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Abstract. Diagnosis of partially observable stochastic systems prone
to faults was introduced in the late nineties. Diagnosability, i.e. the
existence of a diagnoser, may be specified in different ways: (1) exact
diagnosability (called A-diagnosability) requires that almost surely a fault
is detected and that no fault is erroneously claimed while (2) approximate
diagnosability (called ε-diagnosability) allows a small probability of error
when claiming a fault and (3) accurate approximate diagnosability (called
AA-diagnosability) requires that this error threshold may be chosen
arbitrarily small. Here we mainly focus on approximate diagnoses. We first
refine the almost sure requirement about finite delay introducing a uniform
version and showing that while it does not discriminate between the two
versions of exact diagnosability this is no more the case in approximate
diagnosis. Then we establish a complete picture for the decidability status
of the diagnosability problems: (uniform) ε-diagnosability and uniform
AA-diagnosability are undecidable while AA-diagnosability is decidable
in PTIME, answering a longstanding open question.

Keywords: automata for system analysis and programme verification

1 Introduction

Diagnosis and diagnosability. The increasing use of software systems for critical
operations motivates the design of fast automatic detection of malfunctions. In
general, diagnosis raises two important issues: deciding whether the system is
diagnosable and, in the positive case, synthesizing a diagnoser possibly satisfying
additional requirements about memory size, implementability, etc. One of the
proposed approaches consists in modelling these systems by partially observable
labelled transition systems (LTS) [11]. In such a framework, diagnosability requires
that the occurrence of unobservable faults can be deduced from the previous and
subsequent observable events. Formally, an LTS is diagnosable if there exists a
diagnoser that satisfies reactivity and correctness contraints. Reactivity requires
that if a fault occurred, the diagnoser eventually detects it. Correctness asks
that the diagnoser only claims the existence of a fault when there actually was
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one. Diagnosability for LTS was shown to be decidable in PTIME [7] while the
diagnoser itself could be of size exponential w.r.t. the size of the LTS. Diagnosis
has been extended to numerous models (Petri nets [3], pushdown systems [8], etc.)
and settings (centralized, decentralized, distributed), and have had an impact on
important application areas, e.g. for telecommunication network failure diagnosis.
Also, several contributions, gathered under the generic name of active diagnosis,
focus on enforcing the diagnosability of a system [4,5, 10,13].

Diagnosis of stochastic systems. Diagnosis was also considered in a quantitative
setting, and namely for probabilistic labelled transition systems (pLTS) [1,12],
that can be seen as Markov chains in which the transitions are labelled with
events. Therefore, one can define a probability measure over infinite runs. In
that context, the specification of reactivity and correctness can be relaxed. Here,
reactivity only asks to detect faults almost surely (i.e. with probability 1).
This weaker reactivity constraint takes advantage of probabilities to rule out
negligible behaviours. For what concerns correctness, three natural variants can
be considered. A-diagnosability sticks to strong correctness and therefore asks the
diagnoser to only claim fault occurrences when a fault is certain. ε-diagnosability
tolerates small errors, allowing to claim a fault if the conditional probability
that no fault occurred does not exceed ε. AA-diagnosability requires the pLTS
to be ε-diagnosable for all positive ε, allowing the designer to select a threshold
according to the criticality of the system. A-diagnosability and AA-diagnosability
were introduced in [12]. Recently, we focused on semantical and algorithmic issues
related to A-diagnosability, and in particular we established that A-diagnosability
is PSPACE-complete [1]. When it comes to approximate diagnosability (i.e.
ε and AA-diagnosability), up to our knowledge, a (PTIME-checkable) sufficient
condition for AA-diagnosability [12] has been given, but no decidability result is
known.

Contributions. Our contributions are twofold. From a semantical point of view,
we investigate the specification of reactivity, introducing uniform reactivity which
requires that once a fault occurs, the probability of detection when time elapses
converges to 1 uniformly w.r.t. faulty runs. Uniformity provides the user with
a stronger guarantee about the delay before detection. We show that uniform
A-diagnosability and A-diagnosability coincide while this is no longer the case for
approximate diagnosability. From an algorithmic point of view, we first show that
ε-diagnosability and its uniform version are undecidable. Then we characterize
AA-diagnosability as a separation property between labelled Markov chains
(LMC), precisely a distance 1 between appropriate pairs of LMCs built from the
pLTS. Thanks to [6], this yields a polynomial time algorithm for AA-diagnosability.
AA-diagnosability can thus be checked more efficiently than A-diagnosability
(PTIME vs PSPACE), yet, surprisingly, contrary to A-diagnosers, AA-diagnosers
may require infinite memory. Finally, we show that uniform AA-diagnosability is
undecidable.
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Organization. In Section 2, we introduce the different variants of diagnosability
and establish the full hierarchy between these specifications. In Section 3, we
address the decidability and complexity issues related to approximate diagnosis.
Full proofs can be found in the companion research report [2].

2 Specification of Diagnosability

2.1 Probabilistic Labelled Transition Systems

To represent stochastic discrete event systems, we use transition systems labelled
with events and in which the transition function is probabilistic.

Definition 1. A probabilistic labelled transition system (pLTS) is a tuple A =
〈Q, q0, Σ, T,P〉 where:

– Q is a finite set of states with q0 ∈ Q the initial state;
– Σ is a finite set of events;
– T ⊆ Q×Σ ×Q is a set of transitions;
– P : T → Q>0 is the probability function fulfilling for every q ∈ Q:∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labelled transition system (LTS) equipped with
transition probabilities. The transition relation of the underlying LTS is defined
by: q

a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in q.

Let us now introduce some important notions and notations that will be used
throughout the paper. A run ρ of a pLTS A is a (finite or infinite) sequence
ρ = q0a0q1 . . . such that for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined,

qi
ai−→ qi+1. The notion of run can be generalized, starting from an arbitrary state

q. We write Ω for the set of all infinite runs of A starting from q0, assuming
the pLTS is clear from context. When it is finite, ρ ends in a state q and its
length, denoted |ρ|, is the number of actions occurring in it. Given a finite
run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . ., we call
concatenation of ρ and ρ′ and we write ρρ′ for the run q0a0q1 . . . qnanqn+1 . . .; the
run ρ is then a prefix of ρρ′, which we denote ρ � ρρ′. The cylinder generated by
a finite run ρ consists of all infinite runs that extend ρ: Cyl(ρ) = {ρ′ ∈ Ω | ρ � ρ′}.
The sequence associated with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write

indifferently q
ρ

=⇒ or q
σρ
=⇒ (resp. q

ρ
=⇒ q′ or q

σρ
=⇒ q′) for an infinite (resp. finite) run

ρ. A state q is reachable (from q0) if there exists a run such that q0
ρ

=⇒ q, which
we alternatively write q0 =⇒ q. The language of pLTS A consists of all infinite
words that label runs of A and is formally defined as Lω(A) = {σ ∈ Σω | q0

σ
=⇒}.

Forgetting the labels and merging (and summing the probabilities of) the
transitions with same source and target, a pLTS yields a discrete time Markov
chain (DTMC). As usual for DTMC, the set of infinite runs of A is the support
of a probability measure defined by Caratheodory’s extension theorem from the
probabilities of the cylinders:

PA(Cyl(q0a0q1 . . . qn)) = P[q0, a1, q1] · · ·P[qn−1, an−1, qn] .
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When A is fixed, we may omit the subscript. To simplify, for ρ a finite run, we will
sometimes abuse notation and write P(ρ) for P(Cyl(ρ)). If R is a (denumerable)
set of finite runs (such that no run is a prefix of another one), we write P(R) for∑
ρ∈R P(ρ).

2.2 Partial Observation and Ambiguity

Beyond the pLTS model for stochastic discrete event systems, in order to formalize
problems related to fault diagnosis, we partition Σ into two disjoint sets Σo and
Σu, the sets of observable and of unobservable events, respectively. Moreover,
we distinguish a special fault event f ∈ Σu. Let σ be a finite word over Σ; its
length is denoted |σ|. The projection of words onto Σo is defined inductively
by: π(ε) = ε; for a ∈ Σo, π(σa) = π(σ)a; and π(σa) = π(σ) for a /∈ Σo. We
write |σ|o for |π(σ)|. When σ is an infinite word, its projection is the limit of the
projections of its finite prefixes. As usual the projection mapping is extended
to languages: for L ⊆ Σ∗, π(L) = {π(σ) | σ ∈ L}. With respect to the partition
of Σ = Σo ] Σu, a pLTS A is convergent if, from any reachable state, there
is no infinite sequence of unobservable events: Lω(A) ∩Σ∗Σω

u = ∅. When A is
convergent, for every σ ∈ Lω(A), π(σ) ∈ Σω

o . In the rest of the paper we assume
that pLTS are convergent. We will use the terminology sequence for a word
σ ∈ Σ∗ ∪Σω, and an observed sequence for a word σ ∈ Σ∗o ∪Σω

o . The projection
of a sequence to Σo is thus an observed sequence.

The observable length of a run ρ denoted |ρ|o ∈ N ∪ {∞}, is the number
of observable events that occur in it: |ρo| = |σρ|o. A signalling run is a finite
run ending with and observable event. Signalling runs are precisely the relevant
runs w.r.t. partial observation issues since each observable event provides an
external observer additional information about the execution. In the sequel, SR
denotes the set of signalling runs, and SRn the set of signalling runs of observable
length n. Since we assume pLTS to be convergent, for every n > 0, SRn is
equipped with a probability distribution defined by assigning measure P(ρ) to
each ρ ∈ SRn. Given ρ a finite or infinite run, and n ≤ |ρ|o, ρ↓n denotes the
signalling subrun of ρ of observable length n. For convenience, we consider the
empty run q0 to be the single signalling run, of null length. For an observed
sequence σ ∈ Σ∗o , we define its cylinder Cyl(σ) = σΣ∗o and the associated
probability P(Cyl(σ)) = P({ρ ∈ SR|σ| | π(ρ) = σ}), often shortened as P(σ).

Let us now partition runs depending on whether they contain a fault or not.
A run ρ is faulty if σρ contains f , otherwise it is correct. For n ∈ N, we write Fn
(resp. Cn) for the set of faulty (resp. correct) signalling runs of length n, and
further define the set of all faulty and correct signalling runs F = ∪n∈NFn and
C = ∪n∈NCn. W.l.o.g., by considering two copies of each state, we assume that the
state space Q is partitioned into correct states and faulty states: Q = Qf]Qc such
that faulty (resp. correct) states, i.e. states in Qf (resp. Qc) are only reachable
by faulty (resp. correct) runs. An infinite (resp. finite) observed sequence σ ∈ Σω

o

(resp. Σ∗o ) is ambiguous if there exists a correct infinite (resp. signalling) run ρ
and a faulty infinite (resp. signalling) run ρ′ such that π(ρ) = π(ρ′) = σ.
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2.3 Fault Diagnosis

Whatever the considered notion of diagnosis in probabilistic systems, reactivity
requires that when a fault occurs, a diagnoser almost surely will detect it after
a finite delay. We refine this requirement by also considering uniform reactivity
ensuring that given any positive probability threshold α there exists a delay
nα such that the probability to exceed this delay is less or equal than α. Here
uniformity means “independently of the faulty run”.

Similarly, correctness of the diagnosis may be specified in different ways. Since
we focus on approximate diagnosis, a fault can be claimed after an ambiguous
observed sequence. This implies that ambiguity should be quantified in order to
assess the quality of the diagnosis. To formalise this idea, with every observed
sequence σ ∈ Σ∗o we associate a correctness proportion

CorP(σ) =
P({ρ ∈ C|σ| | π(ρ) = σ})

P({ρ ∈ C|σ| ∪ F|σ| | π(ρ) = σ})
,

which is the conditional probability that a signalling run is correct given that
its observed sequence is σ. Thus approximate diagnosability also denoted ε-
diagnosability allows the diagnoser to claim a fault when the correctness pro-
portion does not exceed ε while accurate approximate diagnosability denoted
AA-diagnosability ensures that ε can be chosen as small as desired but still
positive.

Definition 2 (Diagnosability notions). Let A be a pLTS and ε ≥ 0.

– A is ε-diagnosable if for all faulty run ρ ∈ F and all α > 0 there exists nρ,α
such that for all n ≥ nρ,α:

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(π(ρ′)) > ε}) ≤ αP(ρ).

A is uniformly ε-diagnosable if nρ,α does not depend on ρ.
– A is (uniformly) AA-diagnosable if it is (uniformly) ε-diagnosable for all
ε > 0.

Two variants of diagnosability for stochastic systems were introduced in [12]:
AA-diagnosability and A-diagnosability. A-diagnosability, which corresponds
to exact diagnosis, is nothing else but 0-diagnosability in Definition 2 word-
ing. By definition, A-diagnosability implies AA-diagnosability which implies
ε-diagnosability for all ε > 0. Observe also that since the faulty run ρ (and so
P(ρ)) is fixed, ε-diagnosability can be rewritten:

lim
n→∞

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(π(ρ′)) > ε}) = 0.

We now provide examples that illustrate these notions. Consider A1, the
pLTS represented on Figure 1. We claim that A1 is AA-diagnosable but neither
A-diagnosable, nor uniformly AA-diagnosable. We only give here intuitions on
these claims, and refer the reader to the proof of Proposition 3 in [2]. First an

5



q0 qfqc
f , 1

2
u, 1

2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Fig. 1. An AA-diagnosable pLTS A1,
that is neither A-diagnosable, nor uni-
formly AA-diagnosable.

q0 qfqc
fu

ab a

Fig. 2. An uniformly AA-diagnosable
pLTS A2, that is not A-diagnosable.

q0 qf q′f
f b

a ba

Fig. 3. An A-diagnosable pLTS A3.

ε-diagnoser will look at the proportion of b occurrences and if the sequence is
“long” enough and the proportion is “close” to 3

4 , it will claim a fault. However,
the delay nα,ρ before claiming a fault cannot be selected independently of the
faulty run. Indeed, given the faulty run ρn = q0fqf (aqf )n, we let pn,m for the
probability of extensions of ρn by m observable events and with correctness
proportion below ε. In order for pn,m to exceed 1 − α, m must depend on n.
So A1 is not uniformly AA-diagnosable. A1 is neither A-diagnosable since all
observed sequences of faulty runs are ambiguous.

Consider now the pLTS A2 depicted in Figure 2, for which we consider a
uniform distribution on the outgoing edges from q0. First note that every faulty
run (q0a)iq0f(qfa)jqf has a correct run, namely q0(aq0)i+j with the same observed
sequence. So A2 is not A-diagnosable. Yet, we argue that it is uniformly AA-
diagnosable. The correctness proportion of a faulty run (exponentially) decreases
with respect to its length. So the worst run to be considered for the diagnoser is
q0fqfaqf implying uniformity.

Consider the pLTS A3 from Figure 3, with uniform distributions in q0 and
qf . Viewed as an LTS, it is not diagnosable, since the observed sequence aω is
ambiguous and forbids the diagnosis of faulty runs without any occurrence of b.
On the contrary, let ρ = q0(aq0)xfqf (aqf )y(bq′f )z be an arbitrary faulty run. If
z > 0 then CorP(π(ρ)) = 0. Otherwise P({ρ′ ∈ SRn+|ρ|o | ρ � ρ′ ∧ CorP(π(ρ′)) >

0}) = 1
2nP(ρ) and so A3 is A-diagnosable.

Proposition 3 establishes the exact relations between the different specifi-
cations. Observe that uniform AA-diagnosability is strictly stronger than AA-
diagnosability while A-diagnosability and uniform A-diagnosability are equivalent.

Proposition 3. – A pLTS is A-diagnosable if and only if it is uniformly
A-diagnosable.

– There exists an AA-diagnosable pLTS, not uniformly 1
2 -diagnosable and so

not uniformly AA-diagnosable.
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– There exists a uniformly AA-diagnosable pLTS, not A-diagnosable.

Although we have not explicitely defined diagnosers for diagnosable pLTS,
given a fixed threshold ε > 0, a simple diagnoser would monitor the sequence
of observed events σ, compute the current correctness proportion, and output
“faulty” if CorP(σ) is below ε. However such an ε-diagnoser may need an infinite
memory. This contrasts with the case of A-diagnosability for which finite-memory
diagnosers suffice [12].

Proposition 4. There exists an AA-diagnosable pLTS, thus ε-diagnosable for
every ε > 0, that admits no finite-memory diagnoser when 0 < ε ≤ 1

2 .

Proof. Consider A1 the AA-diagnosable pLTS of Figure 1 and assume there exists
a diagnoser with m states for some threshold 0 < ε ≤ 1

2 . After any sequence an,
it cannot claim a fault. So there exist 1 ≤ i < j ≤ m+ 1 such that the diagnoser
is in the same state after observing ai and aj .
Consider the faulty run ρ = q0fqf (aqf )i. Due to the reactivity requirement, there
must be a run ρρ′ for which the diagnoser claims a fault. This implies that for all n,
the diagnoser claims a fault after ρn = ρ(aqf )n(j−i)ρ′ but limn→∞ CorP(π(ρn)) =
1, which contradicts the correctness requirement. ut

3 Analysis of Approximate Diagnosability

A-diagnosability was proved to be a PSPACE-complete problem [1]. We now focus
on the other notions of approximate diagnosability introduced in Definition 2,
and study their decidability and complexity.

Reducing the emptiness problem for probabilistic automata [9] (PA), we
obtain the following first result:

Theorem 5. For any rational 0 < ε < 1, the ε-diagnosability and uniform
ε-diagnosability problems are undecidable for pLTS.

We now turn to the decidability status of AA-diagnosability and uniform
AA-diagnosability. We prove that AA-diagnosability can be solved in polynomial
time by establishing a characterization in terms of distance on labelled Markov
chains; this constitutes the most technical contribution of this section.

A labelled Markov chain (LMC) is a pLTS where every event is observable:
Σ = Σo. In order to exploit results of [6] on LMC in our context of pLTS, we
introduce the mapping M that performs in polynomial time the probabilistic
closure of a pLTS w.r.t. the unobservable events and produces an LMC. For
sake of simplicity, we denote by Aq, the pLTS A where the initial state has been
substituted by q.

Definition 6. Given a pLTS A = 〈Q, q0, Σ, T,P〉 with Σ = Σo]Σu, the labelled
Markov chain M(A) = 〈Q, q0, Σo, T ′,P′〉 is defined by:

– T ′ = {(q, a, q′) | ∃ρ ∈ SR1(Aq) ρ = q · · · aq′} (and so a is observable).
– For all (q, a, q′) ∈ T ′,P′(q, a, q′) = P{ρ ∈ SR1(Aq) | ρ = q · · · aq′}.
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Let E be an event of Σω (i.e. a measurable subset of Σω for the standard
measure), we denote by PM(E) the probability that event E occurs in the LMC
M. Given two LMC M1 and M2, the (probabilistic) distance between M1 and
M2 generalizes the concept of distance for distributions. Given an event E,
|PM1(E)− PM2(E)| expresses the absolute difference between the probabilities
that E occurs in M1 and in M1. The distance is obtained by getting the
supremum over the events.

Definition 7. Let M1 and M2 be two LMC over the same alphabet Σ. Then
d(M1,M2) the distance between M1 and M2 is defined by:

d(M1,M2) = sup(PM1(E)− PM2(E) | E event of Σω).

The distance 1 problem asks, given labelled Markov chains M1 and M2,
whether d(M1,M2) = 1. We summarize in the next proposition, the results by
Chen and Kiefer on LMC that we use later.

Proposition 8 ([6]).

– Given two LMC M1,M2, there exists an event E such that:

d(M1,M2) = PM1(E)− PM2(E).

– The distance 1 problem for LMC is decidable in polynomial time.

Towards the decidability of AA-diagnosability, let us first explain how to
solve the problem on a subclass of pLTS called initial-fault pLTS. Informally,
an initial-fault pLTS A consists of two disjoint pLTS Af and Ac and an initial
state q0 with an outgoing unobservable correct transition leading to Ac and a
transition labelled by f leading to Af (see the figure below). Moreover no faulty
transitions occur in Ac. We denote such a pLTS by A = 〈q0,Af ,Ac〉.

q0qc qf
f , 12u, 12Ac

(Σ \ {f})
Af

(Σ)

The next lemma establishes a strong connection between distance of LMC
and diagnosability of initial-fault pLTS.

Lemma 9. Let A = 〈q0,Af ,Ac〉 be an initial-fault pLTS. Then A is AA-
diagnosable if and only if d(M(Af ),M(Ac)) = 1.

Proof. We write P, Pf and Pc for the probability distributions of pLTS A, Af
and Ac. By construction of M(Af ) and M(Ac), for every observed sequence σ,

PM(Af )(σ) = Pf (σ) and similarly PM(Ac)(σ) = Pc(σ). In words, the mapping
M leaves unchanged the probability of occurrence of an observed sequence.

• If A is AA-diagnosable, for every ε > 0 and every faulty run ρ:

lim
n→∞

P({ρ′ ∈ SRn+|ρ|o | ρ � ρ
′ ∧ CorP(π(ρ′)) > ε}) = 0. (1)
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Pick some 0 < ε < 1. By applying Equation (1) on the faulty run ρf = q0fqf
with |π(ρf )| = 0, there exists some n ∈ N such that:

P({ρ ∈ SRn | ρf � ρ ∧ CorP(π(ρ)) > ε}) ≤ ε.
Let S be the set of observed sequences of faulty runs with length n and correctness
proportion not exceeding theshold ε:

S = {σ ∈ Σn
o | ∃ρ ∈ SRn, π(ρ) = σ ∧ ρf � ρ ∧ CorP(σ) ≤ ε}.

E = Cyl(S) is the event consisting of the infinite suffixes of those sequences. Let
us show that Pc(E) ≤ ε

1−ε and Pf (E) ≥ 1− 2ε.

Pf (E) = 1− 2P({ρ ∈ SRn | ρf � ρ ∧ CorP(π(ρ)) > ε}) ≥ 1− 2ε.

The factor 2 comes from the probability 1
2 in A to enter Af that Pf does not

take into account contrary to P.

Moreover, for every observed sequence σ ∈ S, there exists a faulty run ρ such
that π(ρ) = σ. Thus, CorP(σ) ≤ ε. Using the definition of CorP:

CorP(σ) =
P({ρ ∈ Cn | π(ρ) = σ})
P({ρ ∈ SRn | π(ρ) = σ})

=
Pc(σ)

Pc(σ) + Pf (σ)
≤ ε.

Thus, Pc(σ) ≤ ε
1−εPf (σ). Hence:

Pc(E) =
∑
σ∈S

Pc(σ) ≤
∑
σ∈S

ε

1− ε
Pf (σ) =

ε

1− ε
Pf (E) ≤ ε

1− ε
.

Therefore d(M(Ac),M(Af )) ≥ Pf (E) − Pc(E) ≥ 1 − ε(2 + 1
1−ε ). Letting ε go

to 0, we obtain d(M(Ac),M(Af )) = 1.

• Conversely assume that d(M(Af ),M(Ac)) = 1. Due to Proposition 8, there
exists an event E ⊆ Σω

o such that Pf (E) = 1 and Pc(E) = 0.
For all n ∈ N, let Sn be the set of prefixes of length n of the observed sequences
of E: Sn = {σ ∈ Σn

o | ∃σ′ ∈ E, σ � σ′}.
For all ε > 0, let Sε

n be the subset of sequences of Sn whose correctness proportion
exceeds threshold ε: Sε

n = {σ ∈ Sn | CorP(σ) > ε}.
As

⋂
n∈N Cyl(Sn) = E, limn→∞ Pc(Sn) = Pc(E) = 0.

So limn→∞ Pc(Sε
n) = 0.

On the other hand for all n ∈ N,

Pc(Sε
n) =

∑
σ∈Sεn

Pc(σ) >
∑
σ∈Sεn

ε

1− ε
Pf (σ) =

ε

1− ε
Pf (Sε

n).

Therefore we have limn→∞ Pf (Sε
n) = 0.

Let ρ be a faulty run and α > 0. There exists nα ≥ |ρ|o such that for all n ≥ nα,

Pf (Sε
n) ≤ α. Let n ≥ nα, and S̃n be the set of observed sequences of length n

triggered by a run with prefix ρ and whose correctness proportion exceeds ε:

S̃n = {σ ∈ Σn
o | ∃ρ′ ∈ SRn, ρ � ρ′ ∧ π(ρ′) = σ ∧ CorP(σ) > ε}.

Let us prove that P(S̃n) ≤ α. On the one hand, since Pf (Sn) ≥ Pf (E) = 1,

Pf (S̃n ∩ (Σn
o \Sn)) = 0. On the other hand, since Pf (Sε

n) < α, Pf (S̃n ∩Sn) ≤
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Pf (Sε
n) ≤ α. Thus Pf (S̃n) = Pf (S̃n ∩Sn) + Pf (S̃n ∩ (Σn

o \Sn)) ≤ α. Because

α was taken arbitrary, we obtain that limn→∞ Pf (S̃n) = 0.

Observe now that P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 1
2Pf (S̃n).

Therefore, limn→∞ P({ρ′ ∈ SRn | ρ � ρ′ ∧ CorP(π(ρ′)) > ε}) = 0. So A is AA-
diagnosable. ut

In order to understand why characterizing AA-diagnosability for general pLTS
is more involved, let us study the pLTS A2 presented in Figure 2 where outgoing
transitions of any state are equidistributed. Recall that A2 is AA-diagnosable
(and even uniformly AA-diagnosable).
Let us look at the distance between pairs of a correct and a faulty states of
A that can be reached by runs with the same observed sequence. On the one
hand, d(M(Aq0),M(Aqf )) ≤ 1

2 since for any event E either (1) aω ∈ E implying

PM(Aqf )(E) = 1 and PM(Aq0 )(E) ≥ 1
2 or (2) aω /∈ E implying PM(Aqf )(E) =

0 and PM(Aq0 )(E) ≤ 1
2 . On the other hand, d(M(Aqc),M(Aqf )) = 1 since

PM(Aqf )(aω) = 1 and PM(Aqc )(aω) = 0.
We claim that the pair (q0, qf ) is irrelevant, since the correct state q0 does not
belong to a bottom strongly connected component (BSCC) of the pLTS, while
(qc, qf ) is relevant since qc belongs to a BSCC triggering a “recurrent” ambiguity.

The next theorem characterizes AA-diagnosability, establishing the soundness
of this intuition. Moreover, it states the complexity of deciding AA-diagnosability.

Theorem 10. Let A be a pLTS. Then, A is AA-diagnosable if and only if for
every correct state qc belonging to a BSCC and every faulty state qf reachable by
runs with same observed sequence, d(M(Aqc),M(Aqf )) = 1.
The AA-diagnosability problem is decidable in polynomial time for pLTS.

The full proof of Theorem 10 is given [2]. Let us sketch the key ideas to establish
the characterization of AA-diagnosability in terms of the distance 1 problem.
The left-to-right implication is the easiest one, and is proved by contraposition.
Assume there exist two states in A, qc ∈ Qc belonging to a BSCC and qf ∈ Qf
reachable resp. by ρc and ρf with π(ρc) = π(ρf ), and with d(M(Aqc),M(Aqf )) <
1. Applying Lemma 9 to the initial-fault pLTS A′ = 〈q′0,Aqf ,Aqc〉, one deduces
that A′ is not AA-diagnosable. First we relate the probabilities of runs in A and
A′. Then we show that considering the additional faulty runs with same observed
sequence as ρf does not make A AA-diagnosable.
The right-to-left implication is harder to establish. For ρ0 a faulty run, α >
0, ε > 0, σ0 = π(ρ0) and n0 = |σ0|, we start by extending the runs with observed
sequences σ0 by nb observable events where nb is chosen in order to get a high
probability that the runs end in a BSCC. For such an observed sequence σ ∈ Σnb

o ,
we partition the possible runs with observed sequence σ0σ into three sets: RF

σ is
the subset of faulty runs; RC

σ (resp. RT
σ ) is the set of correct runs ending (resp. not

ending) in a BSCC. At first, we do not take into account the “transient” runs in
RT
σ . We apply Lemma 9 to obtain an integer nσ such that from RF

σ and RC
σ we can

diagnose with (appropriate) high probability and low correctness proportion after

10



nσ observations. Among the runs that trigger diagnosable observed sequences,
some exceed the correctness proportion ε, when taking into account the runs from
RT
σ . Yet, we show that the probability of such runs is small, when cumulated

over all extensions σ, leading to the required upper bound α.

Using the characterization, one can easily establish the complexity of AA-
diagnosability. Indeed, reachability of a pair of states with the same observed
sequence is decidable in polynomial time by an appropriate “self-synchronized
product” of the pLTS. Since there are at most a quadratic number of pairs to
check, and given that the distance 1 problem can be decided in polynomial time,
the PTIME upper-bound follows.

In constrast, uniform AA-diagnosability is shown to be undecidable by a
reduction from the emptiness problem for probabilistic automata, that is more
involved than the one for Theorem 5.

Theorem 11. The uniform AA-diagnosability problem is undecidable for pLTS.

q0

qu1 qu2

bu

u, I[q1]2

u, I[q2]2a, Pa[q1,q2]1+|Σ|

a, Pa[q2,q1]1+|Σ|

], I[q1]
1+|Σ|

], I[q2]
1+|Σ|

[, 12

], 12

[, 1
1+|Σ|

qf1 qf2

bf

f , I[q2]2

f , I[q1]2 a, Pa[q1,q2]1+|Σ|

a, Pa[q2,q1]1+|Σ|

], I[q2]
1+|Σ|

], I[q1]
1+|Σ|

[, 1

[, 1
1+|Σ|

The reduction is illustrated above, and we sketch here the undecidability proof.
Assuming there exists a word w ∈ Σ∗ accepted with probability greater than 1

2
in the probabilistic automaton. We pick arbitrary α < 1 and nα. Then, one can
exhibit a faulty signalling run ρn with π(ρn) = (w])n for some appropriate n,
such that for every extension ρn � ρ with |ρ| = |ρn|+ nα, one has CorP(ρ) > 1

2 .
This shows that the constructed pLTS is not uniformly 1

2 -diagnosable.

Assuming now that all words are accepted with probability less than 1
2 . Then

for any observed sequence σ ∈ (Σ ∪ {]})∗, CorP(σ) ≤ 1
2 . After reaching a BSCC,

the correctness proportion decreases uniformly, due to the ]-loop on bu. Given
positive α and ε, one can thus find integers n0 and n1 such that a BSCC is
reached after n0 observable events with probability at least 1− α, and after n1
more the correctness proportion, which was at most 1

2 , decreases below ε. This
shows the uniform AA-diagnosability.
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4 Conclusion

This paper completes our previous work [1] on diagnosability of stochastic systems,
by giving here a full picture on approximate diagnosis. On the one hand, we
performed a semantical study: we have refined the reactivity specification by
introducing a uniform requirement about detection delay w.r.t. faults and studied
its impact on both the exact and approximate case. On the other hand, we
established decidability and complexity of all notions of approximate diagnosis:
we have shown that (uniform) ε-diagnosability and uniform AA-diagnosability
are undecidable while AA-diagnosability can be solved in polynomial time.

There are still interesting issues to be tackled, to continue our work on
monitoring of stochastic systems. For example, prediction and prediagnosis,
which are closely related to diagnosis and were analyzed in the exact case in [1],
should be studied in the approximate framework.
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