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Abstract

We introduce NE, a learning algorithm for infer-

fline algorithms get a fixed set gfositiveand negativeex-
amples, comprising strings that should dexeptedand, re-
spectively, strings that should bgjectedby the automaton in

ring non-deterministic finite-state automata using
membership and equivalence queries. More specif-
ically, residual finite-state automata (RFSA) are
learned similarly as in Angluin’s popular‘Lalgo-
rithm, which, however, learns deterministic finite-
state automata (DFA). Like in a DFA, the states
of an RFSA represent residual languages. Unlike
a DFA, an RFSA restricts to prime residual lan-
guages, which cannot be described as the union of
other residual languages. In doing so, RFSA can be
exponentially more succinct than DFA. They are,
therefore, the preferable choice for many learning
applications. The implementation of our algorithm
is applied to a collection of examples and confirms
the expected advantage of Nbver L*.

question. The learning algorithm now has to provide a (min-
imal) automaton that accepts the positive examples and re-
jects the negative ones. For deriving minimal automatapmaj
achievements are due to Biermaiermann and Feldman,
1977, Trakhtenbrot and BarzdiiTrakhtenbrot and Barzdin,
1973. Efficient algorithms inferring aot necessarily mini-
mal DFA are given in[Lang, 1992 and[Oncina and Garcia,
1997 under the nam&PNL

Online algorithms have the possibility to ask further
queries i.e., whether some string is in the language of the
automaton to learn or not. In this way, an online algorithm
can enlarge the set of examples as needed.

A popular setup for an online approach is that of Angluin’s
L* algorithm [Angluin, 198F: A minimal DFA is learned

based ommembershipgand equivalence queriesWe have a
learnerwhose job is to come up with the automaton to learn,
ateacherwho may answer if a given string is in the language
as well as aroracle answering if the automaton hypothesis
Q:urrently proposed by the learner is correct or not.

DFA have a serious drawback for applications in verifica-
tion. In general, a DFA might be exponentially bigger than
a non-deterministic finite-state automat@FA). For many
éapplications, it would be a huge improvement to work with an
exponentially more succinct NFA rather than the correspond
ing DFA. As such, learning algorithms for NFA are needed.
However, the class of NFA lacks important properties that ar
essential for current learning algorithms: There is no ueiq
minimal NFA for a given regular language and there is no
characterization of NFA in terms of right-congruence asss

1 Introduction

Learning automata has a wide field of applications rangin
over robotics and control systems, pattern recognitiom-co
putational linguistics, computational biology, data coeg
sion, data mining, etc. (sdde la Higuera, 2005for an ex-
cellent survey). Recently, learning techniques have atso b
come popular in the area of automatic verification. They hav
been usefl_eucker, 200¥for minimizing(partially) specified
systems and for model checkitdack-box systemgproved
helpful incompositional model checkit@gd inregular model
checking To put it bluntly, automata learning is en vogue.
The general goal of learning algorithms employed in ver-
ification is to identify amaching usually of minimal size, ) : ‘ :
that conformswith ana priori fixed set of strings or a given !N @ seminal paper, Denis et &Deniset al, 200 intro-
machine. Nearly all algorithms leambeterministic finite- duce the class aesidual finite-state automal®FSA). Itis
state automatgDFA) or deterministic finite-state machines & Subclass of NFA that shares important properties with the
(Mealy-/Moore machines), as the class of DFA has preferabl§!ass of DFA: For every regular language, there is a unique
properties in the setting of learning. For every regular lan minimal canonical RFSA accepting it. The states of this au-
guage, there is a unique minimal DFA accepting it, which ca omaton correspond to right-congruence classes, or, aquiv

be characterized thanks to Nerode’s right congruence. Thi§ntly, to residualsof the accepted language. At the same
characterization is at the base of most learning algorithms ime, the RFSA can be exponentially more succinct than the

In general, two types of learning algorithms for DFA can corresponding DFA. As such, RFSA are the preferable class

be distinguished, so-callahlineandoffiinealgorithms. Of-  {Of learning regular languages. [Deniset al, 2004, Denis
et al. provided an offline algorithm, called DeLeTe2, which

*Work supported by DAAD/EGIDE (Procope 2008/2009). works in the spirit of RPNI. Alternatives and extensions to



this algorithms have then been presented, most recently in Technically, RFSA and DFA have the property that the
[Garciaet al, 2004, which also gives a nice overview on states of the automata correspond to so-catsitiual lan-
offline algorithms for learning NFA. guagedefined below. This is in general not true for NFA.

In this paper, we introduce NLas an online learning al- pafinition 1 (Residual Lanquaae)For I, C >* and
gorithm for RFSA, patterned after'L Using membership s« o denf)te by~ 'L thg se%{i); c ¥ _| w € L}? i

and equivalence queries, our algorithm infers a (minimal / g ; ; i
canonical RFSA for the language in question, which is al-)l?gl)gg? %eithh%reE isf 2 rzeflevbiltil ILa}ngusgf@L)r., \s/{/rgg()jlg,rzgfeldby
ways smaller than or equal to the corresponding DFA. NOt%es(L) the set of residual languages bf
that[Yokomori, 1994 presents an online learning algorithm _ _
for NFA based orcontradiction backtrackingAccording to  The Myhill-Nerode theorem states that the number of residu-
[Deniset al, 2004, the resulting NFA are actually RFSA. als of alanguage is finite iff this language is regiMerode,
They are, however, not canonical and can even be larger tha}95_a- Moreover, for a minimal DFAA4, there is a natural bi-
the corresponding minimal DFA, as their size crucially de-Jection between its states and the residual languageg.4y.
pends on the size of counterexamples provided bythele.  Definition 2 (Residual Finite-State Automaton) A residual

We have implemented our algorithm and studied its effifinite-state automato(RFSA) is an NFAR = (Q, Qo, F, )
ciency on a collection of regular languages described by regsuch that, for each € Q, L, € Res(L(R)).

ular expressions. It turns out that, for most examples,¢he r :
sulting RFSA is much smaller than the corresponding DFA.In other words, each state accepts a residual language of

X L(R), but not every residual language must be accepted by
While our current upper bounds for Nlon the number of . gy iestate Intuitively, the states of an RFSA form a class
membership and equivalence queries are slightly worse th

those for ¥, our implementation shows that the resultinga(Slf states -Of the cor_respondmg mln_|rr_1al DFA. Yet, using non-

RESA are tg/pically obtained after far fewer queries Sum_determ|n|sm, certain states of a minimal DFA are not needed
o d . : ’ as they correspond to the union of languages of other states.

marizing, we provide a new learning algorithm for regular.l.O this end, we distinguishrime andcomposedesiduals:

languages. Together with a practically efficient oracld-rea ' ‘

ization based omnti-chaindDe Wulfet al, 2006, we expect  Definition 3 (Prime and Composed Residualsjet L C

it to enhance, e.g., associated verification tasks coralitler X*. AresidualL’ € Res(L) is calledcomposedf there are

Full proofs can be found ifBollig et al., 2009. Ly,...,Ly € Res(L) \ {L'} suchthatl’ = L, U...U Ly.
_OtherW|se, it is callegorime The set of prime residuals éf
2 Preliminaries is denoted byPrimes(L).
We fix a finite set® of letters, calledalphabet Finite se- We can now define theanonicalRFSA of a regular lan-

quences of letters are elementstif, calledwords Subsets guage. The idea is that its set of states corresponds exactly
of ¥* are termedanguages Forw € ¥*, we denote by its prime residuals. Moreover, the transition functioniddo
Pref (w) (resp.Suff (w)) the set of its prefixes (resp. suffixes) be saturatedin the sense that a transition to a state should
includingw itself and the empty wore. A non-deterministic ~ exist if it does not change the accepted language.

finite-state automato(NFA) A = (Q, Qo, F,d) has a finite  pefinition 4 (Canonical RFSA) Let L C ¥* be a regular
set ofstatesq), a set ofinitial states()o € Q, a set offinal  |anguage. The canonical RFSAbfdenoted byR (L), is the
statesF’ C @, and atransition functions : Q x ¥ — 29. A NFA (Q, Qo, F, §) whereQ = Primes(L), Qo = {L' € Q |
is a deterministic finite-state automatd®FA) if |Qo| = 1/ ¢ L}, F— (I'eQlee L'}, ands(Li,a) = {Ls €
and|é(g,a)] = 1 forallg € Q anda € X. As usual, Q |_L2 Ca 'Ly} ’

§ is extended toJ : Q x ¥* — 29 by d(q,¢) = {¢} -
andd(q, aw) = |J 18(¢',w), and to set€)’ C Q by Note thatR(L) is indeed an RFSA and we actually have

. 7 €d(qa - : L(R(L)) = L. We say that an RFS&R is canonicalif it
0(Q"w) = Uyeq 0(q, w). We uses to denote botls andd. s the canonical RFSA ak(R).
Forg € Q,letL, = {w € ¥* | 6(¢,w) N F' # 0}. Thelan-
guageL(A) accepteddy Ais J,cq, Ly TWo automata are  angiin's Learning Algorithm L * The algorithm from
equivalenif they accept the same language. Itis folklore that[ Angluin, 1987 learns or infers a minimal DFA for a given
the languages of finite-state automata arertgailar ones. regular languagel. A so-called Learner, who initially
strictly fewer states. In contrast to NFA, a DFA has always &hat L(A) = L. To this end, it repeatedly asks queries to
unique minimal representative, as shown by Myhill/Nerode. 3 Teqcher and anOracle, who both knowL. There are two
kinds of queries: Anembership quergonsists of asking the
Residual Finite-State Automata RFSA, introduced in the Teacher if a stringw € ¥* isin L, and anequivalence query
seminal work Deniset al,, 2004, are a subclass of NFA in- consists of asking th@racle whether enypothesize®FA H
heriting some desirable features of DFA. Important forteear is correct, i.e., whethef () = L. The Oracle answersg/es
ing, every regular language is accepted by a canonical RFSA H is correct, or, otherwise, supplies a counterexanaple
with a minimal number of states. As this does not hold for ar-drawn from the symmetric difference éfand L ().
bitrary NFA, it seems difficult to come up with learning algo- The Learner maintains a prefix-closed sét C X* of
rithms for the whole class of NFA. At the same time, like for words that are candidates for identifying states, and axsuffi
NFA, RFSA can be exponentially more succinct than DFA. closed setV C X* of words used to distinguish those



states. Words of/ are calledaccess stringsind words of  Definition 5 (Join Operator) Let7 = (7,U, V) be a table.
V experiments U and V' are both initialized to{¢} and  Thejoin (r; Urq) : V — {+,—} of rowsry,ry € Rows(7)
increased when needed. THhearner makes membership is defined, forv € V, by (r1 U ro)(v) = r1(v) U r2(v)
queries for all words iU U UX)V, and organizes the re- where— U —=—and+U+=+U—-=—-U+=+.
sults into atable 7 = (T,U, V) where functionT maps
eachw € (U UUX)V to an element from{+, —}. Here,
+ meansacceptedand — notaccepted Tou € U U U%,
we assign a functionow(u) : V. — {+4,—} given by
row(u)(v) = T(uv). Any such function is calledw of 7,  Definition 6 (Composed, Prime Rows)Let 7 = (T,U,V)
and the set of all rows of a table is denotedRyws(7). We ~ be a table. A rowr € Rows(T) is called composedf
let Rowsypp(T) = {row(u) | u € U} denote the set of rows there are rowsry,...,r, € Rows(7) \ {r} such thatr =
representing the “upper” part of the table. The rows fromr1 U ... U r,. Otherwise,r is called prime. The set of
Rowsiow(T) = {row(u) | v € UX} occur in its “lower”  prime rows in7 is denoted byPrimes(7 ). Moreover, we let
part. TableT is closedif, for all v € U anda € X, there  Primesypp(T) = Primes(T) N Rowsypp(7T).

isu e U ?UCh thatrow(ua) = row(u'). Itis COI;lSi.Stel’l.if, Definition 7 (Covering Relation) Let 7 = (T,U,V) be a
forall w,u’ € U /anda € %, row(u) = row(u’) implies  taple. A rowr € Rows(T) is coveredby rowr’ € Rows(7T),
row(ua) = row(u'a). denoted byr C +/, if, forall v € V, r(v) = + implies

If 7 is not closed, then we find’ € UY such that /.,y — 1 “1f moreover” thenr is strictly covered b
row(u) # row(u') for all w € U. We moveu' to U :’(%)enore'd By —y ad g 4 4

and ask membership queries for everyv wherea € X

andv € V. Likewise, if 7 is not consistent, then we find ~ As for L*, we now define concepts comparable to closed-
u,u’ € U,a € %, andv € V such thatrow(u) = row(u’) ness and consistency called RFSA-closedness and RFSA-

and row(ua)(v) # row(ua)(v). In that case, we add consistency. For DFA, closedness ensures that every row in
av to V and ask membership queries for everfuv with ~ the lower part also occurs in the upper part. For RFSA, this
u € UUUY. WhenT is closed and consistent, tiearner ~ translates to the idea that each row of the lower part of the
constructs a hypothesized DFK = (Q,Qo,d, F) where tableis composed of (prime) rows from the upper part.

Q = Rowsypp(T) = {row(u) | u € U}, Qo = {row(e)},  Definition 8 (RFSA-Closedness)A table7 = (T, U, V) is

¢ is defined byd(row(u),a) = {row(ua)}, andF" = {r €  called RFSA-closedif, for eachr € Rowsiow(7), 7 =

Q | r(e) = +}. Then, theLearner submits to an equiva- L{#" € Primesypp(T) | ' C r}.

lence query (asking whethé&(H) = L). If the answer iyes
the learning procedure is completed. Otherwise, the retlrn
counterexample: is processed by adding every prefix of
(includingu) to U, extending/3: accordingly, and perform- Assume that two worda andu’ of the table have the same

ing membership queries to make the table closed and consis: .
tent, whereupon a new hypothesized DFA is constructed, etf?w' This suggests that both words lead to Fh? same state
of the automaton to learn as they cannot be distinguished by

Remark 1 L* can be modified by changing the treatment ofwordsv € V. Hence, they induce the same residuals. Then,

counterexamples. Instead of adding the counterexample arnttbwever,ua and«’a have to induce equal residuals as well,

its prefixes toU/, one can add the counterexample and all for anya € . In other words, if there is somec X andv €

its suffixes td/ ensuring that the table ialwaysconsistent V' such thatl’(uav) # T(u’av), then the residuals induced

[Maler and Pnueli, 1995 by v andu’ cannot be the same and must be distinguishable
by the suffixav to be added td’.

3 Learning of Residual Finite-State Automata For RFSA, if there are andw’ with row(u) C row(u’),

We will now modify Angluin’s learning algorithm t, which then this suggests that the residual induced:by a subset

infers DFA, towards learning of NFA in terms of RFSA of the residual induced by’. If indeed so, then the same
' ' relation must hold for the successaisandu’a.

Definition 9 (RFSA-Consistency)A table7 = (T,U,V)
is called RFSA-consistenif, for all u,v’ € U anda € X,
row(u') C row(u) impliesrow(u'a) C row(ua).

Note that the join operator is associative, commutative, an
idempotent, yet that the join of two rowsHi®t necessarily a
row of table7 .

Note that a table is RFSA-closed iff any prime row of the
lower part is a prime row of the upper part of the table.
The idea of consistency in the DFA case was as follows:

From Tables to RFSA To simplify our presentation, we
follow Angluin’s notions and notation. We use tablés=
(T, U, V) with a prefix-closed set of word$, a suffix-closed
setV, and a mapping” : (UUUX)V — {+,—}. We as- One might expect that the previous simple definitions
sociate with a word: € U U UX a mappingrow(u) : V — smoothly lead to a straightforward extension df towards
{+,—}. Members ofU are used to reach states and membersearning RFSA. This is, however, not the case. We now list
of V' to distinguish states. We adopt notations introduced besome major difficulties that arise. First, an RFSA-closed an
fore such afRows(7"), Rowsupp(7 ), and Rowsiow (7). RFSA-consistent table does generally not represent a eanon
The main difference in the new approach is that all  ical RFSA, not even an RFSA. To put things right, we come
rowsof the table will correspond to states of the hypothesizedip with an algorithm that produces NFA as intermediate hy-
automaton, but only certaprimerows. Essentially, we have potheses and outputs a canonical RFSA only in the last step.
to define for rows what corresponds‘tmion’, ‘composed’  Second, termination of our algorithm crucially dependshan t
‘prime’, and‘subset’previously introduced for languages.  treatment of counterexamples, which need to be added to the



set of suffixes held in a table. A third subtle point is that theLemma 4 If R+ = (Q, Qo, F, 0) is consistent witly, then,

number of states majecreasealuring a run of the algorithm.

Thus, the termination proof requires reasoning on a measu
that relates four indicators of a table such as the number cﬁ

distinct rows or the number of upper prime rows.

So let us first associate an NFA to an RFSA-closed an
RFSA-consistent table. As above-mentioned, we show th
this NFA corresponds to a canonical RFSA only after ou

learning algorithm has terminated (Theorems 1 and 2).

For the rest of this subsection, we fix an RFSA-closed an

RFSA-consistent tablé = (T,U, V).

Definition 10 (NFA of a Table) We definék 1 to be the NFA
(@, Qo, F,6) with Q@ = Primesypp(T), Qo ={re Q| rC
row(e)}, FF = {r € Q | r(e) = +}, anddo(row(u),a) =
{re Q| rC row(ua)} foru € U withrow(u) € Q, a € X.

Note that Primesupp(7) = Primes(T), as7 is RFSA-
closed. Also, is well-defined: Take:,w’ with row(u) =
row(u'). Then,row(u) C row(u') androw(u') C row(u).
Consistency impliesow(ua) C row(u'a) androw(u'a) C
row(ua) SO that both resulting rows are the same.

Let us establish some elementary propertie®ef. The
proof of the first two lemmas is by simple inductions.

Lemmal LetRy = (Q,Qo, F,0). Forallu € U andr €
3(Qo,u), we haver C row(u).

Lemma 2 LetRs = (Q, Qo, F,0). Foreachr € Q andv €
V,we have (1) (v) = — iff v & L,., and (2)row(e)(v) = —
iff v L(RT).

Lemma 2 may be summarized by saying that esielte of
R7 correctly classifies strings 8f. This fact will enable us
to prove that the covering relation precisely reflects laugu
inclusion, as stated in the next lemma.

Lemma 3 LetRs = (Q,Qo, F,0). Foreveryry,rs € Q,
T1 E T2 Iff LT] g er.

Proof: Let rq,79
row(u;) = r; and row(uz) = 7.

€ @ and assumeau,us € U with
“only if”: Suppose

r1 C rp andw € L,,. We distinguish two cases. Assume

firstw = e. Then,row(u1)(e) = + and, due ta; C ro,
row(uz)(e) = 4. Thus,ry € F sothak € L,.,. Now letw =
aw’ with a € . We havei(ry,aw’) N F # (. Thus, there is
r € 6(r1,a) such thav(r,w’) N F # (. Fromry C ry, we
obtain, by RFSA-consistencypw(uia) C row(usa). By
definition ofé, r C row(uya), which impliesr C row(usa).
Thus,r € §(r2,a) and we haverw’ € L,,. “if": Assume
r1 £ ro. We show thatl,, Z L.,. By definition ofC, there
existsv € V with row(uq1)(v) = + butrow(uz)(v) = —. By
Lemma2p € L,, andv ¢ L,,. ThereforeL,, Z L.

The automatorR+ constructed fron¥ is not necessarily
an RFSA[Bollig et al., 2009. However, we show thaR 7 is
a canonical RFSAf it is consistent withT, i.e., if it correctly
classifies all words frorT .

Definition 11 R+ is consistent withZ if, for all wordsw €
(UuU%)V,we havel'(w) = + iffw € L(R7).

It

?r € 6(Qo,u), r(v) = —. This, with Lemma 2, implie§'r €

forall u € U withrow(u) € @, we haverow(u) € §(Qo, ).

Broof: Supposerow(u) ¢ 6(Qo,u). With Lemma 1, we
avevr € §(Qo,u).r = row(u). Then, Lemma 3 implies

%r € 0(Qo,u).Ly € Lygy(uy- Asrow(u) € Q androw(u) ¢

(Qo, u), thereisv € V such thatow(u)(v) = + and, for all

0(Qo,u).v ¢ L,. Butthenuv ¢ L(Rr), a contradiction to

éhe fact thatR  is consistent with7 . O

Theorem 1 Let7 be RFSA-closed and RFSA-consistent and
let R+ be consistent with. Then,R+ is a canonical RFSA.

Proof: LetT = (T,U,V) and assum&+ = (@, qo, F, 9).
SetL = L(Ry). We first prove thafR is an RFSA. Let
u € U with row(u) € Q. Let us ShOWL () = u'L.
By Lemma 4, we haveow(u) € §(Qo,u), which implies
Lyowu) € u~ L. By Lemma 1Vr € §(Qq,u).r C row(u).
Thus, with Lemma 3yr € 6(Qo,u).Lr € Lyoy(u). This
givesu 'L C Lypyp(u). With Loy € u 'L, we have
Lyow(u) = u~ L. As, by Lemma 3, the relatio@ over rows
corresponds to the subset relation over languabigs, (.. iS
prime and the transition functiahis saturated. O

The Algorithm  We now describe Nt, which takes a reg-
ular languagd. C ¥* as input. Its pseudo code is given in
Algorithm 1. After initializing the tableT, the it is repeatedly
checked for RFSA-closedness and RFSA-consistency. If the
algorithm detects a prime romow(ua) that is not contained

in Primesupp(7) (a violation of the RFSA-closedness con-
dition from Def. 8), thenua is added toU. This involves
additional membership queries. On the other hand, when-
ever the algorithm perceives an RFSA-consistency viatatio
(Def. 9), then a suffixxv can be determined that makes two
existing rows distinct or incomparable. In this case, aoiu

is added td/ invoking supplemental queries. This procedure
is repeated until” is RFSA-closed and RFSA-consistent. If
both properties are fulfilled, a conjectuRer can be derived
from 7 (cf. Def. 10), and either a counterexampldrom

the symmetric difference of and L(R7) is provided and
Suff (u) added toV invoking NL*, or the learning procedure
terminates successfully. Note that the algorithm ensuas t

V is always suffix-closed and prefix-closed.

Remark 2 The counterexamples are handled as described
in Remark 1, since treating them asliri leads to a non-
terminating algorithni Bollig et al, 2004. Our treatment of
counterexamples ensures that each row can appear at most
once in the upper part of the table.

Proving termination of L is quite straightforward. In our
setting, however, the termination proof is intricate aseraf
an equivalence query or a violation of RFSA-consistenay, th
number of states of the hypothesized automaton does not nec-
essarily increaskBollig et al., 2009.

The following theorem constitutes our main contribution.

Theorem 2 Letn be the number of states of the minimal DFA
A* for a given regular languagd. C X*. Letm be the

The next lemma is a stronger version of Lemma 1, if welength of the biggest counterexample returned by the egquiva

additionally have thak ;- is consistent with/".

lence test (ot if the equivalence test always succeeds). Then,



Algorithm 1 NL* (¥; regular languagé C ¥*) ar Ts||  |aaaaa]a

T2|| € |aaa]aa] a

* € —| + — | =
initialize 7 := (T, U, V) for U = V = {¢} by memb. queries — = - — ] i = - — ‘:‘ i ‘f‘:
REPEAT S S s R Il Bl
WHILE 7 is not (RFSA-closed and RFSA-consisteim{ aall—| + |+ |+
IF 7 is not RFSA-closed THEN 75 || € |aaalaala
findu € U anda € X with i |lclaaalaala A e RE
row(ua) € Primes(7T) \ Primesupp(T) M i N MDY [ jrr + N
extend7 to (T,U U {ua}, V') by memb. queries ooxab |||+ ||+  xabb [[+] + ||~
IF 7 is not RFSA-consistentTHEN *b =] + —-]- * b T F ==
findu,u' € U,a € %, andv € V with cam |t 202 wba || 7| 1 | 4|2
T(uav) = —, T(v'av) = +, androw(u’) C row(u) aba ||+ + |+ |- woabbb|—| + | = |=
extend7 to (T”,U,V U {av}) by memb. queries * abba || —| + |+ |-
from 7 construct hypothesized NFR7 // cf. Def. 10 Rows with a preceding are prime. The tabld; is RFSA-
IF (L =L(Rt)) THEN equivalence test succeeds closed and RFSA-consistent but does not represent the targe

ELSE language becausewa is not accepted. We adiha and its
get counterexejlmple; € (L\ L(R7)) U (L(R7)\ L) suffixes toV, perform membership queries, and obtain table
UNTIfxfggsatlgr(ge’tg’sysﬁciggé;")) by memb. queries 75, which is not RFSA-closed. We addto U and continue.
RETURN Ry Resolymg_ two more closedness V|olat|on§, we obtain table
75, which is RFSA-closed and RFSA-consistent. Its automa-
tonR 7, givenin Fig. 1, is the canonical RFSA fé,. Notice
that tableT; is not closed in Angluin’s sense so thatwould

NL* returns, after at mosO(n*) equivalence queries and continue adding strings to the upper part of the table.
O(m|%|n*) membership queries, the canonical RFBAL).

Proof: First of all, if the algorithm terminates, then it outputs 4  EXperiments
the canonical RFSA fok due to Theorem 1, because passingTo evaluate the performance of our learning algorithm*NL
the equivalence test implies that the constructed autamatave compare it with Angluin’s £ and its modification wrt. to
must be consistent with the table. To show that the algorithnRemark 1, called £, As NL* is similar in spirit to L%, a
terminates after at mos?(n?) equivalence queries, we cre- comparison with this algorithm seems fairer. All algorithm
ate a measur@/ that associates a tuple of positive naturalhave been implemented in Java and tested on a wide range of
numbers to a tabl@. We letM(T) = (lup,1,p,i), where  examples. FollowingDeniset al, 2004, we randomly gen-
lup = |[Rowsupp(7 )|, | = |Rows(T )|, p = | Primes(7T )|, and  erate large sets of regular expressions over differens sife
i=|{(r,r") | r,v" € Rows(T) andr C '}|. An analysis of alphabets. A detailed description of this as well as a full de
the evolution ofM during an execution of NLreveals that, scription of the outcome can be foundBollig et al,, 2004.
after each extension of the table, either [1) is increased As in [Deniset al, 2004, we present a characteristic selec-
or (2) 1 is increased by: > 0 and, simultaneously, is in-  tion of the results for an alphabet of size two.
creased by at most +k(k —1)/2 or (3)/ stays the same and Results We generated a set of 3180 regular expressions, re-
i decreases gv increases. Howevel,,, [, andp cannot in-  sulting in minimal DFA of sizes between 1 and 200 states.
crease beyond. Hence, the algorithm must (a) always reachThese DFA were given to the learning algorithms, i.e., mem-
an equivalence query and (b) terminate after at nig{st>)  bership and equivalence queries were answered according to
equivalence queries. Concerning the number of membershippese automata. To evaluate the algorithms’ performanee, w
queries, we notice that their maximal number corresponds teneasured, for each algorithm and input regular expression,
the size of the table which has at maest- n|X| (n rows in  thenumber of states of the final automat¢RSFA or DFA)
the upper part + their successors) rows étighn?) columns  and thenumber of membership (resp. equivalence) queries
since at each extension at mestuffixes are added t6. (1  that are needed to infer it. As Fig. 2 (top) shows, the autamat
The theoretical complexity of NLwrt. equivalence (resp. learned by NI are considerably smaller than those that are
membership) queries is higher compared tonthere at most  returned by * and L%, confirming the results dfDeniset
n equivalence (resp. roughly:|mn® membership) queries al., 2004. More importantly, in practice, the actual sizes of
are needed. But we observe that, in practfeeierequiva- RFSA compared to DFA seem to follow an exponential gap.
lence and membership queries are needed (cf. Section 4). In Fig. 2 (middle), the number of membership queries is
depicted. As in the first case, Nlbehaves much better than
the other learning algorithms. While the difference betwee

NL* by means of an Example Supposé& = {a, b} and let
L, C X* be given by the regular expressiati a >". l.e.,
L,, contains the words having arat the(n+1)-last position.
Then,L, is accepted by a minimal DFA with 2"+ states.
However, it is easy to see that the canonical RFSA.,,) has
n + 2 states (see Fig. 1 for = 2). In other wordsR(L,,) is
exponentially more succinct thay, . ) )

Next, we show howR(L») is inferred by NL*: Figure 1: Canonical RFSA df,




200 : 5 Future Work

NL*  ——
wof There is room for further improvement by adapting the vari-
. ous recent variants of‘L(see[Leucker, 2007 for references).

In the future, we plan to show that using our Nalgorithm,
g™ al the limits of learning-based verification techniques can be
£ o pushed ahead considerably, as most often non-deterministi
g " automata should be sufficient for verification tasks.
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