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Abstract. Statistical model-checking is an alternative verification tech-
nique applied on stochastic systems whose size is beyond numerical anal-
ysis ability. Given a model (most often a Markov chain) and a formula, it
provides a confidence interval for the probability that the model satisfies
the formula. One of the main limitations of the statistical approach is
the computation time explosion triggered by the evaluation of very small
probabilities. In order to solve this problem we develop a new approach
based on importance sampling and coupling. The corresponding algo-
rithms have been implemented in our tool CosM0S. We present exper-
imentation on several relevant systems, with estimated time reductions
reaching a factor of 10720,

Keywords: statistical model checking, rare events, importance sam-
pling, coupling.

1 Introduction

Quantitative Model Checking. Model checking [I3] is an efficient verification
method to check that the behaviour of a system fulfills properties expressed by
some temporal logic. It has been successfully implemented in a variety of tools,
thanks to it algorithmic simplicity. Although a method initially dedicated to
discrete event systems, it has been adapted to performance evaluation in order
to check quantitative properties and in particular to estimate probabilities [I§].

Statistical Model-Checking. Analysis of stochastic systems requires numer-
ical or statistical techniques. Numerical methods give exact results (up to nu-
merical approximations) but significantly restrict the class of analysable systems
(manageable size, Markov properties, etc.). Otherwise, statistical method may
be used. By simulating a big sample of trajectories of the system and computing
the ratio of these trajectories that satisfy a given property, it produces a prob-
abilistic framing of the expected value. To generate the sample we only need to
have an operational stochastic semantic of the system. This usually requires a
very small state space compared to the numerical method and allows to deal
with huge models [20].

Rare Events. The main drawback of the statistical model-checking is its in-
efficiency in dealing with very small probabilities. The size of the sample of
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simulations required to estimate these small probabilities exceeds achievable ca-
pacities. This difficulty is known as the rare event problem. Several methods
have been developed to cope with this problem whose main one is importance
sampling. Importance sampling consists in modifying the model and in substi-
tuting to the indicator random variable related to the satisfaction of the formula,
another variable with same mean and, in the favorable cases, reduced variance.
Most of the techniques related to importance sampling are based on heuristics
and cannot provide any confidence interval for the estimated probability.

Our Contribution. Here we propose a method based on importance sampling
to estimate in a reliable way a very small probabilityEI.

We set up a theoretical framework using coupling theory [21], yielding an ef-
ficient importance sampling that guarantees a variance reduction and provides
a confidence interval. This is done by performing numerical model checking on
a small suitable reduction of the Markov chain associated with the system. The
results are then used as parameters required for the importance sampling tech-
nique. Such a method deals with huge (possibly infinite) systems which are out
of reach of numerical model checking and standard statistical model checking.
It can be applied to a large variety of models compared to existing importance
sampling methods which are usually put up in an ad-hoc way for particular
families of models. Furthermore to the best of our knowledge, this is the first
importance sampling method that provides a true (and not an approximate)
confidence interval.

We implemented our method in the statistical model-checker CosMoOs [4] using
the tool PRisM for the numerical computation on the reduced model. We tested
our tool on several models getting impressive time reductions.

Organisation. In section[2, we motivate this work and we give a state of the art
related to rare event handling. Then we develop our method in section Bl After-
wards we present and discuss experimentation in section @l Finally in section [
we conclude and give some perspectives to this work. Due to lack of place, the
proofs can be found in [6].

2 Motivation and State of the Art

The temporal logics for probabilistic systems include both the qualitative and
quantitative aspects of the systems. For instance, such logics can express (1)
boolean assertions like “the probability of failure of a fixed component is below
some threshold” and (2) numerical indices like “the mean delivery time of a
packet assuming three collisions”. The semantics of such formula is based on the
probability that a random path fulfills some property (in CSL [2]) or (in a more
general setting) on the conditional expectation of a path random variable whose
condition is the satisfaction of some property by the random path (in HASL [4]).

! We have presented in a previous paper [5] a preliminary approach of this method
with stronger assumptions and without using the coupling theory.
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Model checking of these logics can be performed in a numerical or in a
statistical way. The former approach builds the underlying stochastic process
of the model and then computes probabilities or expectations using direct or
iterative methods. Such methods have been implemented efficiently in tools
like Prism [17], LiQuor [9] or MRMC [16].

However these methods have two drawbacks. On the one hand, they rely on
strong assumptions about the stochastic process that must be a Markov chain
(see for instance [2]) or at least a regenerative process (see for instance [I]). On
the other hand they suffer from the combinatorial explosion of the size of the
stochastic process w.r.t. the size of the model.

Models with huge stochastic process are handled by statistical model checking.
The corresponding methods randomly generate a (large) set of execution paths
and check whether the paths fulfill the formula. The result is a probabilistic esti-
mation of the satisfaction given by a confidence interval [3]. In principle, it only
requires to maintain a current state (and some numerical values in case of a non
Markovian process). Furthermore no regenerative assumption is required and it
is easier to parallelize the methods. Several tools include statistical model check-
ing: CosMos [4], GrearspN [8], PrisM [I7], UppaAL [7], VESTA [23], Yuer [25].

Model checking of probabilistic systems is particularly important for events
which have disastrous consequences (loss of human life, financial ruin, etc.),
but occur with very small probability. Unfortunately statistical model check-
ing of rare events triggers a computation time explosion, forbidding its use.
To illustrate this point, suppose one wants to estimate an unknown probability
p = 10713 and one chooses to generate 10! paths (which is already a large
number) for such an estimation. With probability larger than 0.999 the result is
0, giving no information on the value of p. With probability smaller than 0.001
the result will be greater or equal than 107'% which is a very crude estimation.

Thus acceleration techniques [22] have been introduced to cope with this prob-
lem. The two main families of methods are splitting and importance sampling.

Splitting methods [I9] duplicate or eliminate paths during their generation
depending on their intermediate behaviour. When generation is ended, the bias
introduced by these operations is taken into account for the estimation of the
probability. Splitting methods are by nature heuristics, model dependent and
very few theoretical results are known.

Importance sampling methods [14] generate paths of a system whose probabil-
ity distribution of transitions have been changed to increase the probability of the
event to occur. A weight is then affected to each path to correct the introduced
bias. The goal is to substitute to the Bernoulli random variable corresponding to
the occurrence of the rare event, another one with same mean value (the prob-
ability of event occurrence) but smaller variance. In Markov chains, an optimal
change of distribution exists leading to a zero variance but it requires more in-
formation than the searched value! However this optimal importance sampling
allows to design efficient heuristics for some classes of models.

The modification of the distribution can be performed at the model
level (called static) or at the Markov chain level (called dynamic). The static
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importance sampling requires no additional memory but in general provides a
smaller reduction of variance than the dynamic importance sampling. More pre-
cisely, it is proved in [II] that asymptotic optimality (a weaker requirement
than optimality) cannot be obtained even for very simple classes of models by
static importance sampling. In full generality, the dynamic importance sam-
pling [24] requires to maintain a memory whose size is proportional to the size
of the Markov chain which is exactly what one wants to avoid. To deal with
this problem, in [I2] the authors develop the following method: (1) the possible
distributions belong to the convex hull of a finite number of distributions, (2) the
state space is partitioned and (3) a distribution is selected for each subset of this
partition. They prove that for a simple class of models their method is asymp-
totically optimal. Other empirical approaches turn out to be efficient [I5UT0].

Summarizing, theoretical results (reduction of variance, asymptotical optimal-
ity, etc.) have been obtained for importance sampling. However none of these
methods can produce a reliable confidence intervalq for the mean value since the
distribution of the modified random variable is unknown.

3 General Approach

3.1 Preliminaries

Definition 1. A discrete time Markov chain (DTMC) C is defined as a set of
states S, an initial state sg, and a transition probability matriz P of size S x S.
The state of the chain at time n is a random variable X,, defined inductively by
Pr(Xo =s0) =1 and Pr(Xp41 = ¢ | Xoo = 8, X521 = Sp—1,..., X0 = 80) =
Pr(Xp+1 =5 |Xn=3)=P(s,5).

Example 1. The figure represents a Markov chain of a tandem queue
system. This system contains two queues, the number of clients in the first queue
1s represented on the horizontal axis and the number of clients in the second one
s represented on the vertical axis. In the initial state sg, the two queues are
empty. Given some state, a new client comes in the first queue with probability
A, a client leaves the first queue for the second one with probability py and a
client leaves the second queue and exits with probability pa (A+p1+p2=1). An
impossible event (due to the emptiness of some queue) corresponds to an event
leaving unchanged the state. These loops are not represented in the figure.

Usually the modeller does not specify its system with a Markov chain. He rather
defines a higher level model M (a queueing network, a stochastic Petri net, etc.),
whose operational semantic is a Markov chain C.

In the context of model checking, the states of chain C are labelled with atomic
propositions. The problem we address here is the computation of the probability
that a random path starting from state s satisfies a formula aUb where U is the
Until operator and a, b are atomic propositions. Observe that in continuous time

2 In contrast to the empirical confidence interval based on approximations by the
normal distribution.
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(a) DTMC for the tandem queues  (b) DTMC with absorbing states

Fig. 1. DTMC for tandem queues

Markov chains, this probability only depends on its embedded DTMC. Thus our
results are also applicable in a continuous time setting. We (implicitly) transform
C by lumping together all the states that satisfy b into an absorbing state s
(i.e. P(s4,s4) = 1) and states that satisfy —a A —=b into an absorbing state s_.
We assume that there is no terminal strongly connected component of C whose
every state satisfies aA—U3. Hence in the modified chain, the probability to reach
s+ or s_ is equal to 1 and probability of satisfying the formula is the probability
to reach sy.

Example 1. The ﬁgure shows the transformation of the tandem queues
were the states have been lumped together w.r.t. the propositions a: There is
at least ome client in some queue and b: the sum of clients in both
queues s equal to 5. The initial state so is now the state with one client in
the first queue (to avoid sy = s—). We are looking for the probability to have
simultaneously at least five clients between two idle periods.

The statistical approach consists in generating K paths of the Markov chain
which ends in an absorbing state. Let K be the number of paths ending in the s
state. The random variable K follows a binomial distribution with parameters
p and K. Thus the random variable I;;’ has a mean value p and a variance ? ;(pz .
When K goes to infinity the variance goes to 0. In order to be more precise on
the estimation, we introduce the notion of confidence interval.

Definition 2. Let X1, ..., X, be independent random variables following a com-
mon distribution including a parameter 6. Let 0 < v < 1 be a confidence level.
Then a confidence interval for 0 with level at least v is given by two random
variables 1(X1,..., X,) and uw(Xy,...,X,) such that for all 0:

Pr(l(Xy,...,X,) <0 <u(Xy,...,Xn) > 7

3 There is currently no satisfactory solution for the statistical model checking of the
unbounded until for chains that do not fulfill this assumption.
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For standard parametrized distributions like the normal or the Bernoulli ones,
it is possible to compute confidence intervals [3]. Thus, given a number of paths
K and a confidence level 1 — ¢, the method produces a confidence interval. As
discussed before when p < 1, the number of paths required for a small confidence
interval is too large to be simulated.

The importance sampling method uses a modified transition matrix P’ during
the generation of paths. P’ must satisfy:

P(s,s')>0=P/(s,s) >0Vs =s_ (1)

which means that this modification cannot remove transitions that have not s_
as target, but can add new transitions. The method maintains a correction factor
called L initialized to 1; this factor represents the likelihood of the path. When
a path crosses a transition s — s’ with s’ # s_, L is updated by L + LPI,),((SS Ss,))

When a path reaches s_, L is set to zero. If P = P (i.e. no modification of the
chain), the value of L when the path reaches s™ (resp. s7) is 1 (resp. 0).

Let V; (resp. W ) be the random variable associated with the final value of
L for a path starting in s in the original model (resp. in the modified one). By
definition, E(V;,) = p. The following proposition establishes the correctness of
the method.

Proposition 1. E(W;,) = p.

A good choice of P’ should reduce the variance of Wy, w.r.t. to variance of V.
The following proposition shows that there exists a matrix P’ which leads to a
null variance. We denote the probability to reach s starting from s by u(s).

Proposition 2. Let P’ be defined by

— Vs such that p(s) #0, P'(s,s') = ”(s )P( s')
— Vs such that p(s) =0, P'(s,s') = ( s')

Then for all s, we have V(W) = 0.

This result has a priori no practical application since it requires the knowledge
of u for all states, whereas we only want to estimate p(sg)!

The coupling method [21] is a classical method for comparing two stochas-
tic processes, applied in different contexts (establishing ergodicity of a chain,
stochastic ordering, bounds, etc.). In the sequel we will develop a new applica-
tion for coupling. A coupling between two Markov chains is a chain whose space
is a subset of the product of the two spaces which satisfies: (1) the projection
of the product chain on any of its components behaves like the original corre-
sponding chain, (2) an additional constraint which depends on the property to
be proved (here related to the absorbing states).

Definition 3. Let C = (S,P) and C' = (S',P’) be two Markov chains with s4
and s_ two absorbing states of C and s’y and s’ two absorbing states of C'. A
coupling between C and C' is a DTMC C® = (S®, P®) such that :
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- S®CSxS9

— Vs #£s51€8, V(s,8)€8® P (s,s1) = Zs’leS’ P®((s,s"),(s1,s1)) and
Vs £ s €5, W(s,s) € 5%, P/(s,5) = X0, PO((5,5), (51,50)

—V(s,s)eS® s’ =5, = s=s4

The set S© defines a coupling relation between the two chains.

The following proposition allows to compare probabilities without any numerical
computation. As before, u(s) (resp. u'(s")) denotes the probability to reach the
state s; (resp. /) in C (resp. in C’) starting from s (resp. from s’).

Proposition 3. Let C® be a coupling between C and C'. Then, for all (s,s') €
S®, we have:

pls) = p'(s")

Example 1. Let us illustrate coupling for the
Markov chain represented in figure[d and called C*. o
This chain is obtained from the tandem queues by
lumping together states which have the same num- <& \& \& \
ber of clients and at least R clients in the second | "\ "\ -
queue (in the figure R = 2). Its set of state is S® =
[0..N] x [0..R]. Here there is a coupling of this chain LN
with itself defined by S® = {((n1,n2), (n},nb)) | o
ny +ng >ny +nh Any >nh}. Fig. 2. Reduced DTMC

NG NG BN

Lemma 1. S® is a coupling relation.

Thus: Y((n1,n2), (ni,nb)) € S, u®(n1,n2) > u®(ni,nb)

3.2 An Importance Sampling Method with Variance Reduction and
Confidence Interval

The proposed method combines statistical model checking on the original chain
preceded by numerical model checking on a reduced chain whose formal definition
is given below.

Definition 4. Let C be a DTMC, a DTMC C® is called a reduction of C by a
function f that maps S to S®, the state space of C*, if, denoting s* = f(s_) and
5% = f(s4), the following assertions are satisfied:

— fNst) = {s_} and f7N(s%) = {ss}.

* and s$ are absorbing states reached with probability 1.

S_
— Let s* € S* and denote by p®(s*), the probability to reach s% starting from
s*. Then for all s € S, we have p*(f(s)) =0= u(s) =0.

The two first assertions entail that the reduced chain has two absorbing states
reached with probability 1 which are images of the absorbing states of the original
chain. The last assertion requires that when from the image of some state s, one
cannot reach s%, then one cannot reach s; from s. These (weak) assumptions
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ensure that the mapping f preserves the basic features of the original chain.
Two states s and s" are equivalent if f(s) = f(s'), in other words f~! define
equivalence classes for this reduction.

Example 1. [In the example of tandem queues, the reduced chain C® is obtained
from the original chain by applying the following function to the state space.

_ J (n1,n9) fna <R
f(ni,ng) = { (n1 +mn2 — R, R) otherwise

The intuition behind this reduction is to block clients in the first queue when
there are R clients in the second one, thus increasing the probability of a global
overflow. Given some reduced chain C®, our goal is to replace the random vari-
able (r.v.) Vs, which takes value in {0,1} by a r.v. Wy, which takes value in
{0, u*(f(s0))}. This requires that p(sg) < p®(f(so)). By applying an homogene-
ity principle, we get the stronger requirement Vs €S, u(s) <p®(f(s)). In fact, the
appropriate requirement which implies the previous one (see later proposition M)
is expressed by the next definition.

Definition 5. Let C be a DTMC and C® a reduction of C by f. C® is a reduction
with guaranteed variance if for all s € S such that p*(f(s)) > 0 we have :

Dot (f(s) - Pls,s') < p*(f(s) (2)
s'es
Given s € S, let h(s) be defined by h(s) = >, cg ’;.,((J;((Ss/))))P(s,s'). We can
now construct an efficient important sampling based on a reduced chain with
guaranteed variance.

Definition 6. Let C be a DTMC and C® be a reduction of C by f with guaranteed
variance. Then P’ is transition matriz on S defined by:
Let s be a state of S,

— if u*(f(s)) =0 then for all s € S, P'(s,s') = P(s,s)
— if p*(f(s)) > 0 then for all s' € S\ {s_},

P'(s,s) = ‘I:..((]}((ss,))))P(s, s') and P'(s,s_) =1 — h(s).

The following proposition justifies the definition of P’.

Proposition 4. Let C be a DTMC and C® be a reduction with guaranteed vari-
ance. The importance sampling based on matriz P’ of definition [@ has the fol-
lowing properties:

— For all s such that p(s) >0,
W is a random variable which has value in {0, u®(f(s))}.

— pu(s) < po(f(s)) and V(W) = u(s)u*(f(s)) — 12 (s).
— One can compute a confidence interval for this importance sampling.
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Since p(so) < 1, V(Vi,) =~ p(so). If u(so) < pu®(f(s0)), we obtain V(W) =~
1(s0)p®(f(s0)), so the variance is reduced by a factor p®(f(sp)). In the case
where 11(sg) and p®(f(sp)) have same magnitude order, the reduction of variance
is even bigger.

Unfortunately, Equation (2] requires to compute the function p® in order to
check that C® is a reduction with guaranteed variance. We are looking for a
structural requirement that does not involve the computation of p°.

Proposition 5. Let C be a DTMC, C*® be a reduction of C by f. Assume there
exists a family of functions (gs)ses, gs : {t | P(s,t) >0} — S® such that:

1. Vs € 8, Vt* € 8%, P*(f(5),1%) = 2| 4(5)=te P(5,8")

2. Vs, t € S such that P(s,t) >0, pu*(f(t)) < u*(gs(t))

Then C® is a reduction of C with guaranteed variance.

The family of functions (gs) assigns to each transition of C starting from s
a transition of C® starting from f(s). The first condition can be checked by
straightforward examination of the probability transition matrices. The second
condition still involves the mapping p® but here there are only comparisons
between its values. Thanks to proposition Bl it can be proved by exhibiting a
coupling of C with itself.

We are now in position to describe the whole method for a model M with
associated DTMC C.

1. Specify a model M*® with associated DTMC C*, a function f and a family
of functions (gs)ses. The specification of this family is done at the level of
models M and M* as shown in the next example and in section [l

2. Prove using a coupling on C® that proposition [{ holds. Again the proof is

performed at the level of models.

Compute function p® with a numerical model checker applied on M?*.

Compute p(sg) with a statistical model checker applied on M using the

importance sampling of definition [

=

The last two steps are done by tools. The second step is currently done by hand
(see [6]) but could be handled by theorem provers. The only manual step is the
specification of M*® which requires to study M and the formula to be checked
(see section ).

Example 1. To apply the method on the example it remains to specify the
family of functions (gs)ses-

G(n1 o) (n1,12) = f(n1,n2)
G(n1,ms) (N1 +1,m2) = f(n1+1,n2)
Ginime) (1 —1,ma +1) = f(ny — 1,n2 + 1)
(’I’Ll,ng—l) ZfTLQSR
Iins.mz) (m1,m2 = 1) - { (n1 +n2 — R,R—1) otherwise

The condition 2 always trivially holds except for the last case with ny > R.
We have to check that p®*(n1 +ns —1— R R) < u*(n1 +ne — R,R—1). As
(ni+mn2—R,R—1),(n1 + na — 1 — R, R)) belongs to the coupling relation the
inequality holds.
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3.3 Generalisation
We generalize the method but with no guarantee about the variance reduction.

Definition 7. Let C be a DTMC and C* a reduction C of by f. We define a
transition matriz P’ on S by the following rules. Let s € S':

— if u*(f(s)) =0 then for all s € S, P'(s,s') = P(s,s)
— if u*(f(s)) > 0 and h(s) <1 then for all s € S\ {s_},

P/(s,s') = ‘;:((]}((Z,))))P(s, s') and P'(s,5_) =1 — h(s)

— if h(s) > 1, then for all s € S, P'(s,s’) = h(A;.);(j:((j‘/()g))P(&sl)
When Equation ] does not hold for state s, we have to “normalize” the matrix
row P’ (s, —). The next proposition characterises the range of the random variable
Wy for this importance sampling. Thus the precision of the estimator highly
depends on the shape of the (unknown) distribution of W, beyond p®(f(s)).

Proposition 6. Let C be a DTMC and C* his reduction. The importance sam-
pling of the definition[7] has the following property: for all s such that pu(s) >0,
Wy is a random variable which takes its values in {0} U [u®(f(s)), ool

4 Experimentation

4.1 Implementation

Tools. Our experimentsﬁ have been performed on a modified version of COSMOS
(downloadable at http://www.lsv.ens-cachan.fr/Software/Cosmos).
CoSMOs is a statistical model checker whose input model is a stochastic Petri net
with general distributions and formulas are expressed by the Hybrid Automata
Stochastic Logic [4]. The numerical model checking of the reduced model have
been performed by PRISM whereas we have also used the statistical model checker
PrisMm 4.0 for comparisons with our method.

Adaptation of Cosmos. Since COSMOS takes as input a stochastic Petri net
with a continuous time semantic, we have adapted our method to work with con-
tinuous time Markov chains. As discussed before, for formulas that we consider,
this does not present serious difficulty.

The importance sampling increases the computation time of simulation. First
we have to compute and store in an hash table the probability vector u® of the
reduced model in polynomial time w.r.t. the reduced Markov chain C®. Then
after a transition of the path we must compute P’(s, —) where s is the current
state whose computation time is linear w.r.t. the number of events of M.

4 All the experiments have been performed on a computer with a 2.6Ghz processor
and 48Go of memory without parallelism.
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4.2 Example 1: Global Overflow in Tandem Queues

This example is a classical benchmark for importance sampling. We compare
our results with those of [I2] which provides an efficient solution (see section [2I).
We take the same parameters with A = 0.1, p; = po = 0.45, N = 50 and we also
simulate 20000 paths. We set the parameter R to 4. The probability (computed
by a numerical model checker) is 3.8 1073L. The width of confidence interval
produced by [12] is 6.4 10732 whereas ours is six times smaller (9.63 10733).

We also compare our method to both numerical and standard statistical model
checking done by PrisM. We change the parameter of the model to A = 0.32,
p1 = p2 = 0.34 in order to evaluate the methods for large values of N. Results
are depicted in table [ We set the value of R to the minimal value such that
“.’z;s&)) < 1.5. We found that R and N satisfy R ~ 36.3log(N) — 126. The
narrowness of the obtained confidence interval confirms the validity of this choice.
The reduced model has ©(nlog(n)) states whereas the initial one has ©(n?)
states.

The standard statistical model checker fails to find a relevant confidence inter-
val (i.e. the width of interval is half the value of the estimation) when N > 100
while the numerical model checker does not end when N > 5000. Our method
can handle greater values of this parameter. We can approximate the number of
paths required by standard statistical model checking and deduce the estimated
corresponding computation time which is 1020 greater than ours!

Table 1. Experimental results for example 1

N Size of Prism num Prism stat Cosmos
C  T(s) m(so) T(s)p(so) Conf Int.width R TC*®(s) T (s) p(so) Conf. Int.width
50 2601 0.3 0.0929 1.45 0.091 0.016 4 0.03 7 0.090 0.017
100 10201 1.6 0.01177 2.7 0.015 0.007 30 1 36 0.01156 8.6E-4
500 251 001 126 2.06E-12 2.3 0 # 87 23 145 2.075E-12 1.72E-13
1000 1E6 860 2.87E-25 No path reaches the rare event 111 113 263 2.906E-25 2.52E-26
5000 25E6 >12h  # # 150 3061 1099 7.10E-130  1.21E-130

4.3 Example 2 : Parallel Random Walk

The Petri net depicted in figure Bl models a parallel random walk of N walkers.
A walk is done between position 1 and position L starting in position L/2 and
ends up in the extremal positions. At every round, some random walker can
randomly go in either direction. However when walkers ¢ and ¢ 4+ 1 are in the
same position, walker ¢ can only go toward 1. We represent on this figure the
walker ¢ and his interactions with walker ¢ + 1. Transition A;; (resp. R; ;—1)
corresponds to a step toward L (resp. 1).

This model is a paradigm of failure tolerant systems in which each walker
represents a process which finishes its job when it reaches position 1. Failures
can occur and move the process away of its goal. When position L is reached the
job is aborted. We want to evaluate the probability that a majority of players
have reached position L.
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This model has LY states. In order to get a reduced model, we remove all
synchronisation between walkers. Behaviours of all walkers are now independent
and thus a state of the reduced system is now defined by the number of walkers
in each position. The size of the reduced system is (Nzrffl)

Proposition [ holds for this reduced model. Intuitively, removing synchroni-

sation between walkers increases the probability to reach position L.

Ais
Q ﬁ><
@\i y ® ’

Piy1j Pit1,j4+1

Fig. 3. The Petri net for example 2

Table 2] shows the experimental result with the following parameters p = 0.3
, g =0.7, L =15. We stop the simulation when the confidence interval width
reaches one tenth of the estimated value. Our method handles huge models (with
size up to 8 10'2) with very small probabilities (8 10718) whereas the standard
statistical model checking and numerical model checkings fail due to either the
low probability or the size of the system.

Table 2. Experimental results for example 2

N size of  Prism num Prism stat Cosmos

C T(s) w(so) T(s) p(so) Conf. Int. Nb Traj. T C* (s) T (s) u(so) Conf. Int.
1 15 =0 0.00113 12 1.15E-3 1E-4 1 = ~0 0.00113 0
5 7.5E5 6 1.88E-9 21 0 # 18000 0.5 13 1.94E-9 1.89E-10
6 1.1E7 127 1.14E-12 No path reaches the rare event 53000 1 57 1.17E-12 1.17E-13
7 1.7TE8 2248 2.93E-12 # 50000 2.8 186 2.92E-12 2.89E-13
8 2.0E9 Out of memory # 145000 7.9 1719 1.86E-15 1.86E-16
9 3.8E10 # # 128000 24 3800 4.7E-15 4.75E-16
10 5.7E11 # # 371000 71 26000 3.12E-18 3.11E-19
11 8.0E12 # # 321000 228 67000 7.90E-18 7.89E-19

4.4 Example 3: Local Overflow in Tandem Queues

We consider the tandem queues system with a different property to check: The
second queue contains NN clients (ny = N) before the second queue
is empty(ng = 0). The state space is § = N x [0..N] with initial state (0, 1).
Contrary to the first example C is now infinite but C* must be finite in order to
apply the numerical model checker.
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The reduced model behaves as the original one until the first queue contains
R clients. Then the model behaves as if there is an infinite number of clients in
the first queue. The corresponding Petri net is depicted in ﬁgure The corre-
sponding reduction function f (whose effect on the original chain is represented

in figure [4(b))) is defined by:

(n1,ne) ifn; <R
(R,n2) otherwise

f(n1,m2) _{

O s KR
\@Q{ s /_---_

AFy
(a) Reduced model (b) Reduction chain

Fig. 4. Petri net for example 3(R =3, N =5)

Table 3. Experimental results for example 3

N R T (s) Sizeof u*(f(s0)) Cosmos Prism stat
c* c* u(so)  Conf. Int. T (s) Nb Traj. T (s) p(so) Conf. Int.
25 12 =0 338 1.16E-5 148E-6 2.83E-7 2 5000 33 1.1E-6 1.6E-6
50 29 ~0 1530 2.98E-10 3.81E-11 7.19E-12 13 5000 No path reaches the rare event
100 66 1.44 6767 1.87E-19 4.22E-20 7.34E-21 17 3000 #
500 370 1770 185871 1.03E-90 6.63E-91 8.05E-32 37 2000 #
1000 740 24670 741741 3.24E-177 3.95E-179 4.00E-179 180 3000 #

We found by running experiments on small values of N and R that for
R > 0.74 x N we have u(sg) > p®*(f(s0))/10. This example shows that we
can apply our method on an infinite model subject to the specification of a fi-
nite reduced model. Observe that computation time reductions w.r.t. standard
statistical model checking are still impressive.

4.5 Example 4: Bottleneck in Tandem Queues

We consider the tandem queues system with a different property to check: The
second queue is full (ne = N) before the first one (ny = N). The
reduced model is obtained by considering that the second queue is full when it
contains N — R clients or in an equivalent way that the second queue always
contains at least R clients. The corresponding Petri net is depicted in ﬁgure
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The reduction function (whose effect on the original chain is represented in

figure [5(b))) is defined by:

f(nth) — {(n17R) ifne <R

(n1,n2) otherwise

50 . . . . °
A oy B_R_p
R+1 . . . .
(a) Reduced model (b) Reduction function

Fig. 5. Petri net for the tandem queues (R =2, N = 5)

However, the experimental results are not satisfactory since pu(sg) < pu*(f(s0))
when R is small compared to N. This shows that designing a reduced model
with relevant computation time reduction is sometimes tricky (and remains to
be done for this example).

5 Conclusion

We proposed a method of statistical model checking which computes a reduced
confidence interval for the probability of a rare event. Our method is based on
importance sampling techniques. Other methods usually rely on heuristics and
fail to provide a confidence interval. We have developed a theoretical framework
ensuring the reduction of the variance and providing a confidence interval. This
framework requires a structural analysis of the model but no numerical compu-
tation thanks to coupling theory. Our method is implemented in the statistical
model checker CosMOS and we have done experiments with impressive results.

We plan to go further in four directions. First we want to deal with more
complex infinite systems. Secondly we want to handle “bounded until” formu-
las requiring to deal with non Markovian systems. We also would mechanize
the proofs of coupling since they consist to check parametrized inequalities. Fi-
nally we are looking for a class of models which structurally fulfill the required
assumptions.
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