
Minimum-Time Reachability in Timed Games⋆

Thomas Brihaye1, Thomas A. Henzinger2, Vinayak S. Prabhu3, and
Jean-François Raskin4

1 LSV-CNRS & ENS de Cachan; thomas.brihaye@lsv.ens-cachan.fr
2Department of Computer and Communication Sciences, EPFL; tah@epfl.ch

3Department of Electrical Engineering & Computer Sciences, UC Berkeley;
vinayak@eecs.berkeley.edu

4Département d’Informatique, Université Libre de Bruxelles; jraskin@ulb.ac.be

Abstract. We consider the minimum-time reachability problem in con-
current two-player timed automaton game structures. We show how to
compute the minimum time needed by a player to reach a location against
all possible choices of the opponent We do not put any syntactic restric-
tion on the game structure, nor do we require any player to guaran-
tee time divergence. We only require players to use physically realizable
strategies. The minimal time is computed in part using a fixpoint expres-
sion which we show can be used on equivalence classes of a non-trivial
extension of the region equivalence relation.

1 Introduction

Timed automata [3], finite state automata enriched with clocks and clock con-
straints, are a well-established formalism for the modeling and analysis of timed
systems. A large number of important and interesting theoretical results have
been obtained on problems in the timed automata framework. In parallel with
these theoretical results, efficient verification tools have been implemented and
successfully applied to industrial relevant case studies.

Timed automata are models for closed systems, where every transition is con-
trolled. If we want to distinguish between actions of several agents (for instance
a controller and an environment) we have to consider games on timed automata,
also known as timed games. In the sequel, we will focus on two-player games.
In this context, the reachability problem asks whether player-1 has a strategy
to force the timed game to reach a target set no matter how player-2 resolves
his choices. These games were first introduced and studied in [22, 19]. In this
framework, it is also natural to consider a minimum-time reachability problem
— which asks what is the minimal time required by player-1 to reach a target
set, no matter how player-2 resolves his choices. The work of [5] has shown this
problem to be decidable for a partial class of timed automata games.

Any formalism involving timed systems has to face the problem of zeno runs
— runs of the model where time converges. Zeno runs are of course not physically

⋆ This research was supported in part by the NSF grants CCR-0208875, CCR-0225610,
and CCR-0234690, and by the Swiss National Science Foundation.

meaningful. Avoidance of such runs has often been achieved by putting syntactic
constraints on the cycles of timed automaton games [5, 15, 6, 20] or semantic
conditions discretizing time. Other works on the existence of controllers [14, 7,
19, 9] have in general required that time divergence be ensured by the controller
— an unfair view in settings where the player modelling the environment can
also block time.

Recently, a more equitable treatment of zeno sequences has been proposed
in [12]. This setting formulates a symmetric setup of the model, where all players
are given equally powerful options for updating the state of the game, advancing
time, or blocking time. Both players may block time, however, for a player to win
for an objective, he must not be responsible for preventing time from diverging.
It has been shown in [17] that this is equivalent to requiring that players use
only receptive strategies [21, 4] in plays, so that zeno runs are avoided.

Our contribution: In this paper, we consider the minimum time reachability
problem (for timed games), in the framework of [12, 17]. We present an EXP-

TIME algorithm to compute minimum time needed by player-1 to force the
game into a given set of locations, with both players restricted to using only
receptive strategies (note that reachability in timed games is know to be EXP-

TIME-complete [16]). The proof technique builds on the techniques that have
been introduced in [12, 17] and we show that the minimum time can be obtained
by solving a µ-calculus fixed point equation. Proof of termination of the fixpoint
algorithm requires an important new ingredient: an extension of the well-known
region equivalence for timed automata. We show our extended region equiva-
lence classes to be stable w.r.t. the monotone functions used in the fixed point
equation. Using previous results of [17], we manage to restrict to finitely many
regions and thus guarantee termination.

We note that standard regions do not suffice — the minimum-time reachabil-
ity game has two components, the reachability part can be handled by discrete
arguments based on the region graph, the minimum part requires minimization
within regions in some sense (as in [11]). Unfortunately, both arguments are in-
tertwined and cannot be argued about in isolation. Our extended regions manage
to decouple these two threads in the proofs. We also note that region sequences
which correspond to optimal runs may in general be required to contain region
cycles in which time does not progress by an integer amount, thus an approach
like that of [1] to reduce to a loop free region game also runs into problems.

Related work: Only special cases of the optimal reachability problem have been
solved before, the work in [5] restricts its attention to the case where every cycle
of the timed automaton ensures syntactically that a positive amount of time
passes (a.k.a. strong non-zenoness assumption), [2] considers games restricted to
a bounded number of moves, [17] presents an approximate computation of the
minimum time (computation of the exact minimal time being left open). The
general case for weighted timed automaton games is known to be undecidable [8].
The recent work of [18] presents a strategy improvement algorithm which com-
putes the optimal time in all timed automaton games, but it does not require

strategies to be receptive. Average reward games in the framework of [12] are
considered in [1], but with the durations of time moves restricted to either 0
or 1. The non-game version of the minimum-time problem is presented in [11].

The rest of the paper is organised as follows. In Section 2, we recall the
notations and definitions of timed games framework of [12]. The minimum-time
reachability problem is formally defined in Section 3. Section 4 is the main section
of the paper and is devoted to our algorithm which solves for minimum-time
reachability and proof of its termination.

2 Timed Games

2.1 Timed Game Structures

We use the formalism of [12]. A timed game structure is a tuple G =
〈S, Σ, σ,A1,A2, Γ1, Γ2, δ〉 with the following components:

– S is a set of states.
– Σ is a finite set of propositions.
– σ : S 7→ 2Σ is the observation map, which assigns to every state the set of

propositions that are true in that state.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.

We assume that ⊥i 6∈ Ai, and write A⊥
i for Ai ∪{⊥i}. We also assume A⊥

1

and A⊥
2 to be disjoint. The set of moves for player i is Mi = IR≥0 × A⊥

i .
Intuitively, a move 〈∆, ai〉 by player i indicates a waiting period of ∆ time
units followed by a discrete transition labeled with action ai.

– Γi : S 7→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s)
contains the moves that are available to player i. We require that 〈0,⊥i〉 ∈
Γi(s) for all states s ∈ S and i ∈ {1, 2}. Intuitively, 〈0,⊥i〉 is a time-blocking
stutter move.

– δ : S × (M1 ∪ M2) 7→ S is the transition function. We require that for
all time delays ∆, ∆′ ∈ IR≥0 with ∆′ ≤ ∆, and all actions ai ∈ A⊥

i ,
we have (1) 〈∆, ai〉 ∈ Γi(s) iff both 〈∆′,⊥i〉 ∈ Γi(s) and 〈∆ − ∆′, ai〉 ∈
Γi(δ(s, 〈∆′,⊥i〉)); and (2) if δ(s, 〈∆′,⊥i〉) = s′ and δ(s′, 〈∆ − ∆′, ai〉) = s′′,
then δ(s, 〈∆, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both
players simultaneously propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s).
The move with the shorter duration “wins” in determining the next state of
the game. If both moves have the same duration, then one of the two moves is
chosen non-deterministically. Formally, we define the joint destination function
δjd : S × M1 × M2 7→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =

{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2;
{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1;
{δ(s, 〈∆1, a1〉), δ(s, 〈∆2, a2〉)} if ∆1 = ∆2.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are
proposed is given by delay(m1, m2) = min(∆1, ∆2). The boolean predicate

blamei(s, m1, m2, s
′) indicates whether player i is “responsible” for the state

change from s to s′ when the moves m1 and m2 are proposed. Denoting the
opponent of player i ∈ {1, 2} by ∼i = 3 − i, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
.

A run of the timed game structure G is an infinite sequence r =
s0, 〈m0

1, m
0
2〉, s1, 〈m1

1, m
1
2〉, . . . such that sk ∈ S and mk

i ∈ Γi(sk) and sk+1 ∈
δjd(sk, mk

1 , mk
2) for all k ≥ 0 and i ∈ 1, 2. For k ≥ 0, let time(r, k) denote the

“time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1, m

j
2) (we

let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run pre-
fix r[0..k] is the finite prefix of the run r that ends in the state sk; we write
last(r[0..k]) for the ending state sk of the run prefix. Let Runs be the set of all
runs of G, and let FinRuns be the set of run prefixes.

A strategy πi for player i ∈ {1, 2} is a function πi : FinRuns 7→ Mi

that assigns to every run prefix r[0..k] a move to be proposed by player i

at the state last(r[0..k]) if the history of the game is r[0..k]. We require that
πi(r[0..k]) ∈ Γi(last(r[0..k])) for every run prefix r[0..k], so that strategies pro-
pose only available moves. The results of this paper are equally valid if strategies
do not depend on past moves chosen by the players, but only on the past se-
quence of states and time delays [12]. For i ∈ {1, 2}, let Πi be the set of player-i
strategies. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible out-
comes of the game starting from a state s ∈ S is denoted Outcomes(s, π1, π2): it
contains all runs r = s0, 〈m0

1, m
0
2〉, s1, 〈m1

1, m
1
2〉, . . . such that s0 = s and for all

k ≥ 0 and i ∈ {1, 2}, we have πi(r[0..k]) = mk
i .

We distinguish between physical time and game time. We allow moves with
zero time delay, thus a physical time t ∈ IR≥0 may correspond to several linearly
ordered states, to which we assign the game times 〈t, 0〉, 〈t, 1〉, 〈t, 2〉, . . . For a run
r ∈ Runs, we define the set of game times as

GameTimes(r) =
{〈t, k〉 ∈ IR≥0 × IN | 0 ≤ k < |{j ≥ 0 | time(r, j) = t}|} ∪
{〈t, 0〉 | time(r, j) ≥ t for some j ≥ 0}.

The state of the run r at a game time 〈t, k〉 ∈ GameTimes(r) is defined as

state(r, 〈t, k〉) =

r[j + k] if time(r, j) = t and for all j′ < j, time(r, j′) < t;
δ(r[j], 〈t − time(r, j),⊥i〉) if time(r, j) < t < time(r, j + 1) and

r[0..j + 1] = r[0..j], 〈mj
1, m

j
2〉, r[j + 1] and

blamei(r[j], m
j
1, m

j
2, r[j + 1])

Note that if r is a run of the timed game structure G, and time(r, j) < t <

time(r, j + 1), then δ(r[j], 〈t − time(r, j),⊥i〉) is a state in S, namely, the state
that results from r[j] by letting time t − time(r, j) pass. We say that the run r

visits a set X ⊆ S at time t if there is a τ = 〈t, k〉 ∈ GameTimes(r) such that
state(r, τ) ∈ X . A run r visits a proposition p ∈ Σ if it visits the set Sp defined
as {s | p ∈ σ(s)}.

2.2 Timed Automaton Games

Timed automata [3] suggest a finite syntax for specifying infinite-state
timed game structures. A timed automaton game is a tuple T =
〈L, Σ, σ, C,A1,A2, E, γ〉 with the following components:

– L is a finite set of locations.
– Σ is a finite set of propositions.
– σ : L 7→ 2Σ assigns to every location a set of propositions.
– C is a finite set of clocks. We assume that z ∈ C for the unresettable clock z,

which is used to measure the time elapsed since the start of the game.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
– E ⊆ L× (A1 ∪A2)× Constr(C)× L× 2C\{z} is the edge relation, where the

set Constr(C) of clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge
e = 〈l, ai, θ, l

′, λ〉, the clock constraint θ acts as a guard on the clock values
which specifies when the edge e can be taken, and by taking the edge e, the
clocks in the set λ ⊆ C\{z} are reset to 0. We require that for all edges
〈l, ai, θ

′, l′, λ′〉, 〈l, ai, θ
′′, l′′, λ′′〉 ∈ E with l′ 6= l′′, the conjunction θ′ ∧ θ′′ is

unsatisfiable. This requirement ensures that a state and a move together
uniquely determine a successor state.

– γ : L 7→ Constr(C) is a function that assigns to every location an invariant
for both players. All clocks increase uniformly at the same rate. When at
location l, each player i must propose a move out of l before the invariant γ(l)
expires. Thus, the game can stay at a location only as long as the invariant
is satisfied by the clock values.

A clock valuation is a function κ : C 7→ IR≥0 that maps every clock to a non-
negative real. The set of all clock valuations for C is denoted by K(C). Given a
clock valuation κ ∈ K(C) and a time delay ∆ ∈ IR≥0, we write κ + ∆ for the
clock valuation in K(C) defined by (κ + ∆)(x) = κ(x) + ∆ for all clocks x ∈ C.
For a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in
K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x 6∈ λ.
A clock valuation κ ∈ K(C) satisfies the clock constraint θ ∈ Constr(C), written
κ |= θ, if the condition θ holds when all clocks in C take on the values specified
by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together
with a clock valuation κ ∈ K(C) such that the invariant at the location is
satisfied, that is, κ |= γ(l). Let S be the set of all states of T. In a state, each
player i proposes a time delay allowed by the invariant map γ, together either
with the action ⊥, or with an action ai ∈ Ai such that an edge labeled ai is
enabled after the proposed time delay. We require that for i ∈ {1, 2} and for all
states s = 〈l, κ〉, if κ |= γ(l), either κ + ∆ |= γ(l) for all ∆ ∈ IR≥0, or there
exist a time delay ∆ ∈ IR≥0 and an edge 〈l, ai, θ, l

′, λ〉 ∈ E such that (1) ai ∈ Ai

and (2) κ + ∆ |= θ and for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and
(3) (κ + ∆)[λ := 0] |= γ(l′).

The timed automaton game T defines the following timed game structure
[[T]] = 〈S, Σ, σ∗,A1,A2, Γ1, Γ2, δ〉:

– S is defined above.
– σ∗(〈l, κ〉) = σ(l).
– For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

1. 〈∆,⊥i〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l).
2. 〈∆, ai〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and ai ∈ Ai, and

there exists an edge 〈l, ai, θ, l
′, λ〉 ∈ E such that κ + ∆ |= θ.

– δ(〈l, κ〉, 〈∆,⊥i〉) = 〈l, κ + ∆〉, and δ(〈l, κ〉, 〈∆, ai〉) = 〈l′, (κ + ∆)[λ := 0]〉 for
the unique edge 〈l, ai, θ, l

′, λ〉 ∈ E with κ + ∆ |= θ.

2.3 Clock Regions

Timed automaton games can be solved using a region construction from the
theory of timed automata [3]. For a real t ≥ 0, let frac(t) = t − ⌊t⌋ denote the
fractional part of t. Given a timed automaton game T, for each clock x ∈ C,
let cx denote the largest integer constant that appears in any clock constraint
involving x in T Two clock valuations κ1, κ2 ∈ K(C) are clock-region equivalent,
denoted κ1

∼= κ2, if the following three conditions hold:

1. For all x ∈ C, either ⌊κ1(x)⌋ = ⌊κ2(x)⌋, or both ⌊κ1(x)⌋ > cx, ⌊κ2(x)⌋ > cx.
2. For all x, y ∈ C with κ1(x) ≤ cx and κ1(y) ≤ cy, we have frac(κ1(x)) ≤

frac(κ1(y)) iff frac(κ2(x)) ≤ frac(κ2(y)).
3. For all x ∈ C with κ1(x) ≤ cx, we have frac(κ1(x)) = 0 iff frac(κ2(x)) = 0.

Two states 〈l1, κ1〉, 〈l2, κ2〉 ∈ S are clock-region equivalent, denoted 〈l1, κ1〉 ∼=
〈l2, κ2〉, iff l1 = l2 and κ1

∼= κ2. It is not difficult to see that ∼= is an equivalence
relation on S. A clock region is an equivalence class with respect to ∼=. There
are finitely many clock regions; more precisely, the number of clock regions is
bounded by |L| ·

∏
x∈C(cx + 1) · |C|! · 2|C|. For a state s ∈ S, we write [s] ⊆ S

for the clock region containing s. These clock regions induce a time-abstract
bisimulation.

3 The Minimum-Time Reachability Problem

Given a state s and a target proposition p ∈ Σ in a timed game structure
G, the reachability problem is to determine whether starting from s, player-1
has a strategy for visiting the proposition p. We must make sure that player-2
does not prevent player-1 from reaching a target state by blocking time. We also
require player-1 to not block time as it can lead to physically unmeaningful plays.
These requirements can be achieved by requiring strategies to be receptive [21,
4]. Formally, we first define the following two sets of runs:

– Timediv ⊆ Runs is the set of all time-divergent runs. A run r is time-divergent
if limk→∞ time(r, k) = ∞.

– Blamelessi ⊆ Runs is the set of runs in which player i is responsible only for
finitely many transitions. A run s0, 〈m0

1, m
0
2〉, s1, 〈m1

1, m
1
2〉, . . . belongs to the

set Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such that for all j ≥ k,
we have ¬ blamei(sj , m

j
1, m

j
2, sj+1).

A strategy πi for player i ∈ {1, 2} is receptive if for all opposing strategies
π∼i, and all states s ∈ S, Outcomes(s, π1, π2) ⊆ Timediv∪Blamelessi. Thus, no
what matter what the opponent does, a receptive player-i strategy should not be
responsible for blocking time. Strategies that are not receptive are not physically
meaningful (note that receptiveness is not sufficient for a strategy to be physically
meaningful [10]). For i ∈ {1, 2}, let ΠR

i be the set of player-i receptive strategies.
A timed game structure is well-formed if both players have receptive strategies.
We restrict our attention to well-formed timed game structures. Well-formedness
of timed automaton games can be checked for (see [17]).

We say player-1 wins for the reachability objective p at state s, denoted
s ∈

〈
〈1〉

〉
3p, if he has a receptive strategy π1 such that for all player-2 receptive

strategies π2, we have that all runs r ∈ Outcomes(s, π1, π2) visit the proposition
p.

Equivalently [17], we can define player-1 to be winning for the reachability
objective p at state s if he has a strategy π1 such that for all player-2 strategies
π2, for all runs r ∈ Outcomes(s, π1, π2):

– if r ∈ Timediv, then r visits the proposition p;
– if r 6∈ Timediv, then r ∈ Blameless1.

The minimum-time reachability problem is to determine the minimal time in
which a player can force the game into a set of target states, using only receptive
strategies. Formally, given a timed game structure G, a target proposition p ∈ Σ,
and a run r of G, let

Tvisit(G, r, p) =

{
∞ if r does not visit p;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

The minimal time for player-1 to force the game from a start state s ∈ S to a
visit to p is then

Tmin(G, s, p) = inf
π1∈ΠR

1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

Tvisit(G, r, p)

We omit G when clear from the context.

4 Solving for Minimum-Time Reachability

We restrict our attention to well-formed timed automaton games. The defini-
tion of Tmin quantifies strategies over the set of receptive strategies. Our al-
gorithm will instead work over the set of all strategies. Theorem 1 presents

this reduction. We will then present a game structure for the timed au-
tomaton game T in which Timediv and Blameless1 can be represented us-
ing Buchi and co-Buchi constraints. This builds on the framework of [12] in
which a run satisfies the reachability objective p for player-1 iff it belongs in
(Timediv∩Reach(p)) ∪ (¬Timediv∩Blameless1), where Reach(p) denotes the set
of runs which visit p. In addition, our game structure will also have a backwards
running clock, which will be used in the computation of the minimum time,
using a µ-calculus algorithm on extended regions.

4.1 Allowing Players to Use All Strategies

To allow quantification over all strategies, we first modify the payoff function
Tvisit, so that players are maximally penalised on zeno runs:

T UR
visit(r, p) =

∞ if r 6∈ Timediv and r 6∈ Blamelessi;
∞ if r ∈ Timediv and r does not visit p;
0 if r 6∈ Timediv and r ∈ Blamelessi;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

It turns out that penalizing on zeno-runs is equivalent to penalising on non-
receptive strategies:

Theorem 1. For all well-formed timed game structures G, for all states s and
propositions p of G, we have

Tmin(s, p) = inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

T UR
visit(r, p)

4.2 Reduction to Reachability with Buchi and co-Buchi Constraints

We now decouple reachability from optimizing for minimal time, and show how
reachability with time divergence can be solved for, using an appropriately cho-
sen µ-calculus fixpoint.

Lemma 1 ([17]). Given a state s, and a proposition p of a well-formed timed
automaton game T, 1)we can determine if Tmin(s, p) < ∞ , and 2) If Tmin(s, p) <

∞, then Tmin(s, p) < M = 8|L| ·
∏

x∈C(cx + 1) · |C + 1|! · 2|C|. This upper bound
is the same for all s′ ∼= s.

Let M be the upper bound on Tmin(s, p) as in Lemma 1 if Tmin(s, p) < ∞,
and M = 1 otherwise. For a number N , let IR[0,N] and IR[0,N) denote IR∩ [0, N]

and IR ∩ [0, N) respectively. We first look at the enlarged game structure [̂[T]]

with the state space Ŝ = S × IR[0,1) × (IR[0,M] ∪ {⊥}) × {true, false}2, and

an augmented transition relation δ̂ : Ŝ × (M1 ∪ M2) 7→ Ŝ. In an augmented

state 〈s, z, β, tick , bl1〉 ∈ Ŝ, the component s ∈ S is a state of the original game
structure [[T]], z is value of a fictitious clock which gets reset every time it hits
1, β is the value of a fictitious clock which is running backwards, tick is true iff

one time unit has passed since the last time it was true (so tick is true iff the
last transition resulted in z = 0), and bl1 is true if player-1 is to blame for the
last transition.

Formally, 〈s′, z′, β′, tick ′, bl ′1〉 = δ̂(〈s, z, β, tick , bl1〉, 〈∆, ai〉) iff

1. s′ = δ(s, 〈∆, ai〉)
2. z

′ = (z + ∆) mod 1;
3. β′ = β ⊖ ∆, where we define β ⊖ ∆ as β − ∆ if β 6= ⊥ and β − ∆ ≥ 0, and

⊥ otherwise (⊥ is an absorbing value for β).
4. tick′ = true if z + ∆ ≥ 1, and false otherwise
5. bl1 = true if ai ∈ A⊥

1 and false otherwise.

Each run r of [[T]], and values z ∈ IR≥0, β ≤ M can be mapped to a corre-

sponding unique run r̂z,β in [̂[T]], with r̂z,β [0] = 〈r[0], z, β, false, false〉. Simi-

larly, each run r̂ of [̂[T]] can be projected to a unique run r̂ ↓ T of [[T]]. It can be
seen that the run r is in Timediv iff tick is true infinitely often in r̂z,β , and that
the set Blameless1 corresponds to runs along which bl1 is true only finitely often.

Proposition 1. Given a timed game structure [[T]], let X̂p = Sp× IR[0,1)×{0}×
{true, false}2.

1. For a run r of the timed game structure [[T]], let Tvisit(r, p) < ∞. Then,

Tvisit(r, p) = inf{β | β ∈ IR[0,M] and r̂0,β visits the set X̂p}.
2. Let Tmin(s, p) < ∞. Then,

Tmin(s, p) = inf
{

β | β ∈ IR[0,M] and 〈s, 0, β, false, false〉 ∈
〈
〈1〉

〉
3X̂p

}

3. If Tmin(s, p) = ∞, then for all β, we have 〈s, 0, β, false, false〉 6∈
〈
〈1〉

〉
3X̂p.

The rechability objective can be reduced to a parity game: each state in Ŝ is
assigned an index Ω : Ŝ 7→ {0, 1}, with Ω(ŝ) = 1 iff ŝ 6∈ X̂p; and tick = true

or bl1 = true. We also modify the game structure so that the states in X̂p are
absorbing.

Lemma 2. For the timed game [̂[T]] with the reachability objective X̂p, the state

ŝ = 〈s, 0, β, false, false〉 ∈
〈
〈1〉

〉
3X̂p iff player-1 has a strategy π1 such that for

all strategies π2 of player-2, and all runs r̂0,β ∈ Outcomes(ŝ, π1, π2), the index 1
does not occur infinitely often in r̂0,β.

The fixpoint formula for solving the parity game in Lemma 2 is given by [13]

Y = µY νZ
[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(Z))

]

The fixpoint expression uses the variables Y, Z ⊆ Ŝ and the controllable pre-

decessor operator, CPre1 : 2
bS 7→ 2

bS in its fixpoint computation, defined formally
by CPre1(X) ≡ {ŝ | ∃m1 ∈ Γ1(ŝ) ∀m2 ∈ Γ2(ŝ)(δ̂jd(ŝ, m1, m2) ⊆ X)}. Intuitively,
ŝ ∈ CPre1(X) iff player 1 can force the augmented game from ŝ into X in one
move.

4.3 Termination of the µ-Calculus Fixpoint Iteration

We prove termination of the µ-calculus algorithm by demonstrating that we can
work on a finite partition of the state space. Let an equivalence relation ∼=e on the
states in Ŝ be defined as: 〈〈l1, κ1〉, z1, β1, tick1, bl11〉

∼=e 〈〈l2, κ2〉, z2, β2, tick2, bl21〉
iff

1. l1 = l2, tick1 = tick2, and bl1 = bl2.

2. κ̂1 ∼= κ̂2 where κ̂i : C∪{z} 7→ IR≥0 is a clock valuation such that κ̂i(c) = κi(c)

for c ∈ C, κ̂i(z) = z
i,and cz = 1 (cz is the maximum value of the clock z in

the definition of ∼=) for i ∈ {1, 2}.
3. β1 = ⊥ iff β2 = ⊥.
4. If β1 6= ⊥, β2 6= ⊥ then

– ⌊β1⌋ = ⌊β2⌋
– frac(β1) = 0 iff frac(β2) = 0.
– For each clock x ∈ C ∪ {z} with κ1(x) ≤ cx and κ2(x) ≤ cx, we have

frac(κ1(x)) + frac(β1) ∼ 1 iff frac(κ2(x)) + frac(β2) ∼ 1 with ∼ ∈ {<, =
, >}.

The number of equivalence classes induced by ∼=e is again finite
(O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
). We call each equivalence class

an extended region. An extended region Y of [̂[T]] can be specified by the tuple
〈l, tick , bl1, h,P , βi, βf , C<, C=, C>〉 where for a state ŝ = 〈〈l, κ〉, z, β, tick , bl1〉
in Y ,

– l, tick , bl1 correspond to l, tick , bl1 in ŝ.
– h is a function which specifies the integer values of clocks: h(x) = ⌊κ(x)⌋ if

κ(x) < Cx + 1, and h(x) = Cx + 1 otherwise.
– P ⊆ 2C∪{z} is a partition of the clocks {C0, . . . , Cn | ⊎Ci = C ∪ {z}, Ci 6=

∅ for i > 0}, such that 1)for any pair of clocks x, y, we have frac(κ(x)) <

frac(κ(y)) iff x ∈ Cj , y ∈ Ck for j < k; and 2)x ∈ C0 iff frac(κ(x)) = 0.
– βi ∈ IN ∩ {0, . . . , M} ∪ {⊥} indicates the integral value of β.
– βf ∈ {true, false} indicates whether the fractional value of β is greater

than 0, βf = true iff β 6= ⊥ and frac(β) > 0.
– For a clock x ∈ C ∪ {z} and β 6= ⊥, we have frac(κ(x)) + frac(β) ∼ 1 iff

x ∈ C∼ for ∼ ∈ {<, =, >}.

Pictorially, the relationship between κ̂ and β can be visualised as in Fig. 1.
The figure depicts an extended region for C0 = ∅, βi ∈ IN ∩ {0, . . . , M}, βf =
true, C< = C ∪{z}, C= = ∅, C> = ∅. The vertical axis is used for the fractional
value of β. The horizontal axis is used for the fractional values of the clocks in Ci.
Thus, given a disjoint partition {C0, . . . , Cn} of the clocks, we pick n+1 points on

a line parallel to the horizontal axis, {〈Cf
0 , frac(β)〉, . . . , 〈Cf

n , frac(β)〉}, with C
f
i

being the fractional value of the clocks in the set Ci at κ̂. The following lemma
states that the equivalence relation ∼=e induces a time-abstract bisimulation.

Lemma 3. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Suppose
player-i has a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, for any s2 ∈ Y ,
player-i has a move from s2 to some s′2 ∈ Y ′.

frac(β)

C
f
1

C
f
3

0 1

1

C
f
2

Fig. 1. An extended region with C< = C ∪ {z}, C= = ∅, C> = ∅

Lemma 4. Let Y, Y ′
1 , Y ′

2 be extended regions in a timed game structure [̂[T]].
Suppose player-i has a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, one
of the following cases must hold:

1. From all states ŝ ∈ Y , player-1 has some move mbs
1 with δ̂(ŝ, mbs

1) ∈

Y ′
1 such that for all moves mbs

2 of player-2 with δ̂(ŝ, mbs
2) ∈ Y ′

2 , we

have blame1(ŝ, m
bs
1, m

bs
2, δ̂(ŝ, m

bs
1)) = true and blame2(ŝ, m

bs
1, m

bs
2, δ̂(ŝ, m

bs
2)) =

false.
2. From all states ŝ ∈ Y , for all moves mbs

1 of player-1 with δ̂(ŝ, mbs
1) ∈

Y ′
1 , player-2 has some move mbs

2 with δ̂(ŝ, mbs
2) ∈ Y ′

2 such that

blame2(ŝ, m
bs
1, m

bs
2, δ̂(ŝ, m

bs
2)) = true.

Intuitively, Lemma 4 says that either player-1 can force the game in one step
from every state in Y so that the next state lies in Y ′, or player-2 can always foil
player-1 from going to the extended region Y ′. Thus moves to some extended
regions always “beat” moves to other extended regions.

Corollary 1. Let X ⊆ Ŝ consist of a union of extended regions in a timed game

structure [̂[T]] . Then CPre1(X) is again a union of extended regions.

Corollary 1 demonstrates that the sets in the fixpoint computation of the
µ-calculus algorithm which computes winning states for player-1 for the reach-
ability objective X̂p consist of unions of extended regions. Since the number of
extended regions is finite, the algorithm terminates.

Theorem 2. Let s ∈ S be a state and p ∈ Σ a proposition in a timed automaton
game T.

1. The minimum time for player-1 to visit p starting from s (denoted Tmin(s, p))
is computable in time O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
.

2. For every region R of [[T]], either there is constant dR ∈ IN ∪ {∞} such
that for every state s ∈ R we have Tmin(s, p) = dR, or there is an integer
constant dR and a clock x ∈ C such that for every state s ∈ R we have
Tmin(s, p) = dR − frac(κ(x)), where κ(x) is the value of clock x in s.

References

1. B. Adler, L. de Alfaro, and M. Faella. Average reward timed games. In FORMATS

05, LNCS 3829, pages 65–80. Springer, 2005.
2. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted

timed games. In ICALP 04, LNCS 3142, pages 122–133. Springer, 2004.
3. R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.
4. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CON-

CUR 97, LNCS 1243, pages 74–88. Springer, 1997.
5. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed

automata. In HSCC 99, LNCS 1569, pages 19–30. Springer, 1999.
6. P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced

timed game automata. In FSTTCS 04, LNCS 3328, pages 148–160. Springer, 2004.
7. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial

observability. In CAV 03, LNCS 2725, pages 180–192. Springer, 2003.
8. T. Brihaye, V. Bruyère, and J.F. Raskin. On optimal timed strategies. In FOR-

MATS 05, LNCS 3829, pages 49–64. Springer, 2005.
9. F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly

algorithms for the analysis of timed games. In CONCUR 05, LNCS 3653, pages
66–80. Springer, 2005.

10. F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In HSCC 02, LNCS 2289, pages 134–148. Springer,
2002.

11. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.

12. L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In CONCUR 03, LNCS 2761, pages 144–158.
Springer, 2003.

13. L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control:
Dynamic programs for omega-regular objectives. In LICS 01, pages 279–290. IEEE
Computer Society Press, 2001.

14. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifica-
tions. In STACS 02, LNCS 2285, pages 571–582. Springer, 2002.

15. M. Faella, S. La Torre, and A. Murano. Dense real-time games. In LICS 02, pages
167–176. IEEE Computer Society, 2002.

16. T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. Theoretical Computer Science, 221:369–392, 1999.

17. T.A. Henzinger and V.S. Prabhu. Timed alternating-time temporal logic. In
FORMATS 06, LNCS 4202, pages 1–17. Springer, 2006.

18. M. Jurdziński and A. Trivedi. Reachability-time games on timed automata. In
ICALP 07, LNCS. Springer, 2007.

19. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems (an extended abstract). In STACS 95, pages 229–242, 1995.

20. A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller synthesis for timed
automata. In Proc. System Structure and Control. Elsevier, 1998.

21. R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Liveness in timed
and untimed systems. Inf. Comput., 141(2):119–171, 1998.

22. H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In Proc. of 30th Conf. Decision and Control, pages 1527–1528, 1991.

A Appendix

Proof of Theorem 1

We restrict our attention to strategies for plays starting from state s. The
proof of the theorem relies on Lemmas 5,6 and 7.

Lemma 5. Consider a timed game structure G and a state s ∈ S. Let π1 ∈ ΠR
1

and πR
2 ∈ ΠR

2 be player-1 and player-2 receptive strategies, and let π2 ∈ Π2 be
any player-2 strategy. Consider a player-2 strategy π∗

2 be defined as, π∗
2(r[0..k]) =

π2(r[0..k]) for all run prefixes r[0..k] of Outcomes(s, π1, π2), and π∗
2(r[0..k]) =

πR
2 (r[k′..k]) otherwise, where k′ is the first position such that r[0..k′] is not a

run prefix of Outcomes(s, π1, π2). Then, π∗
2 is a receptive strategy.

Proof. Intuitively, the strategy π∗
2 acts like π2 on runs of Outcomes(s, π1, π2)

, and like πR
2 otherwise. Consider any player-1 strategy π′

1 ∈ Π1. If π′
1 = π1,

then Outcomes(s, π′
1, π

∗
2) = Outcomes(s, π1, π2) ⊆ Timediv. Suppose π′

1 6= π1. Let
k′ ≥ 0 be the first step in the game (with player-2 strategy π2) which witnesses
the fact that π′

1 6= π1, that is, 1)for all runs r ∈ Outcomes(s, π′
1, π2), we have

r[0..k′ − 1] is a run prefix of some run in Outcomes(s, π1, π2) and 2)for some run
r′ ∈ Outcomes(s, π′

1, π2), we have r′[0..k′] to be not a run prefix of any run in
Outcomes(s, π1, π2).

We thus have r[0..k′−1] to be a run prefix of some run in Outcomes(s, π1, π2)
for every r ∈ Outcomes(s, π′

1, π
∗
2). Consider state sk′ = r∗[k′] for r∗ ∈

Outcomes(s, π′
1, π

∗
2). We have r∗[0..k′ − 1] = r[0..k′ − 1] for some run r ∈

Outcomes(s, π′
1, π2). After this point (ie., from r∗[0..k′] onwards), the strat-

egy π∗
2 behaves like πR

2 when “started” from sk′ . Since πR
2 is a receptive

player-2 strategy, we have Outcomes(sk′ , π′
1, π

∗
2) ⊆ Timediv∪Blameless2. Thus,

Outcomes(s, π′
1, π

∗
2) ⊆ Timediv∪Blameless2 (finite prefixes of runs do not change

membership in these sets). Hence π∗
2 is a receptive player-2 strategy.

Lemma 6. Consider a timed game structure G and a state s ∈ S. We have,

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

{T UR
visit(r, p)} = inf

π1∈ΠR
1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

{T UR
visit(r, p)}

Proof. Consider any π1 ∈ Π1 \ ΠR
1 . There exists π2 ∈ Π2

such that Outcomes(s, π1, π2) 6⊆ Timediv∪Blameless1. Thus,
infπ1∈Π1\ΠR

1
supπ2∈Π2

supr∈Outcomes(s,π1,π2) {T
UR
visit(r, p)} = ∞.

Lemma 7. Consider a timed game structure G and a
state s ∈ S. For every player-1 receptive strategy π1 ∈
ΠR

1 , we have supπ2∈Π2
supr∈Outcomes(s,π1,π2) {T

UR
visit(r, p)} =

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) {T
UR
visit(r, p)}.

Proof. Let π2 ∈ Π2.
Consider r ∈ Outcomes(s, π1, π2). Since π1 is receptive, we cannot have

r 6∈ Timediv and r 6∈ Blameless1.

Suppose r 6∈ Timediv. Then r ∈ Blameless1. In this case, 0 = T UR
visit(r, p) ≤

T UR
visit(r

′, p) for any r′ ∈ Outcomes(s, π1, π
R
2) and πR

2 any player-2 receptive strat-
egy (as we have a well-formed time game structure, there exists some receptive
strategy πR

2).
Suppose r ∈ Timediv and r does not visit p. Consider the strat-

egy π∗
2 which acts like π2 on Outcomes(s, π1, π2, and like πR

2 oth-
erwise, as formally defined in Lemma 5. We have π∗

2 to be recep-
tive. Clearly r ∈ Outcomes(s, π1, π

∗
2) does not visit p, and hence

supr∈Outcomes(s,π1,π2){T
UR
visit(r, p)} = supr∈Outcomes(s,π1,π∗

2){T
UR
visit(r, p)} = ∞.

Finally, let r visit p and be in Timediv for all r ∈ Outcomes(s, π1, π2).
Let π∗

2 be a player-2 receptive strategy as in Lemma 5. We
again have Outcomes(s, π1, π2) = Outcomes(s, π1, π

∗
2), and hence

supr∈Outcomes(s,π1,π2){T
UR
visit(r, p)} = supr∈Outcomes(s,π1,π∗

2){T
UR
visit(r, p)}.

Thus, supπ2∈Π2
supr∈Outcomes(s,π1,π2) {T

UR
visit(r, p)} =

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) {T
UR
visit(r, p)}.

Lemmas 6 and 7 together imply

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

{T UR
visit(r, p)} = inf

π1∈ΠR
1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

{T UR
visit(r, p)}

Theorem 1 follows from the fact that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 and r ∈
Outcomes(s, π1, π2), we have T UR

visit(r, p) = Tvisit(r, p).

Proof of Proposition 1
The first claim is a corollary of the following proposition:

Proposition 2. Consider the set Sp for a proposition p in a timed game struc-
ture [[T]].

1. If a run r of [[T]] visits Sp at time t ≤ M , then, the run r̂0,β visits Sp ×
IR[0,1) × {0} × {true, false}2, for β = t.

2. If for some β ∈ IR, a run r̂ of [̂[T]] with r̂[0] = 〈s, 0, β, false, false〉 visits
Sp × IR[0,1) ×{0}× {true, false}2, then the corresponding run r = r̂ ↓ T of
[[T]] visits Sp at time t = β.

Proposition 2 is a straightforward result of the fact that β is kept decrementing
at rate −1 till it hits 0.

The second claim of Proposition 1 essentially follows from the fact that the
additional components in the states do not help the players in creating more
powerful strategies.
Tmin(s, p)
= infπ1∈ΠR

1
supπ2∈ΠR

2
supr∈Outcomes(s,π1,π2) {Tvisit([[T]], r, p)}

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2)

{
∞ if r does not visit p;

inf{β | β ∈ IR[0,M] and r̂0,β visits the set X̂p} o.w.

}

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) infβ∈IR[0,M]

{
g(r, β)

∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise
}

= infβ∈IR[0,M]
infπ1∈ΠR

1
supπ2∈ΠR

2
supr∈Outcomes(s,π1,π2){

g(r, β)
∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise

}

Now, considering plays in [̂[T]] which start from state ŝ = 〈s, z, β, tick , bl1〉,

every strategy π̂i ∈ Π̂i is equivalent to a strategy πi ∈ Πi in which player-i
“guesses” the values of z, β, tick , bl1. Once these initial values have been
guessed, each player can keep on deterministically updating the values at each

step. Hence observation of the additional components in states of [̂[T]] do not
help the players in their strategies. Therefore,
Tmin(s, p) = infβ∈IR[0,M]

inf
cπ1∈cΠ1

R sup
cπ2∈cΠ2

R supbr0,β∈Outcomes(s,cπ1,cπ2){
g(r, β)

∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise
}

Proof of Lemma 2
We first note that the states in X̂p can be absorbing as [̂[G]] is a well-formed
time game structure, and hence player-1 has a receptive strategy which does not
block time when the game starts at state ŝ for every state ŝ ∈ X̂p. Consider a

run r̂ such that r̂ visits X̂p. We can assume without loss of generality that either
time diverges in r̂, or time converges but player-1 is not to blame (player-1 can

play a receptive strategy upon reaching X̂p). Thus this run satisfies the winning

condition for player-1. And since X̂p is absorbing in our parity game, we see 1
only finitely often.

Consider a run r̂ such that r̂ does not visit X̂p. Let time diverge in this run.
This run violates the winning condition for player-1, and correspondingly we
also see the index 1 infinitely often (due to tick being true infinitely often). Now
let time converge in this run (so tick is true only finitely often). If player-1 is to
blame for blocking time, then the index 1 will again be true infinitely often. If
player-1 is not to blame, then bl1 will only be true finitely often in this run, and
hence we will see the index 1 only finitely often.

Proof of Lemma 3
The result can be proved using the following lemma:

Lemma 8. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Con-

sider a state ŝ ∈ Y and t ∈ IR>0 Suppose (0, t] = T Y ∪ T Y ′
, such that for

all τ ∈ T Y we have ŝ + τ ∈ Y , and for all τ ∈ T Y ′
we have ŝ + τ ∈ Y ′

(Y → Y ′ is the first extended region change due to the passage of time). Then,

for all states ŝ2 ∈ Y , there exists t2 ∈ IR>0 such that for some T Y
2 , T Y ′

2 with

(0, t2] = T Y
2 ∪ T Y ′

2, for all τ2 ∈ T Y
2 we have ŝ2 + τ2 ∈ Y , and for all τ2 ∈ T Y ′

2

we have ŝ2 + τ2 ∈ Y ′.

Proof. We outline a sketch of the proof. For simplicity, consider the values of
each clock x to be less than Cx +1. We look at the time successors of states ŝ in
Y . The following cases for Y = 〈l, tick , bl1, h,P , βi, βf , C<, C=, C>〉 can arise:

frac(β)

C
f
1

C
f
3

0 1

1

C
f
2

frac(β)

0 1

1

C
f
1

′

C
f
2

′

C
f
3

′

Fig. 2. An extended region with C< = C ∪ {z}, C= = ∅ and its time successor.

0 1

1

C
f
1

frac(β)

C
f
4

C
f
5

C
f
2

C
f
3

0

1

frac(β′)

C
f
1

′

C
f
2

′

C
f
5

′

= C
f
0

′

= 0C
f
3

′

C
f
4

′

Fig. 3. An extended region with C< 6= ∅, C= 6= ∅, C> 6= ∅ and its time successor.

Case 1 C0 = ∅, βi ∈ IN ∩ {0, . . . , M}, βf = true, C< = C ∪ {z}, C= = ∅, C> =
∅.

For any state in Y , the next extended region Y ′ can only be
〈l, tick , bl1, h,P , βi, β

′
f = false, C<, C=, C>〉, which is hit after a time of

frac(βf) (note that Cf
n + frac(β) < 1 implies P is going to be unchanged in

the time successor extended region).

Case 2 C0 = ∅, βi ∈ IN ∩ {0, . . . , M}, βf = true, C< 6= ∅, C= 6= ∅, C> 6= ∅.
Pictorially, this can be depicted as in Fig. 3.

Consider any state in Y . The extended region changes after a time of 1−Cf
n .

The new state then lies in an extended region such that C′
i = Ci for 0 <

i < n, and C′
0 = Cn. Also, C

f
i

′
= C

f
i + (1 − Cf

n) for 0 < i < n, and

frac β′ = frac(β) − (1 − Cf
n). We also have that if C

f
i + frac(β) ∼ 1, then

C
f
i

′
+ frac β′ = C

f
i + frac(β) ∼ 1 for ∼ ∈ {<, =, >}, 0 < i < n. Thus the new

state lies in the region 〈l, tick ′, bl1, h
′,P ′ = {C′

0, . . . C
′
n−1 | C′

i = Ci for 0 <

i < n, C′
0 = Cn}, βi, βf , C′

< = C< ∪ Cn, C=〉, with tick ′ = true iff z ∈ Cn,
and h′ is h with the integer values for clocks in Cn \ {z} incremented by

1. This analysis holds for all the states in Y . Thus the extended region Y ′

following Y is unique.
Case 3 C0 6= ∅, βi ∈ IN ∩ {0, . . . , M}, βf = true

All the states in Y then move to 〈l, tick , bl1, h,P ′ = {C′
0, . . . , C

′
n+1 | C′

0 =
∅ and C′

i+1 = Ci, 0 ≤ i ≤ n}, βi, βf , C<, C=, C>〉.
Case 4 C0 6= ∅, βi ∈ IN ∩ {1, . . . , M}, βf = false

The time successor in this case is 〈l, tick , bl1,P ′ = {C′
0, . . . , C

′
n+1 | C′

0 =
∅ and C′

i+1 = Ci, 0 ≤ i ≤ n}, β′
i = βi − 1, β′

f = true, C′
<, C′

=, C′
>〉. We show

C′
<, C′

=, C′
> to be unique as follows: the new state ŝ + t has the constraints

1)frac(β′) = 1 − t and 2)Cf
i+1

′
= C

f
i + t for i ≤ n. Thus, frac(β′) + C

f
i+1

′
=

(1 − t) + C
f
i + t = 1 + C

f
i . Hence, C′

< = ∅ and C′
= = C′

1 = C0.
Case 5 βi = 0, βf = false

We get β′ = ⊥ in the next state (and hence C< = C= = ∅, βi = ⊥, βf =
false). The rest of the components of the extended region have a unique
value as in the time successors of standard regions.

Case 6 βi = ⊥
The value of P ′ gets updated as in the time successors of standard regions.

The analysis of the remaining cases proceeds in a similar vein to the above
cases.

Proof of Theorem 2
We prove the second part of the claim.

Proof. Let M be the upper bound on Tmin(s, p) as in Lemma 1 if Tmin(s, p) < ∞,
and M = 1 otherwise. From the comments after Corollary 1, the states
in Ŝ from which player-1 has a winning strategy for reaching X̂p are com-
putable, and consist of a union of extended regions ∪n

k=1Yk. Suppose this union
is non-empty. Using Proposition 1, the minimum time for player-1 to reach
p from s is then mink

{
inf

{
β | β ∈ IR[0,M] and 〈s, 0, β, false, false〉 ∈ Yk

}}
.

Note that s = 〈l, κ〉 is fixed here, only β can be varied. We also have that
inf{β | β ∈ IR[0,M] and 〈〈l, κ〉, 0, β, false, false〉 ∈ Yk} is equal to (letting
Yk = 〈l, false, false, h,P , βi, βf , C<, C=, C>〉):

1. An integer when C> = C= = ∅ or when βf = false. The infimum value for
β is reached when βf = false (for then the set of β’s is a singleton). Thus,
player-1 has an optimal strategy when βf = false.

2. dk − frac(κ(x)) when C= = Cj 6= ∅, and where x ∈ Cj . The infimum value is
actually attained by player-1 with some strategy π1 in this case.

3. dk − frac(κ(x)) when C= = ∅, C> 6= ∅, where x ∈ Cj for C> = {Cj, . . . , Cn}.
The infimum value is not attained by player-1 in this case – he can only get
arbitrarily close to the optimum.

Note that z ∈ C0 in every Yk (for, κ̂(z) = 0). Finally, mink{ek | ek = dk or dk −
xk} is again an expression of the form dr or dr − x over a region.

