanf normal form, also the function g2 changes to g′2, say (but as for
Seese’s Hanf normal form, also this function is elementary).

In addition, Durand and Grandjean and Lindell show that the set of tuples ā
from A with A |= ϕ(ā) can be computed in time

g′1(|ϕ|, f) + g′2(|ϕ|, f) · (|A| + |{ā | A |= ϕ(ā)}|) (2)

where ϕ is a first-order formula and f is the degree of the structure A. This
was recently improved by Kazana and Segoufin who compute this set in time

222
O(|ϕ|)

· (|A| + |{ā | A |= ϕ(ā)}|) .

Here, the triply exponential factor originates from the work by Frick and
Grohe [9] and the summand g′1 is avoided since they do not precompute a
Hanf normal form. Our result in this paper will show that the Hanf normal
form can be computed in triply exponential time. Consequently, the functions
from (1) and from (2) can be replaced by triply exponential functions. As a
result, the model checking algorithm by Seese and the enumeration algorithm
by Durand and Grandjean and by Lindell perform as well as the algorithms
by Frick and Grohe and by Kazana and Segoufin, resp.

3 Construction of a Hanf normal form

A Hanf formula with free variables from x1, . . . , xn is a formula of the form

∃≥my : sphτ (x̄, y)

3 It should be noted that Frick and Grohe proved this problem to be solvable with
g1 the identity and g2 triply exponential in |ϕ| and f [9].
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where τ is a sphere with n+ 1 centers. A formula is in Hanf normal form if it
is a Boolean combination of Hanf formulas.

Theorem 3.1 From a formula Φ with free variables among x̄ and f ≥ 1, one
can construct an f -equivalent formula Ψ in Hanf normal form. This construc-
tion can be carried out in time

2f2O(|Φ|)

.

The construction of Ψ from Φ will be done by structural induction on Φ. The
central part in this induction is described by the following lemma (the proof
of Theorem 3.1 can be found at the end of this section).

Lemma 3.2 From a formula ϕ in Hanf normal form with free variables among
x̄, xn+1 and f ≥ 1, one can construct a formula ψ in Hanf normal form with
free variables in x̄ such that ∃xn+1 : ϕ and ψ are f -equivalent. This construc-
tion can be carried out in time |ϕ| ·2nO(1)·fO(d)

where d is the maximal radius of
a sphere appearing in ϕ. Furthermore, the largest radius appearing in ψ is 3d.

Proof. Set e = 3d. The formula ψ will be a disjunction with one disjunct
for every e-sphere τ ′ with n+ 1 centers. This disjunct will have the form

ψτ ′ = ϕτ ′ ∧ ∃≥1xn+1 : sphτ ′ .

We next describe how ϕτ ′ is obtained from ϕ. For this, let α = ∃≥mxn+2 : sphτ

be some Hanf formula appearing in ϕ. This formula will be replaced by the
Hanf formula α′ that we construct next. In this construction, we distinguish
two cases, namely whether the d(τ)-sphere around cn+1cn+2 in τ is connected
or not.

(a) Sτ
d(τ)(cn+1cn+2) is connected.

Let p denote the number of elements c ∈ Bτ ′

2d(τ)(cn+1) with

Sτ ′

d (c̄cn+1c) ∼= τ

and set

α′ =







true if p ≥ m

false otherwise.

(b) Sτ
d(τ)(cn+1cn+2) is not connected.
Let

σ = Sτ
d(τ)(c̄cn+2)

and write p for the number of c ∈ Bτ ′

2d(τ)(cn+1) with

Sτ ′

d(τ)(c̄c)
∼= σ .
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In this case, set
α′ = ∃≥m+pxn+2 : sphσ(x̄, xn+2) .

This finishes the construction of ϕτ ′ and therefore of the disjunction ψ. Clearly,
ψ is in Hanf normal form.

Now let an+1 ∈ A with SA
d (āan+1) ∼= τ ′. We will show

(A, āan+1) |= α ⇐⇒ (A, ā) |= α′

again distinguishing the two cases above.

(a) First let Sτ
d(τ)(cn+1cn+2) be connected. Then, for an+2 ∈ A with τ ∼=

SA
d(τ)(āan+1an+2), we have

distA(an+1, an+2) = distτ (cn+1, cn+2) ≤ 2d(τ) − 1 < 2d(τ)

and therefore an+2 ∈ BA
2d(τ)(an+1). Hence

|{an+2 ∈ A |SA
d(τ)(āan+1an+2) ∼= τ}|

= |{an+2 ∈ BA
2d(τ)(an+1) | S

A
d(τ)(āan+1an+2) ∼= τ}|

= |{c ∈ Bτ ′

2d(τ)(cn+1) | S
A
d(τ)(c̄cn+1c) ∼= τ}| = p

where the last equality follows from SA
e (āan+1) ∼= τ ′ and e ≥ 3d(τ). Hence

we showed

(A, āan+1) |= α ⇐⇒ (A, āan+1) |= ∃≥mxn+2 : sphτ (x̄, xn+1)

⇐⇒ p ≥ m

⇐⇒ (A, ā) |= α′ .

(b) Next consider the case that Sτ
d(τ)(cn+1cn+2) is not connected. Then, for

an+2 ∈ A, we have SA
d(τ)(āan+1an+2) ∼= τ if and only if

distA(an+1, an+2) ≥ 2d(τ) and SA
d(τ)(āan+2) ∼= σ .

But this implies

|{an+2 ∈ A | SA
d(τ)(āan+1an+2) ∼= τ}|

= |{an+2 ∈ A | distA(an+1, an+2) ≥ 2d(τ), SA
d(τ)(āan+2) ∼= σ}|

= |{an+2 ∈ A | SA
d(τ)(āan+2) ∼= σ}|

− |{an+2 ∈ A | distA(an+1, an+2) < 2d(τ), SA
d(τ)(āan+2) ∼= σ}|

= |{an+2 ∈ A | SA
d(τ)(āan+2) ∼= σ}|

− |{c ∈ τ ′ | distτ
′

(cn+1, c) < 2d(τ), Sτ ′

d(τ)(c̄c)
∼= σ}|

= |{an+2 ∈ A | SA
d(τ)(āan+2) ∼= σ}| − p.
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Hence

(A, āan+1) |= α ⇐⇒ (A, āan+1) |= ∃≥mxn+2 : sphτ

⇐⇒ |{an+2 ∈ A | SA
d(τ)(āan+1an+2) ∼= τ}| ≥ m

⇐⇒ |{an+2 ∈ A | SA
d(τ)(āan+2) ∼= σ}| ≥ m+ p

⇐⇒ (A, ā) |= α′ .

We next evaluate the size of the formula ψ. Since ψ is a disjunction of formulas
ψτ ′ , we first fix some e-sphere τ ′ with n+ 1 centers (with e = 3d). Then τ ′ has
≤ f 3d−1·(n+1) elements. Hence the formula sphτ ′ has size ≤ (f 3d−1·(n+1))O(1)

(the constant O(1) depends on the signature L). Now we deal with the formula
ϕτ ′ . It results from ϕ by the replacement of subformulas of the form α =
∃≥mxn2 : sphτ . In the first case, |α′| ≤ |α|. In the second case, note that σ is
a subsphere of τ , so |sphσ| ≤ |sphτ | < |α|. Furthermore, p ≤ f 2d(τ)−1 ≤ f 2d−1.
Recall that the formula

α′ = ∃≥m+pxn2 : sphσ(x̄, xn+2)

is shorthand for

∃y1, y2, . . . , ym+p :
∧

1≤i<j≤m+p

yi 6= yj ∧ ∀y









∨

1≤i≤m+p

y = yi



 → sphσ(x̄, y)



 .

The size of this formula is bounded by

O(p2) + |sphσ| ≤ O(f 4d−2) + |α| .

Since ϕτ ′ is obtained from ϕ by at most |ϕ| replacements, we obtain

|ϕτ ′ | = |ϕ| ·O(f 4d−2) + |ϕ| ≤ |ϕ| · fO(d)

and therefore

|ϕτ ′ ∧ ∃≥1xn+1 : sphτ ′ | = fO(d) · (|ϕ| + nO(1)) .

The number of disjuncts of ψ equals the number of 3d-spheres with n + 2
centers. Since any such sphere has at most f 3d−1(n+ 1) elements, the number
of these spheres is bounded by

2(n·f3d−1)O(1)

= 2nO(1)·fO(d)

which finally results in

|ψ| ≤ 2nO(1)·fO(d)

· fO(d) · (|ϕ| + nO(1)) ≤ 2nO(1)·fO(d)

.
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We finally come to the evaluation of the time needed to compute ψ. The crucial
point in our estimation is the time needed to compute the numbers p in (a)
and (b); we only discuss (a).

There are ≤ f 2d(τ)+1 − 1 candidates c in Bτ ′

2d(τ)(cn+1). For any of them, we

have to compute the set Bτ ′

d (c) (which can be done in time f 2d+1 − 1). Then,
isomorphism of τ and Sτ ′

d (c̄cn+1c) has to be decided. But these are two struc-
tures of degree ≤ f and of size (n+ 2) · (fd+1− 1) ≤ |ϕ| · (fd+1− 1). Hence, by
[23], this isomorphism test can be performed in time polynomial in the size
of the structures (the degree of the polynomial depends on f). 4 Hence, the
number p can indeed be computed within the given time bound. 2

We now come to the proof of the central result of this paper:

Proof. [of Theorem 3.1] The proof is carried out by induction on the con-
struction of the formula Φ. So first, let ϕ be a quantifier-free subformula of Ψ
whose free variables are among x1, . . . , xn. Let T be the set of all 1-spheres τ
of degree ≤ f with n+ 1 centers such that the constants c1, . . . , cn of τ satisfy
ϕ. Then set

ψ =
∨

τ∈T

∃≥1xn+1 : sphτ .

Note that any 1-sphere with n + 1 centers has precisely n + 1 elements. Fur-
thermore, n ≤ |Φ| since ϕ is a subformula of Φ. Hence the formula sphτ has

size nO(1) ≤ |Φ|O(1) and there are 2|Φ|O(1)
disjuncts in the formula ψ (where the

constants O(1) depend on the signature L), i.e., |ψ| = 2|Φ|O(1)
.

We now come to the induction step. The computation of Hanf normal forms
of ¬ϕ and of ϕ ∨ ϕ′ are straightforward from Hanf normal forms of ϕ and ϕ′.
The only critical point in the induction are subformulas of the form ∃xn+1 : β.
By the induction hypothesis, β can be transformed into an f -equivalent Hanf
normal form ϕ and then Lemma 3.2 is invoked yielding an f -equivalent Hanf
normal form for ∃xn+1 : β. We have to invoke Lemma 3.2 at most |Φ| times
where the number n is always bounded by |Φ|. Each invokation increases the
radius of the spheres considered by a factor of three, so the maximal radius will
be 3|Φ| = 2O(|Φ|). Hence, each invokation of Lemma 3.2 increases the formula

by a factor of 2f2O(|Φ|)

. Putting this to the power of |Φ| does not change the
expression. 2

4 For this result to apply, one has to code the L-structure into a graph. This stan-
dard technique is explained, e.g., in [25, Proof of Theorem 3.2].
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4 Optimality

In this section, we give a matching lower bound for the size of an f -equivalent
formula in Hanf normal form. Namely, we prove

Theorem 4.1 There is a family of sentences (χn)n∈N such that |χn| ∈ O(n)

and every 3-equivalent formula ψn in Hanf normal form has ≥ 222
n+1−1 sub-

formulas, so |ψn| ≥ 222
n+1−1.

The formulas χn will speak about labeled trees. More formally, our signature
L consists of two binary relations S0 and S1 and one unary relation U . A
structure A = (A, SA

0 , S
A
1 , U

A) over this signature is a tree if there is a finite,
nonempty and prefix-closed set X ⊆ {0, 1}∗ such that

A ∼= (X, {(u, u0) | u0 ∈ X}, {(u, u1) | u1 ∈ X}, H)

for some H ⊆ X. Note that every tree has degree at most 3. The tree is
complete if every inner node has two children and any two maximal paths have
the same length, this length is called the height of the tree (i.e., X = {0, 1}≤h

where h is the height). A forest is a disjoint union of trees. As in [9, Lemma 23],
one can construct formulas χn of size O(n) such that for every forest A, we
have

A |= χn if and only if any two complete trees of height 2n in A
are non-isomorphic.

(3)

A |= χn if and only if any two complete trees of height 2n in A are non-
isomorphic.

Lemma 4.2 Let ψ be a formula in Hanf normal form that is 3-equivalent to

χn. Then there are 222
n+1−1 non-isomorphic spheres σ such that the formula

sphσ appears in ψ.

Proof. Suppose, towards a contradiction, that ψ contains < 222
n+1−1 sub-

formulas of the form sphσ.

Let M be the maximal number m such that ∃≥mx : sphσ appears in ψ (for any
sphere σ). We can assume that ψ does not contain any formula sphσ where σ
is a 1-sphere. The complete tree of height 2n has 22n+1− 1 nodes. Hence there

are 222
n+1−1 ways to color such a tree. By our assumption on ψ, there is one

such tree B (with root r) such that the formula sph(B,r) does not appear in ψ.

Next, we need a bit of terminology. If A is a tree, a a node in τ , and d ∈ N,
then also τ ↾ BA

d (a) is a tree that we denote NA
d (a). Recall that the sphere

SA
d (a) = (NA

d (a), a) about a of radius d has an additional constant.
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Now we define a structure A0. It consists ofM+1 copies of any of the structures
NB

d (b) where

(1) 1 < d ≤ 2n and b is not the root of B or
(2) d < 2n.

Finally, let A2 = A0 ⊎ B ⊎ B be the disjoint union of A0 and two copies of
the tree B. Then, by (3), we have A2 6|= ψ. Since A0 does not contain any
complete tree of height 2n, we get A0 |= χn and therefore A0 |= ψ. Note that
any sphere realized in A0 or A2 is also realized in B. So let b ∈ B, and d ∈ N.
We distinguish several cases:

(1) 1 < d ≤ 2n and b is not the root of B. Then the sphere (NB
d (b), b) is

realized in A0 more than M times, hence the same holds for A2.
(2) d < 2n. Then (NB

d (b), b) is realized in A0 more than M times, hence the
same holds for A2.

(3) b is the root of the tree B and d = 2n. Then NB
d (b) = B. Hence SB

d (b) is
not realized in A0 and it is realized twice in A2. But validity of ψ does
not depend on this number since ψ does not mention the formula sph(B,b).

Hence, we obtain A2 |= ψ, contrary to our assumption that χn and ψ are
3-equivalent. 2

The theorem now follows immediately from this lemma.
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