
Form Methods Syst Des
DOI 10.1007/s10703-011-0140-2

Interrupt Timed Automata: verification and
expressiveness

Béatrice Bérard · Serge Haddad · Mathieu Sassolas

© Springer Science+Business Media, LLC 2012

Abstract We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid
automata well suited to the description of timed multi-task systems with interruptions in a
single processor environment.

While the reachability problem is undecidable for hybrid automata we show that it is de-
cidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by
building a finite automaton as a generalized class graph. We then establish that the reacha-
bility problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed.
To prove the first result, we define a subclass ITA− of ITA, and show that (1) any ITA can
be reduced to a language-equivalent automaton in ITA− and (2) the reachability problem in
this subclass is in NEXPTIME (without any class graph).

In the next step, we investigate the verification of real time properties over ITA. We prove
that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the
other hand, we give model checking procedures for two fragments of timed branching time
logic.

We also compare the expressive power of classical timed automata and ITA and prove
that the corresponding families of accepted languages are incomparable. The result also
holds for languages accepted by controlled real-time automata (CRTA), that extend timed
automata. We finally combine ITA with CRTA, in a model which encompasses both classes
and show that the reachability problem is still decidable. Additionally we show that the
languages of ITA are neither closed under complementation nor under intersection.

Parts of this paper have been published in the proceedings of FoSSaCS’09 [9] and Time’10 [11].

B. Bérard · M. Sassolas (�)
Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
e-mail: mathieu.sassolas@lip6.fr

B. Bérard
e-mail: beatrice.berard@lip6.fr

S. Haddad
École Normale Supérieure de Cachan, LSV, CNRS UMR 8643, INRIA, Cachan, France
e-mail: haddad@lsv.ens-cachan.fr

mailto:mathieu.sassolas@lip6.fr
mailto:beatrice.berard@lip6.fr
mailto:haddad@lsv.ens-cachan.fr

Form Methods Syst Des

Keywords Hybrid automata · Timed automata · Multi-task systems · Interrupts ·
Decidability of reachability · Model checking · Real-time properties

1 Introduction

1.1 Context

The model of timed automata (TA), introduced in [2], has proved very successful due to
the decidability of several important verification problems including reachability and model
checking. A timed automaton consists of a finite automaton equipped with real valued vari-
ables, called clocks, which evolve synchronously with time, during the sojourn in states.
When a discrete transition occurs, clocks can be tested by guards, which compare their
values with constants, and reset. The decidability results were obtained through the con-
struction of a finite partition of the state space into regions, leading to a finite graph which
is time-abstract bisimilar to the original transition system, thus preserving reachability.

Consider several tasks executing on a single processor (possibly scheduled beforehand,
although this step is beyond the scope of this paper). As a result, tasks are intertwined and
may interrupt one another [37]. Since the behaviour of such systems may depend on the
current execution times of the tasks, a timed model should measure these execution times,
which involves clock suspension in case of interruptions. Unfortunately, timed automata
lack this feature of clock suspension, hence more expressive models should be considered.

Hybrid automata (HA) have subsequently been proposed as an extension of timed au-
tomata [30], with the aim to increase the expressive power of the model. In this model,
clocks are replaced by variables which evolve according to a differential equation. Further-
more, guards consist of more general constraints on the variables and resets are extended
into (possibly non deterministic) updates. This model is very expressive, but reachability
is undecidable in HA. The simpler model obtained by allowing clocks to be stopped and
resumed, stopwatch automata (SWA), would be sufficient to model task interruptions in a
processor. However, reachability is also undecidable for SWA [18]. Many classes have been
defined, between timed and hybrid automata, to obtain the decidability of this problem.

Task automata [23] and suspension automata [31] model explicitly the scheduling of pro-
cesses. Some classes restrict the use of variation of clock rate in hybrid automata to achieve
decidability. Examples of such classes are systems with piece-wise constant derivatives [6],
controlled real-time automata [21]. Guards may also be restricted, as in multi-rate or rectan-
gular automata [4], some integration graphs [26], or polygonal hybrid systems [7]. Restrict-
ing reset may also lead to decidability as in the hybrid automata with strong resets [14] or
initialized stopwatch automata [25]. O-minimal hybrid systems [28, 29] provide algebraic
constraints on hybrid systems to yield decidability. Extensions of timed automata to release
some constraints were also considered, as in some updatable timed automata [12].

While untimed properties like reachability and LTL [33, 38] or CTL model checking [19,
22, 34], are useful for such models, real time verification consider more precise require-
ments, for instance quantitative response time properties. Therefore, timed extensions of
these logics have been defined. In the case of linear time logics, verification of the most
natural extension MTL [27] is undecidable on TA. However, several decidable fragments
such as MITL [5] and SCL [35] have subsequently been defined. In the case of timed vari-
ants of branching time logics, different versions of Timed CTL (TCTL) [3, 24] have been
defined. Model checking procedures on TA for both versions of TCTL have been developed
and implemented in several tools [8, 15].

Form Methods Syst Des

1.2 Contributions

In this paper, we define a subclass of hybrid automata, called Interrupt Timed Automata
(ITA), well suited to the description of multi-task systems with interruptions in a single
processor environment.

The ITA model In an ITA, the finite set of control states is organized according to interrupt
levels, ranging from 1 to n, with exactly one active clock for a given level. The clocks
from lower levels are suspended and those from higher levels are not yet defined (thus have
arbitrary value 0). On the transitions, guards are linear constraints using only clocks from the
current level or the levels below and the relevant clocks can be updated by linear expressions,
using clocks from lower levels. Finally, each state has a policy (lazy, urgent or delayed) that
rules the sojourn time. This model is rather expressive since it combines variables with rate
1 or 0 (usually called stopwatches) and linear expressions for guards or updates. The ITA
model is formally defined in Sect. 2.

Reachability problem As said before, the reachability problem is undecidable for automata
with stopwatches [16, 18, 25]. However, we prove that it is decidable for ITA.

More precisely, we first show that the untimed language of an ITA is effectively regular
(Sect. 3). The corresponding procedure significantly extends the classical region construc-
tion of [2] by associating with each state a family of orderings over linear expressions. This
construction yields a decision algorithm for reachability in 2-EXPTIME, and PTIME when
the number of clocks is fixed. This should be compared to TA with 3 clocks for which
reachability is PSPACE complete [20].

We define a slight restriction of the model, namely ITA−, which forbids updates of clocks
other than the one of the current level. We prove that for any ITA one can build an equivalent
ITA− w.r.t. language equivalence, whose size is at most exponential w.r.t. the size of the ITA
and polynomial when the number of clocks is fixed. Based on the existence of a bound for
the length of the minimal reachability path, we then show that reachability on ITA− can
be decided in NEXPTIME without any class graph construction. This yields a NEXPTIME
procedure for reachability in ITA (Sect. 4).

Model checking over ITA We then focus on the verification of real time properties for ITA
(Sect. 5), expressed in timed extensions of LTL and CTL.

First we show that the model checking of timed (linear time) logic MITL [5] is undecid-
able. Actually, even the fragment SCL [35] cannot be verified on ITA, while the correspond-
ing verification problem over TA is PSPACE-complete.

We then consider two fragments of the timed (branching time) logic TCTL, introduced
in [24] and also studied later from the expressiveness point of view [13]. The first one,
TCTLint

c , contains formulas involving comparisons of model clocks as atomic propositions.
In this logic, it is possible to express properties like: (P1) a safe state is reached before
spending 3 t.u. in handling some interruption. Decidability is obtained by a generalized
class graph construction in 2-EXPTIME (PTIME if the number of clocks is fixed). Since the
corresponding fragment cannot refer to global time, we consider a second fragment, TCTLp ,
in which we can reason on minimal or maximal delays. Properties like (P2) the system is
error free for at least 50 t.u. or (P3) the system will reach a safe state within 7 t.u. can
be expressed. In this case, the decidability procedure has a complexity in NEXPTIME for
the existential fragment and 2-EXPTIME for the universal fragment (respectively NP and
co-NP if the number of clocks is fixed).

Form Methods Syst Des

Expressiveness We also study the expressive power of the class ITA (Sect. 6), in compar-
ison with the original model of timed automata and the more general controlled real-time
automata (CRTA) proposed in [21]. In CRTA, clocks and states are colored and a time rate
is associated with every state. During the visit of a state, all clocks colored by the color of
the state evolve with the state rate while the others do not evolve. We prove that the corre-
sponding families of languages ITL and TL, as well as ITL and CRTL, are incomparable.
Additionally we show that ITL is neither closed under complementation nor under intersec-
tion.

Extensions We finally investigate compositions of ITA and other timed models (Sect. 7).
In the first composition, a synchronous product of an ITA and a TA, we prove that the
reachability problem becomes undecidable. We then define a more appropriate product of
ITA and CRTA. The CRTA part describes a basic task at an implicit additional level 0. For
this extended model denoted by ITA+, we show that reachability is still decidable with the
same complexity and in PSPACE when the number of clocks is fixed.

2 Interrupt timed automata

2.1 Notations

The sets of natural, rational and real numbers are denoted respectively by N, Q and R.
A timed word over an alphabet Σ is a finite sequence w = (a1, τ1) . . . (an, τn) where ai is in
Σ and (τi)1≤i≤n is a non-decreasing sequence of real numbers. The length of w is n and the
duration of w is τn.

For a finite set X of clocks, a linear expression over X is a term of the form
∑

x∈X ax ·
x + b where b and (ax)x∈X are in Q. We denote by C(X) the set of constraints obtained
by conjunctions of atomic propositions of the form C �� 0, where C is a linear expression
over X and ��∈ {>,≥,=,≤,<}. The subset C0(X) of C(X) contains constraints of the
form x + b �� 0. An update over X is a conjunction (over X) of assignments of the form
x := Cx , where x is a clock and Cx is a linear expression over X. The set of all updates
over X is written U (X), with U0(X) for the subset containing only assignments of the form
x := 0 (reset) or of the form x := x (no update). For a linear expression C and an update
u, the expression C[u] is obtained by “applying” u to C, i.e. substituting each x by Cx in
C, if x := Cx is the update for x in u. For instance, for the set of two clocks X = {x1, x2},
expression C = x2 − 2x1 + 3 and update u defined by x1 := 1 ∧ x2 := 2x1 + 1, applying u

to C yields the expression C[u] = 2x1 + 2.
A clock valuation is a mapping v : X �→ R, with 0 the valuation where all clocks have

value 0. The set of all clock valuations is R
X and we write v |= ϕ when valuation v satisfies

the clock constraint ϕ ∈ C(X). For a valuation v, a linear expression C and an update u, the
value v(C) is obtained by replacing each x in C by v(x) and the valuation v[u] is defined
by v[u](x) = v(Cx) for x in X if x := Cx is the update for x in u. Observe that an update is
performed simultaneously on all clocks. For instance, let X = {x1, x2, x3} be a set of three
clocks. For valuation v = (2,1.5,3) and update u defined by x1 := 1 ∧ x2 := x2 ∧ x3 :=
3x2 − x1, applying u to v yields the valuation v[u] = (1,1.5,2.5).

2.2 Models of timed systems

The model of ITA is based on the principle of multi-task systems with interruptions, in a
single processor environment. We consider a set of tasks with different priority levels, where

Form Methods Syst Des

Fig. 1 Interrupt levels and clocks in an ITA

Fig. 2 An ITA that produces—among others—the behavior represented in Fig. 1

a higher level task represents an interruption for a lower level task. At a given level, exactly
one clock is active (rate 1), while the clocks for tasks of lower levels are suspended (rate 0),
and the clocks for tasks of higher levels are not yet activated and thus contain value 0. The
mechanism is illustrated in Fig. 1, where irrelevant clock values are greyed. An example
of such behavior can be produced by the ITA depicted in Fig. 2, which describes a system
that answer requests according to their priority. It starts by receiving a request for a main
task of priority 1. The treatment of this task can be interrupted by tasks of priority 2 or 3,
depending on how far the system is in the execution of the main task. Tasks of priority 2 and
3 may generate errors (modeled by an interruption of higher level), after which the system
recovers. On this system, deciding if it is possible—or always the case—that the main task
is executed in less than a certain amount of time would give an insight on the quality of
service of the system.

Enabling of a transition depends on the clocks valuation. The enabling conditions, called
guards, are linear constraints on the clock values of levels lower than or equal to the current

Form Methods Syst Des

level: the ones that are relevant before the firing of the transition. Additionally, a transition
can update the values of the clocks. If the transition decreases (resp. increases) the level, then
each clock which is relevant after (resp. before) the transition can either be left unchanged
or take a linear expression of clocks of strictly lower level.

Along with its level, each state has a timing policy which indicates whether time may
(Lazy, default), may not (Urgent) or must (Delayed) elapse in a state. Note that in TA, this
kind of policy can be enforced by an additional clock while this is not possible here because
there is a single clock per level. This additional feature is needed for the definition and
further use of the model of ITA− (see Sect. 4). Note that the class graph construction of
Sect. 3 is still valid without them.

We also add a labeling of states with atomic propositions, in view of interpreting logic
formulas on these automata. In the sequel, the level of a transition is the level of its source
state. We also say that a transition is lazy (resp. urgent, delayed) if the policy of its source
state is lazy (resp. urgent, delayed).

Definition 1 An interrupt timed automaton is a tuple A = 〈Σ,AP,Q,q0,F,pol,X,λ,

lab,Δ〉, where:

– Σ is a finite alphabet, AP is a set of atomic propositions,
– Q is a finite set of states, q0 is the initial state, F ⊆ Q is the set of final states,
– pol : Q → {Lazy,Urgent,Delayed} is the timing policy of states,
– X = {x1, . . . , xn} consists of n interrupt clocks,
– the mapping λ : Q → {1, . . . , n} associates with each state its level and we call xλ(q) the

active clock in state q . The mapping lab : Q → 2AP labels each state with a subset of AP

of atomic propositions,

– Δ ⊆ Q × C(X) × (Σ ∪ {ε}) × U (X) × Q is the set of transitions. Let q
ϕ,a,u−−→ q ′ in Δ

be a transition with k = λ(q) and k′ = λ(q ′). The guard ϕ is a conjunction of constraints∑k

j=1 ajxj +b �� 0 (involving only clocks from levels less than or equal to k). The update
u is of the form

∧n

i=1 xi := Ci with:
– if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′, Ci is either of the

form
∑i−1

j=1 ajxj + b or Ci = xi (unchanged clock value) and for i > k′, Ci = 0;

– if k ≤ k′ then for 1 ≤ i ≤ k, Ci is of the form
∑i−1

j=1 ajxj + b or Ci = xi , and for i > k,
Ci = 0.

A configuration (q, v,β) of the associated transition system consists of a state q of the
ITA, a clock valuation v and a boolean value β expressing whether time has elapsed since
the last discrete transition. This third component is needed to define the semantics according
to the policies.

Definition 2 The semantics of an ITA A is defined by the (timed) transition system
T A = (S, s0,→). The set S of configurations is {(q, v,β) | q ∈ Q,v ∈ R

X,β ∈ {�,⊥}},
with initial configuration s0 = (q0,0,⊥). The relation → on S consists of two types of
steps:

Time steps Only the active clock in a state can evolve, all other clocks are suspended. For

a state q with active clock xλ(q), a time step of duration d > 0 is defined by (q, v,β)
d−→

(q, v′,�) with v′(xλ(q)) = v(xλ(q))+ d and v′(x) = v(x) for any other clock x. A time step
of duration 0 leaves the system T A in the same configuration. When pol(q) = Urgent, only
time steps of duration 0 are allowed from q .

Form Methods Syst Des

Fig. 3 An example of ITA and a possible execution

Discrete steps A discrete step (q, v,β)
a−→ (q ′, v′,⊥) can occur if there exists a transition

q
ϕ,a,u−−→ q ′ in Δ such that v |= ϕ and v′ = v[u]. When pol(q) = Delayed and β = ⊥, dis-

crete steps are forbidden.

The labeling function lab is naturally extended to configurations by lab(q, v,β) = lab(q).
An ITA A1 is depicted in Fig. 3(a), with two interrupt levels (and two interrupt clocks).

A geometric view is given in Fig. 3(b), with a possible trajectory: first the value of x1 in-
creases from 0 in state q0 (horizontal line) and, after transition a occurs, its value is frozen
in state q1 while x2 increases (vertical line) until reaching the line x2 = − 1

2 x1 + 1
2 . The light

grey zone defined by (0 < x1 < 1, 0 < x2 < − 1
2x1 + 1

2) corresponds to the set of valuations
reachable in state q1 and from which state q2 is reachable.

We now briefly recall the classical model of Timed Automata (TA) [2] as well as the
model of Controlled Real-Time Automata (CRTA) [21]. Note that in both models, timing
policies can be enforced by clock constraints.

Definition 3 A timed automaton is a tuple A = 〈Σ,Q,q0,F,X,Δ〉, where Σ , Q, q0, F are
defined as in an ITA, X is a set of clocks and the set of transitions is Δ ⊆ Q× C0(X)× (Σ ∪
{ε}) × U0(X) × Q, with guards in C0(X) and updates in U0(X).

The semantics of a timed automaton is also defined as a timed transition system, with
the set Q × R

X of configurations (no additional boolean value). Discrete steps are similar

to those of ITA but in time steps, all clocks evolve with same rate 1: (q, v)
d−→ (q, v′) iff for

each clock x in X, v′(x) = v(x) + d .
Controlled Real-Time Automata extend TA with the following features: the clocks and

the states are partitioned according to colors belonging to a set Ω and with every state is
associated a rational velocity. When time elapses in a state, the set of active clocks (i.e.
with the color of the state) evolve with rate equal to the velocity of the state while other
clocks remain unchanged. For sake of clarity, we now propose a slightly simplified version
of CRTA.

Definition 4 A CRTA A = (Σ,Q,q0,F,X,up, low, vel, λ,Δ) on a finite set Ω of colors is
defined by:

– Σ , the alphabet of actions,
– Q, the set of states, with q0 ∈ Q the initial state and F ⊆ Q the set of final states,
– X the set of clocks,

Form Methods Syst Des

– mappings up and low associate with each clock respectively an upper and a lower bound,
– vel : Q �→ Q the velocity mapping,
– λ : X � Q �→ Ω the coloring mapping and
– Δ ⊆ Q× C0(X)× (Σ ∪{ε})× U0(X)×Q the set of transitions, with guards in C0(X) and

updates in U0(X).

Moreover, the lower and upper bound mappings satisfy low(x) ≤ 0 ≤ up(x) for each clock
x ∈ X, and low(x) ≤ b ≤ up(x) for each constant b such that x �� b is a constraint in A.

The original semantics of CRTA is rather involved in order to obtain decidability of the
reachability problem. It ensures that entering a state q in which clock x is active, the fol-
lowing conditions on the clock bounds hold: if vel(q) > 0 then x ≥ low(x) and if vel(q) < 0
then x ≤ up(x). Instead (and equivalently) we add a syntactical restriction which ensures this
behavior. For instance, if a transition with guard ϕ and reset u enters state q with vel(q) < 0
and if x is the only clock such that λ(x) = λ(q), then we replace this transition by two
other transitions: the first one has guard ϕ ∧ x > up(x) and adds x := 0 to the reset condi-
tion u, the other has guard ϕ ∧ x ≤ up(x) and reset u. In the general case where k clocks
have color λ(q), this leads to 2k transitions. With this syntactical condition, again the only

difference from ITA concerns a time step of duration d , defined by (q, v)
d−→ (q, v′), with

v′(x) = v(x) + vel(q)d if λ(x) = λ(q) and v′(x) = v(x) otherwise.
A run of an automaton A in ITA, TA or CRTA is a finite or infinite path in the associated

timed transition system T A , where (possibly null) time steps and discrete steps alternate. An
accepting run is a finite run starting in s0 and ending in a configuration associated with a
state of F . For such a run with label d1a1d2 . . . dnan, we say that the word (a1, d1)(a2, d1 +
d2) . . . (an, d1 + · · · + dn) (where ε actions are removed) is accepted by A. The set L(A)

contains the timed words accepted by A and Untimed(L(A)), the untimed language of A,
contains the projections onto Σ∗ of the timed words in L(A). Interrupt Timed Languages or
ITL (resp. Timed Languages or TL and Controlled Real-Time Languages or CRTL) denote
the family of timed languages accepted by an ITA (resp. a TA and a CRTA).

For instance, the language L1 accepted by the ITA A1 in Fig. 3(a) is

L1 = L(A1) =
{

(a, τ)

(

b,1 + τ

2

)∣
∣
∣
∣0 ≤ τ < 1

}

Languages of infinite timed words accepted by Büchi or Muller conditions could be stud-
ied but this analysis should address technical issues such as Zeno runs and infinite sequences
of ε-transitions.

In the context of model-checking, we also consider maximal runs which are either infinite
or such that no discrete step is possible from the last configuration. The set of maximal runs
starting from configuration s is denoted by Exec(s). Since maximal runs can be finite or
infinite, we do not exclude Zeno behaviors. We use the notion of (totally ordered) positions
(which allow to consider several discrete actions simultaneously) along a maximal run [24]:
for a run ρ, we denote by <ρ the strict order over positions. For position π along ρ, the
corresponding configuration is denoted by sπ , the prefix of ρ up to π is written ρ≤π and its
duration, Dur(ρ≤π), is the sum of all delays along the finite run ρ≤π . Similarly, the suffix of
ρ starting from π is denoted by ρ≥π . For two positions π ≤ρ π ′, the subrun of ρ between
these positions is written ρ[π,π ′], its duration is Dur(ρ≤π ′

) − Dur(ρ≤π). The length of ρ,
denoted by |ρ|, is the number of discrete transitions occurring in ρ.

Form Methods Syst Des

3 Regularity of untimed ITL

We prove in this section that the untimed language of an ITA is regular. Similarly to TA
(and to CRTA), the proof is based on the construction of a (finite) class graph which is time
abstract bisimilar to the transition system T A . This result also holds for infinite words with
standard Büchi conditions. As a consequence, we obtain decidability of the reachability
problem, as well as decidability for plain CTL∗ model-checking.

The construction of classes is much more involved than in the case of TA. More precisely,
it depends on the expressions occurring in the guards and updates of the automaton (while in
TA it depends only on the maximal constant occurring in the guards). We associate with each
state q a set of expressions Exp(q) with the following meaning. The values of clocks giving
the same ordering of these expressions correspond to a class. In order to define Exp(q), we
first build a family of sets {Ek}1≤k≤n. Then Exp(q) = ⋃

k≤λ(q) Ek (recall that λ(q) is the index
of the active clock in state q). Finally in Theorem 1 we show how to build the class graph
which proves the regularity of the untimed language. This immediately yields a reachability
procedure given in Proposition 1.

3.1 Construction of {Ek}k≤n

We first introduce an operation, called normalization, on expressions relative to some level.
As explained in the construction below, this operation will be used to order expression values
at a given level.

Definition 5 (Normalization) Let C = ∑
i≤k aixi + b be an expression over Xk = {xi | i ≤

k}, the k-normalization of C, norm(C, k), is defined by:

– if ak �= 0 then norm(C, k) = xk + (1/ak)(
∑

i<k aixi + b);
– else norm(C, k) = C.

Since guards are linear expressions with rational constants, we can assume that in a guard
C �� 0 occurring in a transition outgoing from a state q with level k, the expression C is
either xk + ∑

i<k aixi + b (by k-normalizing the expression and if necessary changing the
comparison operator) or

∑
i<k aixi + b. It is thus written as αxk + ∑

i<k aixi + b, with
α ∈ {0,1}.

The construction of {Ek}k≤n proceeds top down from level n to level 1 after initializing
Ek = {xk,0} for all k. As we shall see below, when handling the level k, we add new terms
to Ei for 1 ≤ i ≤ k. These expressions are the ones needed to compute a (pre)order on the
expressions in Ek .

– At level k, first for every expression αxk + ∑
i<k aixi + b (with α ∈ {0,1}) occurring in a

guard of an edge leaving a state of level k, we add −∑
i<k aixi − b to Ek .

– Then we iterate the following procedure until no new term is added to any Ei for
1 ≤ i ≤ k.

1. Let q
ϕ,a,u−−→ q ′ with λ(q) ≥ k and λ(q ′) ≥ k. Let C ∈ Ek , then we add C[u] to Ek (recall

that C[u] is the expression obtained by applying update u to C).

2. Let q
ϕ,a,u−−→ q ′ with λ(q) < k and λ(q ′) ≥ k. Let C and C ′ be two different ex-

pressions in Ek . We compute C ′′ = norm(C[u] − C ′[u], λ(q)), choosing an arbi-
trary order between C and C ′ in order to avoid redundancy. Let us write C ′′ as
αxλ(q) + ∑

i<λ(q) aixi + b with α ∈ {0,1}. Then we add −∑
i<λ(q) aixi − b to Eλ(q).

Form Methods Syst Des

We illustrate this construction of expressions for the automaton A1 of Fig. 3(a). Initially,
we have E1 = {0, x1} and E2 = {0, x2}. When treating level 2, first, expression − 1

2x1 + 1 is
added to E2 as normalization of the guard x1 +2x2 = 2. Then transition labeled by a updates
x2 (by reseting it to 0). As a result, we have to add to E1 all differences of expressions of
E2 updated by x2 := 0. This only produces expression − 1

2x1 + 1 − 0 which is normalized
into x1 − 2; thus expression 2 is added to E1. When treating level 1, expression 1 from
the guard of transition a is added to E1. As a result, we obtain E1 = {x1,0,1,2} and E2 =
{x2,0,− 1

2x1 + 1}.

Lemma 1 The construction procedure of {Ek}k≤n terminates and the size of every Ek is
bounded by (E + 2)2n(n−k+1)+1 where E is the size of the edges of the ITA.

Proof Given some k, we prove the termination of the stage relative to k. Observe that the
second step only adds new expressions to Ek′ for k′ < k. Thus the two steps can be ordered.
Let us prove the termination of the first step of the saturation procedure. We define E0

k as
the set Ek at the beginning of this stage and Ei

k as this set after insertion of the ith item
in it. With each added item C[u] can be associated its father C. Thus we can view Ek as
an increasing forest with finite degree (due to the finiteness of the edges) and finitely many
roots. Assume that this step does not terminate. Then we have an infinite forest and by König
lemma, it has an infinite branch C0,C1, . . . where Ci+1 = Ci[ui] for some update ui such
that Ci+1 �= Ci . Observe that the number of updates that change the variable xk is either 0 or
1 since once xk disappears it cannot appear again. We split the branch into two parts before
and after this update or we still consider the whole branch if there is no such update. In these
(sub)branches, we conclude with the same reasoning that there is at most one update that
change the variable xk−1. Iterating this process, we conclude that the number of updates is
at most 2k − 1 and the length of the branch is at most 2k .

For the sake of readability, we set B = E+2. The final size of Ek is thus at most E0
k ×B2k

since the width of the forest is bounded by B .
In the second step, we add at most B × (|Ek| × (|Ek| − 1))/2 to Ei for every i < k. This

concludes the proof of termination.
We now prove by a painful backward induction that as soon as n ≥ 2, |Ek| ≤ B2n(n−k+1)+1.

The doubly exponential size of En (proved above) is propagated downwards by the satura-
tion procedure. We define pk = |Ek|.

Basis case k = n We have pn ≤ p0
n × B2n

where p0
n is the number of guards of the

outgoing edges from states of level n. Thus pn ≤ B × B2n = B2n+1 = B2n(n−n+1)+1 which is
the claimed bound.

Inductive case Assume that the bound holds for k < j ≤ n. Due to all executions of the
second step of the procedure at strictly higher levels, p0

k expressions were added to Ek , with:

p0
k ≤ B + B × ((pk+1 × (pk+1 − 1))/2 + · · · + (pn × (pn − 1))/2)

p0
k ≤ B + B × (B2n(n−k)+1+2 + · · · + B2n+1+2)

p0
k ≤ B × (n − k + 1) × B2n(n−k)+1+2

p0
k ≤ B × Bn × B2n(n−k)+1+2 (here we use B ≥ 2)

p0
k ≤ B2n(n−k)+1+n+3

Form Methods Syst Des

Taking into account the first step of the procedure for level k, we have:

pk ≤ B2n(n−k)+1+2k+n+3

Let us consider the term δ = 2n(n−k+1) + 1 − (2n(n−k)+1 + 2k + n + 3). Since k < n,

δ ≥ (2n−1 − 1)2n(n−k)+1 − (2k + n + 2)

δ ≥ (2n−1 − 1)2n(n−k)+1 − (2n−1 + 2n)

δ ≥ (2n−1 − 1)2n(n−k)+1 − 2n+1 ≥ 0

Thus pk ≤ B2n(n−k)+1+2k+n+3 ≤ B2n(n−k+1)+1 = (E + 2)2n(n−k+1)+1 which is the claimed
bound. �

3.2 Construction of the class automaton

In order to analyze the size of the class automaton defined below, we recall and adapt a
classical result about partitions of n-dimensional Euclidian spaces.

Definition 6 Let {Hk}1≤k≤m be a family of hyperplanes of R
n. A region defined by this

family is a connected component of R
n \ ⋃

1≤k≤m Hk . An extended region defined by this
family is a connected component of

⋂
k∈I Hk \ ⋃

k /∈I Hk where I ⊆ {1, . . . ,m}.

Proposition 1 ([39]) The number of regions defined by the family {Hk}1≤k≤m is at most∑n

i=0

(
m

i

)
.

We derive from this proposition:

Corollary 1 The number of extended regions defined by the family {Hk}1≤k≤m is at most∑n

p=0

(
m

p

)∑n−p

i=0

(
m−p

i

) ≤ e2mn.

Proof Observe that an extended region is a region belonging to an intersection of at most
n hyperplanes (by removing redundant hyperplanes). Thus counting the number of such
intersections and applying the previous proposition yields the following formula:

n∑

p=0

(
m

p

) n−p∑

i=0

(
m − p

i

)

≤
n∑

p=0

mp

p!
n−p∑

i=0

mn−p

i! = mn

n∑

p=0

1

p!
n−p∑

i=0

1

i! ≤ e2mn

�

Theorem 1 The untimed language of an ITA is regular.

Proof First, we assume that the policy of every state is lazy. At the end of the proof, we
explain how to adapt the construction for states with urgent or delayed policies.

Class definition Let A be an ITA with E transitions and n clocks, the decision algorithm
is based on the construction of a (finite) class graph which is time abstract bisimilar to
the transition system T A. A class is a syntactical representation of a subset of reachable
configurations. More precisely, it is defined as a pair R = (q, {�k}1≤k≤λ(q)) where q is a
state and �k is a total preorder over Ek , for 1 ≤ k ≤ λ(q).

The class R describes the set of configurations:

�R� = {(q, v,β) | β ∈ {�,⊥}, ∀k ≤ λ(q) ∀(g,h) ∈ Ek, g[v] ≤ h[v] iff g �k h}

Form Methods Syst Des

The initial state of this graph is defined by the class R0 with �R0 � containing (q0,0,⊥)

which can be straightforwardly determined. For example, for ITA A1 of Fig. 3(a), the initial
class is R0 = (q0,Z0) with Z0 : x1 = 0 < 1 < 2. The final states are all R = (q, {�k}1≤k≤λ(q))

with q ∈ F .
Observe that fixing a state, the set of configurations �R� of a non empty class R is

exactly an extended region associated with the hyperplanes defined by the comparison of two

expressions of some Ek . Since (E + 2)2n2 +1 is an upper bound of the number of expressions

of any level, m = (E + 2)2n2+1+2 is an upper bound of the number of hyperplanes. So using
Corollary 1, the number of semantically different classes for a given state is bounded by:

e2mn = e2(E + 2)2n2+1n+2n

Since one can test semantical equality between classes in polynomial time w.r.t. their
size [36], we implicitely consider in the sequel of the proof classes modulo the semanti-
cal equivalence.

As usual, there are two kinds of transitions in the graph, corresponding to discrete steps
and time steps.

Discrete step Let R = (q, {�k}1≤k≤λ(q)) and R′ = (q ′, {�′
k}1≤k≤λ(q ′)) be two classes.

There is a transition R
e−→ R′ for a transition e : q

ϕ,a,u−−→ q ′ if there is some (q, v) ∈ �R�

and (q ′, v′) ∈ �R′� such that (q, v)
e−→ (q ′, v′). In this case, for all (q, v) ∈ �R� there is a

(q ′, v′) ∈ �R′� such that (q, v)
e−→ (q ′, v′). This can be decided as follows.

Firability condition Write ϕ = ∧
j∈J Cj ��j 0. Since we assumed normalized guards,

for every j , Cj = αxk + ∑
i<k aixi + b (with α ∈ {0,1} and k = λ(q)). By construction

C ′
j = −∑

i<λ(q) aixi − b ∈ Ek . For each j ∈ J , we define a condition depending on ��j .
For instance, if Cj ≤ 0, we require that αxk �k C ′

j , or if Cj > 0 we require that αxk �k

C ′
j ∧ C ′

j � αxk .
Successor definition R′ is defined as follows. Let k ≤ λ(q ′) and g′, h′ ∈ Ek .

1. Either k ≤ λ(q), by construction, g′[u], h′[u] ∈ Ek then g′ �′
k h′ iff g′[u] �k h′[u].

2. Or k > λ(q), let D = g′[u] − h′[u] = ∑
i≤λ(q) cixi + d , and C = norm(D,λ(q)),

and write C = αxλ(q) + ∑
i<λ(q) aixi + b (with α ∈ {0,1}). By construction C ′ =

−∑
i<λ(q) aixi − b ∈ Eλ(q).

When cλ(q) ≥ 0 then g′ �′
k h′ iff αxλ(q) �λ(q) C ′.

When cλ(q) < 0 then g′ �′
k h′ iff C ′ �λ(q) αxλ(q).

By definition of � · �,

– For any (q, v) ∈ �R�, if there exists (q, v)
e−→ (q ′, v′) then the firability condition is ful-

filled and (q ′, v′) belongs to �R′�.
– If the firability condition is fulfilled then for each (q, v) ∈ �R� there exists (q ′, v′) ∈ �R′�

such that (q, v)
e−→ (q ′, v′).

Time step Let R = (q, {�k}1≤k≤λ(q)). There is a transition R
succ−−→ Post(R) for Post(R) =

(q, {�′
k}1≤k≤λ(q)), the time successor of R, which is defined as follows.

For every i < λ(q) �′
i =�i . Let ∼ be the equivalence relation �λ(q) ∩ �−1

λ(q) induced by
the preorder. On equivalence classes, this (total) preorder becomes a (total) order. Let V be
the equivalence class containing xλ(q).

1. Either V = {xλ(q)} and it is the greatest equivalence class. Then �′
λ(q) =�λ(q) (thus

Post(R) = R).

Form Methods Syst Des

2. Either V = {xλ(q)} and it is not the greatest equivalence class. Let V ′ be the next equiva-
lence class. Then �′

λ(q) is obtained by merging V and V ′, and preserving �λ(q) elsewhere.
3. Either V is not a singleton. Then we split V into V \ {xλ(q)} and {xλ(q)} and “extend”

�λ(q) by V \ {xλ(q)} �′
λ(q) {xλ(q)}.

By definition of � · �, for each (q, v) ∈ �R�, there exists d > 0 such that (q, v + d) ∈
�Post(R)� and for each d with 0 ≤ d ′ ≤ d , then (q, v + d ′) ∈ �R� ∪ �Post(R)�.

We now explain how the policy is handled. Given a state q such that pol(q) = U , for
every class R = (q, {�k}1≤k≤λ(q)) we delete the time steps outgoing from R. The case of a
state q such that pol(q) = D, is a little bit more involved. First we partition classes between
time open classes, where for every configuration of the class there exists a small amount of
time elapse that let the new configuration in the same class, and time closed classes. The
partition is performed w.r.t. the equivalence class V of xλ(q) for the relation ∼ (see above
in the proof). The class R is time open iff V = {xλ(q)}. Then we successively replace every
time closed class R by two copies R− and R+, which capture wether time has elapsed
since the last discrete step. Thus, a time edge entering R is redirected towards R+ while
a discrete edge entering R is redirected towards R−. A time step R

succ−−→ R′ is replaced by
two transitions R− succ−−→ R′ and R+ succ−−→ R′, while a discrete step R

e−→ R′ is replaced by the
transition R+ e−→ R′. Time open classes allow time elapsing, hence no splitting is required
for these classes.

Since there is at most one time edge outgoing from a class, the number of edges of the
new graph is at most twice the number of edges in the original graph. �

Proposition 2 The reachability problem for Interrupt Timed Automata is decidable and
belongs to 2-EXPTIME and PTIME when the number of clocks is fixed.

Proof The reachability problem is solved by building the class graph and applying standard
reachability algorithm. Since the number of semantically different classes is at most doubly
exponential in the size of the model and the semantical equivalence can be checked in poly-
nomial time w.r.t. the size of the class (also doubly exponential) this leads to a 2-EXPTIME
complexity. When the number of clocks is fixed the size of the graph is at most polynomial
w.r.t. the size of the problem leading to a PTIME procedure. No complexity gain can be
obtained by a non deterministic search without building the graph since the size of the graph
is only polynomial w.r.t. the size of a class. �

Remarks This result should be contrasted with the similar one for TA. The reachability
problem for TA is PSPACE-complete and thus less costly to solve than for ITA. However,
fixing the number of clocks does not reduce the complexity for TA (when this number is
greater than or equal to 3) while this problem belongs now to PTIME for ITA. Summarizing,
the main source of complexity for ITA is the number of clocks, while in TA it is the binary
encoding of the constants [20].

Since the construction of the graph depends on a set of expressions, there is no notion of
granularity as in Timed Automata. When the only guards are comparisons to constants and
the only updates resets of clocks (as in Timed Automata), the abstraction obtained is coarser
than the region abstraction of [2]: it consists only in products of intervals.

3.3 Example

We illustrate this construction of a class automaton for the automaton A1 of Fig. 3(a). The
resulting class automaton is depicted on Fig. 4, where dashed lines indicate time steps.

Form Methods Syst Des

Fig. 4 The class automaton for A1

Recall that we obtained E1 = {x1,0,1,2} and E2 = {x2,0,− 1
2x1 + 1}. In state q0, the

only relevant clock is x1 and the initial class is R0 = (q0,Z0) with Z0 : x1 = 0 < 1 < 2. Its
time successor is R1

0 = (q0,Z
1
0) with Z1

0 : 0 < x1 < 1 < 2. Transition a leading to q1 can be
taken from both classes, but not from the next time successors R2

0 = (q0,0 < x1 = 1 < 2),
R3

0 = (q0,0 < 1 < x1 < 2), R4
0 = (q0,0 < 1 < x1 = 2), or R5

0 = (q0,0 < 1 < 2 < x1).
Transition a switches from R0 to R1 = (q1,Z0, x2 = 0 < 1), because x1 = 0, and from

R1
0 to R1

1 = (q1,Z
1
0, x2 = 0 < − 1

2x1 + 1). Transition b is fired from those time successors
for which x2 = − 1

2x1 + 1.
On the geometric view of Fig. 3(b), the displayed trajectory corresponds to the following

path in the class automaton:

R0 → R1
0

a−→ R1
1 →

(

q1,Z
1
0,0 < x2 < −1

2
x1 + 1

)

→
(

q1,Z
1
0,0 < x2 = −1

2
x1 + 1

)

b−→
(

q2,Z
1
0,0 < x2 = −1

2
x1 + 1

)

4 A simpler model

4.1 Definition of ITA−

We introduce a restricted version of ITA, called ITA−, which is interesting both from a
theoretical and a practical point of view. When modeling interruptions in real-time systems,
the clock associated with some level measures the time spent in this level or more generally
the time spent by some tasks at this level. Thus when going to a higher level, this clock is
not updated until returning to this level. The ITA− model takes this feature into account.
Moreover, it turns out that the reachability problem for ITA− can be solved more efficiently.
This also provides a better complexity upper-bound for the reachability problem on ITA (in
the general case).

Form Methods Syst Des

Definition 7 The subclass ITA− of ITA is defined by the following restriction on updates.

For a transition q
ϕ,a,u−−→ q ′ of an automaton A in ITA− (with k = λ(q) and k′ = λ(q ′)), the

update u is of the form
∧n

i=1 xi := Ci with:

– if k > k′, then for 1 ≤ i ≤ k′, Ci := xi and for k′ + 1 ≤ i ≤ n, Ci = 0, i.e. the only updates
are the resets of now irrelevant clocks;

– if k ≤ k′ then Ck is of the form
∑k−1

j=1 ajxj + b or Ck = xk . For k < i ≤ k′, Ci = 0 and
Ci = xi otherwise.

Thus, complex updates appear only in transitions increasing the level, and only for the
active clock of the transition level.

The proof of the following result is based on Propositions 3 and 5 proved in the next two
sections.

Theorem 2 The reachability problem for ITA belongs to NEXPTIME.

Proof Given an ITA A with transitions of size E and constants coded over b bits, we build
the ITA− A′ of Proposition 3. Then we apply on A′ the reachability procedure of Proposi-
tion 5. In this procedure, we consider paths of length bounded by (E′ + n)3n, where E′ is
the number of transitions of A′. Since E′ ≤ 24b·E·n2

(as shown in the proof of Proposition 3),
the length of the paths considered is bounded by

(E′ + n)3n ≤
(

24b·E·n2 + n
)3n ≤ (n + 2)12b·E·n3

which establishes the claimed upper bounds. �

4.2 From ITA to ITA−

In this subsection we prove that ITA and ITA− are equivalent w.r.t. the associated (timed)
languages.

Proposition 3 Given an ITA A, we build an automaton A′ in ITA− accepting the same timed
language and with the same clocks such that its number of edges (resp. states) is exponential
w.r.t. the number of edges (resp. states) in A and polynomial when the number of clocks is
fixed.

Proof Starting from ITA A = 〈Σ,AP,Q,q0,F,pol,X,λ, lab,Δ〉, the construction of au-
tomaton A′ relies on memorizing at a given level i, for every clock xj at a lower level, an
expression depending on x1, . . . , xj−1, corresponding to the delayed update of xj . This ex-
pression is used later to replace the value of xj in guards and to restore its correct value by
update after decreasing to level j .

To this aim we associate with every pair of levels i ≥ j , a set of expressions Fi,j induc-
tively defined by:

– Fi,i = {xi}
– ∀i > j Fi,j = Fi−1,j ∪{e[{xk ← ek}k<j] | e is the expression of an update of xj by an edge

of level i and ∀k, ek ∈ Fi,k}
We write Fj = Fn,j = ⋃n

i=j Fi,j . The set Fj thus contains all expressions of updates of xj

that appear at higher levels.

Form Methods Syst Des

Although the number of expressions is syntactically doubly exponential w.r.t. the number
of clocks, one can show that the number of distinct expressions is only singly exponential.

First we assume that ITA A has only integral constants, the case of rational constants is
handled at the end of the proof. It can be shown that every expression ek of Fk can be written

ek =
∑

i0,...,ip∈sub(k)

αk,ip · αip,ip−1 · · ·αi1,i0 · xi0

with the convention that x0 is the constant 1, and where sub(k) is the set of all (ordered)
subsequences of 0, . . . , k − 1 and αj,i is the coefficient of xi in some update of xj .

For the family α of all integers αj,i , assume that these constants are coded over bα bits
each (including the sign of the coefficient). The expression xi0 can also be coded into an
integer of log2(n) bits (with a special symbol to indicate that it is the expression of a clock
rather than a constant). Let b = max(bα, log2(n) + 1) be the (maximal) number of bits used
to code a coefficient. Then each term of the sum is a product of at most k such coefficients,
therefore can be coded with kb bits. Summing at most 2k such products yields an integer
that can be coded over kb + k bits. Thus there can be at most 2k(b+1) different expressions
in Ek .

Automaton A′ is then defined as follows.

– The set of states is

Q′ = {(q+, e1, . . . , ei−1) | q ∈ Q, λ(q) = i and ∀j, ej ∈ Fj }
∪ {(q−, e1, . . . , ei) | q ∈ Q, λ(q) = i and ∀j, ej ∈ Fj },

with pol(q+, e1, . . . , ei−1) = pol(q) and pol(q−, e1, . . . , ei) = U .
Note that the sequence is empty if i = 1. Moreover:

λ(q+, e1, . . . , ei−1) = λ(q−, e1, . . . , ei) = λ(q).

– The initial state of A′ is (q+
0 , x1, . . . , xi−1) if λ(q0) = i. The final states of A′ are the states

with first component q+ for q ∈ F .

– Let q
ϕ,a,u−−→ q ′ be a transition in A such that λ(q) = i, λ(q ′) = i ′ and u is defined by∧i

j=1 xj := Cj .
• If i ≤ i ′, then for every (q+, e1, . . . , ei−1) there is a transition

(q+, e1, . . . , ei−1)
ϕ′,a,u′−−−→ (q ′+, e′

1, . . . , e
′
i′−1)

in A′ with ϕ′ = ϕ({xj ← ej }j<i), update u′ is defined by xi := Ci[{xj ← ej }j<i]; for
all j < i, e′

j = Cj [{xk ← ek}k<i] and for all j such that i ≤ j < i ′, e′
j = xj .

• If i > i ′ then for every (q+, e1, . . . , ei−1) there is a transition

(q+, e1, . . . , ei−1)
ϕ′,a,u′−−−→ (q ′−, e′

1, . . . , e
′
i′)

in A′ with ϕ′ = ϕ({xj ← ej }j<i), update u′ contains only the trivial updates xj := xj

for all clocks and for all j ≤ i ′, e′
j = Cj [{xk ← ek}k<i].

• For every (q−, e1, . . . , ei) there is in A′ a transition

(q−, e1, . . . , ei)
true,ε,xi :=ei−−−−−−→ (q+, e1, . . . , ei−1).

Form Methods Syst Des

In words, given a transition, the guard is modified according to these expressions. The
modification of the update consists only in applying the update at the current level and
taking into account the other updates in the expressions labeling the destination state. When
the transition increases the level, the expression associated with a new “frozen” clock (xj for
i ≤ j < i ′) is the clock itself. The urgent states (q−,−) are introduced for handling the case
of a transition that decreases the level. In this case, one reaches such a state that memorizes
also the expression of the clock at the current level. Note that the memorized expressions can
correspond to an update proceeded at any (higher) level. From this state a single transition
must be (immediately) taken whose effect is to perform the update corresponding to the
memorized expression.

It is routine to check that the languages of the two automata are identical. Each transition
in A is replaced by several transitions in A′, which number is bounded by the number of
expressions that can be attached to the source of the original transition. In addition, tran-
sitions decreasing level are further “split” through states (q−,−). Thus the number E′ of
transitions in A′ is bounded by

E′ ≤ 2 · E · |Fn|n
≤ 2 · E · (2n(b(E+1)+1)

)n

≤ 2 · E · 2n2(b(E+1)+1)

≤ 2n2(b(E+1)+1)+1+log2(E)

≤ 2n2((b+1)(E+1)+1)

E′ ≤ 24b·E·n2

(provided E ≥ 2). This yields the exponential complexity for the number of transitions. The
case of the number of states is similar.

In the case when there are rational constants, assume each constant is coded with a pair
(r, d) of numerator and denominator. Assume each r and d can be coded over b bits. We
compute the lcm δ of all denominators: since there are at most E constants (E, the size of Δ

contains the number of guards and updates), δ can be coded over Eb bits. We consider ITA
Aδ which is A where all constants are multiplied by δ. Thus a constant of Aδ is an integer
that can be coded over b′ = Eb + b = b(E + 1) bits. The above bound on the number of
expressions applies on Aδ . Note that after the construction of A′

δ , A′ can be obtained by
dividing each constant in A′

δ by δ. �

Example We illustrate this construction on ITA A2 of Fig. 5. The sets of expressions are
computed as on Table 1 and the resulting ITA− A′

2 is depicted on Fig. 6.

Fig. 5 ITA A2 containing updates of frozen clocks

Form Methods Syst Des

Table 1 Sets of expressions Fi,j

for A2
i \ j 1 2 3

1 {x1}
2 {x1,2} {x2}
3 {x1,2,1} {x2, 2x1 + 1, 5, 3

︸ ︷︷ ︸

q2
x2 :=2x1+1−−−−−−−→q3

, x1 + 1, 3, 2
︸ ︷︷ ︸

q3
x2:=x1+1−−−−−−→q4

} {x3}

Fig. 6 ITA− A′
2 equivalent to A2

The translation above of an ITA into an equivalent ITA− induces an exponential blowup.
The proposition below shows that the bound is reached.

Proposition 4 There exist a family {An}n∈N of ITA with two states, n clocks and constants
coded over b bits, where b is polynomial in n, such that the equivalent ITA− built by the
procedure above has a number of states greater than or equal to 2n.

Proof For n ∈ N, let An be the ITA with n clocks and two states qinit (initial) and q (final)
both of level n (and lazy policy) built as follows. There is a transition from qinit to q with
update

∧n

k=1 xk := 1 that sets all clocks to 1. For 1 ≤ k ≤ n there are two loops on q with
updates xk := xk−1 and xk := αkxk−1 respectively, where αk is the kth prime number (and
with the convention that x0 is the constant 1).

When building the sets of expressions, no expressions are added until level n, since all
updates occur at this level. At level k, Fn,k contains (at least) 2k expressions: all possible

Form Methods Syst Des

products of the first k prime numbers, namely

Fn,k ⊃
{

∏

i∈I

αi

∣
∣
∣
∣ I ⊆ {1, . . . , k}

}

Indeed, at level 1, Fn,1 = {x1,1,2}. Now assume that Fn,k−1 contains all products
∏

i∈I αi

where I ⊆ {1, . . . , k −1}. By update xk := xk−1, Fn,k ⊃ Fn,k−1. By update xk := αkxk−1, Fn,k

contains all products αk

∏
i∈I αi = ∏

i∈I�{k} αi . Therefore

Fn,k ⊃
{

∏

i∈I

αi

∣
∣
∣
∣ I ⊆ {1, . . . , k − 1}

}

∪
⎧
⎨

⎩

∏

i∈I�{k}
αi

∣
∣
∣
∣ I ⊆ {1, . . . , k − 1}

⎫
⎬

⎭

Fn,k ⊃
{

∏

i∈I

αi

∣
∣
∣
∣ I ⊆ {1, . . . , k}

}

The expressions thus built are distinct, since they are products of distinct prime numbers.
Remark that the set of expression for level k is in bijection with a sequence of updates
x1 := . . . , x2 := . . . , . . . , xk := . . . , the choice of the update depending on the choice of the
set I .

Therefore all expressions of Fn,n are reached (in association with state q) and the set of
states in A′

n is at least of size 2n. In addition, it should be noted that the nth prime number is
in O(n log2(n)), therefore can be coded over O(log2(n)2) bits. So the size of the constants
appearing in the updates (and the size of the representation of An) is polynomial in n while
the representation of A′

n is exponential in n. �

4.3 Reachability on ITA−

In this section we use counting arguments to obtain an upper bound for the reachability
problem on ITA−.

The following counting lemma does not depend on the effect of the updates but only on
the timing constraints induced by the policies.

Lemma 2 (Counting Lemma) Let A be an ITA− with E transitions and n clocks, then in a
sequence (e1, . . . , el) of transitions of A where l > (E + n)3n, there exist i < j with ei = ej

such that the level of any transition ek with i ≤ k ≤ j is greater than or equal to the level of
ei , say p, and:

– either ei updates xp ,
– either no ek with i ≤ k ≤ j updates xp and ei is delayed or lazy,
– or no ek with i ≤ k ≤ j updates xp and no time elapses for clock xp between ei and ej .

Proof Assume that the conclusions of the lemma are not satisfied, we claim that l ≤ (E +
2n)3n.

First we prove that the number of transitions of level m that occur between two occur-
rences of transitions of strictly lower level is less than or equal to (E + 2)3. Indeed there
can be no more than E occurrences of transitions that update xm. Then between two such
transitions (or before the first or after the last) there can be no more than E lazy or delayed
transitions of level m that do not update xm. Finally between any kind of previous transitions

Form Methods Syst Des

(or before the first or after the last), there can be no more than E urgent transitions that do
not update xm, since they prevent time from elapsing at level m.

Summing up, there can be no more than E + E(E + 1) + E(E(E + 1) + 1) ≤ (E + 1)3

transitions of level m that occur between two occurrence of transitions of strictly lower level.
Now we prove by induction that the number of transitions at level less than or equal to m

is at most (E +m)3m. This is true for m = 1 by the previous proof. Assume the formula valid
for m, then grouping the transitions of level m + 1 between the occurrences of transition of
lower level (or before the first or after the last), we obtain that the number of transitions at
levels less than or equal to m + 1 is at most:

(E + m)3m + ((E + m)3m + 1)(E + 1)3 ≤ (E + m)3m+3 + 2(E + m)3m

≤ (E + m + 1)3(m+1) �

Proposition 5 The reachability problem for ITA− belongs to NEXPTIME. More precisely,
reachability can be checked over paths with length less than or equal to (E +n)3n, where E

is the number of transitions and n is the number of clocks.

Proof Let A = (Σ,Q,q0,F,pol,X,λ,Δ) be an ITA− with n clocks. Let E = |Δ| be the
number of transitions of A. Assume that there is a run of minimal length ρ from (q0, v0)

to some configuration (qf , vf). Suppose now that |ρ| > B = (E + n)3n. We will build a
run ρ ′ from (q0, v0) to (qf , vf) that is strictly smaller, hence contradicting the minimality
hypothesis.

Since |ρ| > B , then one of the three cases of Lemma 2 applies. Therefore there is a
transition e at level k repeated twice, from positions π and π ′ and separated by a subrun σ

containing only transitions of level higher than or equal to k. Moreover:

– Either e updates xk . In this case, all clocks have the same value after the first and the
second occurrence of e. Hence removing eσ = ρ[π,π ′[from ρ yields a valid run ρ ′ of A
reaching (qf , vf). Run ρ ′ is strictly smaller than ρ, since eσ which is of length at least 1
was removed.

– Either no update occurred for xk and e is delayed or lazy. In this case, upon reaching
π ′, the clocks of level i < k have retained the same value, while xk has increased by
Dur(ρ[π,π ′]). Hence when replacing eσ = ρ[π,π ′[by a time step of duration Dur(ρ[π,π ′]),
the configuration in π ′ is unchanged. In addition, since e was delayed or lazy, this time
step is allowed in A, and this yields a shorter run of A.

– Or no update occurred and π and π ′ are at the same instant (separated by instantaneous
actions). In this case, all clocks of level smaller than or equal to k again have the same
value after the first and the second occurrence of e. Again removing ρ[π,π ′[yields a smaller
run.

The decision procedure is as follows. It non deterministically guesses a path in the ITA−
whose length is less than or equal to the bound. In order to check that this path yields a run,
it builds a linear program whose variables are {xj

i }, where x
j

i is the value of clock xi after
the j th step, and {dj } where dj is the amount of time elapsed during the j th step, when j

corresponds to a time step. The equations and inequations are deduced from the guards and
updates of discrete transitions in the path and the delay of the time steps. The size of this
linear program is exponential w.r.t. the size of the ITA−. As a linear program can be solved
in polynomial time [36], we obtain a procedure in NEXPTIME. �

Form Methods Syst Des

One could wonder whether the class graph construction would lead to a better complexity
when applied on ITA−. Unfortunately, the number of expressions occurring in the class
graph while being smaller than for ITA is still doubly exponential w.r.t. the size of the model.

5 Timed model-checking

First observe that model-checking CTL∗ formulas on ITA can be done with classical proce-
dures on the class graph previously built. We now consider verification of real time formulas.

In the case of linear time, the logic LTL has been extended into the Metric Temporal Logic
(MTL) [27], by adding time intervals as constraints to the U modality. However, MTL suffers
from undecidability of the model-checking problem on TA. Hence decidable fragments have
been proposed, such as Metric Interval Temporal Logic (MITL) [5], which prohibits the use
of point intervals (of the form [a, a]). Later, MITL was restricted into State Clock Logic
(SCL) [35], in order to obtain more efficient verification procedures. Model-checking MITL
(thus SCL) on TA is decidable. Unfortunately, we show here that model-checking SCL(thus
MITL) on ITA is undecidable. For this, we reduce the halting problem on a two counter
machine into model-checking an SCL formula on an ITA.

Concerning branching time logics, at least two different timed extensions of CTL have
been proposed. The first one [3] also adds time intervals to the U modality while the (more
expressive) second one considers formula clocks [24]. Model-checking timed automata was
proved decidable in both cases and compared expressiveness was revisited later on [13].

We conjecture that model-checking of TCTL is undecidable when using two (or more)
formula clocks. Indeed, as shown in Sect. 7.1, the reachability problem in a product of an
ITA and a TA with two clocks is undecidable, thus prohibiting model-checking techniques
through automaton product and reachability testing as in [1]. However, contrary to what is
claimed in [11], this is not enough to yield an undecidability proof.

Two fragments for which model-checking is decidable on ITA have nonetheless been
identified. The first one, TCTLint

c , accepts only internal clocks (from the automaton on which
the formulas will be evaluated) as formula clocks. The second one, TCTLp , restricts the
nesting of U modalities. We provide verification procedures in both cases.

5.1 Undecidability of state clock logic

We first consider the timed extension of linear temporal logic, and more particularly the SCL
fragment [35].

Definition 8 Formulas of the timed logic SCL are defined by the following grammar:

ψ = p | ψ ∧ ψ | ¬ψ | ψUψ | ψSψ | ���aψ | ���aψ

where p ∈ AP is an atomic proposition, ��∈ {>,≥,=,≤,<}, and a is a rational number.

We use the usual shorthands t for ¬(p ∧¬p), Fψ for tUψ , Gψ for ¬(F¬ψ) and ϕ ⇒ ψ

for ¬(ϕ ∧ ¬ψ).
The semantics are defined in the usual manner for boolean operators and U. The S modal-

ity is the past version of U. Modality ���aψ is true if the next time ψ is true will occur in
a delay that respects the condition �� a. Similarly, ���aψ is true if the last time ψ was true

Form Methods Syst Des

occurred in a (past) delay that respects the condition �� a. More formally, for an execution
ρ, we inductively define (ρ,π) |= ϕ by:

(ρ,π) |= p iff p ∈ lab(sπ)

(ρ,π) |= ϕ ∧ ψ iff (ρ,π) |= ϕ and (ρ,π) |= ψ

(ρ,π) |= ¬ϕ iff (ρ,π) �|= ϕ

(ρ,π) |= ϕ Uψ iff there is a position π ′ ≥ρ π such that (ρ,π ′) |= ψ

and forall π ′′ s.t. π ≤ρ π ′′ <ρ π ′, (ρ,π ′′) |= ϕ ∨ ψ

(ρ,π) |= ϕ Sψ iff there is a position π ′ ≤ρ π such that (ρ,π ′) |= ψ

and forall π ′′ s.t. π ≥ρ π ′′ >ρ π ′, (ρ,π ′′) |= ϕ ∨ ψ

(ρ,π) |= ���aϕ iff either (ρ,π) |= ϕ and 0 �� a

or, there is a position π ′ >ρ π such that (ρ,π ′) |= ϕ,

Dur
(
ρ[π,π ′]

) �� a and forall π ′′ s.t. π ≤ρ π ′′ <ρ π ′, (ρ,π ′′) �|= ϕ

(ρ,π) |= ���aϕ iff either (ρ,π) |= ϕ and 0 �� a

or, there is a position π ′ <ρ π such that (ρ,π ′) |= ϕ,

Dur
(
ρ[π ′,π]

) �� a and forall π ′′ s.t. π ≥ρ π ′′ >ρ π ′, (ρ,π ′′) �|= ϕ

Given an ITA A and an SCL formula ϕ, A |= ϕ if for all executions ρ of A, (ρ,π0) |= ϕ,
where π0 = 0 is the initial position of ρ.

Theorem 3 Model checking SCL over ITA is undecidable. Specifically, there exists a fixed
formula using only modalities U and �=a such that checking its truth over ITA with 3 levels
is undecidable.

Proof We build an ITA and an SCL formula that together simulate a deterministic two
counter machine. More specifically, we define a formula ϕ2cm such that given a two counter
machine M, we can build an ITA AM with three clocks such that AM |= ϕ2cm if and only
if M does not halt.

Recall that such a machine M consists of a finite sequence of labeled instructions, which
handle two counters c and d , and ends at a special instruction with label Halt. The other
instructions have one of the two forms below, where e ∈ {c, d} represents one of the two
counters:

– e := e + 1; goto �′
– if e > 0 then (e := e − 1; goto �′) else goto �′′

Without loss of generality, we may assume that the counters have initial value zero. The
behavior of the machine is described by a (possibly infinite) sequence of configurations:
〈�0,0,0〉〈�1, n1,p1〉 . . . 〈�i, ni,pi〉 . . ., where ni and pi are the respective counter values and
�i is the label, after the ith instruction. The problem of termination for such a machine (“is
the Halt label reached?”) is known to be undecidable [32].

The idea of the encoding is that, provided the execution satisfies the formula, clocks of
level 1 and 2 keep the values of c and d indifferently, by xi = 1

2n if n is the value of a
counter e. Level 3 will be used as the working level. Transmitting the value of clocks to
lower levels, prohibited in the ITA model, will be enforced by SCL formulas. In the sequel,
we will define:

– a module A↔ and a formula ϕ↔ such that the values contained in clocks x1 and x2 at the
beginning of an execution ρ are swapped if and only if (ρ,0) |= ϕ↔,

– a module A+ and a formula ϕ+ such that if the value of x2 is 1
2n at the beginning of an

execution ρ, then x2 has value 1
2n+1 if and only if (ρ,0) |= ϕ+,

Form Methods Syst Des

– a module A− and a formula ϕ− such that if the value of x2 is 1
2n with n > 0 at the begin-

ning of an execution ρ, then x2 has value 1
2n−1 if and only if (ρ,0) |= ϕ−.

Joining these modules according to M yields an ITA. Combining the formulas (indepen-
dently of M), we obtain an SCL formula that is satisfied if some execution, while complying
to the formulas of the modules, reaches the final state. Both constructions are explained in
details after the definitions below.

Let us define formulas Span1 = q′ ⇒ �=1q and Span2 = p′ ⇒ �=2p where p, p′, q, q′
are propositional variables. Let x0

1 and x0
2 denote the respective values of x1 and x2 upon

entering a given module.

Swapping module The module A↔ that swaps the values of x1 and x2 is depicted in Fig. 7.
Note that this module does not actually swap the values of x1 and x2 for every execution.
However, by imposing that state qend is reached exactly 2 time units after q0 (or q ′

0) was left,
and that q4 (resp. q ′

4) is reached exactly 1 t.u. after q1 (resp. q ′
1) was left, the values of x1 and

x2 will be swapped. This requirement can be expressed in SCL by ϕ↔ = G(Span1 ∧Span2).
Let wi be the time elapsed in state qi , for an execution ρ of A↔ that satisfies ϕ↔. Note that
qstart and q

�=
end are all urgent, hence no time can elapse in these states. We shall therefore

consider only what happens in the swapping submodules. We detail only the case when
x2 > x1, the case when x2 < x1 is analogous. The ITA constraints provide:

w0 = 0 (q0 is urgent)
w1 = x0

2 − x0
1 (update x3 := x1 and guard x3 = x2)

w2 = 1 − x0
2 (guard x3 = 1)

w4 = 0 (q4 is urgent)

The time spent between the last instant q was satisfied (upon leaving q1) and the only
instant when q′ is true (upon entering q4) is exactly the time spent in states q2 and q3.
Similarly, the time between the last instant p was satisfied (leaving q0) and the instant p′ is
true (when reaching q

�=
end) is the total amount of time spent in q1, q2, q3, q4, and q5. Hence,

if ϕ↔ is satisfied then:

w2 + w3 = 1 (q′ ⇒ �=1q)

w1 + w2 + w3 + w4 + w5 = 2 (p′ ⇒ �=2p)

Hence w3 = x0
2 and w5 = 1 − w1 = x0

1 − (x0
2 − 1). Since upon entering q3, clock x1 has

value 0, when leaving, x1 has value x0
2 . Similarly, when entering q5, x2 has value x1 − 1 =

x0
2 − 1, therefore x2 has value x0

1 when reaching q
�=
end . Note that this module swaps x1 and

x2 regardless of their coding a counter value.
Incrementation module The same idea applies for the incrementation module A+ of

Fig. 8. We force the time spent in total in r1 and r2 is one, expressed in SCL by
ϕ+ = GSpan1. The guards and updates in A+ ensure that, with the same notation as above,
time spent in r1 will be 1 − 1

2x0
2 . Hence, when reaching r3, clock x2 will have value 1

2x0
2 .

Therefore, if x0
2 = 1

2n , coding a counter of value n, at the end of A+, x2 has value 1
2n+1 , thus

coding a value n + 1 for the same counter.
Decrementation module Decrementation, for which the corresponding module is depicted

on Fig. 9, is handled in a similar manner (with ϕ− = ϕ+ = GSpan1). The only difference
is that x2 has to be compared to 1 in order to test if the value of the counter encoded by x2

is 0.

Since the constraints in Span1 (and Span2) are equalities, they can be satisfied only if q′ (and
p′) are true at a single point in time.

Form Methods Syst Des

Fig. 7 Swapping module A↔. Submodules are connected through identical states (q0, q ′
0, q

�=
end)

Fig. 8 Incrementation module

Fig. 9 Decrementation module

Form Methods Syst Des

Automaton AM is then defined as the concatenation of modules according to M. For
clarity, a state (q, �) denotes state q in a module corresponding to instruction �.

Namely, an instruction � incrementing c and going to �′ is an incrementation module with
a transition from (r3, �) to the first state of the module corresponding to �′ (either (qstart , �

′),
(r0, �

′) or (s0, �
′)). In the case of an incrementation of d , the corresponding module will

be the concatenation of Ain↔, A+, and Aout↔ . Modules Ain↔ and Aout↔ are two copies of a
swapping module A↔. The states of Ain↔ and Aout↔ will be respectively denoted (q, �, in)

and (q, �,out)) to avoid confusion. The last swap is performed in order to restore that x2

contains the value of c and x1 the value of d . The concatenation is done by transitions from
(q

�=
end , �, in) and (q=

end , �, in) to (r0, �), from (r3, �) to (qstart , �,out). States (q
�=
end , �,out) and

(q=
end , �,out) are then linked to the first state of the module for �′.
Decrementation is handled in a similar way. The main difference resides in the fact that

(s4, �) is linked to the first state of �′′. In the decrementation of d , (s4, �) is linked to a
swapping module Aout ′↔ (disjoint from Ain↔ and Aout↔), in turn linked to the first state of �′′.

The Halt instruction is encoded in a single state h labeled with {h}. The initial state of
the automaton is a new state Init of level 3. It has urgent policy and satisfies no atomic
proposition. State Init is linked to the first state of the module corresponding to �0, the initial
instruction of M, by a transition that updates both x1 and x2 to 1, simulating the initialization
of both counters to 0.

Let us define formula ϕ2cm = F(¬Span1 ∨ ¬Span2) ∨ G¬h. An execution ρ of AM sat-
isfies ϕ2cm if either it violates at some point a constraint Spani , which means ρ does not
correspond to an execution of M, or ρ never reaches state h, which means the execution of
M is not halting.

If M has a halting execution, then it can be converted into an execution ρ that complies
to the Spani constraints and reaches the final state h. Hence ρ �|= ϕ2cm and AM �|= ϕ2cm.

Conversely, if AM �|= ϕ2cm, then consider an execution ρ that does not verify ϕ2cm. Ex-
ecution ρ both reaches h and complies to the Spani constraints, hence encodes a halting
execution of M.

As a result, M has no halting execution if and only if

AM |= F
((¬q′ ∧ ¬ �=1 q

) ∨ (¬p′ ∧ ¬ �=2 p
)) ∨ G¬h.

Remark that this formula does not have nested history or prediction modalities (���a and
���a). Hence SCL with a discrete semantics (evaluating the subformulas only upon entering
a state) would also be undecidable. �

5.2 Model-checking branching time properties with internal clocks

In this section we consider the extension of CTL with model clocks, the corresponding frag-
ment being denoted by TCTLint

c . Such a logic allows to reason about the sojourn times in
different levels which is quite useful when designing real-time operating systems. For exam-
ple, formula A(x2 ≤ 3)U safe expresses that all executions reach a safe state while spending
less than 3 time units in level 2 (assuming x2 is not updated during the execution). Model-
checking is achieved by adapting a class graph construction for untiming ITA (Sect. 3) and
adding information relevant to the formula. The problem is thus reduced to a CTL model
checking problem on this graph.

Definition 9 Formulas of the timed logic TCTLint
c are defined by the following grammar:

ψ ::= p | ψ ∧ ψ | ¬ψ |
∑

i≥1

ai · xi + b �� 0 | Aψ Uψ | Eψ Uψ

Form Methods Syst Des

where p ∈ AP is an atomic proposition, xi are model clocks, ai and b are rational numbers
such that (ai)i≥1 has finite domain, and ��∈ {>,≥,=,≤,<}.

As before we use the classical shorthands F, G, and boolean operators.
Let A = 〈Σ,AP,Q,q0,F,pol,X,λ, lab,Δ〉 be an interrupt timed automaton and S =

{(q, v,β) | q ∈ Q, v ∈ R
X, β ∈ {�,⊥}}, the set of configurations. The formulas of TCTLint

c

are interpreted over configurations1 s = (q, v,β).
The semantics of TCTLint

c is defined as follows on the transition system T A associated
with A. For atomic propositions and a configuration s = (q, v,β), with lab(s) = lab(q):

s |= p iff p ∈ lab(s)

s |= ∑
i≥1 ai · xi + b �� 0 iff v |= ∑

i≥1 ai · xi + b �� 0

and inductively:

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= ¬ϕ iff s �|= ϕ

s |= Aϕ Uψ iff for all ρ ∈ Exec(s), ρ |= ϕ Uψ

s |= Eϕ Uψ iff there exists ρ ∈ Exec(s) s.t. ρ |= ϕ Uψ

with ρ |= ϕ Uψ iff there is a position π ∈ ρ s.t. sπ |= ψ

and ∀π ′ <ρ π, sπ ′ |= ϕ ∨ ψ.

The automaton A satisfies ψ if the initial configuration s0 of T A satisfies ψ .

Theorem 4 Model checking TCTLint
c on interrupt timed automata can be done in 2-

EXPTIME, and in PTIME when the number of clocks is fixed.

The proof relies on a refinement of the class graph according to the comparisons in the
formula to model-check. It is detailed in Appendix A and we show the resulting graph on an
example below.

Example Consider the ITA A1 (Fig. 3(a)) and the formula ϕ1 = EF(q1 ∧ (x2 > x1). We
assume that q1 is a propositional property true only in state q1. Initially, the set of expressions
are E1 = {x1,0} and E2 = {x2,0}. First the expression − 1

2x1 + 1 is added into E2 since
x1 + 2x2 = 2 appears on the guard in the transition from q1 to q2. Then expression 1 is
added to E1 because x1 − 1 < 0 appears on the guard in the transition from q0 to q1. Finally
expression x1 is added to E2 since x2 − x1 > 0 appears in ϕ1. The iterative part of the
procedure goes as follows. Since there is a transition from q0 of level 1 to state q1 of level
2, we compute all differences between expressions of E2, then normalize them:

• x1 − 0 and x2 − 0 yield no new expression.
• x2 − (− 1

2 x1 + 1) and 0 − (− 1
2x1 + 1) with update x2 := 0 both yield expression 2, that is

added to E1.
• x1 − (− 1

2 x1 + 1) yields expression 2
3 , which is also added to E1.

The sets of expressions are therefore E1 = {x1,0,1, 2
3 ,2} and E2 = {x2,0,− 1

2x1 + 1, x1}.
Remark that knowing the order between x1 and 2

3 will allow us to know the order between

1The boolean value in the configuration is not actually used. The logic could be enriched to take advantage
of this boolean, to express for example that a run lets some time elapse in a given state.

Form Methods Syst Des

Table 2 Time zones used in the class graph of A1 when checking ϕ1

Z1
0 =

(

0 = x1 <
2

3
< 1 < 2

)

Z1
1 =

(

0 < x1 <
2

3
< 1 < 2

)

Z1
2 =

(

0 < x1 = 2

3
< 1 < 2

)

Z1
3 =

(

0 <
2

3
< x1 < 1 < 2

)

Z1
4 =

(

0 <
2

3
< x1 = 1 < 2

)

Z1
5 =

(

0 <
2

3
< 1 < x1 < 2

)

Z1
6 =

(

0 <
2

3
< 1 < x1 = 2

)

Z1
7 =

(

0 <
2

3
< 1 < 2 < x1

)

Z2
0 =

(

0 = x2 < x1 < − 1

2
x1 + 1

)

Z2
1 =

(

0 < x2 < x1 < − 1

2
x1 + 1

)

Z2
2 =

(

0 < x1 = x2 < − 1

2
x1 + 1

)

Z2
3 =

(

0 < x1 < x2 < − 1

2
x1 + 1

)

Z2
4 =

(

0 < x1 < − 1

2
x1 + 1 = x2

)

Z2
5 =

(

0 < x1 < − 1

2
x1 + 1 < x2

)

Z2
6 =

(

0 = x2 < − 1

2
x1 + 1 < x1

)

Z2
7 =

(

0 < x2 < − 1

2
x1 + 1 < x1

)

Z2
8 =

(

0 < − 1

2
x1 + 1 = x2 < x1

)

Z2
9 =

(

0 < − 1

2
x1 + 1 < x2 < x1

)

Z2
10 =

(

0 < − 1

2
x1 + 1 < x1 = x2

)

Z2
11 =

(

0 < − 1

2
x1 + 1 < x1 < x2

)

− 1
2x1 + 1 and x1. The class graph G corresponding to A1 and ϕ1 is depicted in Fig. 10.

Note that we replaced x1 by its value, since it is not changed by any update at level 2. Some
time zone notations used in G are displayed in Table 2. In the class graph, states where the
comparison x2 > x1 is true are greyed. Among these, the ones in which the class corresponds
to state q1 are doubly circled, i.e. states in which q1 ∧ (x2 > x1) is true. Applying standard
CTL model checking procedure on this graph, one can prove that one of these states is
reachable, hence proving that ϕ1 is true on A1.

5.3 Model-checking TCTL with subscript

Note that in TCTLint
c , it is not possible to reason about time evolution independently of the

level in which actions are performed. For example, properties (P2) the system is error free
for at least 50 t.u. or (P3) the system will reach a safe state within 7 t.u. involve global
time. In order to verify such properties, we introduce the fragment TCTLp . This fragment
is expressive enough to state constraints on earliest (and latest) execution time of particular
sequences, like those reaching a recovery state after a crash. TCTLp is the set of formulas
where satisfaction of an until modality over propositions can be parameterized by a restricted
form of time intervals.

Definition 10 Formulas of TCTLp are defined by the following grammar:

ϕp := p | ϕp ∧ ϕp | ¬ϕp and ψ := ψ ∧ ψ | ¬ψ | ϕp | AϕpU��aϕp | EϕpU��aϕp

Form Methods Syst Des

Fig. 10 The class automaton for A1 and formula ϕ1

where p ∈ AP is an atomic proposition, a ∈ Q
+, and ��∈ {>,≥,≤,<} is a comparison

operator.

The properties given in introduction can be expressed by TCTLp formulas as follows.
Property P 2: the system is error free for at least 50 t.u. corresponds to A(¬error)U≥50t,
while property P 3: the system will reach a safe state within 7 t.u. is expressed by AF≤7safe.

Formulas of TCTLp are again interpreted over configurations of the transition system
associated with an ITA. For configuration s = (q, v,β), with lab(s) = lab(q), the inductive

Form Methods Syst Des

definition is as follows:

s |= p iff p ∈ lab(s)

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

s |= ¬ϕ iff s �|= ϕ

s |= AϕpU��aψp iff any execution ρ ∈ Exec(s) is such that ρ |= ϕpU��aψp

s |= EϕpU��aψp iff there exists an execution ρ ∈ Exec(s) such that ρ |= ϕpU��aψp

where

ρ |= ϕpU��aψp iff there exists a position π along ρ such that Dur(ρ≤π) �� a,

sπ |= ψp, and for any position π ′ <ρ π, sπ ′ |= ϕp

Again A |= ψ if s0 |= ψ .
We now prove that:

Theorem 5 Model checking TCTLp on ITA is decidable.

The proof consists in establishing procedures dedicated to the four different subcases:

– EpU≤ar and EpU<ar (Proposition 6),
– EpU≥ar and EpU>ar (Proposition 7),
– ApU≥ar and ApU>ar (Proposition 8),
– ApU≤ar and ApU<ar (Proposition 9),

where p and r are boolean combinations of atomic propositions.

Proposition 6 Model checking formulas EpU≤ar and EpU<ar over ITA is decidable in
NEXPTIME and in NP if the number of clocks is fixed.

Proof First consider the case of ITA−. Both formulas are variants of reachability, with the
addition of a time bound. Therefore, the proof is similar to the one of Proposition 5. Again
using Lemma 2 on an ITA− with E transitions, we can look for a run satisfying one of these
formulas and bounded by B = (E + n)3n, because shortening longer runs can be can be
done while preserving the property. Thus, the decision procedure again consists in guessing
a path and building a linear program. The satisfaction of the formula is then checked by
separately verifying on one side that the run satisfies p U r , and on the other side, that the
sum of all delays dj satisfies the constraint in the formula. The complexity is the same as in
Proposition 5.

In the case of ITA, the exponential blowup of the transformation into an equivalent ITA−
does not affect the complexity of the model-checking procedure above, as in Theorem 2. �

Note that this problem can be compared with bounded reachability as studied in [17]. How-
ever, the models seem incomparable: while the variables (that have fixed non-negative rates
in a state) are more powerful than interrupt clocks, the guards and updates are rectangular,
which in particular forbids additive and diagonal constraints.

Proposition 7 Model checking a formula EpU≥ar and EpU>ar on an ITA is decidable in
NEXPTIME and in NP if the number of clocks is fixed.

Form Methods Syst Des

Proof Let A be an ITA− with n interrupt clocks and E transitions, and B = (E + n)3n. The
algorithm to decide whether EpU≥ar (or EpU>ar) works as follows. It nondeterministically
guesses a path of length smaller than or equal to B and builds the associated linear program
(as in the proof of Proposition 5), then checks that:

– this path yields a run, which can be done by solving the linear program;
– there is a position π in this run at which r holds and before which p holds continuously;
– the sum of delays before π exceeds a (or strictly exceed in the case of EpU>ar).

If this first procedure fails, the algorithm nondeterministically guesses a path of length
smaller or equal to 2B + 1 and checks that:

– this path yields a run, which can be checked by a linear program as before,
– p holds on this path, but not necessarily in the last state reached,
– r holds in the last state of this path,
– either there is a transition e of level k that updates xk appearing twice and separated by a

sequence σ of transitions of level higher than k during which time elapses (globally); this
last part can be checked with a linear program on the delays corresponding to this subrun,

– or there is a transition e of level k that does not update xk appearing twice and separated
by a sequence σ of transitions of level higher than k not updating xk during which time
elapses at levels strictly higher than k but not at level k.

The algorithm returns true if one of the previous procedure succeeds, and false otherwise.
We shall now prove that this algorithm is both sound and complete.

Soundness If the first procedure succeeds, then the path guessed is trivially a witness of
EpU≥ar (or EpU>ar , accordingly). If the second procedure succeeds, then a witness for the
formula can be built from the path guessed. Indeed, the path guessed satisfies p U r , but not
necessarily pU≥ar . Assume the sequence σ lets elapse δ time units (δ > 0), by repeating � a

δ
�

times2 the sequence σe, we obtain a run satisfying pU≥ar . Note that since either e updates
the clock xk or there are no updates nor time elapsing at level k, and σ happens at higher
levels, the clock values in each instance of σe will be identical, hence this repetition will
always be possible.

Completeness Now consider a minimal witness ρ of length h for EpU≥ar . Since ρ is
minimal, r holds in the last state of ρ and p holds (at least) in every position before. If
h ≤ B , then the first procedure will consider ρ. Otherwise, h > B , it means that one of the
following cases of Lemma 2 happens:

– The same transition e of level k leaving xk unchanged appears twice separated by lazy
or delayed transitions between states of level greater than or equal to k. In that case, the
corresponding subrun can be replaced by a time step of the same duration, not changing
the truth value of pU≥ar on this new smaller run, thus violating the minimality hypothesis.

– The same transition e of level k updating clock xk appears twice on the subrun e1 . . . eB+1,
at positions i and j . In that case we have to distinguish two subcases either some time has
elapsed between the two occurrences ei and ej of e, or the transitions were all instanta-
neous.
– If no time has elapsed, the subrun between ei and ej can be removed without altering

the truth value of pU≥ar on this new run, which is smaller than ρ. Hence there is a
contradiction with the minimality hypothesis.

2This sequence may be repeated once more in the case of pU>ar .

Form Methods Syst Des

– Or some time elapsed during this subrun. Let ρ be decomposed into ρ0eiσejρj . Then
by applying Lemma 2 to ρj there exists a run ρ ′

j of length smaller or equal to B such
that ρ ′ = ρ0eiσejρ

′
j is also a run. Note that |ρ ′| ≤ 2B + 1, that the last state of ρ ′ will

be the same as the last state of ρ hence will satisfy r , and that p will also hold along
ρ ′. As a result ρ ′ will be considered by the second procedure.

– The same transition e of level k leaving xk unchanged appears twice, with no time elapsing
at level k between these occurrences. In that case, we again distinguish two subcases:
– either no time elapsed (globally) the corresponding subrun can be removed, not chang-

ing anything to the rest of the execution nor to the satisfaction of pU≥ar , thus violating
the hypothesis of minimality of ρ;

– or time elapsed at higher levels and, by minimizing the subrun after the second occur-
rence as above, we deduce that the run will be considered by the second procedure.

The completeness proof is similar in the case of EpU>ar .
When A is an ITA, the exponential blowup of the transformation from ITA to ITA− does

not affect the above complexity. �

While a witness is a finite path in the previous cases, it is potentially infinite for ApU≥ar

or ApU>ar . The generation of an infinite run relies on the (nondeterministic) exploration of
the class graph built in Sect. 3, thus has a much greater computational complexity.

Proposition 8 Model checking a formula ApU≥ar and ApU>ar on an ITA is decidable in
2-EXPTIME and in co-NP if the number of clocks is fixed.

Proof We consider an ITA A with n interrupt clocks, E transitions and the bound B =
(n + 2)12b·E·n3

where b is the number of bits coding the constants in A.
The algorithm to verify ApU≥ar (or ApU>ar) works as follows. It nondeterministically

guesses a path of length smaller than or equal to B , builds its associated linear program, and
checks that:

– this path yields a run ρ (by solving the linear program);
– this path is maximal, that means no transition can be fired from the last configuration of

the run;
– there is a position π in ρ occurring at a time strictly less than3 a such that

Case 1: either r does not hold from π (see Fig. 11)
Case 2: or there is a position π ′ where neither p not r hold, and r does not hold between
π and π ′ (see Fig. 12).

If this first procedure fails, then the algorithm guesses:

Fig. 11 Proof of Proposition 8: finite counterexample (Case 1)

3Less than or equal to a in the case of ApU>ar .

Form Methods Syst Des

Fig. 12 Proof of Proposition 8: finite counterexample (Case 2)

– a class K and a cycle C starting from K in the class graph (without building neither the
graph nor the cycle), such that C contains at least a discrete step and only traverses classes
where ¬r holds;

– a path in the automaton of length smaller than or equal to the bound B;

and checks that:

– the path does yield a run ρ, that reaches a configuration (q, v,β) in class K (through a
linear program);

– there is a position π in ρ occurring at time strictly less than4 a after which r no longer
holds.

Remark that the procedure cannot use solely the class graph, since the abstraction is not
precise enough to check the existence of position π .

Soundness We prove that the algorithm is sound: when one of the procedures succeeds,
there exists a counterexample for formula ApU≥ar (or ApU>ar). In the case of the first
procedure, it is trivial that the guessed run does not satisfy pU≥ar (or pU>ar). In the case of
the second one, we show that there exists an infinite counterexample. Consider configuration
(q, v,β), which is reachable by ρ. Since (q, v,β) belongs to class K , for any path σ starting
from K in the class graph, there is a run in the automaton starting from (q, v,β) traversing
configurations which belong to the classes traversed by σ . Since there is a cycle in the class
graph, there is an infinite path in the class graph (iterating on this cycle), so there exists an
infinite run in the ITA. Also, since ¬r holds in the infinite path of the class graph, it holds
in the run of the ITA, and the run is a counterexample for the formula.

Completeness Assume there exists a finite counterexample ρ. Let A′ be the ITA− ac-
cepting the same timed language as A and let E′ denote the number of its transitions. Let
B ′ = (E′ + 2n)3n (the bound of Lemma 2), we have B ′ ≤ B . If |ρ| ≤ B , it will be detected
by procedure 1. Otherwise let ρ ′ be the run corresponding to ρ in A′. This run accepts
the same timed word as ρ and its sequence of traversed states can be projected onto the se-
quence of corresponding states of ρ, by omitting states of the form (q−,−): any subsequence
(q+

0 ,−) → ·· · → (q+
m−1,−) → (q−

m,−) → (q+
m,−) in ρ ′ corresponds to the subsequence

q0 → ·· · → qm−1 → qm in ρ. Note that |ρ| ≤ |ρ ′| and that ρ ′ is also a counterexample for
the formula (although in A′). Since |ρ ′| > B ≥ B ′, then one of the cases of case of Lemma 2
occurs. By removing transitions and maybe replacing them by some time elapsing, as in the
proof of Proposition 7, a counterexample σ ′ of size |σ ′| ≤ B ′ ≤ B exists in A′. Now con-
sider the run σ in A which corresponds to σ ′. We have |σ | ≤ |σ ′| ≤ B ′ ≤ B and σ is still a
counterexample. Therefore σ can be guessed by the first procedure.

If there exists an infinite counterexample ρ, consider its counterpart σ in the class graph.
This counterpart is also infinite. More precisely, σ contains an infinite number of discrete
transitions. Since σ traverses a finite number of classes, it contains a cycle C with at least
one discrete transition. Choose any class K of this cycle and consider the prefix ρ0 of ρ

4Less than or equal to a in the case of ApU>ar .

Form Methods Syst Des

leading to a configuration in K . As in the case of a finite counterexample, there exists ρ ′
0 of

length smaller than B reaching the same configuration. All C , K and ρ ′
0 can be guessed by

the second procedure, which will therefore succeed.
Procedure 1 operates in NEXPTIME (guessing a path of length B and solving a linear

program of size polynomial w.r.t. B). Procedure 2 consists in looking for a specific cycle in
the class graph which in can be done in time polynomial w.r.t. the size of the graph thus in
2-EXPTIME. The case where the clocks are fixed, is handled as usual. �

For formulas in case 4, a specific procedure can be avoided, since the algorithms of cases
2 and 3 can be reused:

Proposition 9 Model checking a formula ApU≤ar and ApU<ar on an ITA is decidable in
2-EXPTIME and in co-NP if the number of clocks is fixed.

Proof Notice that ApU≤ar = (ApU≥0r) ∧ ¬(E¬rU>at), and ApU<ar = (ApU≥0r) ∧
¬(E¬rU≥at). �

6 Language properties

In this section, we compare the expressive power of the previous models with respect to
language acceptance. Recall that TL is strictly contained in CRTL. We prove that:

Theorem 6 The families TL and ITL are incomparable. The families CRTL and ITL are
incomparable.

6.1 ITL is not contained in TL, nor in CRTL

The next proposition shows that ITA cannot be reduced to TA or CRTA. Observe that the
automata used in the proof belong to ITA−. Also, the language given for the first point of
the proposition is very simple since it contains only words of length 2.

Proposition 10

1. There exists a language in ITL whose words have bounded length which is not in TL.
2. There exists a language in ITL which is not in CRTL.

Proof To prove the first point, consider the ITA A3 in Fig. 13. Suppose, by contradiction,
that L3 = L(A3) is accepted by some timed automaton B (possibly with ε-transitions). Note
that since we consider timed languages, we cannot assume that the granularity of B is 1.
Let d be the granularity of B, i.e. the gcd of all rational constants appearing in the con-
straints of B (thus each such constant can be written k/d for some integer k). Then the word
w = (a,1 − 1/d)(b,1 − 1/2d) is accepted by B through a finite path. Consider now the
automaton B′ in TA, consisting of this single path (where states may have been renamed).
We have w ∈ L(B′) ⊆ L(B) = L3 and B′ contains no cycle. Using the result in [10], we
can build a timed automaton B′′ without ε-transition and with same granularity d such that
L(B′′) = L(B′), so that w ∈ L(B′′). The accepting path for w in B′′ contains two transitions:

p0
ϕ1,a,r1−−−→ p1

ϕ2,b,r2−−−→ p2. After firing the a-transition, all clock values are 1 − 1/d or 0, thus
all clock values are 1 − 1/2d or 1/2d when the b-transition is fired. Let x �� c be an atomic

Form Methods Syst Des

Fig. 13 An ITA A3 for L3

Fig. 14 An ITA A4 for L4

Fig. 15 A timed automaton A5 for L5

proposition appearing in ϕ2. Since the granularity of B′′ is d , the �� operator cannot be =
otherwise the constraint would be x = 1/2d or x = 1 − 1/2d . If the constraint is x < c,
x ≤ c, x > c, or x ≥ c, the path will also accept some word (a,1 − 1/d)(b, t) for some
t �= 1 − 1/2d . This is also the case if the constraint ϕ2 is true. We thus obtain a contradiction
with L(B′′) ⊆ L3, which ends the proof.

To prove the second point, consider the language:

L4 = {(c, τ)(c,2τ) . . . (c, nτ) | n ∈ N, τ > 0}

accepted by the ITA A4 in Fig. 14. This language cannot be accepted by a CRTA
(see [21]). �

6.2 TL is not contained in ITL

We now prove that there exists a language in TL that does not belong to ITL. Let L5 be the
language defined by

L5 = {
(a, τ1)(b, τ2) . . . (a, τ2p+1)(b, τ2p+2) | p ∈ N,

∀0 ≤ i ≤ p, τ2i+1 = i + 1 and i + 1 < τ2i+2 < i + 2,

∀1 ≤ i ≤ p τ2i+2 − τ2i+1 < τ2i − τ2i−1

}

Hence, the untimed language of L5 is (ab)∗, there is an occurrence of a at each time unit
and the successive occurrences of b come each time closer to the occurrence of a than
previously. This language is in TL as can be checked on the TA A5 of Fig. 15 (first proposed
in [2]).

Proposition 11 The language L5 does not belong to ITL.

Form Methods Syst Des

Proof Assume, by contradiction, that L5 belongs to ITL. Then L5 is accepted by an ITA−
A with n clocks and E transitions. Let B = (E + n)3n and consider the timed word w =
(a, τ1)(b, τ2) · · · (a, τ2B+1)(b, τ2B+2) ∈ L5. Word w is accepted by a run ρ of A, which can
be assumed of minimal size. However, we know that |ρ| > B , so one of the three cases of
Lemma 2 occurs in the B first transitions.

– Suppose a transition e of level k that updates xk appears twice, separated by a subrun σ of
level greater than or equal to k. Remark that the valuations after the first and the second
occurrence of e are identical. We distinguish several subcases, depending on the word
read along σe.
– If σe reads the empty word ε, we write δ for the time spent during σe. If δ = 0, then

σe can be deleted without affecting neither the remainder of the run nor the accepted
word, which contradicts the minimality of ρ. If δ ≥ 1, then some interval [i, i +1] does
not contain any b, which contradicts the definition of L5. Otherwise, 0 < δ < 1. By
deleting σe, we obtain an execution ρ ′ (accepted by A) in which the suffix after e is
shifted by δ. Therefore the following occurrence of letter a, which appeared in ρ at
date i ∈ N \ {0}, appears in ρ ′ at date i − δ which is not integral. So the word accepted
by ρ ′ is not in L5, which is a contradiction.

– If σe reads more as than bs or more bs than as, by deleting σe we obtain a run accept-
ing a word whose untiming is not in (ab)∗ thus does not belong to L5.

– If σe reads as many as as bs (and both letters at least once), by duplicating σe we
obtain a run accepting a word where a same duration separates an a from the following
b is repeated, thus violating the definition of L5.

– Suppose a transition e of level k delayed or lazy occurs twice, separated by a subrun σ of
level greater than or equal to k, such that σe does not update xk . Then we can replace eσ

by a time step of the same duration and obtain a new run ρ ′, accepted by A.
– If eσ reads ε, then ρ ′ contradicts the minimality of ρ.
– If eσ reads the word b, then ρ ′ accepts a word where a and b do not alternate, thus not

in L5.
– If eσ reads at least an a, then ρ ′ accepts a word with no a at a given integral date,

therefore not in L5.
– Otherwise, a transition e of level k appears twice separated by a subrun σ of level greater

than or equal to k, such that σe does not update xk nor lets time elapse at level k. The
same disjunction as in the case of an update of xk can be applied, since σe can either be
deleted or duplicated.

�

Note that the feature preventing L5 to be in ITL lies in the decreasing delays between the
a’s and their immediately following b. A language in ITL can record k different constant
delays, using k + 1 clocks. For instance on the alphabet Σ = {a1, . . . , ak}, the language

Mk = {(a1, τ1) . . . (ak, τk)(a1, τ1 + 1) . . . (ak, τk + 1) . . . (a1, τ1 + n) . . . (ak, τk + n)

| n ≥ 1, τ1 ≤ τ2 ≤ · · · ≤ τk ≤ τ1 + 1}
is accepted by an ITA− with k + 1 clocks. Figure 16 illustrates the case where k = 3, with
all states lazy. We conjecture that Mk cannot be accepted by an ITA with k clocks.

6.3 Closure under complementation and intersection

Proposition 12 ITL is not closed under complementation.

Form Methods Syst Des

Fig. 16 An interrupt timed automaton for M3

Proof We prove that the complement Lc
5 of L5 belongs to ITL. A timed word belongs to Lc

5
iff one of the following assertions hold:

1. An a occurs not at a time unit.
2. An a is missing at some time unit that precedes some letter of the word.
3. A b occurs at a time unit.
4. There is no b in an interval [i, i + 1] with an a at time i ∈ N.
5. There are two bs in an interval [i, i + 1] with an a at time i ∈ N.
6. There is an occurrence of abab such that the time difference between the two first occur-

rences is smaller than or equal to the time difference between the two last occurrences.

Since ITL is trivially closed under union, it is enough to prove that each assertion from the
set above can be expressed by an ITA. The five first assertions are straightforwardly modeled
by an ITA with a single clock (and ε-transitions) and we present in Fig. 17 an ITA with two
clocks corresponding to the last one. �

Proposition 13 ITL is not closed under intersection.

Proof L5 is the intersection of L′
5 and L′′

5 defined as follows:

– The words of L′
5 are (a,1)(b, τ1) . . . (a, n)(b, τn), with i < τi < i + 1 for all i, 1 ≤ i ≤ n.

– The words of L′′
5 are (a, τ ′

1)(b, τ1) . . . (a, τ ′
n)(b, τn), with τi+1 − τi < 1 for all i, 1 ≤ i ≤

n − 1.

Fig. 17 An ITA for the language defined by assertion 6

Form Methods Syst Des

Both languages are accepted by one-clock ITA (which are also one-clock TA). In case of
L′

5, (1) the clock is reset at every occurrence of an a; (2) an a must occur when the clock
is 1 and (3) a single b must occur when the clock is in (0,1). In case of L′′

5 , (1) the clock is
reset at every occurrence of a b (2) a b must occur when the clock is less than 1 except for
the first b and (3) a single a must occur before every occurrence of a b. �

7 Combining ITA with CRTA

In the previous section, we proved that the class of languages defined by ITA and CRTA are
incomparable. Here we provide a class containing both ITL and CRTL. In order to do so,
we combine the models of ITA with CRTA.

7.1 An undecidable product

The first kind of combination possible is through synchronized product between an ITA and
a CRTA. However, this turns out to be a too powerful model, since combining even a TA
with an ITA yields the undecidability of the reachability problem.

Definition 11 If I = 〈Σ,QI , qI
0 ,FI ,polI ,X,λI ,ΔI 〉 is an ITA (propositional variables

and labeling are omitted) and T = 〈Σ,QT , qT
0 ,FT , Y,ΔT 〉 is a TA, then I × T = 〈Σ,QI ×

QT , (qI
0 , qT

0),F,pol,X,Y,λ,Δ〉 is an ITA × TA where:

– pol(qI , qT) = polI (qI) and λ(qI , qT) = λI (qI) are lifted from the ITA

– if qI
ϕ,a,u−−→ q ′

I ∈ ΔI and qT
ψ,a,v−−−→ q ′

T ∈ ΔT , then

(qI , qT)
ϕ∧ψ,a,u∧v−−−−−−→ (q ′

I , q ′
T) ∈ Δ

The semantics of an ITA × TA is a transition system over configurations
{
(q, v,w,β) | q ∈ Q,v ∈ R

X,w ∈ R
Y , β ∈ {�,⊥}}

Discrete steps are defined analogously as in ITA (see Definition 2). In time steps, clocks of X

evolve as in an ITA and clocks of Y as in a TA. More precisely, a time step of duration d > 0

is defined by (q, v,w,β)
d−→ (q, v′,w′,�) where v′(xλ(q)) = v(xλ(q)) + d and v′(x) = v(x)

for any other clock x ∈ X, and w′(y) = w(y) + d for y ∈ Y .

Theorem 7 Reachability is undecidable in the class ITA×TA.

Proof (Sketch) The proof consists in encoding a two counter machine into an ITA×TA. Two
classical clocks {yc, yd} will keep the value of the counters by retaining a value 1 − 1

2n to
encode n. Three interrupt clocks are used to change the value of the classical clocks through
appropriate resets. The ITA × TA is defined through basic modules, corresponding to the
four possible actions (incrementation or decrementation of c or d). Each module is itself
composed of submodules: the first one compares the value of c to the one of d . The other
one performs the action, but depends on the order between c and d .

For example, the submodule incrementing c when c ≥ d is depicted in Fig. 18. In this
module, the value5 of classical clocks is copied into interrupt clocks, updated thanks to linear

5Or rather the complement to 1 of the value.

Form Methods Syst Des

Fig. 18 Module Ac++
c≥d

(�, �′) incrementing the value of c when c ≥ d

Table 3 Clock values in the unique run of Ac++
c≥d

(�, �′). Irrelevant values of interrupt clocks are greyed

(�, r1,>)

yc = 1 − 1
2n

yd = 1 − 1
2p

x1 = 0

x2 = 0

x3 = 0

1
2n−→

(�, r1,>)

yc = 1

yd = 1 − 1
2p + 1

2n

x1 = 1
2n

x2 = 0

x3 = 0

b1
�−→

(�, r2,>)

yc = 1

yd = 1 − 1
2p + 1

2n

x1 = 1
2n

x2 = 0

x3 = 0

b2
�−→

(�, r3,>)

yc = 1

yd = 1 − 1
2p + 1

2n

x1 = 1
2n

x2 = 1
2n

x3 = 0

1
2p − 1

2n−−−−−→

(�, r3,>)

yc = 1 + 1
2p − 1

2n

yd = 1

x1 = 1
2n

x2 = 1
2p

x3 = 0

b3
�−→

(�, r4,>)

yc = 0

yd = 1

x1 = 1
2n

x2 = 1
2p

x3 = 0

1
2p − 1

2n+1−−−−−−−→

(�, r4,>)

yc = 1
2p − 1

2n+1

yd = 1 + 1
2p − 1

2n+1

x1 = 1
2n

x2 = 1
2p

x3 = 1
2p − 1

2n+1

b4
�−→

(�, r5,>)

yc = 1
2p − 1

2n+1

yd = 0

x1 = 1
2n

x2 = 1
2p

x3 = 1
2p − 1

2n+1

1− 1
2p−→

(�, r5,>)

yc = 1 − 1
2n+1

yd = 1 − 1
2p

x1 = 1
2n

x2 = 1
2p

x3 = 1 − 1
2n+1

b5
�−→

�′
yc = 1 − 1

2n+1

yd = 1 − 1
2p

x1 = 1
2n

x2 = 0

x3 = 0

updates allowed by ITA. the new values are copied into classical clocks by resetting them
at the appropriate moment. The valuations of clocks during an execution of this module are
given in Table 3.

Note that the policies are used in this product but they could be replaced by classical
clocks.

The detailed proof can be found in Appendix B. �

Form Methods Syst Des

Other proofs of undecidability for hybrid systems mixing clocks and stopwatches have
been developed (see for instance [25, Theorem 4.1] for a construction with a single stop-
watch and 5 clocks). While this construction could have been adapted to our setting, this
would have led to an ITA × TA with 5 classical clocks and 2 interrupt clocks.

7.2 A decidable product of ITA and CRTA: ITA+

We define another synchronized product between ITA and CRTA, in the spirit of multi-level
systems, for which reachability is decidable. This class, denoted by ITA+, includes a set of
clocks at an implicit additional level 0, corresponding to a basic task described as in a CRTA.
In the definition below, since no confusion can occur, we aggregate the coloring function of
CRTA and the level function of ITA, into a single function λ.

Definition 12 (ITA+) An extended interrupt timed automaton is a tuple A = 〈Q,q0,
F,pol,X � Y,Σ,Ω,λ,up, low, vel,Δ〉, where:

– Q is a finite set of states, q0 is the initial state and F ⊆ Q is the set of final states.
– pol : Q �→ {L,U,D} is the timing policy of states.
– X = {x1, . . . , xn} consists of n interrupt clocks and Y is a set of basic clocks.
– Σ is a finite alphabet.
– Ω is a set of colors, the mapping λ : Q � Y �→ {1, . . . , n} � Ω associates with each state

its level or its color, with xλ(q) the active clock in state q for λ(q) ∈ N and λ(y) ∈ Ω for
y ∈ Y . For every state q ∈ λ−1(Ω), the policy is pol(q) = L.

– up and low are mappings from Y to Q with the same constraints as CRTA (see Defini-
tion 4), and vel : Q �→ Q is the clock rate with λ(q) /∈ Ω ⇒ vel(q) = 1.

– Δ ⊆ Q×[C(X ∪Y)× (Σ ∪ {ε})× U (X ∪Y)]×Q is the set of transitions. Let q
ϕ,a,u−−→ q ′

in Δ be a transition.

1. The guard ϕ is of the form ϕ1 ∧ϕ2 with the following conditions. If λ(q) ∈ N, ϕ1 is an
ITA guard on X and otherwise ϕ1 = true. Constraint ϕ2 is a CRTA guard on Y (also
possibly equal to true).

2. The update u is of the form u1 ∧ u2 fullfilling the following conditions. Assignments
from u1 update the clocks in X with the constraints of ITA when λ(q) and λ(q ′) belong
to N. Otherwise it is a global reset of clocks in X. Assignments from u2 update clocks
from Y , like in CRTA.

Any ITA can be viewed as an ITA+ with Y empty and λ(Q) ⊆ {1, . . . , n}, and any CRTA
can be viewed as an ITA+ with X empty and λ(Q) ⊆ Ω . Class ITA+ combines both models
in the following sense. When the current state q is such that λ(q) ∈ Ω , the ITA part is
inactive. Otherwise, it behaves as an ITA but with additional constraints about clocks of the
CRTA involved by the extended guards and updates. The semantics of ITA+ is defined as
usual but now takes into account the velocity of CRTA clocks.

Definition 13 (Semantics of ITA+) The semantics of an automaton A in ITA+ is defined by
the transition system T A = (S, s0,→). The set S of configurations is {(q, v) | q ∈ Q, v ∈
R

X∪Y , β ∈ {�,⊥}}, with initial configuration (q0,0,⊥). An accepting configuration of T A
is a pair (q, v) with q in F . The relation → on S consists of time steps and discrete steps,
the definition of the latter being the same as before:

Form Methods Syst Des

Fig. 19 An automaton for login in ITA+

Time steps. Only the active clocks in a state can evolve, all other clocks are suspended. For
a state q with λ(q) ∈ N (the active clock is xλ(q)), a time step of duration d > 0 is defined

by (q, v,β)
d−→ (q, v′,�) with v′(xλ(q)) = v(xλ(q))+d and v′(x) = v(x) for any other clock

x. For a state q with λ(q) ∈ Ω (the active clocks are Y ′ = Y ∩ λ−1(λ(q))), a time step of

duration d > 0 is defined by (q, v,β)
d−→ (q, v′,�) with v′(y) = v(y) + vel(q)d for y ∈ Y ′

and v′(x) = v(x) for any other clock x. In all states, time steps of duration d = 0 leave the
system T A in the same configuration. When pol(q) = U , only time steps of duration 0 q

are allowed.
Discrete steps. A discrete step (q, v)

a−→ (q ′, v′) occurs if there exists a transition q
ϕ,a,u−−→ q ′

in Δ such that v |= ϕ and v′ = v[u]. When pol(q) = D and β = ⊥, discrete steps are
forbidden.

In order to illustrate the interest of the combined models, an example of a (simple) login
procedure is described in Fig. 19 as a TA with interruptions at a single level.

First it immediately displays a prompt and arms a time-out of 1 t.u. handled by clock y

(transition init
p−→ wait). Then either the user answers correctly within this delay (transition

wait
ok−→ log) or he answers incorrectly or let time elapse, both cases with transition wait

er−→
init, and the system prompts again. The whole process is controlled by a global time-out of 6

t.u. (transition wait
to−→ out) followed by a long suspension (50 t.u.) before reinitializing the

process (transition out
rs−→ init). Both delays are handled by clock z. At any time during the

process (in fact in state wait), a system interrupt may occur (transition wait
i−→ I). If the time

spent (measured by clock x1) during the interrupt is less than 3 t.u. or the time already spent

by the user is less than 3 t.u., the login process resumes (transition I
cont−−→ init). Otherwise the

login process is reinitialized allowing again the 6 t.u. (transition I
rs−→ init). In both cases, the

prompt will be displayed again. Since invariants are irrelevant for the reachability problem
we did not include them in the models. Of course, in this example state wait should have
invariant y ≤ 1 ∧ z ≤ 6 and state out should have invariant z ≤ 50.

We extend the decidability and complexity results of the previous models when com-
bining them with CRTA. Class ITA+

− is obtained in a similar way by combining ITA− with
CRTA.

Form Methods Syst Des

Proposition 14

1. The reachability problem for ITA+
− is decidable in NEXPTIME and is PSPACE-complete

when the number of interrupt clocks is fixed.
2. The reachability problem for ITA+ is decidable in NEXPTIME and is PSPACE-complete

when the number of interrupt clocks is fixed.

Proof Case of ITA+
−. Let A = 〈Q,q0,F,pol,X � Y,Σ,Ω,λ,up, low, vel,Δ〉 be an ITA+

−,
with n = |X| the number of ITA clocks, p = |Y | the number of CRTA clocks and E = |Δ|
the number of transitions.

We first consider the reachability problem for two states qi and qf on the CRTA level
(with λ(qi) ∈ Ω and λ(qf) ∈ Ω). The procedure consists in performing a non deterministic
search along an elementary path where the vertices are graph classes of the CRTA. Let (q,Z)

be the current class, the procedure chooses non deterministically the next class (q ′,Z′) and
checks that there exists a configuration of (q,Z) and an execution only through states q ′′

with λ(q ′′) ∈ N that leads to a configuration of (q ′,Z′). This is solved as previously by non
deterministically choosing an execution path, building a linear program related to the path
(of exponential size) and solving it. Let us prove that such a path can be chosen whose length
is in O(p(E + 2n)3n).

Assume that there is a run π from (q, v) ∈ (q,Z) to some configuration (q ′, v′) ∈ (q ′,Z′)
such that all intermediate states q ′′ are such that λ(q ′′) ∈ N. We say that a transition e of π

usefully resets a clock y ∈ Y if it is the first transition of π that resets y. Observe that there
are at most p useful resetting transitions and that between two such successive transitions
(or before the first one or after the last one) the value of the clocks of Y are unchanged when
transitions are fired.

We consider a subrun ρ between two such successive transitions (or before the first one
or after the last one) from (q1, v1) to (q2, v2), with mk the number of transitions of level k.

Using Lemma 2, we build a subrun ρ ′ from (q1, v1) to (q2, v2) of length smaller than (E+
2n)3n. Concatenating the subruns, the useful resetting transitions and the initial transition,
one obtains a run π ′ from (q, v) to (q ′, v′) of length in O(p(E + 2n)3n).

The key point ensuring correctness of the procedure is that the existence of a solution
depends only on the starting class (q,Z) and not on the configuration inside this class.
This is due to the separation of guards and updates between the two kinds of clocks on the
transitions.

When state qi (resp. qf) is not at the basis level, the procedure adds an initial (resp. final)
guess also checked by a linear program. When the number of clocks is fixed the dominant
factor is the path search in the class graph and PSPACE hardness follows from the result in
TA.

Case of ITA+ We transform the ITA part of the automaton in ITA− via the procedure of
Proposition 3 and apply the procedure for ITA+

−. �

It is also possible to build a class graph for ITA+, combining a class graph for ITA and a
region graph for TA. This yields the regularity of the untimed language of an ITA+, hence
the strict inclusion in the languages accepted by a stopwatch automaton.

Let ITL+ be the family of timed languages defined by ITA+. The class ITL+ syntactically
contains ITL ∪ CRTL. We can however have a stronger result:

Proposition 15 The class ITL+ strictly contains ITL ∪ CRTL.

Form Methods Syst Des

Fig. 20 Expressiveness of several timed formalisms with respect to timed languages

Proof Recall ITA A4 of Fig. 14, whose language L4 is not in CRTL, and let Q4 be its set of
states. Also recall TA A5 of Fig. 15, whose language L5 is not in ITL, with set of states Q5.
Let A4 ⊗ A5 be the ITA+ having A5 at level 0 and A4 at levels 1 and 2.

Formally, A4 ⊗ A5 has set of states Q4 ∪ Q5, which are all lazy. Interrupt clocks of
A4 ⊗ A5 are {x1, x2} (active according to A4). Its basic clocks are {z, y} of velocity 1. Both
have the same color as states of Q5. The bounding functions up (resp. low) map both z and
y to 1 (resp. 0). Transitions of A4 ⊗ A5 are the ones of A4 and A5, adding an unguarded,
unlabeled transition from A5’s final state to A4’s initial one.

A4 ⊗ A5 accepts timed words which start with an alternation of as and bs, with the b

drawing always closer to its preceding a (as in A5), and then contains only cs separated by
the same amount of time (as in A4). Since both CRTL and ITL are closed under projection,
L(A4 ⊗ A5) cannot be accepted by a CRTA nor an ITA. �

8 Conclusion

In this paper, we introduced and studied the model of Interrupt Timed Automata. This model
is useful to represent timed systems with tasks organized over priority levels.

While ITA fall into the more general class of hybrid systems, the reachability problem is
proved decidable for this subclass. For ITA, the reachability is in NEXPTIME, and PTIME
when the number of clocks is fixed by building a class graph. Similar constructions yield
decidability of the reachability problem on an extension of ITA where the lowest priority
level can behave as a Controlled Real-Timed Automata. It also yields procedure for model
checking CTL∗ formulas and timed CTL formulas constraining only the clocks of the system.
Another fragment of interest was identified in timed CTL as decidable: the one where the
only time constraints concern global earliest or latest execution times. On the other hand,
model checking the linear time logic SCL is proved undecidable on ITA, implying that this
is also the case for MITL.

On the expressiveness point of view, the class ITL is proved incomparable with both TL
and CRTL, and is neither closed under complementation nor intersection. The expressive-

Form Methods Syst Des

ness results are summed up in Fig. 20, where the grey zone represents undecidability of the
reachability problem.

Several problems remain open on the class of ITA. First of all, the effect of having both
(limited) stopwatches and linear expressions in guards is combined in ITA, and it is not
known which is the cause of the undecidability results presented in this paper. For instance,
the undecidability of SCL may not hold without the possibility of complex updates. More
generally, the expressive power of the subclass of ITA restricted with rectangular guards
(x + b �� 0) and only resets (x := 0) should be investigated. Also, it is conjectured that
the class of ITA with n + 1 clocks is strictly more expressive than the class of ITA with
n clocks. Regarding model-checking, the undecidability of full TCTL remains to be es-
tablished. Finally, complexity bounds presented in this paper are only upper-bounds, and
matching lower-bounds are still missing.

Acknowledgements The authors would like to thank the anonymous reviewers for their insightful com-
ments. This work was supported by projects DOTS (ANR-06-SETI-003, French government), IMPRO (ANR-
2010-BLAN-0317, French government) and COCHAT (Digiteo 2009-27HD, Région Île de France).

Appendix A: Proof of Theorem 4

Let ϕ be a formula in TCTLint
c and A an ITA with n levels and E transitions. Like in Sect. 3,

the proof relies on the construction of a finite class graph. The main difference is in the
computation of the n sets of expressions E1, . . . ,En. Like before, each set Ek is initialized
to {xk,0} and expressions in this set are those which are relevant for comparisons with the
current clock at level k. In this case, they include not only guards but also comparisons with
the constraints from the formula. Recall that the sets are computed top down from n to 1,
using the normalization operation.

– At level k, we may assume that expressions in guards of an edge leaving a state are of the
form αxk + ∑

i<k aixi + b with α ∈ {0,1}. We add −∑
i<k aixi − b to Ek .

– To take into account the constraints of formula ϕ, we add the following step: For each
comparison C �� 0 in ϕ, and for each k, with norm(C, k) = αxk + ∑

i<k aixi + b (α ∈
{0,1}), we also add expression −∑

i<k aixi − b to Ek .
– Then we iterate the following procedure until no new term is added to any Ei for

1 ≤ i ≤ k.

1. Let q
ϕ,a,u−−→ q ′ with λ(q ′) ≥ k and λ(q) ≥ k. If C ∈ Ek , then we add C[u] to Ek .

2. Let q
ϕ,a,u−−→ q ′ with λ(q ′) ≥ k and λ(q) < k. For C,C ′ ∈ Ek , we compute C ′′ =

norm(C[u] − C ′[u], λ(q)). If C ′′ = αxλ(q) + ∑
i<λ(q) aixi + b with α ∈ {0,1}, then

we add −∑
i<λ(q) aixi − b to Eλ(q).

The proof of termination for this construction is similar to the one in Sect. 3.
We now consider the transition system GA whose set of configurations are the classes

R = (q, {�k}1≤k≤λ(q)), where q is a state and �k is a total preorder over Ek . The class
R describes the set of valuations �R� = {(q, v) | ∀k ≤ λ(q) ∀(g,h) ∈ Ek, g[v] ≤ h[v] iff
g �k h}. The set of transitions is defined as in Sect. 3. The transition system GA is again
finite and time abstract bisimilar to T A . Moreover, the truth value of each comparison C =∑

i≥1 ai · xi + b �� 0 appearing in ϕ can be set for each class R. Indeed, since for every k,

both 0 and
∑k−1

i≥1 ai · xi + b are in the set of expressions Ek , the truth value of C �� 0 does
not change inside a class. Therefore, introducing a fresh propositional variable qC for the

Form Methods Syst Des

constraint C �� 0, each class R can be labelled with a truth value for each qC . Deciding the
truth value of ϕ can then be done by a classical CTL model-checking algorithm on GA .

The complexity of the procedure is obtained by bounding the number of expressions for
each level k by (E+|ϕ|+2)2n(n−k+1)+1, and applying the same reasoning as for Proposition 2.

Appendix B: Proof of Theorem 7

We build an automaton in ITA×TA which simulates a deterministic two counter machine
M (as in proof of Theorem 3).

Let LM be the set of labels of M. The automaton AM = 〈Σ,Q,q0,F,pol,X ∪Y,λ,Δ〉
is built to reach its final location Halt if and only if M stops. It is defined as follows:

– Σ consists of one letter per transition.
– Q = LM ∪ (LM × {k0}) ∪ (LM × {k1, k2, r1, . . . , r5} × {>,<}), q0 = �0 (the initial in-

struction of M) and F = {Halt}.
– pol : Q → {Urgent,Lazy,Delayed} is such that pol(q) = Urgent iff either q ∈ LM or

q = (�, q2,��), and pol(q) = Lazy in most other cases: some states (�, ki,��) are Delayed,
as shown on Figs. 21 and 22.

– X = {x1, x2, x3} is the set of interrupt clocks and Y = {yc, yd} is the set of standard clocks
with rate 1.

– λ : Q → {1,2,3} is the interrupt level of each state. All states in LM and LM ×{k0, k1, k2}
are at level 1; so do all states corresponding to r1. States corresponding to r2 and r3 are in
level 2, while the ones corresponding to r4 and r5 are in level 3.

– Δ is defined through basic modules in the sequel.

The transitions of AM are built within small modules, each one corresponding to one
instruction of M. The value n of c (resp. p of d) in a state of LM is encoded by the value
1 − 1

2n of clock yc (resp. 1 − 1
2p of yd).

The idea behind this construction is that for any standard clock y, it is possible to “copy”
the value of k −y in an interrupt clock xi , for some constant k, provided the value of y never
exceeds k. To achieve this, we start and reset the interrupt clock, then stop it when y = k.
Note that by the end of the copy, the value of y has changed. Conversely, in order to copy
the content of an interrupt clock xi into a clock y, we switch from level i to level i + 1 and
reset y at the same time. When xi+1 = xi , the value of y is equal to the value of xi . Remark
that the form of the guards on xi+1 allows us to copy the value of a linear expression on
{x1, . . . , xi} in y.

For instance, consider an instruction labeled by � incrementing c then going to �′, with the
respective values n of c and p of d , from a configuration where n ≥ p. The corresponding
module Ac++

c≥d (�, �′) is depicted on Fig. 18 (see main text). In this module, interrupt clock
x1 is used to record the value 1

2n while x2 keeps the value 1
2p . Assuming that yc = 1 − 1

2n ,
yd = 1 − 1

2p and x1 = 0 in state (�, r1,>), the unique run in Ac++
c≥d (�, �′) will end in state

�′ with yc = 1 − 1
2n+1 and yd = 1 − 1

2p . The intermediate clock values are shown in Table 3
(see main text).

The module on Fig. 18 can be adapted for the case of decrementing c by just changing the
linear expressions in guards for x3, provided that the final value of c is still greater than the
one of d . It is however also quite easy to adapt the same module when n < p: in that case we
store 1

2p in x1 and 1
2n in x2, since yd will reach 1 before yc . We also need to start yd before yc

when copying the adequate values in the clocks. The case of decrementing c while n ≤ p is
handled similarly. In order to choose which module to use according to the ordering between

Form Methods Syst Des

Fig. 21 Module taking into account the order between the values of c and d when incrementing c

Fig. 22 Module taking into account the order between the values of c and d when decrementing c

the values of the counters, we use the modules of Figs. 21 and 22. Figure 21 represents the
case when at label � we have an increment of c whereas Fig. 22 represents the case when �

corresponds to decrementing c. In that last case the value of c is compared not only to the
one of d , but also to 0, in order to know which branch of the if instruction is taken. Note that
only one of the branches can be taken until the end.6 Instructions involving d are handled in
a symmetrical way.

Automaton AM is obtained by joining the modules described above through the states
of LM . Let us prove that automaton AM simulates the two counter machine M, so that M
halts iff AM reaches the Halt state.

Let 〈�0,0,0〉〈�1, n1,p1〉 . . . 〈�i, ni,pi〉 . . . be a run of M. We show that this run is simu-
lated in AM by the run 〈l0,0〉ρ0〈l1, v1〉ρ1 . . . where ρi is either empty or a subrun through
states in {(�i, rj ,��) | j ∈ {1, . . . ,5},��∈ {>,<}} (i.e. subruns in modules like Ac++

c≥d of
Fig. 18). Moreover, it will be the case that

∀i, vi(yc) = 1 − 1

2ni
and vi(yd) = 1 − 1

2pi

This holds at the beginning of the execution of AM . Suppose that we have simulated the
subrun up to 〈�i, ni,pi〉. Then we are in state �i , with clock yc being 1− 1

2ni
and yd being 1−

6State policies are used to treat the special cases, e.g. yc = yd = 0.

Form Methods Syst Des

1
2pi

. The next configuration of M, 〈�i+1, ni+1,pi+1〉, depends on the content of instruction
�i , and so does the outgoing transitions of state �i in AM . We consider the case where �i

decrements c and goes to �′ if c is greater than 0 and goes to �′′ otherwise, the other ones
being similar. We are therefore in the case of Fig. 22. If ni = 0, the next configuration of
M will be 〈�′′, ni,pi〉. Conversely, in AM , if ni = 0 then yc = 0, and there is no choice
but to enter �′′, leaving all clock values unchanged (because �i is an Urgent state). The
configuration of AM thus satisfies the property. If ni > 0, the next configuration of M will
be 〈�′, ni − 1,pi〉. In AM , the transition chosen is the one that corresponds to the ordering
between ni and pi . In both cases, similarly to the example of Ac++

c≥d (�, �′), the run reaches
state �′ with yc = 1 − 1

2ni−1 and yd as before, thus preserving the property. Hence M halts
iff AM reaches the Halt state.

The automaton AM is indeed the product of an ITA I and a TA T , synchronized on
actions. Observe that in all the modules described above, guards never mix a standard clock
with an interrupt one. Since each transition has a unique label, keeping only guards and
resets on either the clocks of X or on those of Y yields an ITA and a TA whose product is
AM .

References

1. Aceto L, Burgueño A, Larsen KG (1998) Model checking via reachability testing for timed automata.
In: Proceedings of the 4th international conference on tools and algorithms for construction and analysis
of systems (TACAS’98). Lecture notes in computer science, vol 1384. Springer, London, pp 263–280

2. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235
3. Alur R, Courcoubetis C, Dill DL (1993) Model-checking in dense real-time. Inf Comput 104:2–34
4. Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine S

(1995) The algorithmic analysis of hybrid systems. Theor Comput Sci 138:3–34
5. Alur R, Feder T, Henzinger TA (1996) The benefits of relaxing punctuality. J ACM 43(1):116–146
6. Asarin E, Maler O, Pnueli A (1995) Reachability analysis of dynamical systems having piecewise-

constant derivatives. Theor Comput Sci 138(1):35–65
7. Asarin E, Schneider G, Yovine S (2007) Algorithmic analysis of polygonal hybrid systems, part I: Reach-

ability. Theor Comput Sci 379(1–2):231–265
8. Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL. In: Formal methods for the design of

real-time systems (SFM-RT’04). Lecture notes in computer science, vol 3185. Springer, Berlin, pp 200–
236

9. Bérard B, Haddad S (2009) Interrupt timed automata. In: Proceedings of the 12th international confer-
ence on foundations of software science and computation structures (FoSSaCS’09). Lecture notes in
computer science, vol 5504. York, GB. Springer, Berlin (March 2009), pp 197–211

10. Bérard B, Petit A, Diekert V, Gastin P (1998) Characterization of the expressive power of silent transi-
tions in timed automata. Fundam Inform 36(2–3):145–182

11. Bérard B, Haddad S, Sassolas M (2010) Real time properties for interrupt timed automata. In: Markey
N, Wisjen J (eds) Proceedings of the 17th international symposium on temporal representation and rea-
soning (TIME’10). IEEE Computer Society, Washington (September 2010), pp 69–76

12. Bouyer P (2004) Forward analysis of updatable timed automata. Form Methods Syst Des 24(3):281–320
13. Bouyer P, Chevalier F, Markey N (2005) On the expressiveness of TPTL and MTL. In: Proceedings of the

25th conference on foundations of software technology and theoretical computer science (FSTTCS’05).
Lecture notes in computer science, vol 3821. Springer, Berlin (December 2005), pp 432–443

14. Bouyer P, Brihaye Th, Jurdziński M, Lazić R, Rutkowski M (2008) Average-price and reachability-
price games on hybrid automata with strong resets. In: Cassez F, Jard C (eds) Proceedings of the 6th
international conference on formal modelling and analysis of timed systems (FORMATS’08), Saint-
Malo, France. Lecture notes in computer science, vol 5215. Springer, Berlin (September 2008), pp 63–
77

15. Bozga M, Daws C, Maler O, Olivero A, Tripakis S, Yovine S (1998) KRONOS: A model-checking tool
for real-time systems. In: FTRTFT, pp 298–302

16. Brihaye T, Bruyère V, Raskin JF (2006) On model-checking timed automata with stopwatch observers.
Inf Comput 204(3):408–433

Form Methods Syst Des

17. Brihaye T, Doyen L, Geeraerts G, Ouaknine J, Raskin JF, Worrell J (2010) On reachability for hybrid
automata over bounded time. In: Aceto L, Henzinger M, Sgall J (eds) Proceedings (part II) of the 38th
international colloquium on automata, languages and programming (ICALP’11). Lecture notes in com-
puter science, vol 6756. Springer, Berlin (July 2011), pp 416–427

18. Cassez F, Larsen KG (2000) The impressive power of stopwatches. In: Palamidessi C (ed) Proceedings
of the 11th international conference on concurrency theory (CONCUR’00). Lecture notes in computer
science, vol 1877. Springer, Berlin, pp 138–152

19. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A
(2002) NuSMV version 2: An opensource tool for symbolic model checking. In: Proceedings of the 14th
international conference on computer aided verification (CAV’02). Lecture notes in computer science,
vol 2404. Springer, Berlin, pp 241–268

20. Courcoubetis C, Yannakakis M (1992) Minimum and maximum delay problems in real-time systems.
Form Methods Syst Des 1(4):385–415

21. Demichelis F, Zielonka W (1998) Controlled timed automata. In: Sangiorgi D, de Simone R (eds) Pro-
ceedings of the 9th international conference on concurrency theory (CONCUR’98). Lecture notes in
computer science, vol 1466. Springer, London, pp 455–469

22. Emerson EA, Halpern JY (1982) Decision procedures and expressiveness in the temporal logic of
branching time. In: Proc 14th annual ACM symp on theory of computing (Stoc’82). ACM, New York,
pp 169–180

23. Fersman E, Krcal P, Pettersson P, Yi W (2007) Task automata: Schedulability, decidability and undecid-
ability. Inf Comput 205(8):1149–1172

24. Henzinger TA, Nicollin X, Sifakis J, Yovine S (1994) Symbolic model checking for real-time systems.
Inf Comput 111(2):193–244

25. Henzinger TA, Kopke PW, Puri A, Varaiya P (1998) What’s decidable about hybrid automata? J Comput
Syst Sci 57(1):94–124

26. Kesten Y, Pnueli A, Sifakis J, Yovine S (1999) Decidable integration graphs. Inf Comput 150(2):209–
243

27. Koymans R (1990) Specifying real-time properties with metric temporal logic. Real-Time Syst 2:255–
299

28. Lafferriere G, Pappas GJ, Yovine S (1999) A new class of decidable hybrid systems. In: Proceedings of
hybrid systems: Computation and control. Lecture notes in computer science, vol 1569. Springer, Berlin,
pp 137–151

29. Lafferriere G, Pappas GJ, Yovine S (2001) Symbolic reachability computation for families of linear
vector fields. J Symb Comput 32(3):231–253

30. Maler O, Manna Z, Pnueli A (1992) From timed to hybrid systems. In: Rozenberg G, de Roever WP,
Huizing C, de Bakker JW (eds) Real-time: theory in practice, REX workshop. Lecture notes in computer
science, vol 600. Springer, Berlin, pp 447–484

31. McManis J, Varaiya P (1994) Suspension automata: A decidable class of hybrid automata. In: Proceed-
ings of the 6th international conference on computer aided verification (CAV’94). Springer, London,
pp 105–117

32. Minsky ML (1967) Computation: Finite and infinite machines. Prentice-Hall, Inc, Upper Saddle River
33. Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th annual symposium on

foundations of computer science (FoCS’77). IEEE Computer Society, Washington, pp 46–57
34. Queille JP, Sifakis J (1982) Specification and verification of concurrent systems in CESAR. In: Dezani-

Ciancaglini M, Montanari U (eds) Proceedings of the 5th international symposium on programming.
Lecture notes in computer science, vol 137. Springer, London, pp 337–351

35. Raskin JF, Schobbens PY (1997) State clock logic: A decidable real-time logic. In: Maler O (ed) Hybrid
and real-time systems. Lecture notes in computer science, vol 1201. Springer, Berlin, pp 33–47

36. Roos C, Terlaky T, Vial JP (1997) Theory and algorithms for linear optimization. An interior point
approach. Wiley-Interscience, New York

37. Silberschatz A, Galvin PB, Gagne G (2008) Operating systems concepts, 8th edn. Wiley, New York
38. Sistla AP, Clarke EMM (1985) The complexity of propositional linear temporal logics. J ACM 32:733–

749
39. Zaslavsky T (1975) Facing up to arrangements: Face-count formulas for partitions of space by hyper-

planes. AMS Mem 1(154)

	Interrupt Timed Automata: verification and expressiveness
	Abstract
	Introduction
	Context
	Contributions
	The ITA model
	Reachability problem
	Model checking over ITA
	Expressiveness
	Extensions

	Interrupt timed automata
	Notations
	Models of timed systems

	Regularity of untimed ITL
	Construction of {Ek}k<=n
	Construction of the class automaton
	Example

	A simpler model
	Definition of ITA-
	From ITA to ITA-
	Reachability on ITA-

	Timed model-checking
	Undecidability of state clock logic
	Model-checking branching time properties with internal clocks
	Model-checking TCTL with subscript

	Language properties
	ITL is not contained in TL, nor in CRTL
	TL is not contained in ITL
	Closure under complementation and intersection

	Combining ITA with CRTA
	An undecidable product
	A decidable product of ITA and CRTA: ITA+

	Conclusion
	Acknowledgements
	Appendix A: Proof of Theorem 4
	Appendix B: Proof of Theorem 7
	References

