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Abstract
In a recent work, we introduced four variants of diagnosability (FA, IA, FF, IF) in (finite) probabil-
istic systems (pLTS) depending whether one considers (1) finite or infinite runs and (2) faulty or
all runs. We studied their relationship and established that the corresponding decision problems
are PSPACE-complete. A key ingredient of the decision procedures was a characterisation of
diagnosability by the fact that a random run almost surely lies in an open set whose specification
only depends on the qualitative behaviour of the pLTS. Here we investigate similar issues for
infinite pLTS. We first show that this characterisation still holds for FF-diagnosability but with
a Gδ set instead of an open set and also for IF- and IA-diagnosability when pLTS are finitely
branching. We also prove that surprisingly FA-diagnosability cannot be characterised in this
way even in the finitely branching case. Then we apply our characterisations for a partially ob-
servable probabilistic extension of visibly pushdown automata (POpVPA), yielding EXPSPACE
procedures for solving diagnosability problems. In addition, we establish some computational
lower bounds and show that slight extensions of POpVPA lead to undecidability.
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1 Introduction

Diagnosis. Monitoring (hardware and/or software) systems prone to faults involves several
critical tasks: controlling the system to prevent faults as much as possible, deducing the cause
of the faults, etc. Most of these tasks assume that an observer has the capability to assess the
status of the current run based on the outputs of the system: providing information about
the possible occurrence of faults. Such an observer is called a diagnoser and its associated
task is called diagnosis. This framework leads to interesting decision and synthesis problems:
“Does there exist a diagnoser?” and in the positive case “How to build such a diagnoser?”,
“Which kind of diagnoser is sufficient?”, etc. The decision problem, on which we focus here,
is called diagnosability [15].

Diagnosis of discrete event systems. In order to formally reason about diagnosability, the
systems were first modelled by finite labelled transition systems (LTS). Then the specification
of a diagnoser is defined by two requirements: correctness, meaning that the information
provided by the diagnoser is accurate, and reactivity, ensuring that a fault will eventually
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37:2 Diagnosis in Infinite-State Probabilistic Systems

be detected. Within the framework of finite LTS, the decision problem was shown to be
solvable in PTIME [10] and it is in fact NLOGSPACE-complete.

Diagnosis of probabilistic systems. A natural way of modelling partially observable
systems consists in introducing probabilities (e.g. when the design is not fully known or
the effects of the interaction with the environment is not predictible). Thus the notion
of diagnosability was later extended to Markov chains with labels on transitions, also
called probabilistic labelled transition systems (pLTS) [16]. In this context, the reactivity
requirement now asks that faults will be almost surely eventually detected. Regarding
correctness, two specifications have been proposed: either one sticks to the original definition
and requires that the provided information is accurate, defining A-diagnosability; or one
weakens the correctness by admitting errors in the provided information that should, however,
have an arbitrary small probability defining AA-diagnosability. From a computational
viewpoint, we recently proved that A-diagnosability is PSPACE-complete [3] and that AA-
diagnosability can be solved in PTIME [4].

In case a system is not diagnosable, one may be able to control it, by forbidding some
controllable actions, so that is becomes diagnosable. This property of active diagnosability has
been studied for discrete-event systems [14, 9], and for probabilistic systems [2]. Interestingly,
the diagnosability notion in the latter work slightly differs from the original one in [16].
Building on this variation, in [3] semantical issues have been investigated and four relevant
notions of diagnosability (FA, IA, FF, IF) have been defined depending on (1) whether one
considers finite or infinite runs and (2) faulty or all runs. In finite pLTS, it was shown that
all these notions can be characterized by the fact that a random run almost surely lies in an
open set, whose specification only depends on the qualitative behaviour of the pLTS.

Diagnosis of infinite-state systems. Diagnosability in infinite-state systems has been
studied, on the one hand for restricted Petri nets [6], for which an accurate diagnoser can
be designed, and on the other hand for visibly pushdown automata (VPA) [12], for which
diagnosability can be decided via the determinisation procedure of [1]. However to the best
of our knowledge diagnosis of probabilistic infinite-state systems has not yet been studied.

Contributions. The characterisations of diagnosability established in [3] strongly relied
on the finiteness of the models. Our first aim is thus to establish characterisations in the
infinite-state case. FF-diagnosability (the original notion of diagnosability) states that almost
surely a faulty run will be detected in finite time. We establish that FF-diagnosability
can be characterised by the fact that a random run almost surely lies in a Gδ set, only
depending on the qualitative behaviour of the system. This characterisation also applies
to IF-diagnosability for finitely-branching systems, since then the two notions coincide. An
ambiguous infinite correct (resp. faulty) run is a run indistinguishable from a faulty (resp.
correct) run. IA-diagnosability states that almost surely a run is unambiguous. The set
of ambiguous runs is an analytic set (so a priori not known to be a Borel set). However
in the finitely-branching case, we establish that the set of unambiguous runs is a Gδ set,
yielding a characterisation of IA-diagnosability. FA-diagnosability states that the probability
that a finite run is unambiguous goes to 1 when its length goes to infinity. Surprisingly,
despite the fact that IA-diagnosability and FA-diagnosability are very close, we prove that
FA-diagnosability cannot be characterised by the fact that a random run almost surely lies in
a Gδ set. Furthermore we strenghten this result by another inexpressivess result also related
to FA-diagnosability.
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Partially observable probabilistic visibly pushdown automata (POpVPA) are models
generating infinite-state probabilistic systems. We show how to exploit the above charac-
terisations to design a decision procedure for diagnosability in POpVPA. More precisely
we show that we can “encode” our characterisations in an enlarged probabilistic VPA and
then exploit the decision procedures of [8] leading to an EXPSPACE algorithm. Since our
characterisations are not regular, this requires some tricky machinery. Finally we complete
this work by exhibiting an EXPTIME lower-bound and showing that slight extensions of
POpVPA lead to undecidability of the diagnosability problem.

Organisation. In Section 2, we introduce probabilistic infinite-state systems, equip them
with partial observation and faults, and define diagnosability notions. In Section 3, we
establish characterisations of the diagnosability notions and inexpressiveness results. We
exploit the characterisations to design decision procedures for POpVPA in Section 4, also
proving hardness and undecidability results. We conclude and give some perspectives in
Section 5. More details and all the proofs can be found in the associate research report [5].

2 Diagnosis specifications for infinite-state probabilistic systems

2.1 Probabilistic labelled transition systems
Probabilistic labelled transition systems (pLTS) are labelled transition systems equipped
with probability distributions on transitions outgoing from a state.

▸ Definition 1. A pLTS is a tupleM = ⟨Q, q0,Σ, T,P⟩ where:
Q is a finite or countable set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q ×Σ ×Q is a set of transitions;
P ∶ T → Q>0 is the transition probability fulfilling: ∀q ∈ Q, ∑(q,a,q′)∈T P[q, a, q′] = 1.

Given a pLTSM, the transition relation of the underlying LTS L is defined by q aÐ→ q′

for (q, a, q′) ∈ T ; this transition is then said to be enabled in q. In order to emphasise the
relation between the pLTS and the LTS, we sometimes writeM = (L,P). Note that since we
assume the state space to be at most countable, a pLTS is by definition at most countably
branching: from every state q, there are at most countably many transitions enabled in q.

▸ Example 2. The pLTS of Figure 1 represents a server that accepts jobs (event in) until it
randomly decides to serve the jobs (event serve). When a job is done the result is delivered
(event out). When all jobs are done, the server waits for a new batch of jobs. However
randomly, the server may trigger a fault (event f) and then abort all remaining jobs (event
abort). Afterwards, the server is reset (event reset). In the figure, the label of a transition
(q, a, q′) is depicted as P[q, a, q′] ⋅ a.

Let us now introduce some important notions and notations that will be used throughout
the paper. A run ρ of a pLTSM is a (finite or infinite) sequence ρ = q0a0q1 . . . such that
for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined, qi

aiÐ→ qi+1. The notion of run can be
generalised, starting from an arbitrary state q. We write Ω for the set of all infinite runs
ofM starting from q0, assuming the pLTS is clear from context. When it is finite, ρ ends
in a state q and its length, denoted ∣ρ∣, is the number of events occurring in it. Given a
finite run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . ., the concatenation
of ρ and ρ′, written ρρ′, is the run q0a0q1 . . . qnanqn+1 . . .; the run ρ is then a prefix of ρρ′,
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Figure 1 An infinite-state pLTS.

which we denote ρ ⪯ ρρ′. The cylinder defined by a finite run ρ is the set of all infinite runs
that extend ρ: C(ρ) = {ρ′ ∈ Ω ∣ ρ ⪯ ρ′}. Cylinders form a basis of open sets for the standard
topology on the set of runs (which can be viewed as an infinite tree). One equips a pLTS
with a probability measure on Ω with σ-algebra being B, the set of Borel sets, and which is
uniquely defined by Caratheodory’s extension theorem from the probabilities of the cylinders:

P(C(q0a0q1 . . . qn)) = P[q0, a1, q1]⋯P[qn−1, an−1, qn] .
We will sometimes omit the C and write P(ρ) for P(C(ρ)). It is well-known that once the
measure is fixed, one can enlarge the set of of measurable sets by considering the smallest
σ-algebra containing B and the “null” sets: {A ∣ ∃B ∈ B A ⊆ B ∧ P(B) = 0} and then extend
the original measure to a (complete) measure on this enlarged σ-algebra. We consider this
measure in the sequel.

The sequence associated with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write either
q
ρÐ→∗ or q

σρÐ→∗ (resp. q ρÐ→∗q′ or q
σρÐ→∗q′) for an infinite (resp. finite) run ρ. A state q

is reachable (from q0) if there exists a run such that q0
ρÐ→∗q, which we alternatively write

q0 Ð→∗q. The (infinite) language of pLTSM consists of all infinite words that label runs of
M and is formally defined as Lω(M) = {σ ∈ Σω ∣ q0

σÐ→∗ }.

2.2 Partial observation and faults
The observation of a pLTS is given by a mask function. This function projects every event
to its observation. This observation is partial as an event can have no observation or shares
its observation with another event, but it is deterministic.

▸ Definition 3. A partially observable pLTS (POpLTS) is a tuple N = ⟨M,Σo,P⟩ consisting
of a pLTSM equipped with a mapping P ∶ Σ→ Σo ∪ {ε} where Σo is the set of observations.

Note that our setting generalises most existing frameworks of fault diagnosis by considering
a mask function P onto a possibly different alphabet rather than a partition of the event
alphabet into observable and unobservable events. An event a ∈ Σ is said unobservable if
P(a) = ε, otherwise, it is observable and we distinguish a being fully observable if P(a) ≠ ε
and P−1({P(a)}) = {a} or partially observable if P(a) ≠ ε and ∣P−1({P(a)})∣ > 1. The set
of unobservable events is denoted Σu.

Let σ ∈ Σ∗ be a finite word; its length is denoted ∣σ∣. The mapping P is extended to finite
words inductively: P(ε) = ε and P(σa) = P(σ)P(a). We say that P(σ) is the mask of σ.
Write ∣σ∣o for ∣P(σ)∣. When σ is an infinite word, its mask is the limit of the masks of its
finite prefixes. This mask function is applicable to runs via their associated sequence; it can
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be either finite or infinite. As usual the mask function is extended to languages. With respect
to P, a POpLTS N is convergent if there is no infinite sequence of unobservable events
from any reachable state: Lω(M) ∩Σ∗Σωu = ∅. When N is convergent, for every σ ∈ Lω(M),
P(σ) ∈ Σωo . In the rest of the paper we assume that POpLTS are convergent. P can also be
be viewed as a mapping from runs to Σωo by defining P(q0a0q1a1 . . .) = P(a0a1 . . .). Remark
that this mapping is continuous. We will refer to a sequence for a finite or infinite word over
Σ, and an observed sequence for a finite or infinite sequence over Σo. Clearly, the application
of the mask function onto Σo of a sequence yields an observed sequence.

The observable length of a run ρ denoted ∣ρ∣o ∈ N∪{∞}, is the number of observable events
that occur in it: ∣ρ∣o = ∣σρ∣o. A signalling run is a finite run whose last event is observable.
Signalling runs are precisely the relevant runs w.r.t. partial observation issues since each
observable event provides additional information about the execution to an external observer.
Given states q, q′ and an observed sequence σ ∈ Σ+

o , we write q σÔ⇒ q′ if there is a signalling
run from q to q′ with observed sequence σ.

In the sequel starting from the initial state q0, SR denotes the set of signalling runs, and
SRn the set of signalling runs of observable length n. Since we assume that the POpLTS are
convergent, for all n > 0, SRn is equipped with a probability distribution defined by assigning
measure P(ρ) to each ρ ∈ SRn. Given ρ a finite or infinite run, and n ≤ ∣ρ∣o, ρ↓n denotes the
signalling subrun of ρ of observable length n. For convenience, we consider the empty run q0
to be the single signalling run, of null length.

2.3 Fault diagnosis for POpLTS
To model the problem of fault diagnosis in POpLTS, we assume the event alphabet Σ contains
a special event f ∈ Σ called the fault. A run ρ is then said to be faulty if its associated
sequence of events contains a fault, i.e. σρ ∈ Σ∗fΣω; otherwise it is correct. The set of faulty
(resp. correct) runs is denoted F (resp. C). For n ∈ N, we write Fn for the set of infinite runs
ρ such that ρ↓n is faulty and Cn for the set of infinite runs ρ such that ρ↓n is correct. By
definition, for all n, Ω = Fn ⊎ Cn, moreover, F = ⋃n∈N Fn and C = ⋂n∈N Cn.

In order to reason about faults we partition sequences of observations into three subsets:
an observed sequence σ ∈ Σω

o is surely correct if P−1(σ) ∩ Lω(M) ⊆ (Σ ∖ f)ω; it is surely
faulty if P−1(σ) ∩ Lω(M) ⊆ Σ∗fΣω; otherwise, it is ambiguous. For finite sequences, we need
to rely on signalling runs: a finite observed sequence σ ∈ Σ∗

o is surely faulty (resp. surely
correct) if for every signalling run ρ with P(σρ) = σ, ρ is faulty (resp. correct); otherwise
it is ambiguous. A (finite signalling or infinite) run ρ is surely faulty (resp. surely correct,
ambiguous) if P(ρ) is surely faulty (resp. surely correct, ambiguous).

In order to specify various requirements for diagnosability we need to refine the notion of
ambiguity. Let N be a POpLTS and n ∈ N with n ≥ 1. Then:

FAmb∞ (resp. CAmb∞) is the set of infinite faulty (resp. correct) ambiguous runs of N ;
FAmbn (resp. CAmbn) is the set of infinite runs of N whose signalling subrun of observable
length n is faulty (resp. correct) and ambiguous;

At this point it is interesting to look at the status of the different subsets of runs we have
introduced with respect to the Borel hierarchy. The complementary sets Fn and Cn are
unions of cylinders; so they are open (and by complementation) closed sets. The set of faulty
(resp. correct) runs F (resp. C) is an open (resp. closed) set as a union (resp. intersection)
of open (resp. closed) sets. The sets FAmbn and CAmbn are unions of cylinders; so they are
open. The sets FAmb∞ and CAmb∞ may be defined as follows. Consider (Σ2

o)ω and Ω2 both
equipped with the product topology. SameObs = {(ρ, ρ′) ∣ P(ρ) = P(ρ′)} is the inverse image
by a continuous mapping of the closed set {(σ,σ) ∣ σ ∈ Σω

o }. Therefore SameObs is closed.

CONCUR 2016



37:6 Diagnosis in Infinite-State Probabilistic Systems

q0 f1 f2q1

1
2 ⋅ f

1
2 ⋅ a

1
2 ⋅ u

1
2 ⋅ a 1 ⋅ b1 ⋅ a

q0 q2 f1 f2q1

1
2 ⋅ u

1
2 ⋅ f

1
2 ⋅ a

1
2 ⋅ u

1 ⋅ a 1 ⋅ b1
2 ⋅ b

1
2 ⋅ a

Figure 2 Left: a POpLTS that is IF-diagnosable but not IA-diagnosable. Right: a POpLTS that
is IA-diagnosable but not FA-diagnosable.

Thus C × F ∩ SameObs is a Borel set. The first and second projections are exactly CAmb∞
and FAmb∞ which establishes that these sets are analytic sets (i.e. continuous images of
Borel sets). The set of analytic sets is a strict superset of Borel sets but every analytic set is
still measurable w.r.t. the complete measure [13, 2H8 p.83].

In the context of finite POpLTS, we introduced four possible specifications of diagnosab-
ility [3]. There are two discriminating criteria: whether the non ambiguity requirement holds
for faulty runs only or for all runs, and whether ambiguity is defined at the infinite run level
or for longer and longer finite signalling subruns.

▸ Definition 4. Let N be a POpLTS. Then:
N is IF-diagnosable if P(FAmb∞) = 0.
N is IA-diagnosable if P(FAmb∞ ⊎ CAmb∞) = 0.
N is FF-diagnosable if lim supn→∞ P(FAmbn) = 0.
N is FA-diagnosable if lim supn→∞ P(FAmbn ⊎ CAmbn) = 0.

We recall in the next theorem all the implications that hold between these definitions. Missing
implications do not hold, already for finite-state POpLTS.

▸ Theorem 5 ([3]). Let N be a POpLTS. Then
N FA-diagnosable ⇒ N IA-diagnosable and FF-diagnosable;
N IA-diagnosable or FF-diagnosable ⇒ N IF-diagnosable;
If N is finitely branching, then N is IF-diagnosable iff N is FF-diagnosable.

In order to illustrate the different kinds of diagnosability, we describe below some
discriminating examples, already presented in [3].

Consider the POpLTS N on the left of Figure 2 where {u, f} is the set of unobservable
events (represented by dashed arrows) and P is the identity over the other events. A faulty
run will almost surely produce a b-event that cannot be mimicked by the single correct
run. Thus this POpLTS is IF-diagnosable. The unique correct run ρ = q0uq1aq1 . . . has
probability 1

2 and its corresponding observed sequence aω is ambiguous. Thus the POpLTS
is not IA-diagnosable. This simple example shows that, already for finite-state POpLTS,
IF-diagnosability does not imply IA-diagnosability.

Similarly, let us look at the POpLTS on the right of Figure 2 where {u, f} is the set of
unobservable events and P is the identity over the other events. Any infinite faulty run will
contain a b-event, and cannot be mimicked by a correct run, therefore FAmb∞ = ∅. The
two infinite correct runs have aω as observed sequence, and cannot be mimicked by a faulty
run, thus CAmb∞ = ∅. As a consequence, this POpLTS is IA-diagnosable. Consider now
the infinite correct run ρ = q0uq1aq1 . . .. It has probability 1

2 , and all its finite signalling
subruns are ambiguous since their observed sequence is an, for some n ∈ N. Thus for all
n ≥ 1, P(CAmbn) ≥ 1

2 , so that this POpLTS is not FA-diagnosable.
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3 Characterisation of diagnosability

The aim of this section is to establish “simple” characterisations of the diagnosability notions
for a POpLTS N = ((L,P),Σo,P) and more precisely to study whether one can express it
as a Borel set B ∈ B only depending on the underlying LTS L and the mask function P , such
that almost surely a random run belongs to B if and only if N is diagnosable. Furthermore
if possible, one looks for a set B belonging to a low level of the Borel hierarchy. Observe
that for all notions, this requires some machinery since the finite runs-based notions FF and
FA are expressed by a family of Borel sets and the infinite runs-based notions IF and IA are
expressed by a set which is not a priori a Borel set.

Pursuing this goal, we introduce a language pathL for specifying Borel sets of runs. It is
based on path formulae. A path formula α is a predicate over finite prefixes of runs. The
(pseudo-)syntax of a formula of pathL is:

φ ∶∶= α ∣ ¬φ ∣ φ1 ∧ φ2 ∣◇φ
where α is a path formula. In the sequel we use the standard shortcut ◻φ ≡ ¬◇ ¬φ.

A formula is evaluated at some position k of a run ρ = q0a0q1 . . .. The prefix ρ[0, k] of ρ
is defined by ρ[0, k] = q0a0q1 . . . qk. The semantics of pathL is inductively defined by:

ρ, k ⊧ α if and only if α(ρ[0, k]);
ρ, k ⊧ ¬φ if and only if ρ, k /⊧ φ;
ρ, k ⊧ φ1 ∧ φ2 if and only if ρ, k ⊧ φ1 and ρ, k ⊧ φ2;
ρ, k ⊧◇φ if and only if there exists k′ ≥ k such that ρ, k′ ⊧ φ.

Finally ρ ⊧ φ if and only if ρ, 0 ⊧ φ. Due to the presence of path formulae (with no restriction)
this language subsumes LTL and more generally any ω-regular specification language. In
order to reason about the probabilistic behaviour of a POpLTS, we introduce qualitative
probabilistic formulae P&p(φ) with & ∈ {<,>,=}, p ∈ {0,1} and φ ∈ pathL. The semantics
is obvious: N ⊧ P&p(φ) if and only if PN ({ρ ∈ Ω ∣ ρ ⊧ φ}) & p. Since pathL is closed by
complementation the probabilistic formulae can be restricted to P=0(φ) and P>0(φ).

Let us give some examples of path formulae. Given a finite run ρ = q0a0q1 . . . qk, let f

be defined by f(ρ) = true if ai = f for some index i. This path formula characterises the
faulty finite runs. Let U be defined by U(ρ) = true if there exists a correct signalling run ρ′
with P(ρ) = P(ρ′). Using the path formulae f and U, we exhibit a formula of pathL that
characterises FF-diagnosability.

▸ Proposition 6. Let N be a POpLTS. Then N is FF-diagnosable iff N ⊧ P=0(◇◻ (f ∧ U)).

Due to Theorem 5, in finitely-branching POpLTS the above characterisation also holds
for IF-diagnosability. We also need the finitely-branching assumption in order to characterise
IA-diagnosability. To this goal, let us introduce a more intricate path formula. For σ ∈ Σ∗

o ,
we define firstf(σ) by firstf(σ) = min{k ∣ ∃ρ signalling run P(ρ) = σ ∧ ρ↓k is faulty} with the
convention that min(∅) = ∞. Then the path formula W is defined by: W(ε) = false and
W(q0a0 . . . qn+1) = true if firstf(P(q0a0 . . . qn+1)) = firstf(P(q0a0 . . . qn)) <∞.

▸ Proposition 7. Let N be a finitely branching POpLTS. Then N is IA-diagnosable iff
N ⊧ P=0(◇◻ (U ∧W)).

The POpLTS of Figure 3 illustrates the need for the finitely-branching assumption in
Proposition 7. The set of unobservable events is {u, f} and P is the identity over the other
events. Observation b occurs in every infinite correct run, while the observed sequence of the
single infinite faulty run is aω. This POpLTS is thus IA-diagnosable. However, it does not
satisfy P=0(◇◻(U∧W)) since the unique infinite faulty run has probability 1

2 and satisfies at
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Figure 3 An infinitely-branching IA-diagnosable POpLTS.

the same time ◻W, by unicity, and ◻U. Indeed for every n ∈ N, there is a correct signalling
run with observed sequence an.

Observe that the sets of runs specified by the characterisations of FF-diagnosability
(◇◻ (f∧U)) and IA-diagnosability (◇◻ (U∧W)) are Fσ sets, i.e. countable unions of closed
sets. Surprisingly, we show that such a characterisation is impossible for FA-diagnosability:
there is no Fσ set E such that a POpLTS N is FA-diagnosable if and only if N ⊧ P=0(E).

▸ Proposition 8. There exists a finitely-branching LTS L and a mask function P such that
for every Fσ set E of runs, there exists a POpLTS N = ((L,P),Σo,P) such that:

either N is FA-diagnosable and PN (E) > 0;
or N is not FA-diagnosable and PN (E) = 0.

We conjecture that the impossibility also holds for arbitrary Borel sets. The next proposition
shows that a positive probability characterization cannot exist whatever the Borel set.

▸ Proposition 9. There exists a finitely-branching LTS L and a mask function P such that
for every Borel set E of runs, there exists a POpLTS N = ((L,P),Σo,P) such that:

either N is FA-diagnosable and PN (E) = 0;
or N is not FA-diagnosable and PN (E) > 0.

4 Diagnosis for probabilistic pushdown automata

We now turn to a concrete model for infinite-state POpLTS, namely the ones generated by
probabilistic pushdown automata, and more specifically by probabilistic visibly pushdown
automata. Our goal is to use the characterisations from the previous section to decide the
diagnosability of POpLTS generated by partially observable probabilistic visibly pushdown
automata (POpVPA). To do so, we face the difficulty that the Borel sets that characterise
IF-, IA- and IF-diagnosability are not a priori regular, even in the finite branching case.
Yet, for POpVPA, we circumvent this problem, and manage to specify these sets by pLTL
formulae on a determinisation of the model, tagged with the needed atomic propositions.
The decidability of the qualitative model checking for recursive probabilistic systems [8] then
yields the decidability of the above three diagnosability notions for POpVPA.

4.1 Probabilistic visibly pushdown automata
Among probabilistic infinite-state systems the ones generated by probabilistic pushdown
automata [11, 8] support relevant decision procedures. Already in the non-probabilistic case,
the subclass of visibly pushdown automata (VPA) [1] is more tractable than the general
model. In VPA, the type of events determines whether the operation on the stack is a push,
a pop, or possibly changes the top stack symbol, so that the languages defined by VPA enjoy
most of the desirable properties regular languages have.
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q0 q1 f1

1
2 ⋅ γ,serve, γ

1 ⋅ �0,empty,�0

1
2 ⋅ γ, f , ε

1 ⋅ �0,reset,�0

1
2 ⋅ γ,in, γγ

1 ⋅ �0,in,�0γ

1
2 ⋅ γ,out, ε 1 ⋅ γ,abort, ε

(q0, �0 ) (q0,
γ

�0
) (q0,

γ

γ
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) (q1,

γ

γ

�0

) (q1,
γ

�0
) (q1, �0 ) (q0, �0 )

(f1,
γ

�0
) (f1, �0 ) (q0, �0 )

in in serve out out empty

abort abort reset

Figure 4 A pVPA generating the pLTS from Figure 1 with two finite runs.

▸ Definition 10. A probabilistic visibly pushdown automaton (pVPA) is a tuple
A = (Q,Σ,Γ, δ,P) where:

Q is a finite set of control states with q0 the initial state;
Σ is a finite alphabet of events, partitionned into local, push and pop events Σ = Σ♮⊎Σ♯⊎Σ♭.
Γ is a finite alphabet of stack symbols including a set of bottom stack symbols Γ� with
initial symbol �0 ∈ Γ�;
δ ⊆ Q×Γ×Σ×Q×Γ∗ is the set of transitions such that for every (q, γ, a, q′,w) ∈ δ, ∣w∣ ≤ 2,
γ ∈ Γ� implies w ∈ Γ�(Γ ∖ Γ�)∗ and γ ∉ Γ� implies w ∈ (Γ ∖ Γ�)∗;
P is the transition probability function fulfilling for every q ∈ Q and γ ∈ Γ:
∑(q,γ,a,q′,w)∈δ P[(q, γ, a, q′,w)] = 1.

A transition t = (q, γ, a, q′,w) ∈ δ is said to be a local (resp. push, pop) transition if ∣w∣ = 1
(resp. ∣w∣ = 2, ∣w∣ = 0). We require that for every transition t = (q, γ, a, q′,w) ∈ δ, t is a local
(resp. push, pop) transition iff a is a local (resp. push, pop) event.

The semantics of a pVPA is an infinite-state pLTS whose states are pairs (q, z) consisting
of a control state and a stack contents.

▸ Definition 11. A pVPA V = (Q,Σ,Γ, δ,P) defines a pLTSMV = (QV , (q0,�0),Σ, TV ,PV)
where:

QV = {(q, z) ∣ q ∈ Q ∧ z ∈ Γ�(Γ ∖ Γ�)∗};
TV = {((q, zγ), a, (q′, zw)) ∣ zγ ∈ Γ�(Γ ∖ Γ�)∗ ∧ (q, γ, a, q′,w) ∈ δ};
For every ((q, zγ), a, (q′, zw)) ∈ TV , PV[((q, zγ), a, (q′, zw))] = P[(q, γ, a, q′,w)].

▸ Example 12. Figure 4 gives an example of a pVPA. The event alphabet is composed
of local events {serve,empty,reset}, a push event in and pop events {out, f ,abort}. A
transition t = (q, γ, a, q′,w) is represented by an edge from state q to state q′ and labelled by
P[t] ⋅ γ, a,w. The semantics of this pVPA is precisely the pLTS from Figure 1. Indeed, the
stack alphabet consists of two letters Γ = {γ,�0} where the set of bottom stack symbol is
Γ� = {�0}. Thus one can encode the stack using a counter that gives the number of γ in the
stack. For instance, in the pLTS from Figure 1 the configuration (q1,�0γ

n) of the pVPA
corresponds to the state q1n.

To define partially observable pVPA, we equip a pVPA with a mask function and
require that only local events may be unobservable, and that pushes and pops can still be
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distinguished. This restriction is crucial since it ensures that the observed sequence of a
signalling run of a POpVPA still provides the information about the height of the stack.
▸ Definition 13. A partially observable pVPA (POpVPA) is a tuple ⟨V,Σo,P⟩ consisting of
a pVPA V equipped with a mapping P ∶ Σ→ Σo ∪ {ε} such that:

Σo = Σo,♮ ⊎Σo,♯ ⊎Σo,♭ is the set of observations;
P(Σ♮) ⊆ Σo,♮ ∪ {ε}, P(Σ♯) ⊆ Σo,♯ and P(Σ♭) ⊆ Σo,♭.
In the sequel, we may identify a POpVPA with the POpLTS it generates. In particular,

the various concepts of diagnosability are lifted from POpLTS to POpVPA.

4.2 Diagnosability for POpVPA
To obtain an algorithm for the diagnosability of POpVPA, we follow the finite-state case
approach [3]. First, we determinise POpVPA V into A(V), with the diagnosis objective in
mind, building on the deterministic automaton recognising unambiguous sequences from [9].
We therefore introduce tags that reflect the category of runs (faulty or correct) given an
observed sequence with a distinction between “old” and “young” faulty runs. It then suffices
to check whether the characterisations hold on the synchronised product V̂ ×A(V) where V̂
enlarges V by keeping track of a fault occurrence. To reduce to a decidable model checking
question, we specify the Borel sets from Section 3 by LTL formulae.

4.2.1 Diagnosis-oriented determinisation
The determinisation of V (where probabilities are irrelevant for this transformation) into
A(V) exploits some ideas of the original determinisation by Alur and Madhusudan [1], yet,
it is customised to diagnosis. In particular, it uses tags that were first defined to construct a
deterministic Büchi automaton recognising the unambiguous sequences of a finite LTS [9].
The complete definition of the estimate VPA A(V) associated with a POpVPA V is technical
and detailed in [5]. We emphasise here some aspects of the construction and illustrate them
on an example. Figure 5 represents the deterministic VPA associated with our example
POpVPA. For readability, we use shortcuts on the transitions in this figure, namely symbols
aX

0 , aX
1 , etc. denote stack symbols of A(V).

Figure 6 displays two finite runs of the deterministic VPA A(V) from Figure 5 sharing
most transitions to the exception of the last one.
States and stack symbols. The VPA A(V) tracks all runs with the same observation
in parallel memorising their status w.r.t. faults. More precisely to the current set of runs
corresponds the symbol on the top of the stack which is a set of tuples where each tuple is
written as a fraction γ,X,q

γ−,X−,q− . Let us describe the meaning of this tuple:
q is the current state of the run and γ is the symbol on the top of its stack;
X ∈ Tg = {U,V,W} is the status of the run: U for a correct run, V for a young faulty run
and W for an old faulty run;
The denominator (γ−,X−, q−), is related to the configuration just after the last push event
of the run: γ− is the stack symbol under the top symbol, while X− is the status of the
run reaching this configuration and q− the state of this configuration.

A priori, a single state run would be enough. However the simulation of a pop event in the
original VPA is performed in two steps requiring some additional states that we explain later.

Illustration. The initial configuration of the VPA A(V) of Figure 5 (run, ∣{�0,U,q0
�0,U,q0

}∣) cor-
responds to the empty run represented by a singleton. The denominator of bottom stack
symbols is by convention (�0,U, q0) and is irrelevant for specifying the transitions of A(V).
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aX
0 = {�0,X,q0

�0,X,q0
}, aX

1 = { γ,X,q0
�0,X,q0

}, aX
∞ = {γ,X,q0

γ,X,q0
}, bX

1 = { γ,X,q1
�0,X,q0

}, bX
∞ = {γ,X,q1

γ,X,q0
}

cX
0 = {�0,X,q1

�0,U,q0
, �0,X,f1
�0,U,q0

}, cX
1 = { γ,X,q1

�0,X,q0
, γ,X,f1
�0,X,q0

}, cX
∞ = {γ,X,q1

γ,U,q0
, γ,X,f1
γ,U,q0

}, X ∈ {U,W}

run

{ U,q1
�0,U,q0

, W,f1
�0,U,q0

}

{ W,q1
�0,W,q0

, W,f1
�0,W,q0

}

{ U,q1
γ,U,q0

, W,f1
γ,U,q0

}

{ W,q1
γ,W,q0

, W,f1
γ,W,q0

}

bU
1 ,pop, ε
cU

1 ,pop, ε

aU
0 , ε, c

U
0

bW
1 ,pop, ε
cW

1 ,pop, ε

aW
0 , ε, c

W
0

bU
∞,pop, ε
cU
∞,pop, ε

aU
1 , ε, c

U
1

aU
∞, ε, c

U
∞

bW
∞,pop, ε
cW
∞,pop, ε

aW
1 , ε, c

W
1

aW
∞, ε, c

W
∞

aX
1 ,serve, bX

1

aX
∞,serve, bX

∞

cX
0 ,empty, aX

0

cX
0 ,reset, aW

0

aX
0 ,in, aX

0a
X
1

aX
1 ,in, aX

1a
X
∞

aX
∞,in, aX

∞a
X
∞

Figure 5 The VPA A(V) associated with the POpVPA V of Figure 4.
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}
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�0,U,q0
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pop

εpop

ε
empty
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Figure 6 Two runs of the VPA from Figure 5.

Tag updates. Let us explain how the tag X of an item γ,X,q
γ−,X−,q− of the current stack symbol

is determined. If this item corresponds to a correct run then X = U. When, in a current state,
after a transition of A(V) a (tracked) correct run becomes faulty in the next state, there are
two cases. Either there was no tag W in (the numerators of items of) the top stack symbol
of the current state then the run is tagged by W. Otherwise it is tagged by V meaning that
it is a young faulty run. The tag V (young) becomes W (old) when, in the previous state,
there was no tag W in the top stack symbol. A tag W is unchanged along the run.

Push transitions. Given an observed push event o ∈ Σo,♯, from the control state run with
top stack symbol bel, there is a looping push transition (run, bel, o, run, bel′bel′′) in A(V)
that encodes the possible signalling runs with observation o in V. More precisely for every
transition sequence (q,α) oÔ⇒ (r, β−β) in V (i.e. a sequence of unobservable local events
ending by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts β−,Y,r
α−,X−,q− in bel′ and β,Y,r

β−,Y,r
in bel′′. The value of Y follows the rules of tag updates.
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Illustration. In Figure 5 several transitions correspond to the transition (q0,�0, in, q0,�0γ)
of V, including (run,{�0,U,q0

�0,U,q0
},in, run,{�0,U,q0

�0,U,q0
}{ γ,U,q0

�0,U,q0
}) and several transitions correspond

to the transition (q0, γ,in, q0, γγ) of V, including (run,{ γ,U,q0
�0,U,q0

},in, run,{ γ,U,q0
�0,U,q0

}{γ,U,q0
γ,U,q0

}).
Here, the specification of the tag updates is straightforward since it does not involve faulty
runs. The runs represented in Figure 6 use these two transitions from the initial state.

Local transitions. Given an observed local event o ∈ Σo,♮, from the control state run
with top stack symbol bel, there is a looping local transitions (run, bel, o, run, bel′) in A(V)
that encodes the possible signalling runs with observation o in V. More precisely for every
transition sequence (q,α) oÔ⇒ (r, β) in V (i.e. a sequence of unobservable local events ended
by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts β,Y,r
α−,X−,q− in bel′. The value of Y

follows the rules of tag updates.
Illustration. In the VPA A(V) of Figure 5 there are several transitions corresponding to
transition (q0, γ,serve, q1, γ) of V including (run,{γ,U,q0

γ,U,q0
},serve, run,{γ,U,q1

γ,U,q0
}). The runs

represented in Figure 6 use this transition.
Pop transitions. Given an observed local event o ∈ Σo,♭, from the control state run with
top stack symbol bel, the “pop operation” is performed by a sequence of two transitions: a
pop transition labelled by o that keeps in the next state all the information needed by the
next (local) transition labelled by ε to move back to state run with a consistent stack symbol.
Given an intermediate stack symbol, there is exactly one possible such transition. Thus
despite these transitions, A(V) is still deterministic. The first transition (run, bel, o, `, ε)
in A(V) is specified as follows. The next state ` is a set of items of the following shape

X,q
α−,X−,q− . More precisely for every transition sequence (q,α) oÔ⇒ (r, ε) in V (i.e. a sequence of
unobservable local events ended by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts
Y,r

α−,X−,q− in `. The value of Y follows the rules of tag updates. A transition (`, bel, ε, run, bel′)
is specified as follows. For every X′,q′

γ,X,q in ` and γ,X,q
γ−,X−,q− in bel (i.e. the denominator of the

first fraction and the numerator of the second fraction match), one inserts γ,X′,q′
γ−,X−,q− in bel′.

Illustration. Let us describe how the pop event is performed by two transitions in the runs
of the VPA of Figure 6 from the state reached after event serve. From q1 with γ as top of the
stack there are two transitions whose observation is pop: (q1, γ,out, q1, ε) and (q1, γ, f , f1, ε).
Thus starting from run with top stack symbol {γ,U,q1

γ,U,q0
}, one reaches state ` = { U,q1

γ,U,q0
, W,f1
γ,U,q0

}.
The faulty run is tagged with W as there was no tag W in the former top stack symbol. In
the next configuration, the top stack symbol is { γ,U,q0

�0,U,q0
}. So the transition labelled by ε

moves back to state run with updated top stack symbol { γ,U,q1
�0,U,q0

, γ,W,f1
�0,U,q0

}.

4.2.2 Product VPA
To recover the probabilistic behaviour of V, we need to construct a synchronised product of
V and the deterministic VPA A(V). In order to track the presence of a fault in a run of this
product, we first enrich V to track occurrences of f . We thus define the POpVPA V̂ whose set
of states Q̂ is a duplication of Q in correct states Qc and faulty states Qf . Given a transition
of V starting from q leading to q′, there is in V̂ a transition starting from qf leading to q′f
and a transition starting from qc leading either to q′c if the event is not f or to q′f otherwise.
We then construct VA(V) = V̂ ×A(V) the product automaton of V̂ and A(V) synchronised
on the alphabet of observed events Σo. The transitions of V̂ labelled by unobservable events
do not change the second component of the state and the transitions of A(V) labelled by
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ε do not change the first component of the state. Due to the determinism of A(V), VA(V)
has the same probabilistic behaviour as the one of V except that it memorises additional
information along the run. More precisely, let ρ be a run of V, then ρ̄, a run of VA(V), is
obtained from ρ by following the same transitions and adding the single ⊖ transition firable
after any pop transition. One immediately gets PVA(V)(ρ) = PV(ρ).

Let us explain how to transform the paths formulae f, U and W into atomic propositions
on the pairs ((q, run)(γ, bel)) consisting of a control state of VA(V) together with a top
stack contents. For path formula f, we define the corresponding atomic proposition νf by
νf((q, run)(γ, bel)) = true if and only if q ∈ Qf . Let bel ⊆ (Γ × Tg × Q)2, we say that X
occurs in bel if there exists γ,X,q

γ−,X−,q− ∈ bel. We define atomic propositions νu and νw by:
νu((q, run)(γ, bel)) = true if and only if U occurs in bel; and νw((q, run)(γ, bel)) = true if and
only if W occurs in bel.

Given a run ρ of VA(V), we write last(ρ) for the pair formed of the control state and top
stack symbol in VA(V) after ρ. The atomic propositions νf and νu perfectly reflect the paths
formula f and U, and νw is eventually forever true if and only if W is.

▸ Proposition 14. Let ρ be an infinite run of V. Then:
For all k ∈ N, f(ρ↓k)⇔ νf(last(ρ̄↓k)) and U(ρ↓k)⇔ νu(last(ρ̄↓k));
ρ ⊧◇◻W⇔ ∃K∀k ≥K. νw(last(ρ̄↓k)) = true.

4.2.3 Complexity of diagnosability for POpVPA
Thanks to the relationships between the paths formulae and the atomic propositions, and
using the characterisations from Section 3, we manage to reduce the FF-, IF- and IA-diagnosis
to the model checking of a pLTL formula on the product VPA VA(V). Model checking
qualitative pLTL for probabilistic pushdown automata is achievable in polynomial space in
the size of the model [8]. In our case, VA(V) is exponential in the size of V. We thus obtain
the decidability and a complexity upper-bound for the diagnosability problems for POpVPA.

▸ Theorem 15. FF-diagnosability, IF-diagnosability and IA-diagnosability are decidable in
EXPSPACE for POpVPA.

Proof. For V a POpVPA, V and VA(V) have the same probabilistic behaviour. Therefore,
using the relation between path formulae and atomic propositions from Proposition 14, we
reformulate Propositions 6 and 7 into pLTL characterisations of diagnosability:
V is FF-diagnosable iff VA(V) ⊧ P=0(◇◻ (νf ∧ νu));
V is IA-diagnosable iff VA(V) ⊧ P=0(◇◻ (νu ∧ νw)).

Moreover, since the POpLTS generated by POpPDA are finitely-branching, IF-diagnosability
coincides with FF-diagnosability [3] (see also Theorem 5). The two above qualitative
pLTL formulae can be checked on general probabilistic pushdown automata (beyond visibly
pushdown ones) thanks to [8]. More precisely, one can transform VA(V) into a recursive
Markov chain (the transformation is linear) [7]. Then, the model checking of qualitative
pLTL on recursive Markov chains is doable in PSPACE in the size of the Recursive Markov
Chain and EXPTIME in the size of the formulae [8]. In our case, the product VPA VA(V)
is exponential in the size of V and the size of the formulae is constant. This yields an
EXPSPACE algorithm for checking diagnosability of POpVPA. ◂

Reducing the universality problem for VPA, which is known to be EXPTIME-complete [1],
we obtain the EXPTIME-hardness of all diagnosability variants for POpVPA.

▸ Theorem 16. Diagnosability is EXPTIME-hard for POpVPA.
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The restriction to visibly pushdown automata is motivated by the unfeasibility of diagnosis
for general probabilistic pushdown automata.

▸ Theorem 17. Diagnosability is undecidable for POpPDA.

The undecidability can be obtained by adapting the proof for diagnosis of non-probabilistic
pushdown automata [12]. However, in order to show how robust the result is, we rather
reduce from the Post Correspondence Problem and prove the undecidability of diagnosability
for restricted classes of partially observable probabilistic pushdown automata. In particular,
undecidability already holds for two (incomparable) subclasses of POpPDA [5] with restriction
on what is observable and on the number of phases of any run, where a phase is a portion of
run in which the stack either never decreases or never increases.

5 Conclusion

We studied the diagnosability problem for infinite-state probabilistic systems, both from a
semantical perspective, and from an algorithmic one when considering probabilistic visibly
pushdown automata. A natural research aim is to reduce the complexity gap for the
diagnosability of POpVPA (currently EXPTIME-hard and in EXPSPACE). We could also
investigate the diagnosability problem for other probabilistic extensions infinite state systems,
such as lossy channel systems or VASS. Another research direction would be to consider the
fault diagnosis problem for continuous-time probabilistic models, starting with CTMC.
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