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Abstract

We introduce NL∗, a learning algorithm for infer-
ring non-deterministic finite-state automata using
membership and equivalence queries. More specif-
ically, residual finite-state automata (RFSA) are
learned similarly as in Angluin’s popular L∗ algo-
rithm, which, however, learns deterministic finite-
state automata (DFA). Like in a DFA, the states
of an RFSA represent residual languages. Unlike
a DFA, an RFSA restricts to prime residual lan-
guages, which cannot be described as the union of
other residual languages. In doing so, RFSA can be
exponentially more succinct than DFA. They are,
therefore, the preferable choice for many learning
applications. The implementation of our algorithm
is applied to a collection of examples and confirms
the expected advantage of NL∗ over L∗.

1 Introduction
Learning automata has a wide field of applications ranging
over robotics and control systems, pattern recognition, com-
putational linguistics, computational biology, data compres-
sion, data mining, etc. (see[de la Higuera, 2005] for an ex-
cellent survey). Recently, learning techniques have also be-
come popular in the area of automatic verification. They have
been used[Leucker, 2007] for minimizing(partially) specified
systems and for model checkingblack-box systems, proved
helpful incompositional model checkingand inregular model
checking. To put it bluntly, automata learning is en vogue.

The general goal of learning algorithms employed in ver-
ification is to identify amachine, usually ofminimal size,
thatconformswith ana priori fixed set of strings or a given
machine. Nearly all algorithms learndeterministic finite-
state automata(DFA) or deterministic finite-state machines
(Mealy-/Moore machines), as the class of DFA has preferable
properties in the setting of learning. For every regular lan-
guage, there is a unique minimal DFA accepting it, which can
be characterized thanks to Nerode’s right congruence. This
characterization is at the base of most learning algorithms.

In general, two types of learning algorithms for DFA can
be distinguished, so-calledonlineandofflinealgorithms. Of-
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fline algorithms get a fixed set ofpositiveandnegativeex-
amples, comprising strings that should beacceptedand, re-
spectively, strings that should berejectedby the automaton in
question. The learning algorithm now has to provide a (min-
imal) automaton that accepts the positive examples and re-
jects the negative ones. For deriving minimal automata, major
achievements are due to Biermann[Biermann and Feldman,
1972], Trakhtenbrot and Barzdin[Trakhtenbrot and Barzdin,
1973]. Efficient algorithms inferring anot necessarily mini-
mal DFA are given in[Lang, 1992] and[Oncina and Garcia,
1992] under the nameRPNI.

Online algorithms have the possibility to ask further
queries, i.e., whether some string is in the language of the
automaton to learn or not. In this way, an online algorithm
can enlarge the set of examples as needed.

A popular setup for an online approach is that of Angluin’s
L∗ algorithm [Angluin, 1987]: A minimal DFA is learned
based onmembershipandequivalence queries. We have a
learnerwhose job is to come up with the automaton to learn,
a teacherwho may answer if a given string is in the language
as well as anoracle answering if the automaton hypothesis
currently proposed by the learner is correct or not.

DFA have a serious drawback for applications in verifica-
tion. In general, a DFA might be exponentially bigger than
a non-deterministic finite-state automaton(NFA). For many
applications, it would be a huge improvement to work with an
exponentially more succinct NFA rather than the correspond-
ing DFA. As such, learning algorithms for NFA are needed.
However, the class of NFA lacks important properties that are
essential for current learning algorithms: There is no unique
minimal NFA for a given regular language and there is no
characterization of NFA in terms of right-congruence classes.

In a seminal paper, Denis et al.[Deniset al., 2002] intro-
duce the class ofresidual finite-state automata(RFSA). It is
a subclass of NFA that shares important properties with the
class of DFA: For every regular language, there is a unique
minimal canonical RFSA accepting it. The states of this au-
tomaton correspond to right-congruence classes, or, equiva-
lently, to residualsof the accepted language. At the same
time, the RFSA can be exponentially more succinct than the
corresponding DFA. As such, RFSA are the preferable class
for learning regular languages. In[Deniset al., 2004], Denis
et al. provided an offline algorithm, called DeLeTe2, which
works in the spirit of RPNI. Alternatives and extensions to



this algorithms have then been presented, most recently in
[Garcı́aet al., 2008], which also gives a nice overview on
offline algorithms for learning NFA.

In this paper, we introduce NL∗ as an online learning al-
gorithm for RFSA, patterned after L∗. Using membership
and equivalence queries, our algorithm infers a (minimal)
canonical RFSA for the language in question, which is al-
ways smaller than or equal to the corresponding DFA. Note
that [Yokomori, 1994] presents an online learning algorithm
for NFA based oncontradiction backtracking. According to
[Deniset al., 2004], the resulting NFA are actually RFSA.
They are, however, not canonical and can even be larger than
the corresponding minimal DFA, as their size crucially de-
pends on the size of counterexamples provided by theoracle.

We have implemented our algorithm and studied its effi-
ciency on a collection of regular languages described by reg-
ular expressions. It turns out that, for most examples, the re-
sulting RFSA is much smaller than the corresponding DFA.
While our current upper bounds for NL∗ on the number of
membership and equivalence queries are slightly worse than
those for L∗, our implementation shows that the resulting
RFSA are typically obtained after far fewer queries. Sum-
marizing, we provide a new learning algorithm for regular
languages. Together with a practically efficient oracle real-
ization based onanti-chains[De Wulf et al., 2006], we expect
it to enhance, e.g., associated verification tasks considerably.

Full proofs can be found in[Bollig et al., 2008].

2 Preliminaries
We fix a finite setΣ of letters, calledalphabet. Finite se-
quences of letters are elements ofΣ∗, calledwords. Subsets
of Σ∗ are termedlanguages. For w ∈ Σ∗, we denote by
Pref (w) (resp.Suff (w)) the set of its prefixes (resp. suffixes)
includingw itself and the empty wordǫ. A non-deterministic
finite-state automaton(NFA) A = (Q, Q0, F, δ) has a finite
set ofstatesQ, a set ofinitial statesQ0 ⊆ Q, a set offinal
statesF ⊆ Q, and atransition functionδ : Q × Σ → 2Q. A
is a deterministic finite-state automaton(DFA) if |Q0| = 1
and |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. As usual,
δ is extended tōδ : Q × Σ∗ → 2Q by δ̄(q, ǫ) = {q}
and δ̄(q, aw) =

⋃
q′∈δ(q,a) δ̄(q′, w), and to setsQ′ ⊆ Q by

δ̂(Q′, w) =
⋃

q∈Q′ δ̄(q, w). We useδ to denote both̄δ andδ̂.
For q ∈ Q, let Lq = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}. Thelan-
guageL(A) acceptedby A is

⋃
q∈Q0

Lq. Two automata are
equivalentif they accept the same language. It is folklore that
the languages of finite-state automata are theregular ones.
We call a DFAminimal if there is no equivalent DFA with
strictly fewer states. In contrast to NFA, a DFA has always a
unique minimal representative, as shown by Myhill/Nerode.

Residual Finite-State Automata RFSA, introduced in the
seminal work[Deniset al., 2002], are a subclass of NFA in-
heriting some desirable features of DFA. Important for learn-
ing, every regular language is accepted by a canonical RFSA
with a minimal number of states. As this does not hold for ar-
bitrary NFA, it seems difficult to come up with learning algo-
rithms for the whole class of NFA. At the same time, like for
NFA, RFSA can be exponentially more succinct than DFA.

Technically, RFSA and DFA have the property that the
states of the automata correspond to so-calledresidual lan-
guagesdefined below. This is in general not true for NFA.

Definition 1 (Residual Language)For L ⊆ Σ∗ and u ∈
Σ∗, we denote byu−1L the set{v ∈ Σ∗ | uv ∈ L}. A
languageL′ ⊆ Σ∗ is a residual language(or, simply,resid-
ual) of L if there isu ∈ Σ∗ with L′ = u−1L. We denote by
Res(L) the set of residual languages ofL.

The Myhill-Nerode theorem states that the number of residu-
als of a language is finite iff this language is regular[Nerode,
1958]. Moreover, for a minimal DFAA, there is a natural bi-
jection between its states and the residual languages ofL(A).

Definition 2 (Residual Finite-State Automaton) A residual
finite-state automaton(RFSA) is an NFAR = (Q, Q0, F, δ)
such that, for eachq ∈ Q, Lq ∈ Res(L(R)).

In other words, each state accepts a residual language of
L(R), but not every residual language must be accepted by
a singlestate. Intuitively, the states of an RFSA form a class
of states of the corresponding minimal DFA. Yet, using non-
determinism, certain states of a minimal DFA are not needed
as they correspond to the union of languages of other states.
To this end, we distinguishprimeandcomposedresiduals:

Definition 3 (Prime and Composed Residuals)Let L ⊆
Σ∗. A residualL′ ∈ Res(L) is calledcomposedif there are
L1, . . . , Ln ∈ Res(L) \ {L′} such thatL′ = L1 ∪ . . . ∪ Ln.
Otherwise, it is calledprime. The set of prime residuals ofL
is denoted byPrimes(L).

We can now define thecanonicalRFSA of a regular lan-
guage. The idea is that its set of states corresponds exactlyto
its prime residuals. Moreover, the transition function should
be saturatedin the sense that a transition to a state should
exist if it does not change the accepted language.

Definition 4 (Canonical RFSA) Let L ⊆ Σ∗ be a regular
language. The canonical RFSA ofL, denoted byR(L), is the
NFA (Q, Q0, F, δ) whereQ = Primes(L), Q0 = {L′ ∈ Q |
L′ ⊆ L}, F = {L′ ∈ Q | ǫ ∈ L′}, andδ(L1, a) = {L2 ∈
Q | L2 ⊆ a−1L1}.

Note thatR(L) is indeed an RFSA and we actually have
L(R(L)) = L. We say that an RFSAR is canonicalif it
is the canonical RFSA ofL(R).

Angluin’s Learning Algorithm L ∗ The algorithm from
[Angluin, 1987] learns or infers a minimal DFA for a given
regular languageL. A so-calledLearner , who initially
knows nothing aboutL, is trying to learn a DFAA such
that L(A) = L. To this end, it repeatedly asks queries to
a Teacher and anOracle, who both knowL. There are two
kinds of queries: Amembership queryconsists of asking the
Teacher if a stringw ∈ Σ∗ is in L, and anequivalence query
consists of asking theOracle whether ahypothesizedDFA H
is correct, i.e., whetherL(H) = L. TheOracle answersyes
if H is correct, or, otherwise, supplies a counterexamplew,
drawn from the symmetric difference ofL andL(H).

The Learner maintains a prefix-closed setU ⊆ Σ∗ of
words that are candidates for identifying states, and a suffix-
closed setV ⊆ Σ∗ of words used to distinguish those



states. Words ofU are calledaccess stringsand words of
V experiments. U and V are both initialized to{ǫ} and
increased when needed. TheLearner makes membership
queries for all words in(U ∪ UΣ)V , and organizes the re-
sults into atable T = (T, U, V ) where functionT maps
eachw ∈ (U ∪ UΣ)V to an element from{+,−}. Here,
+ meansacceptedand− not accepted. To u ∈ U ∪ UΣ,
we assign a functionrow(u) : V → {+,−} given by
row(u)(v) = T (uv). Any such function is called arow of T ,
and the set of all rows of a table is denoted byRows(T ). We
let Rowsupp(T ) = {row(u) | u ∈ U} denote the set of rows
representing the “upper” part of the table. The rows from
Rows low(T ) = {row(u) | u ∈ UΣ} occur in its “lower”
part. TableT is closedif, for all u ∈ U anda ∈ Σ, there
is u′ ∈ U such thatrow(ua) = row (u′). It is consistentif,
for all u, u′ ∈ U anda ∈ Σ, row(u) = row(u′) implies
row(ua) = row(u′a).

If T is not closed, then we findu′ ∈ UΣ such that
row(u) 6= row(u′) for all u ∈ U . We moveu′ to U
and ask membership queries for everyu′av wherea ∈ Σ
andv ∈ V . Likewise, if T is not consistent, then we find
u, u′ ∈ U , a ∈ Σ, andv ∈ V such thatrow(u) = row (u′)
and row(ua)(v) 6= row(u′a)(v). In that case, we add
av to V and ask membership queries for everyu′′av with
u′′ ∈ U ∪UΣ. WhenT is closed and consistent, theLearner
constructs a hypothesized DFAH = (Q, Q0, δ, F ) where
Q = Rowsupp(T ) = {row(u) | u ∈ U}, Q0 = {row(ǫ)},
δ is defined byδ(row (u), a) = {row(ua)}, andF = {r ∈
Q | r(ǫ) = +}. Then, theLearner submitsH to an equiva-
lence query (asking whetherL(H) = L). If the answer isyes,
the learning procedure is completed. Otherwise, the returned
counterexampleu is processed by adding every prefix ofu
(includingu) to U , extendingUΣ accordingly, and perform-
ing membership queries to make the table closed and consis-
tent, whereupon a new hypothesized DFA is constructed, etc.

Remark 1 L∗ can be modified by changing the treatment of
counterexamples. Instead of adding the counterexample and
its prefixes toU , one can add the counterexample and all
its suffixes toV ensuring that the table isalwaysconsistent
[Maler and Pnueli, 1995].

3 Learning of Residual Finite-State Automata
We will now modify Angluin’s learning algorithm L∗, which
infers DFA, towards learning of NFA in terms of RFSA.

From Tables to RFSA To simplify our presentation, we
follow Angluin’s notions and notation. We use tablesT =
(T, U, V ) with a prefix-closed set of wordsU , a suffix-closed
setV , and a mappingT : (U ∪ UΣ)V → {+,−}. We as-
sociate with a wordu ∈ U ∪ UΣ a mappingrow(u) : V →
{+,−}. Members ofU are used to reach states and members
of V to distinguish states. We adopt notations introduced be-
fore such asRows(T ), Rowsupp(T ), andRows low(T ).

The main difference in the new approach is thatnot all
rowsof the table will correspond to states of the hypothesized
automaton, but only certainprimerows. Essentially, we have
to define for rows what corresponds to‘union’, ‘composed’,
‘prime’, and‘subset’previously introduced for languages.

Definition 5 (Join Operator) LetT = (T, U, V ) be a table.
Thejoin (r1 ⊔ r2) : V → {+,−} of rowsr1, r2 ∈ Rows(T )
is defined, forv ∈ V , by (r1 ⊔ r2)(v) = r1(v) ⊔ r2(v)
where− ⊔ − = − and+ ⊔ + = + ⊔ − = − ⊔ + = +.

Note that the join operator is associative, commutative, and
idempotent, yet that the join of two rows isnot necessarily a
row of tableT .

Definition 6 (Composed, Prime Rows)Let T = (T, U, V )
be a table. A rowr ∈ Rows(T ) is called composedif
there are rowsr1, . . . , rn ∈ Rows(T ) \ {r} such thatr =
r1 ⊔ . . . ⊔ rn. Otherwise,r is called prime. The set of
prime rows inT is denoted byPrimes(T ). Moreover, we let
Primesupp(T ) = Primes(T ) ∩Rowsupp(T ).

Definition 7 (Covering Relation) Let T = (T, U, V ) be a
table. A rowr ∈ Rows(T ) is coveredby rowr′ ∈ Rows(T ),
denoted byr ⊑ r′, if, for all v ∈ V , r(v) = + implies
r′(v) = +. If, moreover,r′ 6= r, thenr is strictly covered by
r′, denoted byr ⊏ r′.

As for L∗, we now define concepts comparable to closed-
ness and consistency called RFSA-closedness and RFSA-
consistency. For DFA, closedness ensures that every row in
the lower part also occurs in the upper part. For RFSA, this
translates to the idea that each row of the lower part of the
table is composed of (prime) rows from the upper part.

Definition 8 (RFSA-Closedness)A tableT = (T, U, V ) is
called RFSA-closedif, for each r ∈ Rows low(T ), r =⊔
{r′ ∈ Primesupp(T ) | r′ ⊑ r}.

Note that a table is RFSA-closed iff any prime row of the
lower part is a prime row of the upper part of the table.

The idea of consistency in the DFA case was as follows:
Assume that two wordsu andu′ of the table have the same
row. This suggests that both words lead to the same state
of the automaton to learn as they cannot be distinguished by
wordsv ∈ V . Hence, they induce the same residuals. Then,
however,ua andu′a have to induce equal residuals as well,
for anya ∈ Σ. In other words, if there is somea ∈ Σ andv ∈
V such thatT (uav) 6= T (u′av), then the residuals induced
by u andu′ cannot be the same and must be distinguishable
by the suffixav to be added toV .

For RFSA, if there areu andu′ with row (u) ⊑ row(u′),
then this suggests that the residual induced byu is a subset
of the residual induced byu′. If indeed so, then the same
relation must hold for the successorsua andu′a.

Definition 9 (RFSA-Consistency)A table T = (T, U, V )
is calledRFSA-consistentif, for all u, u′ ∈ U anda ∈ Σ,
row(u′) ⊑ row (u) impliesrow(u′a) ⊑ row (ua).

One might expect that the previous simple definitions
smoothly lead to a straightforward extension of L∗ towards
learning RFSA. This is, however, not the case. We now list
some major difficulties that arise. First, an RFSA-closed and
RFSA-consistent table does generally not represent a canon-
ical RFSA, not even an RFSA. To put things right, we come
up with an algorithm that produces NFA as intermediate hy-
potheses and outputs a canonical RFSA only in the last step.
Second, termination of our algorithm crucially depends on the
treatment of counterexamples, which need to be added to the



set of suffixes held in a table. A third subtle point is that the
number of states maydecreaseduring a run of the algorithm.
Thus, the termination proof requires reasoning on a measure
that relates four indicators of a table such as the number of
distinct rows or the number of upper prime rows.

So let us first associate an NFA to an RFSA-closed and
RFSA-consistent table. As above-mentioned, we show that
this NFA corresponds to a canonical RFSA only after our
learning algorithm has terminated (Theorems 1 and 2).

For the rest of this subsection, we fix an RFSA-closed and
RFSA-consistent tableT = (T, U, V ).

Definition 10 (NFA of a Table) We defineRT to be the NFA
(Q, Q0, F, δ) with Q = Primesupp(T ), Q0 = {r ∈ Q | r ⊑
row(ǫ)}, F = {r ∈ Q | r(ǫ) = +}, and δ(row(u), a) =
{r ∈ Q | r ⊑ row(ua)} for u ∈ U with row (u) ∈ Q, a ∈ Σ.

Note thatPrimesupp(T ) = Primes(T ), as T is RFSA-
closed. Also,δ is well-defined: Takeu, u′ with row(u) =
row(u′). Then,row(u) ⊑ row(u′) androw(u′) ⊑ row(u).
Consistency impliesrow(ua) ⊑ row (u′a) androw (u′a) ⊑
row(ua) so that both resulting rows are the same.

Let us establish some elementary properties ofRT . The
proof of the first two lemmas is by simple inductions.

Lemma 1 LetRT = (Q, Q0, F, δ). For all u ∈ U andr ∈
δ(Q0, u), we haver ⊑ row (u).

Lemma 2 LetRT = (Q, Q0, F, δ). For eachr ∈ Q andv ∈
V , we have (1)r(v) = − iff v 6∈ Lr, and (2)row(ǫ)(v) = −
iff v 6∈ L(RT ).

Lemma 2 may be summarized by saying that eachstateof
RT correctly classifies strings ofV . This fact will enable us
to prove that the covering relation precisely reflects language
inclusion, as stated in the next lemma.

Lemma 3 Let RT = (Q, Q0, F, δ). For everyr1, r2 ∈ Q,
r1 ⊑ r2 iff Lr1

⊆ Lr2
.

Proof: Let r1, r2 ∈ Q and assumeu1, u2 ∈ U with
row(u1) = r1 and row (u2) = r2. “only if”: Suppose
r1 ⊑ r2 andw ∈ Lr1

. We distinguish two cases. Assume
first w = ǫ. Then,row(u1)(ǫ) = + and, due tor1 ⊑ r2,
row(u2)(ǫ) = +. Thus,r2 ∈ F so thatǫ ∈ Lr2

. Now letw =
aw′ with a ∈ Σ. We haveδ(r1, aw′) ∩ F 6= ∅. Thus, there is
r ∈ δ(r1, a) such thatδ(r, w′) ∩ F 6= ∅. Fromr1 ⊑ r2, we
obtain, by RFSA-consistency,row(u1a) ⊑ row(u2a). By
definition ofδ, r ⊑ row(u1a), which impliesr ⊑ row(u2a).
Thus,r ∈ δ(r2, a) and we haveaw′ ∈ Lr2

. “if”: Assume
r1 6⊑ r2. We show thatLr1

6⊆ Lr2
. By definition of⊑, there

existsv ∈ V with row(u1)(v) = + butrow(u2)(v) = −. By
Lemma 2,v ∈ Lr1

andv 6∈ Lr2
. Therefore,Lr1

6⊆ Lr2
. �

The automatonRT constructed fromT is not necessarily
an RFSA[Bollig et al., 2008]. However, we show thatRT is
a canonical RFSAif it is consistent withT , i.e., if it correctly
classifies all words fromT .

Definition 11 RT is consistent withT if, for all wordsw ∈
(U ∪ UΣ)V , we haveT (w) = + iff w ∈ L(RT ).

The next lemma is a stronger version of Lemma 1, if we
additionally have thatRT is consistent withT .

Lemma 4 If RT = (Q, Q0, F, δ) is consistent withT , then,
for all u ∈ U with row(u) ∈ Q, we haverow (u) ∈ δ(Q0, u).

Proof: Supposerow(u) 6∈ δ(Q0, u). With Lemma 1, we
have∀r ∈ δ(Q0, u).r ⊑ row(u). Then, Lemma 3 implies
∀r ∈ δ(Q0, u).Lr ⊆ L

row(u). As row(u) ∈ Q androw(u) 6∈
δ(Q0, u), there isv ∈ V such thatrow(u)(v) = + and, for all
r ∈ δ(Q0, u), r(v) = −. This, with Lemma 2, implies∀r ∈
δ(Q0, u).v /∈ Lr. But then,uv 6∈ L(RT ), a contradiction to
the fact thatRT is consistent withT . �

Theorem 1 LetT be RFSA-closed and RFSA-consistent and
letRT be consistent withT . Then,RT is a canonical RFSA.

Proof: Let T = (T, U, V ) and assumeRT = (Q, q0, F, δ).
SetL = L(RT ). We first prove thatRT is an RFSA. Let
u ∈ U with row (u) ∈ Q. Let us showL

row(u) = u−1L.
By Lemma 4, we haverow(u) ∈ δ(Q0, u), which implies
L

row(u) ⊆ u−1L. By Lemma 1,∀r ∈ δ(Q0, u).r ⊑ row(u).
Thus, with Lemma 3,∀r ∈ δ(Q0, u).Lr ⊆ L

row(u). This
givesu−1L ⊆ L

row(u). With L
row(u) ⊆ u−1L, we have

L
row(u) = u−1L. As, by Lemma 3, the relation⊑ over rows

corresponds to the subset relation over languages,L
row(u) is

prime and the transition functionδ is saturated. �

The Algorithm We now describe NL∗, which takes a reg-
ular languageL ⊆ Σ∗ as input. Its pseudo code is given in
Algorithm 1. After initializing the tableT , the it is repeatedly
checked for RFSA-closedness and RFSA-consistency. If the
algorithm detects a prime rowrow(ua) that is not contained
in Primesupp(T ) (a violation of the RFSA-closedness con-
dition from Def. 8), thenua is added toU . This involves
additional membership queries. On the other hand, when-
ever the algorithm perceives an RFSA-consistency violation
(Def. 9), then a suffixav can be determined that makes two
existing rows distinct or incomparable. In this case, a column
is added toV invoking supplemental queries. This procedure
is repeated untilT is RFSA-closed and RFSA-consistent. If
both properties are fulfilled, a conjectureRT can be derived
from T (cf. Def. 10), and either a counterexampleu from
the symmetric difference ofL andL(RT ) is provided and
Suff (u) added toV invoking NL∗, or the learning procedure
terminates successfully. Note that the algorithm ensures that
V is always suffix-closed andU prefix-closed.

Remark 2 The counterexamples are handled as described
in Remark 1, since treating them as inL∗ leads to a non-
terminating algorithm[Bollig et al., 2008]. Our treatment of
counterexamples ensures that each row can appear at most
once in the upper part of the table.

Proving termination of L∗ is quite straightforward. In our
setting, however, the termination proof is intricate as, after
an equivalence query or a violation of RFSA-consistency, the
number of states of the hypothesized automaton does not nec-
essarily increase[Bollig et al., 2008].

The following theorem constitutes our main contribution.

Theorem 2 Letn be the number of states of the minimal DFA
A∗ for a given regular languageL ⊆ Σ∗. Let m be the
length of the biggest counterexample returned by the equiva-
lence test (or1 if the equivalence test always succeeds). Then,



Algorithm 1 NL∗ (Σ; regular languageL ⊆ Σ∗)

initialize T := (T, U, V ) for U = V = {ǫ} by memb. queries
REPEAT

WHILE T is not (RFSA-closed and RFSA-consistent)DO
IF T is not RFSA-closedTHEN

find u ∈ U anda ∈ Σ with
row (ua) ∈ Primes(T ) \ Primesupp(T )

extendT to (T ′, U ∪ {ua}, V ) by memb. queries
IF T is not RFSA-consistentTHEN

find u, u′ ∈ U, a ∈ Σ, andv ∈ V with
T (uav) = −, T (u′av) = +, androw(u′) ⊑ row (u)

extendT to (T ′, U, V ∪ {av}) by memb. queries
from T construct hypothesized NFART / / cf. Def. 10
IF (L = L(RT )) THEN equivalence test succeeds
ELSE

get counterexamplew ∈ (L \ L(RT )) ∪ (L(RT ) \ L)
extendT to (T ′, U, V ∪ Suff (w)) by memb. queries

UNTIL equivalence test succeeds
RETURN RT

NL∗ returns, after at mostO(n2) equivalence queries and
O(m|Σ|n3) membership queries, the canonical RFSAR(L).

Proof: First of all, if the algorithm terminates, then it outputs
the canonical RFSA forL due to Theorem 1, because passing
the equivalence test implies that the constructed automaton
must be consistent with the table. To show that the algorithm
terminates after at mostO(n2) equivalence queries, we cre-
ate a measureM that associates a tuple of positive natural
numbers to a tableT . We letM(T ) = (lup, l, p, i), where
lup = |Rowsupp(T )|, l = |Rows(T )|, p = |Primes(T )|, and
i = |{(r, r′) | r, r′ ∈ Rows(T ) andr ⊏ r′}|. An analysis of
the evolution ofM during an execution of NL∗ reveals that,
after each extension of the table, either (1)lup is increased
or (2) l is increased byk > 0 and, simultaneously,i is in-
creased by at mostkl+k(k−1)/2 or (3) l stays the same and
i decreases orp increases. However,lup, l, andp cannot in-
crease beyondn. Hence, the algorithm must (a) always reach
an equivalence query and (b) terminate after at mostO(n2)
equivalence queries. Concerning the number of membership
queries, we notice that their maximal number corresponds to
the size of the table which has at mostn + n|Σ| (n rows in
the upper part + their successors) rows andO(mn2) columns
since at each extension at mostm suffixes are added toV . �

The theoretical complexity of NL∗ wrt. equivalence (resp.
membership) queries is higher compared to L∗ where at most
n equivalence (resp. roughly|Σ|mn2 membership) queries
are needed. But we observe that, in practice,fewerequiva-
lence and membership queries are needed (cf. Section 4).

NL* by means of an Example SupposeΣ = {a, b} and let
Ln ⊆ Σ∗ be given by the regular expressionΣ∗ a Σn. I.e.,
Ln contains the words having ana at the(n+1)-last position.
Then,Ln is accepted by a minimal DFAA∗

n with 2n+1 states.
However, it is easy to see that the canonical RFSAR(Ln) has
n + 2 states (see Fig. 1 forn = 2). In other words,R(Ln) is
exponentially more succinct thanA∗

n.
Next, we show howR(L2) is inferred by NL∗:

T1 ǫ

∗ ǫ −

∗ b −

∗ a −

⇒

T2 ǫ aaa aa a

∗ ǫ − + − −

∗ b − + − −

∗ a − + + −

⇒

T3 ǫ aaa aa a

∗ ǫ − + − −

∗ a − + + −

∗ b − + − −

∗ ab − + − +
aa − + + +

⇒

T4 ǫ aaa aa a

∗ ǫ − + − −

∗ a − + + −

∗ ab − + − +

∗ b − + − −

aa − + + +
∗ abb + + − −

aba + + + −

⇒

T5 ǫ aaa aa a

∗ ǫ − + − −

∗ a − + + −

∗ ab − + − +
∗ abb + + − −

∗ b − + − −

aa − + + +
aba + + + −

∗ abbb − + − −

∗ abba − + + −

Rows with a preceding∗ are prime. The tableT1 is RFSA-
closed and RFSA-consistent but does not represent the target
language becauseaaa is not accepted. We addaaa and its
suffixes toV , perform membership queries, and obtain table
T2, which is not RFSA-closed. We adda to U and continue.
Resolving two more closedness violations, we obtain table
T5, which is RFSA-closed and RFSA-consistent. Its automa-
tonRT5

given in Fig. 1, is the canonical RFSA forL2. Notice
that tableT5 is not closed in Angluin’s sense so that L∗ would
continue adding strings to the upper part of the table.

4 Experiments
To evaluate the performance of our learning algorithm NL∗,
we compare it with Angluin’s L∗ and its modification wrt. to
Remark 1, called L∗col. As NL∗ is similar in spirit to L∗col, a
comparison with this algorithm seems fairer. All algorithms
have been implemented in Java and tested on a wide range of
examples. Following[Deniset al., 2004], we randomly gen-
erate large sets of regular expressions over different sizes of
alphabets. A detailed description of this as well as a full de-
scription of the outcome can be found in[Bollig et al., 2008].
As in [Deniset al., 2004], we present a characteristic selec-
tion of the results for an alphabet of size two.
Results We generated a set of 3180 regular expressions, re-
sulting in minimal DFA of sizes between 1 and 200 states.
These DFA were given to the learning algorithms, i.e., mem-
bership and equivalence queries were answered according to
these automata. To evaluate the algorithms’ performance, we
measured, for each algorithm and input regular expression,
thenumber of states of the final automaton(RSFA or DFA)
and thenumber of membership (resp. equivalence) queries
that are needed to infer it. As Fig. 2 (top) shows, the automata
learned by NL∗ are considerably smaller than those that are
returned by L∗ and L∗col, confirming the results of[Deniset
al., 2004]. More importantly, in practice, the actual sizes of
RFSA compared to DFA seem to follow an exponential gap.

In Fig. 2 (middle), the number of membership queries is
depicted. As in the first case, NL∗ behaves much better than
the other learning algorithms. While the difference between

− + −− − + +− − + −+ + + −−
a Σ Σ

Σ a

a
a

Σ

Σ
Σ

Figure 1: Canonical RFSA ofL2
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Figure 2: Experimental results

the curves is rather small for automata with less than 40 states,
it increases significantly for larger automata. The same is
the case for the number of equivalence queries depicted in
Fig. 2 (bottom). This is in contrast with the theoretical result
we obtained in Theorem 2. The experiments we performed
point out the clear predominance of NL∗ over L∗ and L∗col as
long as the user is not dependent on a deterministic model.

5 Future Work
There is room for further improvement by adapting the vari-
ous recent variants of L∗ (see[Leucker, 2007] for references).
In the future, we plan to show that using our NL∗ algorithm,
the limits of learning-based verification techniques can be
pushed ahead considerably, as most often non-deterministic
automata should be sufficient for verification tasks.
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