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Abstract

We study nonterminating message-passing automata whboseibeis described by infi-
nite message sequence charts. As a first result, we show thigrMBiichi, and termination-
detecting Muller acceptance are equivalent for these dsvito describe the expressive
power of these automata, we give a logical characterizalimme precisely, we show that
they have the same expressive power as the existential ératgoi a monadic second-
order logic featuring a first-order quantifier to express thare are infinitely many ele-
ments satisfying some property. This result is based oné¥igmxtension of the classical
Ehrenfeucht-Frizss€ game to cope with the infinity quantifier.
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1 Introduction

The study of the relation between logical formalisms andafenal automata de-
vices has been a fascinating area of computer science apddthsced some splen-
did results. From a logicians point of view, this relatiotoads us to decide logical
theories effectively, from a system developer’s point @wjithe logical formalism
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might be considered as a specification language formalessgntial properties of
a system, whereas the automaton appears as a model of thm stgstlf.

The probably most famous connection between automataytheadrclassical logic
has been established byiiéhi and Elgot, who showed that finite automata and
monadic second-order (MSO) logic are expressively egemtdB, 9]. The sequen-
tial nature of finite automata, however, limits their usehi@ mnodeling of distributed
systems which called for more general automata models thptoy some com-
munication mechanism between their components. This canuation can be en-
sured by shared variables (e.g., asynchronous automatevidetavior can be de-
scribed by Mazurkiewicz traces) or by the exchange of messatpng channels
(e.g., message passing automata whose behavior can b#odddny message se-
guence charts). For terminating behaviors, the expreggvwesr of these models
has been related to that of some sort of MSO logic [1, 8, 11193,

One single execution of a distributed system is often mablatea directed acyclic
graph(V, E') with a set of event$” and a binary relatioi that describes the causal
dependency between events. Any MSO property of words [3yi@kurkiewicz
traces [19], or (existentially) bounded message sequehadsc[11, 13] can be
equivalently expressed by the appropriate automata madéhce versa). It should
be noted that the transitive closure of the causal depegdEnevhich forms the
temporal precedence relation and is often denstedan be described in MSO.
It can therefore also be used in the above cases. Since regsasging automata
can in general not be complemented, MSO is too powerful inctrgext of un-
bounded message sequence charts [1]; but the restrictigls6f to its existential
fragment (EMSO) is equivalent to message-passing autowititaut any channel
bounds [1].

When modeling reactive systems, one is rather interestadiitite behaviors. In-
deed, BRichi showed that MSO logic over infinite words is still as eqsive as
finite automata that require at least one final state to beedisnfinitely often.
Such an acceptance condition comes in many flavors, andigagahereof give
rise to Bichi, Muller, Rabin, and Streett automata, which, in thedetarministic
case, are all equivalent [20]. The same applies to the gsttihasynchronous (cel-
lular) automata over infinite Mazurkiewicz traces [5, 10h€elpaper [15] proposes
message-passing automata with a Muller acceptance camditimake it capable
of accepting infinite MSCs. As it turns out, the resultingamata model is equiv-
alent to MSO logic over MSCs, provided the channel capasityounded [15].

It is the aim of this paper to lift the boundedness conditiorhis result, i.e., to
characterize nonterminating behaviors of Muller messpgssing automata with
unbounded channelgfter introducing the necessary notions, Section 2.3 shows
that Muller-, Blchi-, and even termination-detecting Muller-MPAs all bahe
same expressive powgFheorem 8). In a termination-detecting Muller MPA, the
acceptance condition can distinguish between the infiajtetition of a local state



and the appearance of this state as the final one. This distiris not directly pos-
sible in a Muller MPA. The proofs of these equivalence resu#te direct automata
constructions. Contrary to the setting of terminating véra, EMSO is weaker
than Muller message-passing automata: the set of infinit€84Bat send infinitely
many messages from the first to the second component canrdedoeibed by
some EMSO formula. To overcome this deficiency, we introdileeadditional
first-order quantifieB>~x¢(x) requesting infinitely many evenisto satisfy some
propertyp(z). As we deal with structures of bounded degree (which woutdero
the case if we employed the transitive closure of the edggioal), we can exploit
the close connection of Ehrenfeucht-iS& games and locally threshold testable
languages [16, 20].

Let us come back to the setting of infinite message sequeraxéscOur main
result states thaEMSO™, i.e., the extension of existential monadic second-order
logic with an infinity quantifier, is expressively equivalém message-passing au-
tomata with nonterminating behavio(heorem 16). Our proof follows the route
of [1] that dealt with finite message sequence charts and Est&0Ocould there-
fore build on a powerful result on this logic and its first-erdragment, namely
Hanf’s theorem [12]. Recall that Hanf’s theorem can be pdav&ng Ehrenfeucht-
Frais€ games. In order to have an analogue of Hanf’s theorem foextension

of first-order logic by the infinity quantifief>, we use Vinner's extension [21]
of Ehrenfeucht-Fr@® games. This is the theme of Section 3 which leads to a
Hanf-type theorem (Theorem 11). As a result, any first-osggtence with infin-

ity quantifier can be translated into some conditions on tiralrer of realizations

of spheres. Building on [1], Section 4 shows that these ¢immdi can be checked
by message-passing automata equipped with a (termindétatting) Muller con-
dition. It also characterizes the expressive power of erisl monadic second-
order logic without the infinity quantifier by message-pagsautomata and the
termination-detecting Staiger-Wagner acceptance donditheorem 18).

2 Message-Passing Automata with Nonterminating Behavior

We consider communicating systems where several sequeageats exchange
messages through channels, executing send and receiwasachi send action is
of the form:!; indicating that agentsends a message to aggnthe complemen-
tary receive action is denoteiti. Here, agenjj can read a message provided it
has been sent through the corresponding channel ftomi. So let us, throughout
the paper, fix a finite setig of agents For an agent, we denote by>; the set
{ilj,i?5 | j € Ag\ {i}} of actionsthat are available ta The unionJ; ,, ; of all
the actions is denoted.



2.1 Message-Passing Automata and Their Behavior

Let us make precise our model of a reactive system with a rgegsassing mech-
anism, which goes back to Brand and Zafiropulo [2] and was é&tiended to deal
with infinite scenarios [15]. These automata consist of preshelent local machines,
one for each agent, that exchange messages along fifo ckahnedughout this
paper, we fix a finite setg of agents.

Definition 1 A message-passing automafon for short, MPA) is a structurel =
((A;)icag, D, 1) where

e D is a nonempty finite set agfynchronization data
e for eachi € Ag, A; is a pair (Q;, A;) where

- Q; is afinite set oflocal statesand

- A; CQ; x X; x D x Q) is the set oflocal transitionsand
o 1 € [[;ca, Qi is theglobal initial state

The operational behavior of an MPA proceeds as one mightoéxpay two local
machines4; and.A; with i # j are connected by two fifo channe(s, j) and(j, i),

the first for sending messages frano j and the second for the reverse direction.
An agent:i can execute send and receive actions according to its saidfi in
terms of A;. Executingi!j has the effect of writing a message into the channel
(1, 7). Actually, this message is supplemented by some synclatimizdata from

D to extend the expressive power of MPAs. The benefit of symshation data
will become clear when we define the behavior of MPAs formalgcordingly,
j?i, which is executed by agemtreceives the message frarthat is located at the
top of the channefi, j).

An example MPA is illustrated in Fig. 1(a). A client processranunicates with a
server by sending requests and receiving, on each reqiibst, & fail message or
an acknowledgment. The set of synchronization datasds, fail, ack}, and, e.g.,

(s0, 112, 1eq, s1) € Acnent 1S @ local transition that may be taken by the client.

To describe the behavior of an MPA formally, we use the statidad formalism

of message sequence chafidSCs, [14]). There, the sequential behavior of an
agent; is described by a vertical time-line, which will be modeledaasequence
of edges in a graph whose nodes are labeled with actions ¥roamd referred to
asevents Moreover, a send node and the corresponding receive nedeiat by

a (horizontal or diagonal) message arrow. The edge relafiam MSC gives rise
to a partial order relation constraining the execution pade¢he nodes. Moreover,
edges are labeled with elements frain= Ag U {msg} to identify message and
process arrows.

Definition 2 A message sequence ch@tSC, for short) is an edge- and node-
labeled directed graptd/ = (V, {E;}sec, A) where



AClient AServer

[ Client | [Server |
I 9 £ ) 211, ack
112, req 1.2,fa11 2?1,req ' 211 fail
1?2,ack
(a) An MPA over{Client, Server} (b) An infinite MSC

Fig. 1.

V is the set ofeventsand £ = U, By C V' x V a set of edges,

AV — Y is theevent-labeling function

E* is a partial order onV' (we writeu < v for (u,v) € E*),

foranyv € V, {u € V | u <} is afinite set,

for anyi € Ag, E; is the cover relation of some total order oi; = A\~1(%;),
for any (u,v) € En., there exist, j € Ag distinct such that\(u) = ¢!j and
Av) = jM,

foranyu € V, thereisv € V such that(u, v) € Eysg OF (v, u) € Epge, and
for any (u, v), (v, v") € Epse With A(u) = A(v'), we haveu < o' iff v < '

The last condition in the definition above expresses thatages are received in
the same order in which they have been sent. Hence it refleatsmMe deal with
fifo channels only. The last three conditions ensure that provides a bijection
between the sending and the receiving events.

Fig. 1(b) gives an example of an infinite MSC as a diagram. Meats of each
process are arranged along the vertical lines and messaggsisavn as horizontal
or downward-sloping directed edges. The MSC depicts onsilplesbehavior of
the MPA from Fig. 1(a). Recall that messages sent in the MeAansidered to be
synchronization messages and do not appear in the MSC itself

To describe the behavior of our automata model formallyAdlet ((A;);cay, D, ¢)
with 4; = (Q;, A;) be an MPA, and let/ = (V,{E;}scc, \) be an MSC. For a
mappingp : V' — U;e4, @i (Which is a candidate for a run of on //), we define
the mapping™ : V' — U;ea, Q: as follows. Leti € Ag andv € V;. If we can find
u € V; such that(u, v) € E;, then we sep~(v) = p(u). If there is no such:, we
let p~(v) = ¢[7]. Arunof Aon M is a pair(p, 1) of mappings : V- — Ujca, @
andy : V' — D such that

L' The cover relation of a total or partial ordgronV; is its direct successor relatien\<2.



o forany(u,v) € Enygg, p(u) = p(v) and
e foranyi € Agandv € V;, (p~(v), A(v), u(v), p(v)) € A,.

2.2 Muller, Bichi, and Staiger-Wagner Message-Passing Automata

We will now extend our automata model with some acceptanaesithat originate
from the work on automata on infinite words. Recall th&cBi's acceptance con-
dition for infinite words reads: “there is an accepting sthtd is assumed beyond
any point in time”. This formulation is also useful for finiteords provided we
assume that the automaton stays in the last state of its teinrafding the whole
word. Thus, acceptance depends on the set of states assofimadlyc Since MPAs
have local statednf, collects, for every agentc Ay, the set of states assumed
cofinally. The functiorinfj records, in addition, whether agemperforms finitely
many (indicated bysc) or infinitely many (indicated byx) actions. Finally, the
function Occj collects all states that ageneéncounters during the run.

So let us first give the following definitions. Let = (((Qi, A;))icaq, D, ) be an
MPA (we set@Q = U,ca, @) and letM = (V,{E;}scc, ) be an MSC. For a
mappingp : V — @, we define functionénf,, : Ag — 29 andInf;, Occ/ : Ag —
2¢ x {00, 0} as follows (withi € Ag):

nf, [i] = {¢|VueV;FveV,:u<wvandg=pv)} ifV;#0
i otherwise

if V; is finite
otherwise
i (p~1(V;),0) if Vjis finite
i =

(p~*(V;),00) otherwise

If V; is finite, thenlnf,[i] describes the state assumed at the event that is maximal
in V; (which is the local stat€l:] if V; is even empty). IV; is infinite, thenInf ,[:] is

the set of states assumed infinitely oftenlif,[¢] is a singleton, we do not know
whetherV; is finite or not — this additional information is presentlirf | [i]. Sim-
ilarly, Occ; [i] provides all states that have been visited as well as theniraftion
whether there are finitely or infinitely many events on predes

Definition 3 A Blichi MPA or Muller MPA is a structureA = ((A;)ica,, D, t, F)
with A; = (Q;, A;) such that{ (A;);cay, D, ) is an MPA andF C [J;c 4, 29"

Now let(p, 1) be some run afd on the MSCV = (V, {E;}occ, A).

(1) If Ais aBuchi MPA, then the ruiip, 1) is accepting if there ig € F such that
gli) NInf,[i] # O forall i € Ag.



(2) If Ais a Muller MPA, then the rutip, 1) is accepting ifinf, € F.

Definition 4 Atermination-detecting Staiger-Wagner MBAtermination-detecting
Muller MPA is a structureA = ((A;)icay, D, ¢, F) with A; = (Q;, A;) such that
((Ai)ieag, D, 1) is an MPA andF C [[;c4,(29 x {o0,50}).

Let(p, ) be some run afd on the MSCM = (V, {Es}iec, N).

(1) If Ais atermination-detecting Muller MPA, thép, 1) is accepting iﬁnf: €
F.

(2) If Ais atermination-detecting Staiger-Wagner MPA, tlier.) is accepting if
O(:cp+ e F.

If A is some of these MPAs, then tlenguageL(.A) accepted byA is the set of
those MSCs that admit an accepting runf

Example 5 Consider.A to be the MPA ovef Client, Server} from Fig. 1(a). If
A is supposed to be aitBhi MPA that is equipped with the acceptance condition
F = {({s0,81},{to,t1}) , ({s2},{to})}, then L(A) contains the infinite MSC
from Fig. 1(b) and, furthermore, any of its finite prefixesphrticular, a run might
end up with sending a request without being followed by aesemessage. If, in
contrast,F is seen as a Muller condition, theli.A) contains, beside the infinite
MSC, only those finite MSCs that end up with a message frometiwersto the
client. In that case/F is equivalent to the termination-detecting Muller conatiti
F' = {(({s0,s1},0), {to,t1},00)) , (({s2},30), ({to},>0))}. If, howeverF" is
considered as a termination-detecting Staiger-Wagneditimm, then this admits
only the infinite MSC from Fig. 1(b).

The generalized model of termination-detecting Muller MR&ill turn out to be
helpful when, in Section 4, we study the relationship betwlegic and MPAs. Let
us first prove that termination-detecting Muller MPAs arémaore expressive than
Muller or Buichi MPAs (whereas termination-detecting Staiger-WagviBAs are
strictly weaker).

2.3 Muller and Bichi MPAs vs. Termination-Detecting Muller MPAs
We examine the expressive power of our acceptance modesahaigh the ob-
servation that Bchi MPAs are closed under union and intersection.

Proposition 6 Let A' and A% be Bichi MPAs. There are @&hi MPAs.A and B
such thatZ(A) = L(A") U L(A?*) and L(B) = L(A") N L(.A?%).



PROOF. Suppose thatl! and.A? are given ag(A});c4,, D', !, F') with A} =
(QF, A}) and((A?);eay, D?, 12, F?) with A7 = (Q7, A7), respectively. We will as-
sume that all the sets of states and the set of synchromzaigssages are disjoint.

To recognizeL(A;) U L(Az), A = (((Qi, Ai))icag, D, ¢, F) simulates eitherd,;
or A,. Hence, we seD = D! U D? andQ; = Q; U Q7 U {i} for any
i € Ag. Hereby,; is a fresh state (i.e., it is not contained@} © @Q?) and we
set. = (ui)icay- FOri € Ag, let furthermored;, = A} U A? U {(v,0,m,q) |
(¢Mi],0,m,q) € A} or (L[i],0,m,q) € A?}. It just remains to specify the ac-
ceptance condition a§ = {(F)ica; € Ilica, 2% | there isn € {1,2} and
(Gi)icag € F" such that, for anyi € Ag, F; = G, or both F; = {,;} and
G = {[i]}).

Let us construct a &chi MPA that recognize€.(A') N L(A?). Since the class
of MSC languages accepted byighi MPAs is closed under union, it suffices to
consider the cas¢'! = {g'} and 7 = {g?}. The Buchi MPA B will simulate
A' and A? simultaneously. In addition, each process is equipped aigtightly
modified flag construction [4]. We sé€; = Q} x Q? x {0,1,2} for anyi € Ag,
and we let. be given, for any € Ag, by

i (¢![i], 2[),2) i (i), 2[3]) € q'[d) x @[]

A
(¢M[4], ¢*[4],0) otherwise

The set of synchronization messadess D' x D?. Fori € Ag, let furthermore

A; contain the tuple(qi, q2,n), o, (m1,m2), (qy, ¢4, 7)) if (q1,0,m1,q}) € Al

(q27 g,Mma, qé) S A'L2’ and

2 if g €q'[i] andg, € 7°[i]

) 0 if n=2and(q & q'[i] or o & G*[1])

n1ifn <2, g € 7, and(a & 3'[i) or g» & L))

n otherwise

Finally, we setF = [T,c4,(7'[1] x g*[t] x {2}). This corresponds to the classical
flag construction fow-word automata, where a counteindicates that a process
is waiting for a (local) final state ofi"*!. Thus, when the counter is setZpthen a
final state of each component automaton has been seen. Healpw in addition
that the counter is set @ if all component states of the composite machine are
accepting. This takes into consideration that some of tbegases might execute
only finitely many actions. O

Recall that, in a termination-detecting Muller MPA, the etance condition can
distinguish between the infinite repetition of a local statel the appearance of



this state as the final one, which is not directly possiblehtudier or Buichi MPA.
To solve this problem, we first state that @&dhi MPA can determine whether a
particular agent performs finitely or infinitely many actsorNote that this is not
the case in the word setting when considering both finite afidiie words. In our
distributed setting, however, the distinction betweenfiaite repetition of a local
state and the appearance of this state as the final one iblgossi

Lemma 7 Letk € Ag. There exist Bchi MPAs.A and B such that, for any MSC
M = (V.{Ei}iec, N), we haveM € L(A) iff V; is infinite, andM € L(B) iff V;,
is finite.

PROOF. The construction oB is straightforward. Processhas three states: the
initial one, an intermediate, and a sink state; the initrad ¢he sink state are ac-
cepting. It is forced to leave the initial state with the fieseent and go into the
intermediate or the sink state; it can stay in the internteditate for as long as it
wishes, and it can move into the sink state nondetermiai$ticThis final move
makes sense only at the last event of proéesisce the run would get stuck other-
wise.

We next build, fore € ¥, a Bichi MPA A, that accepts those MSCs in whieh
is executed infinitely often. Then the union of all the langesi (A, ) for o € i
can be accepted by aiBhi MPA A by Prop. 6. Let’ be the communication action
complementingr, which is executed by sonié (e.qg., ifo is of the formk!k’, then
o' = k'?k). The idea is that andk’ work together to detect that, in faet,ando’
occur infinitely often. Both agents toggle between statesd 1 when executing
o ando’, respectively. However, in the acceptance conditfomequires0 to be
taken infinitely often, whereds claims to visitl infinitely often. Formally, we set
A, = ((Qis A}))icag, D, v, F) with D # 0 arbitrary,@; = {0,1} for anyi € Ag,
andA; contains any tuplég, 7,m, ¢') € Q; x X; x D x @Q; such thatr € {o,0'}
iff ¢ = 1 — ¢q. Moreover,. = (0);c4,, andF = {q} whereg[i] = {0} for any
i # K, andg[k’] = {1}. O

We now show that Bchi and Muller MPASs are as expressive as termination-tiatgc
Muller MPAs.

Theorem 8 Let L be a set of MSCs. Then the following are equivalent:

(1) there exists a Muller MPA such thatl, = L(.A).
(2) there exists a Bchi MPAA such thatl, = L(.A).
(3) there exists a termination-detecting Muller MPsuch thatl, = L(.A).

PROOF. We show(1) — (3) — (2) — (1).



(1) — (3). Supposed = ((A;)icay, D, ¢, F) is a Muller MPA with A; = (Q;, A)).
Let 7; denote the projection dff;c 4,(2% x {c0,55}) onto the first components.
Then, letZ’ comprise all tupleg] € Tl;c4,(29" x {o0,50}) with m(g) € F.
This defines a termination-detecting Muller MRX = ((A;)icay, D, ¢, F') that
certainly accepts the same languageladoes.

(3) — (2). Let A = ((A))icag, D, 1, F) with A; = (Q;,A;) be some termination-
detecting Muller MPA. Then, the language of the terminatietecting Muller
MPA ((Ai)icag, D, t,{q}) is an intersection oL (((A;)icaqy, D, ¢, {m1(q)})) with
some sets of the forfdM | Vj isinfinite} and{M | Vj is finite}. Since any of
these sets can be accepted byleld MPA (Lemma 7) and sinceli8hi MPAs are
closed under union and intersection (Prop. 6), the imptioaB3) — (2) follows.

(2) — (1). Let A = ((Ai)ieay, D, ¢, F) with A; = (Q;,4;) be a Bichi MPA.
To obtain an equivalent Muller MPA’, we need to adapt the acceptance condition
accordingly. We letd’ = ((A;)icay, D, 1, F') where atuplé F});c a; € [Tica, 2% is
contained inF iff there is(F;);c 4, € F such that, forany € Ag, F,NF! # (. O

3 Structures, Logic, and the Ehrenfeucht-Frads€ Game

Note that MSCs can be seen as relational structures whaosasig contains binary
relationsE, for ¢ € C and unary relation®, for a € X. Since it does not cause
additional difficulty and since the results of this secti@an de of interest also
beyond MSCs, we formulate them in more generality. Througktas section, we
fix some purely relational signatuse i.e., o is a finite set of relation symbols (and
each relation symbol has its associated arity) /FarN, leto;, denote the extension
of the signaturer by ~ constant symbols;, ¢, ..., ¢, (in particular,oy = o). A
op-structureis a tuple2l = (A, (R*) ey, (c?)1<i<n) Where A is some setR? is a
relation onA whose arity is dictated by the arity of the relation symBohndc? is
an element ofd. If 2 is aoy,-structure and = (a4, . .., a,,) is a tuple of elements
of A, then(2(, @) denotes ther,,,-structure that has, in addition 8, constants
b =a;forl <i<m.

3.1 Monadic Second-Order Logic

We fix supplies Var= {z,y, x1, zo,...} of individualand VAR = {X.,Y, ...} of
set variablesThe set MS®(0;,) of extended monadic second-order MSO™)
formulas ovew,, is given by the following grammar:

pu=R@y,...,z0) [ s1=22 |11 €X | -0 Ve |dre[IXp|[Izp

10



wheren € IN, R € o is ann-ary predicate symbol; is a variable from Var or a
constant symbol from,, x € Var, andX € VAR.

Let 2 be aoy,-structure,p(z1, ..., Tm, X1,...,X,) € MSO™(0,) be a formula,
anda = (ay,...,a,) € AmandA = (A4,,...,A,) € (24)" be tuples of elements
and subsets ofl. Then thesatisfactionrelation? = ¢(a, A) is defined as usual
such that, for)(y, 1, ..., 2, X1, ..., X,) € MSO™(03,), A E (3®°yv)(a, A) iff
2 = 9 (a,a, A) for infinitely manya € A.

We define the following fragments of MSQo,):

(1) thefirst-order fragmentO™(0},) comprises those formulas from MSQuy,)
that do not contain any set quantifier

(2) theexistential fragmenEMSO™(o,,) comprises the formulas from MS@o),)
of the form3X; ... 3X,,p with o € FO*(0},)

(3) the monadic second-order fragmeéviEO(o;,) comprises those formulas from
MSO™(03,) that do not contain the quantifigp°

(4) first-order logicFO(o,) equals MSQoy,) N FO™(ay,)

(5) existential monadic second-order loggMSO(a;,) comprises the formulas
from MSQO(o;,) N EMSO™(0},)

The quantifier-rankqr(¢) of a formulay in FO*(0},) is the nesting depth of
quantifiers inp. More precisely, drp) = 0 if ¢ is atomic, qf—¢) = qr(y),
ar( v ) = max{qr(),ar(v)}, and at3ze) = a3 zp) = ar(y) + L. For

n € IN, we denote by FO(c},)[n] the set of first-order formulas of quantifier rank
at mostn without free variables. For twey,-structureA and‘B, we say2l and ‘5B
agree onFO™(oy,)[n] if, for all formulasy € FO™(o},)[n], we havell |= ¢ if and
only if 8 = . In other words, the structur@sand®B cannot be distinguished by
formulas of quantifier-depth at most

3.2 TheFO™-Game

The FO*-game is an extension of the classical EhrenfeuchisEajame, which
captures the expressive power of (&Q. It goes back to Lipner [17] and Vinner
[21] (cf. also [18]). It is played between two players nansedilerandduplicator.
A game positions a triple (2, B, k) where2(l and®s are structures over the same
signatures;, andk € IN. This position iswinning (for duplicator)if £ = 0 and the
binary relation

{(c )1 1<i<h}
is a partial isomorphism fror( to 8. If £ > 0, the game proceeds as follows
(whereA and B are the universes & and®s, respectively):

(1) Spoiler chooses to proceed with (2) or (2)).
(2) Spoiler chooses € Aorb € B.

11



(3) Duplicator chooses an element in the other structuee {ic B ora € A).

(4) The game proceeds witl®(, a), (%B,b), k — 1).

(2’) Spoiler chooses an infinite subs€tof A or of B.

(3") Duplicator chooses an infinite subsétof the other structure.

(4’) Spoiler chooseg € Y.

(5") Duplicator chooses € X.

(6) The game proceeds withi, x), (B, y),k—1) if z € A; otherwise, it proceeds
with (A, y), (B,z),k — 1).

For o),-structuresd and®B andk € IN, we write2 =° B if duplicator can force
the FO°-play started i, B, k) into a winning position.

The classical Ehrenfeucht-Fs& game is obtained from this game by forcing
spoiler in (1) always to proceed with (2). If, in this Ehremét-Fras€ game, du-
plicator can force the play started (R(, B, k) into a winning position, we write

The existence of a winning strategy describes preciseletipooperties that can be
expressed using formulas of FQu,)[k] and FQo,,)[k], see, e.g., [16, 21].

Theorem 9 (Ehrenfeucht-Frais€, Vinner) Let2l and®B beo,-structures and:
IN.

(1) A and*B agree onFO(ay,) (k] iff A =5 B.
(2) 2 and®B agree onFO™ (oy,) [k] iff A =¢°

3.3 Threshold Equivalence

In the context of structures of bounded degtbegshold equivalengerovides a re-
finement of=;, and, finally, a normal form of FO formulas that restricts toictng
of spheres up to a certain threshold [16, 20]. Here, we dpwvelsimilar result for
the logic FO° (o).

The Gaifman graphGG(2l) of a o,,-structure2l is an undirected grappA, £) with
universeA (i.e., the universe of the structugg. Two elements:;,b € A are con-
nected by an edge (i.6g,b) € E) if they belong to some tuple in some relation,
i.e., if there is a relation symbdt € o and a tuplg(ay, ..., a,) € R* such that
a,b € {ay,as,...,a,}. We will speak of the degree afin 2l whenever we actually
mean the degree afin the Gaifman graph dX. If all elements ol have degree at
most/, then we say th&lll has degree at mostNow leta, b € A. Then thedistance
dy(a,b) (or d(a,b) if 20 is understood) denotes the minimal length of a path con-
nectinga andb in the Gaifman grapl/(2(). Fora = (a4, ...,a,) € A" andb € A,
we writed(a, b) = min{d(a4,b), ..., d(a,,b)}. Letr € IN andc denote thé:-tuple

of constants in the,-structure. Ther-spherer-Sph(2() of 2 is the substructure
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of 2 generated by the univerd® € A | dy(c,b) < r}. Then alsor-Sph2l) is

a oy-structure whose constants are precisellf, in the extremep = 0, then the
set{b € A | dy(c,b) < r} is empty and the sphere is the empty structure. For
ann-tuplea of elements i, the r-sphere of arounda is ther-sphere of the
extension2(, @) of 2 with constants.

Fort € IN, let~; and~{° denote the equivalence relationsdinu {co} defined by

e m~;niff m=nort<mandt <n
e m~Xniff m=nort<m<ooandt <n < oo

Definition 10 Letr,¢,h € IN and let2l and 5 be o),-structures. Then we write
A s, Bif {d € A| r-SphA,a') = 7} ~ {V € B | r-Sph(B, V') = 7}
whenever there exists € A with 7 = r-Sph(2, a), or there existd € B with
T = r-Sph(*B, b).

Similarly, =7 is defined based on;* instead of~;.

In other words =, , and<s7; distinguish structures on the basis of the number of
realizations of-spheres up to some thresheldut the former does not distinguish
between “many” and “infinitely many” realizations of a sp&€efhe latter identifies

all natural numbers + 1,¢ + 2, ..., but makes a difference between any of them
and infinity.

Theorem 11 Leth,l,n > 0,ry = ty = 0, and fork > 0, .1 = 3r, + 1 and
ths1 = tg + (h+n—k) - P+HL,

Then, for anyr;,-structuresl andB of degree at mostwith 2l =2, 95, we have
A= B.

PROOF. One first shows that duplicator can force the’=play from (2,8, k +
1), whereX( andB are twooy,,,— (x11)-Structures withil = ‘—,?jjﬂ bes B, into some
position((2A, a), (B, b), k) with (A, a) =77, (B,0).

First suppose spoiler chooses in (1) to proceed with (2).eMwecisely, suppose
he chooses an elememtc A. Then, sinc&l = St B there exist9$ € B
with 754.1-Sph(2(, a) = r1-Sph(B, b). We verify (Ql a) S2 . (3B,0). First note
that for alld’,a” € A andd’ € B, with r,-Sph2l, a,a’) = r-SphA, a,a”) =
r-Sph(*B, b, b’), we haver' € (2r; +1)-Sph, a) iff a” € (2r, +1)-SphA, a) iff
b€ (2rp,+1)-SphB,b). Now leta’ € A be arbitrary and set = r,-Sph2(, a, a’).
We distinguish two cases.

(1) First suppose’ € (2r; + 1)-Sph2(,a). Then

{a" € A | re-SphA, a,a”) = 7}
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(2)

= ’{a// S (2776 + 1)'Spf'(91, Cl) ’ Tk-Spl"(Ql, a, a”) = T}’
= |{v" € (2r), + 1)-SpH(B, b) | r4-Sph(B, b, b") = 7}
= |{V" € B | rx-SphB,b,0") = 7}

since the(2r;, + 1)-spheres of2(, a) and (%8, b) are isomorphic.
Alternatively, leta’ ¢ (2 + 1)-Sph2L, a) and, for notational simplicityy’ =
r-Sph(, ’). Then we obtain

{a" € A | re-Sph(L, a,a”) = 7}
— ‘{a" € A\ (2ry + 1)-Sph 2, a) | r.-Sph 2, a, a”) SpaY
=|ad" € A\ (2ry + 1)-Sph &, a) | r,-Sph2l,a”) = 7'}
= |{a" € A| re-SphA,a”) = 7'}
_ |{a// € (2r, + 1)-Sph 2, a) | r.-Sph £, a") ~ 7_/}|

sincer,-Sph2, a,a”) for a” ¢ (2r;, 4+ 1)-Sph(A, a) is completely determined
by ther,-spheres of, a) and (A, a”).

FromA =7 ., . B, we obtain

{a" € 4| 1ia-SPH, ") = 7} ~F, | [{B' € B | 11.1-SPHB, ") = 77}

tr4+1

with 77 = r1-Sph(, a’). Since andB are structures of finite degree over
a finite signature, and sineg < 7.1, this implies

{a" € A | ry-SphA,a”) = 7'} Nf}fﬂ {V" € B | rp-SphB,b") = 7'} .
Furthermore

‘{a,/ S (27’k + 1)-Spr(2[7 CL) | ’I“](SDI"(Q[, a’//>
= |{b" € (2ry + 1)-Sph(B,b) | rx-Sph(B,b")
< (h4n—k)- 12w+,

=~ 7',}
= 7'/}

Hence we obtain

H{a" € A | r-SphRL,a”) = 7'}
— {a" € (2r, +1)-SphA, a) | r-SphA, a”) = 7'}
~g {V" € B | rp-Sph(B,v") = 7'}
— |{b" € (2r) + 1)-Sph(B, ) | 7-Sph(B, ") = 7'}

which, as above, equals the number of elem&hts B with r-SphB, b, b") =
T.

Thus, in all cases, we showed

{a" € A|ri-SphR,a,a") = 7}| ~ {8 € B | 1,-SpHB,b,1") = 7}

which implies(2(, a) =°, (9B,b) as required.

Tkotk
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Now suppose spoiler chooses in (1) to proceed with (2'), rpoeeisely, he chooses
an infinite setX C A. Then duplicator chooses

Y={beB|3dae€X:r1-SphA, a) = rp1-Sph(B,b)} .

In step (4’), spoiler chooses somec Y. Then, by the choice oY, duplicator
can answer with some € X satisfyingry1-Sph2, a) = r,.1-Sph(B, b). Then
(A, a) S22, (B,b) follows as above.

Tkstk

By induction, duplicator can force any play frof®, 8, n) with 20 =2, 9B into
a position(2l’, B', 0) with A" g7 B'. Leta € A be arbitrary. Then, sincd’ =,
B’, there existd € B with 0-Sphl’,a) = 0-Sph(B’, b) implying 0-Sph(2l’) =
0-Sph*B’). Note that0-Sph2") and0-Sph(*B’) are the restriction o¥l’ and®8’ to
their constants. Hence the game positi@ih ©8’, 0) is winning for duplicator. O

A formula ) with one free variable: is local if there exists: > 0 such that any
subformula of the formiy« is of the form3y(d(z,y) < r A 5). As a consequence
of Theorem 11, we obtain a normal form for FQormulas:

Corollary 12 Let! > 0 and ¢ be a formula fronFO> (o) without free variables.
Then there exists a positive Boolean combinatiasf formulas of the form

Iz 4p(x) and F7*z4p(x) and I<®x(x) and I®z ()
with ¢ € FO(¢) local such that for allr-structuresl of degree at most we have

AEp — AEa.

If © is anFO formula, then the Boolean combinatiancontains only formulas of
the form3=z +(x) and 3>z +(x) (Hanf’s theorem [12]).

PROOF. Letn be the quantifier rank of the formufa There are only finitely many
isomorphism types of structures of the formSph(B, b) for B a o-structure of
degree at mogtandb € 8. For every such structure, there is a local first-order
formula+y with & = ¥ (a) iff 7,-Sph(B,b) = r,-SpHA, a). Now every=y” , -
equivalence class can be described by a Boolean combiretioaquired. Since
there are only finitely many such equivalence classes, thétiellows. O

Note that our proof is not constructive, i.e., we give no &ffee construction of
the Boolean combination. The same applies to the proofs of Hanf’s theorem that
can be found, e.g., in [7, 16]. Differently, the original pfdoy Hanf was effective.
We leave it as an open question whether also the above agrcla be given a
constructive proof.
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4 Message-Passing Automata and Logics

This section relates the expressive power of all types of MBAd the extended
logic. Leto denote the purely relational signature consisting of lyimalation sym-
bols E, for ¢ € C and the unary relation symbalg, for a € 3. Then every MSC is
ao-structure. As expected, we will write the formulg(x) asA(z) = a. Moreover,
we write EMSO® for EMSO™ (o), and FO° etc. are to be understood similarly.

Example 13 TheFO*-formula3>~z (A(z) = Client!Server) expresses thatlient
sends infinitely many messagesstover. Observe that we cannot do without the
infinity quantifier to express this property, which can beilgahown using Hanf’s
Theorem. Moreover, theO-formulaVz ((V,es,,.., AM®) = 0) — yLctient(T,Y))

is satisfied by all those MSCs in whi€liient executes infinitely many actions.

MPAs can be used to compute the sphere around any node of an M&Cfea-
ture, described formally in the following proposition, letkey connection between
these automata and the logical characterization of fiderexpressible properties.

Proposition 14 (cf. [1]) Let » € IN. There are a termination-detecting Muller/
termination-detecting Staiger-Wagner MPA = (((Q;, A;))icaq. D, ¢, F) and a
mappingn fromU,c 4, Qs into the set ofr;-structures such that(.A,) is the set of
all MSCs and, for any MSG®/ = (V,{E,}swcc, A), for any accepting rurip, i) of
A, on M, and for anyu € V, we have)(p(u)) = r-Sph(M, u).

Note that, at some point, the construction from [1] makesaiske argument that
an MSC is finite. To be applicable to our setting, howeves #rgument can be
replaced by the fact that thmastof any event is finite.

4.1 Termination-Detecting Muller MPAs and Logic

A oi-structureS is anr-sphere in some MSiCthere exists an MS@/ and a vertex
v of M with S = r-Sph M, v). For an MSCM' and anr-sphere in some MSG,
let | M'|s denote the number of verticesof M’ with S = r-Sph( M, v).

Lemma 15 Letr € IN, ¢ € INU {0}, and S be somer-sphere in some MSC.
There exist termination-detecting Muller MPAs recogrgzthe sets of MSC3/
with |[M|s =t andt < |M|s < oo, respectively.

PROOF. In all cases, one starts from the termination-detecting@lPA A, =
(((Qi, Ai))icag, D, 1, F) and the functiom from Prop. 14. Let the only constant
from S be labeled by some letter froh.
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To detec| M |s = oo, we just keep those accepting tuplés, 0;),c4, from F that
satisfyd; = oo andS € n(F;).

To detectt < |M|s < oo fort € IN, we extend the states gf; with a counter that
counts the number of realizations 8fup tot + 1, i.e., the new local state space
of agenti is Q); x {0,...,t+ 1} with initial state(¢[:], 0). To distinguish “at least

t + 1”7 from “infinitely many” realizations ofS, the acceptance condition is the set
of tuples( £}, 6;)c4, such thah; = o implies F; C Q; x {t+ 1}, 6, = oo implies

F C(@Qi\n7H(9) x {t+ 1}, and(m1(F)), 0;)je 5 € F.

To detect M |s = t < 0o, we use the same states and transitions, but the acceptance
condition now require$; C @Q; x {t}. O

Theorem 16 Let L be a set of MSCs. Then, the following are equivalent:

(1) there exists a termination-detecting Muller MPsuch thatl, = L(.A).
(2) there exists aBEMSO™ sentencep such thatl = {M | M = ¢}.

PROOF. By Theorem 8, it is sufficient to translate aiéhi MPA into an equiva-
lent EMSO® sentence. This construction follows similar instance$aft problem,
e.g., [6]. Second order variablé§, for ¢ € D U U;c 4, Q: €ncode an assignment of
messages and states to vertices. The first-order part tipeesses that this assign-
ment is a run. In addition, we have to take care of the acceptaandition. Any
such conditiory € [[;c4, 29 is translated into the conjunction of the following
formulas for anyi € Ag

v I*x(r € X, A Nz) € %))
gegli] \ V Jz(x € X, A Nx) € X A =3Fy(Ei(z,y)))

(supplemented by- - v Vax =\(z) € ¥; if ([i] € g[i]). The kernel of this formula
expresses that the statés assumed infinitely often by procesasr, alternatively, it
is assumed by the last event of this process.

Consider the other implication. Since termination-detechuller MPAs are closed
under projection, it suffices to consider the case FO™. By Cor. 12, we can
assumey to be a positive Boolean combination of formulas of the faifz 1),
Itz ¢p, and3>*x ¢» with ¢ local. Note that validity of any of these basic formulas
can be checked by a termination-detecting Muller MPA due démina 15. Now
the result follows since the class of languages accepte@ryiriation-detecting
Muller MPAs is closed under finite union and intersection.

The number of states of the termination-detecting Mulle®\#Pconstructed from
a given EMSCO’-formulay is elementary in the size of the formuja In Cor. 12,
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both the radiug and the threshold are bounded elementarily in the length of the
formula o. We only remark that the number of states of the MPA from Piap.

is also elementary im andt. But it is not clear whetherd can be constructed
effectively and, if so, in elementary time. The reason is th@above proof is based
on Cor. 12. Ifp is from EMSO, then we can rely on Hanf’s effective proof. Henc

in that case, the automatot can be constructed effectively and, as an inspection
of Hanf’s proof reveals, in elementary time. In particutars applies in the setting

of [1] where only finite MSCs and the logic EMSO are considefidte following
section shows that for the logic EMSO, we do not need the sspe power of
Muller MPAs.

4.2 Staiger-Wagner MPAs and Logic

The following lemma describes the counting power of Staiyagner MPAs: As
far as finite counting is concerned, termination-detec8tajger-Wagner MPAs can
do as much as termination-detecting Muller MPAs. Similaolyemma 15, we can
show the following:

Lemma l7 Letr,t € IN and letS be some--sphere in some MSC. There exist
termination-detecting Staiger-Wagner MPAs that recogritee sets of MSC8/
with |M|s = t andt < |M|s, respectively.

PROOF. The proof differs only slightly from that of Lemma 15: one agatarts
from the MPA A, and the mapping, extends the states with a counter, and defines
the transition relation and the initial states as there.tBeiacceptance conditich

now contains all tupleg such that ¢, t) € g[i| for someg € Q;. O

Theorem 18 Let L be a set of MSCs. Then the following are equivalent:

(1) there exists a termination-detecting Staiger-Wagn®AM such thatl =
L(A).
(2) there exists aBEMSOsentencep such thatl = {M | M = ¢}.

PROOF. The proof is similar to the proof of Theorem 16. The only difiece in
the transformation of an automaton into a formula concdrasatceptance condi-
tion, which, this time, is given as (a set of) functiorgs)Ag — 2%. Itis expressed
as a conjunction of the following conjunct for anyg Ag:

N Fz(ze X ANz) e ) A N\ Ve(M\z) €X —z ¢ X,)

q€qli] qeQ\qli]

18



For the other transformation, we use Hanf’s theorem [12iad of Cor. 12 and
Lemma 17 instead of Lemma 150
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