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Abstract. Parametric reasoning is particularly relevant for timed mod-
els, but very often leads to undecidability of reachability problems. We
propose a parametrised version of Interrupt Timed Automata (an ex-
pressive model incomparable to Timed Automata), where polynomials
of parameters can occur in guards and updates. We prove that different
reachability problems, including robust reachability, are decidable for
this model, and we give complexity upper bounds for a fixed or variable
number of clocks and parameters.

1 Introduction

Parametric verification. Getting a complete knowledge of a system
is often impossible, especially when integrating quantitative constraints.
Moreover, even if these constraints are known, when the execution of the
system slightly deviates from the expected behaviour, due to implemen-
tation choices, previously established properties may not hold anymore.
Additionally, considering a wide range of values for constants allows for
a more flexible and robust design.

Introducing parameters instead of concrete values is an elegant way of
addressing these three issues. Parametrisation however makes verification
more difficult. Besides, it raises new problems like parameter synthesis,
i.e. finding the set (or a subset) of values for which some property holds.
Parameters for timed models. Among quantitative features, paramet-
ric reasoning is particularly relevant for timing requirements, like network
delays, time-outs, response times or clock drifts.

Pioneering work on parametric real time reasoning was presented in [1]
for the now classical model of timed automata [2] with parameter expres-
sions replacing the constants to be compared with clock values. Since then,
many studies have been devoted to the parametric verification of timed
models [3,4,5], mostly establishing undecidability results for questions like
parametric reachability, even for a small number of clocks or parameters.
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Relaxing completeness requirement or guaranteed termination, several
methods and tools have been developed for parameter synthesis in timed
automata [6,7,8], as well as in hybrid automata [9,10]. Another research
direction consists in defining subclasses of parametric timed models for
which some problems become decidable [11,12,13]. Unfortunately, these
subclasses are severely restricted. It is then a challenging issue to de-
fine expressive parametric timed models where reachability problems are
decidable.
Contributions. The model of interrupt timed automata (ITA) [14,15]
was proposed as a subclass of hybrid automata, incomparable with the
class of timed automata, where task interruptions are taken into account.
Hence ITA are particularly suited for the modelling of scheduling with
preemption.

We propose to enrich ITA with parameters in the spirit above. A PITA
is a parametric version of ITA where polynomial parameter expressions
can be combined with clock values both as additive and multiplicative co-
efficients. The multiplicative setting is much more expressive and useful
in practice, for instance to model clock drifts. We prove that reachability
in parametric ITA is decidable as well as its robust variant, an important
property for implementation issues. To the best of our knowledge, this is
the first time such a result has been obtained for a model including a mul-
tiplicative parametrisation. Furthermore, we establish upper bounds for
the algorithms complexity: 2EXSPACE and PSPACE when the number
of clocks is fixed, which become respectively 2EXPTIME and PTIME
for additive parametrisation, when the number of clocks and parame-
ters is fixed. Our technique combines the construction of symbolic class
automata from the ITA case and the first order theory of real numbers.
Finally, considering only additive parametrisation, we reduce reachability
to the same problem in basic ITA.
Outline. The parametric ITA model is introduced in Section 2 and deci-
sion procedures are presented in Section 3 with complexity analysis. We
conclude and give some perpectives for this work in Section 4. All proofs
are given in the appendix.

2 Parametric Interrupt Timed Automata

2.1 Notations

The sets of natural, rational and real numbers are denoted respectively
by N, Q and R. Given two sets F,G, we denote by Pol(F,G), the set
of polynomials with variables in F and coefficients in G. We also denote



by Lin(F,G) the subset of polynomials with degree at most one and by
Frac(F,G), the set of rational functions with variables in F and coeffi-
cients in G (i.e. quotients of polynomials).

Clock and parameter constraints. Let X be a finite set of clocks and let
P be a finite set of parameters. An expression over clocks is an element∑

x∈X ax · x+ b of Lin(X,Pol(P,Q)). In the sequel we also consider two
other sets of expressions: Lin(X,Q) and Lin(X ∪ P,Q). The former is
the subset of expressions without parameters while the latter can be seen
as a subset of expressions where ax ∈ Q for all x ∈ X and b ∈ Lin(P,Q).
We denote by C(X,P ) the set of constraints obtained by conjunctions
of atomic propositions of the form C ./ 0, where C is an expression in
Lin(X,Pol(P,Q)) and ./∈ {>,≥,=,≤, <}.

Updates and valuations. An update is a conjunction of assignments of the
form ∧x∈Xx := Cx, where Cx ∈ Lin(X,Pol(P,Q)), with possibly Cx = 0
or Cx = x. The set of updates is written U(X,P ). For an expression
C and an update u, the expression C[u] is obtained by “applying” u to
C, i.e., simultaneously substituting each x by Cx in C, if x := Cx is
the update for x in u. For instance, for clocks X = {x1, x2}, parameters
P = {p1, p2, p3}, expression C = p2x2 − 2x1 + 3p1 and the update u
defined by x1 := 1∧x2 := p3x1+p2, applying u to C yields the expression
C[u] = p2p3x1+p22+3p1−2. Note that the use of multiplicative parameters
for clocks may result in polynomial coefficients when updates are applied.

A clock valuation is a mapping v : X 7→ Pol(P,R), with 0 the valu-
ation where all clocks have value 0. For a valuation v and an expression
C ∈ Lin(X,Pol(P,Q)), v(C) ∈ Pol(P,R) is obtained by evaluating C
w.r.t. v. Given an update u and a valuation v, the valuation v[u] is de-
fined by v[u](x) = v(Cx) for x in X if x := Cx is the update for x in u.
For instance, let X = {x1, x2, x3} be a set of three clocks. For valuation
v = (2p2, 1.5, 3p

2
1) and update u defined by x1 := 1 ∧ x2 := x2 ∧ x3 :=

p1x3 − x1, applying u to v yields the valuation v[u] = (1, 1.5, 3p31 − 2p2).
A parameter valuation is a mapping π : P 7→ R. For a parameter

valuation π and an expression C ∈ Lin(X,Pol(P,Q)), π(C) ∈ Lin(X,R)
is obtained by evaluating C w.r.t. π. If C ∈ Pol(P,Q), then π(C) ∈ R.
Given a parameter valuation π, a clock valuation v and an expression
C ∈ Lin(X,Pol(P,Q)) we write π, v |= C ./ 0 when π(v(C)) ./ 0.

2.2 Parametric Interrupt Timed Automata

Definitions. The behaviour of an ITA can be viewed as the one of an
operating system with interrupt levels. At a given level, exactly one clock



is active (rate 1), while the clocks at lower levels are suspended (rate 0),
and the clocks at higher levels are not yet activated and thus contain value
0. The enabling conditions of transitions, called guards, are constraints in
Lin(X,Q) over clocks of levels lower than or equal to the current level.
Transitions can update the clock values. If the transition decreases (resp.
increases) the level, then each clock which is relevant after (resp. before)
the transition can either be left unchanged or take a linear expression of
clocks of strictly lower level.

Parametric ITA include parameters in guards and updates.

Definition 1. A parametric interrupt timed automaton (PITA) is a tu-
ple A = 〈Σ,P,Q, q0, X, λ,∆〉, where:

– Σ is a finite alphabet, P is a finite set of parameters,

– Q is a finite set of states, q0 is the initial state,

– X = {x1, . . . , xn} consists of n interrupt clocks,

– the mapping λ : Q → {1, . . . , n} associates with each state its level;
we assume λ(q0) = 1, Xλ(q) = {xi | i ≤ λ(q)} is the set of relevant
clocks at this level and xλ(q) is called the active clock in state q;

– ∆ ⊆ Q×C(X,P )×(Σ∪{ε})×U(X,P )×Q is a finite set of transitions.

Let q
ϕ,a,u−−−→ q′ be a transition in ∆ with k = λ(q) and k′ = λ(q′). The

guard ϕ is a constraint in C(Xk, P ) (using only clocks from levels less
than or equal to k). The update u is of the form ∧ni=1xi := Ci with:

• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,
Ci is either of the form

∑i−1
j=1 ajxj+b or Ci = xi (unchanged clock

value) and for i > k′, Ci = 0;

• if k ≤ k′ then for 1 ≤ i ≤ k, Ci is of the form
∑i−1

j=1 ajxj + b or
Ci = xi, and for i > k, Ci = 0.

An ITA is a PITA with P = ∅. When all expressions occurring in
guards and updates are in Lin(X∪P,Q), the PITA is said to be additively
parametrised, in contrast to the general case, which is called multiplica-
tively parametrised.

We give a transition system describing the semantics of a PITA w.r.t.
a parameter valuation π. A configuration (q, v) consists of a state q of the
PITA and a clock valuation v.

Definition 2. The semantics of a PITA A w.r.t. a parameter valuation
π is defined by the (timed) transition system TA,π = (S, s0,→). The set of
configurations is S =

{
(q, v) | q ∈ Q, v ∈ RX

}
, with initial configuration

s0 = (q0,0). The relation → on S consists of two types of steps:



Time steps: Only the active clock in a state can evolve, all other clocks
are suspended. For a state q with active clock xλ(q), a time step of

duration d is defined by (q, v)
d−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d

and v′(x) = v(x) for any other clock x. We write v′ = v +q d.

Discrete steps: A discrete step (q, v)
e−→ (q′, v′) can occur for some tran-

sition e = q
ϕ,a,u−−−→ q′ in ∆ such that π, v |= ϕ and v′(x) = π(v[u](x)).

A run ofA for some parameter valuation π is a finite path in the transition
system TA,π, which can be written as an alternating sequence of (possibly
null) time and discrete steps. A state q ∈ Q is reachable from q0 for π if
there is a path from (q0,0) to (q, v) in TA,π, for some valuation v.

Example 1. A PITA A is depicted in Fig. 1(a), with two interrupt lev-
els. Fixing the parameter valuation π: p1 = 20 and p2 = −5, the run

(q1, 0, 0)
17−→ (q1, 17, 0)

a−→ (q2, 17, 0)
3−→ (q1, 17, 3)

b−→ (q2, 17, 10) is ob-
tained as follows. After staying in q1 for 17 time units, a can be fired and
the value of x1 is then frozen in state q2, while x2 increases. Transition b
can be taken if x1 +p2x2 = 2, hence for x2 = 3, after which x2 is updated
to x2 = 18p2 + 17

68p
2
1 = 10. A geometric view of this run w.r.t. π is given

(in bold) in Fig. 1(b).
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68
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(a) A PITA A1 with two interrupt levels
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(b) A possible run in A for π

Fig. 1. An example of PITA and a possible execution

Problems. We consider here reachability problems for PITA. Let A be a
PITA with initial state q0 and q be a state of A. The Existential (resp.
Universal) Reachability Problem asks whether q is reachable from q0 for
some (resp. all) parameter valuation(s). Scoped variants of these problems
are obtained by adding as input a set of parameter valuations given by a
first order formula over the reals or a polyhedral constraint. The Robust
Reachability Problem asks whether there exists a parameter valuation π
and a real ε > 0 such that for all π′ with ‖π−π′‖∞ < ε, q is reachable from
q0 for π′ (where ‖π‖∞ = maxp∈P |π(p)|). When satisfied, this property



ensures that small parameter perturbations do not modify the reachability
result. It is also related to parameter synthesis where a valuation has to
be enlarged to an open region with the same reachability goal.

3 Reachability Analysis

In this section, we give the main construction for the decidability result
(Point 1 below), the remaining part of the proof is given in appendix.

Theorem 1. 1. The (scoped) existential, universal and robust reachabil-
ity problems for PITA are decidable and belong to 2EXPSPACE. The
complexity reduces to PSPACE when the number of clocks is fixed.

2. The (polyhedral scoped) existential reachability problem is decidable for
additively parametrised PITA, and belongs to 2EXPTIME. It belongs
to PTIME when the number of clocks and parameters is fixed.

We briefly present the main ideas underlying the proof. Given a PITA
A, the first step is to build a finite partition of the set RP of parameter
valuations. An element Π of this partition is specified by a satisfiable first-
order formula over (R,+,×), with the parameters as variables. Intuitively,
inside Π the qualitative behaviour of A does not depend on the precise
parameter valuation. In a second step, we build a finite automaton R(Π)
for each non empty Π. InR(Π), a state R, called a class, defines a set [[R]]π
of reachable configurations of TA,π for a valuation π ∈ Π. The transition

relation of R(Π) contains discrete steps R
e−→ R′ (for a transition e of A)

and abstract time steps R −→ Post(R) with the following properties:

Discrete Step (DS): If there is a transition R
e−→ R′ in R(Π) then for

each π ∈ Π and each (q, v) ∈[[R]]π there exists (q′, v′) ∈ [[R′ ]]π such
that (q, v)

e−→ (q′, v′).
Conversely, let π ∈ Π and (q, v) ∈[[R]]π. If there exists a transition
(q, v)

e−→ (q′, v′) in TA,π then for some R′, there is a transition R
e−→ R′

in R(Π) and (q′, v′) belongs to [[R′]]π.
Time Step (TS): Let π ∈ Π and (q, v) ∈[[R ]]π. There exists d > 0

such that (q, v +q d) ∈[[Post(R)]]π and for each d′ with 0 ≤ d′ ≤ d,
(q, v +q d

′) ∈[[R]]π ∪ [[Post(R)]]π.

Hence, we obtain a finite family of abstract time bisimulations of the
transition systems TA,π, for all parameter valuations, which gives the
decidability result.

The key idea for the construction of R(Π) is based on the fact that,
at some level k, the active clock xk evolves in a one dimensional space



and must be compared to a set Ek of expressions, the values of which are
based on parameter values and the (fixed) clock values of levels below.
For instance, in the automaton of Fig. 1(a), if p2 = 0, the guard reduces
to a comparison of x1 − 2 with 0. If p2 6= 0, clock x2 must be compared
to −x1−2

p2
(in a sense depending on the sign of p2 if the constraint was an

inequality). After transition b is fired, updates must also be taken into
account which leads to enlarge the set of expressions. Due to the syntactic
restrictions of PITA this procedure terminates. Hence, we first need to
define a set PolPar of polynomials (appearing in the denominators like
p2) and a family {Ek}k≤n of expressions in Lin(Xk,Frac(P,Q)).

3.1 Construction of PolPar and expressions {Ek}k≤n

We define operations on expressions, relatively to a level k, to help build-
ing the elements in Ek to which the clock xk will be compared.

Definition 3. Let k ≤ n be some level and let C =
∑

i≤n aixi + b be an
expression in Lin(X,Frac(P,Q)), with ak = rk

sk
, for some rk and sk in

Pol(P,Q). We associate with C the following expressions:

– lead(C, k) = rk;
– if lead(C, k) /∈ Q \ {0}, comp(C, k) =

∑
i<k aixi + b;

– if lead(C, k) 6= 0 then compnorm(C, k) = −
∑

i<k
ai
ak
xi − b

ak
.

In the previous example, comp corresponds to x1 − 2 while compnorm

corresponds to −x1−2
p2

. More examples are given after the construction of
PolPar and {Ek}k≤n. This construction proceeds top down from level n
to level 1 after initialising PolPar to ∅ and Ek to {xk, 0} for all k. When
handling level k, we add new terms to Ei for 1 ≤ i ≤ k.
1. At level k the first step consists in adding new expressions to Ek

and new polynomials to PolPar. More precisely, let C be any expres-
sion occurring in a guard of an edge leaving a state of level k. We
add lead(C, k) to PolPar when it does not belong to Q and we add
comp(C, k) and compnorm(C, k) to Ek when they are defined.

2. The second step consists in iterating the following procedure until no
new term is added to any Ei for 1 ≤ i ≤ k.
(a) Let q

ϕ,a,u−−−→ q′ with λ(q) ≥ k and λ(q′) ≥ k, and let C ∈ Ek. Then
we add C[u] to Ek (recall that C[u] is the expression obtained by
applying update u to C).

(b) Let q
ϕ,a,u−−−→ q′ with λ(q) < k and λ(q′) ≥ k. Let {C,C ′} be a set of

two expressions in Ek. We compute C ′′ = C[u] − C ′[u], choosing
an arbitrary order between C and C ′. This step ends by handling
C ′′ w.r.t. λ(q) as done for C w.r.t. k in step 1 above.



Example 2. For the automaton of Fig. 1(a), initially, we have PolPar = ∅,
E1 = {x1, 0} and E2 = {x2, 0}. Starting with level k = 2, we consider
in step 1 the expression C2 = p2x2 + x1 − 2 appearing in the guard of
the single edge leaving q2. We compute lead(C2, 2) = p2, comp(C2, 2) =
x1 − 2, and compnorm(C2, 2) = −x1−2

p2
. We obtain PolPar = {p2} and

E2 = {x2, 0, x1 − 2,−x1−2
p2
}. For step 2(a) and the same edge, we apply

its update to the expressions of E2 that contain x2, add them to E2, and
thus obtain E2 = {x2, 0, x1 − 2,−x1−2

p2
, (p2 + 1

68p
2
1)x1 + p2}.

In step 2(b), considering the single edge from q1 to q2, we com-
pute the differences between any two expressions from E2 (after ap-
plying update) and the resulting expressions lead, comp and compnorm,
which yields: PolPar = {p2, p2 + 1, 1− p2 − 1

68p
2
1,−p22 − 1

68p
2
1p2 − 1} and

E1 = {x1, 0, 2,−2(p2+1)
p2

,−2− p2, 2+p2
1−p2− 1

68
p21
,
2−p22
p2

,
2−p22

1+p22+
1
68
p21p2
}.

We proceed with level 1 and add compnorm(C1, 1) = p1 to E1, hence:

E1 = {x1, 0, 2,−2(p2+1)
p2

,−2− p2, 2+p2
1−p2− 1

68
p21
,
2−p22
p2

,
2−p22

1+p22+
1
68
p21p2

, p1},

E2 = {x2, 0, x1 − 2,−x1−2
p2

, (p2 + 1
68p

2
1)x1 + p2} and,

PolPar = {p2, p2 + 1, 1− p2 − 1
68p

2
1,−p22 − 1

68p
2
1p2 − 1}.

Lemma 1 below is used for the class automata construction. Its proof
is obtained by a straightforward examination of the above procedure.
The other two lemmata are related to the termination and complexity
of this procedure and used in the computation of the upper bound of
the reachability algorithm. This algorithm manipulates rationals numbers
(resp. rational functions) as pairs of integers (resp. polynomials).

Lemma 1. Let C belong to Ek for some k and c = r
s be a coefficient of

C with s /∈ Q. Then there exists polynomials P1, . . . , P` ∈ PolPar and
some constant K ∈ Q \ {0} such that s = K.

∏
1≤i≤` Pi.

Lemma 2. The construction procedure of {Ek}k≤n terminates and the

size of every Ek is bounded by (2E+ 2)2
n(n−k+1)+1 where E is the number

of atomic propositions in edges of the PITA.

Lemma 3. Let A be a PITA, and let b0 be the maximal number of bits
for integers and d0 the maximal degree of polynomials, occurring in A.
If b is the number of bits of an integer constant and d is the degree of
a polynomial, occurring in an expression of PolPar or some Ek, then
b ≤ (n+ 2)!2nb0 and d ≤ (n+ 2)!d0.

We now explain the partition construction. Starting from the finite
set PolPar, we split the set of parameter valuations in parameter regions



specified by the result of comparisons to 0 of the values of the polynomials
in PolPar. For instance, for the set PolPar computed above, the inequal-
ities p2 < 0, p2 + 1 < 0, 1−p2− 1

68p
2
1 > 0 and −1−p22− 1

68p
2
1p2 > 0 define

a set preg of parameter valuations containing p1 = 20 and p2 = −5. The
set of non empty such regions can be computed by solving an existential
formula of the first-order theory of reals.

Then, given a non empty parameter region preg, we consider the fol-
lowing subset of Ek for 1 ≤ k ≤ n: Ek,preg = {C ∈ Ek | the denominators
of coefficients of C are non null in preg}. Due to Lemma 1, these subsets
are obtained by examining the specification of preg.

Observe that expressions in E1,preg \ {x1} belong to Frac(P,Q) and
that, depending on the parameter valuation, two different expressions can
produce the same value. We refine preg according to a linear pre-order �1

on E1,preg \ {x1} which is satisfiable within preg. We denote this refined
region by Π = (preg,�1) and we now build a finite automaton R(Π).

3.2 Construction of the class automata

In this paragraph, we fix a non empty parameter region Π = (preg,�1).

Class definition. A state of R(Π), called a class, is defined as a pair
R = (q, {�k}1≤k≤λ(q)) where q is a state of A and �k is a total preorder
over Ek,preg, for 1 ≤ k ≤ λ(q). For a parameter valuation π ∈ Π, the class
R describes the following subset of configurations in TA,π:
[[R]]π= {(q, v) | ∀k ≤ λ(q) ∀g, h ∈ Ek,preg, π(v(g)) ≤ π(v(h)) iff g �k h}

The initial state of R(Π) is the class R0, such that (q0,0) ∈[[R0 ]]π,
which can be straightforwardly determined by extending �1 to E1,preg

with x1 �1 0 and 0 �1 x1 and closing �1 by transitivity.

As usual, transitions in R(Π) consist of discrete and time steps:

Discrete step. Let R = (q, {�i}1≤i≤λ(q)) and R′ = (q′, {�′i}1≤i≤λ(q′)) be

two classes. There is a transition R
e−→ R′ for a transition e : q

ϕ,a,u−−−→ q′ if
for some π ∈ Π, there is some (q, v) ∈ [[R]]π and (q′, v′) ∈ [[R′]]π such that
(q, v)

e−→ (q′, v′). In this case, for all (q, v) ∈ [[R]]π there is a (q′, v′) ∈ [[R′]]π
such that (q, v)

e−→ (q′, v′). We prove in the sequel that the existence of
transition R

e−→ R′ is independent of π ∈ Π and of (q, v) ∈ [[R]]π. It can be
decided as follows.

Firability condition. Write ϕ =
∧
j∈J Cj ./j 0. For a given j, let us write

Cj =
∑

i≤λ(q) aixi + b. We consider three cases.

• Case aλ(q) = 0. Then Cj = comp(Cj , λ(q)) ∈ Eλ(q),preg and using the
positions of 0 and Cj w.r.t. �λ(q), we can decide whether Cj ./j 0.



• Case aλ(q) ∈ Q\{0}. Then compnorm(Cj , λ(q)) ∈ Eλ(q),preg, hence using
the sign of aλ(q) and the positions of xλ(q) and compnorm(Cj , λ(q)) w.r.t.
�λ(q), we can decide whether Cj ./j 0.
• Case aλ(q) /∈ Q. According to the specification of preg, we know the
sign of aλ(q) as it belongs to PolPar. In case aλ(q) = 0, we decide as in
the first case. Otherwise, we decide as in the second case.

Successor R′ definition. Let k ≤ λ(q′) and g′, h′ ∈ Ek,preg.

1. Either k ≤ λ(q), by step 2(a) of the construction, g′[u], h′[u] ∈ Ek,preg.
Then g′ �′k h′ iff g′[u] �k h′[u].

2. Or k > λ(q), let D = g′[u]− h′[u] =
∑

i≤λ(q) aixi + b.
• Case aλ(q) = 0. Then D = comp(D,λ(q)) ∈ Eλ(q),preg, so we can
decide whether D �λ(q) 0 and g′ �′k h′ iff D �λ(q) 0.
• Case aλ(q) ∈ Q \ {0}. Then compnorm(D,λ(q)) ∈ Eλ(q),preg. There
are four subcases to consider. For instance if aλ(q) > 0 and xλ(q) �λ(q)
compnorm(D,λ(q)) then g′ �′k h′. The other subcases are similar.
• Case aλ(q) /∈ Q. Let us write aλ(q) =

rλ(q)
sλ(q)

. According to the

specification of preg, we know the sign of aλ(q) as rλ(q) belongs to
PolPar and sλ(q) is a product of items in PolPar. In case aλ(q) = 0,
we decide g′ �′k h′ as in the first case. Otherwise, we decide in a
similar way as in the second case. For instance if aλ(q) > 0 and
xλ(q) �λ(q) compnorm(D,λ(q)) then g′ �′k h′.

Time step. For R = (q, {�k}1≤k≤λ(q)), there is a transition R
succ−−→

Post(R), where Post(R) = (q, {�′k}1≤k≤λ(q)) is the time successor of
R, defined as follows. Intuitively, all preorders below λ(q) are fixed, so
�′i=�i for each i < λ(q). On level λ(q), the clock value simply progresses
along the one dimensional time line, where the expressions are ordered.
More precisely, let ∼ be the equivalence relation �λ(q) ∩ �−1λ(q) induced by
the preorder. A ∼-equivalence class groups expressions yielding the same
value, and on these classes, the (total) preorder becomes a (total) order.
Let V be the ∼-equivalence class containing xλ(q).

1. Either V =
{
xλ(q)

}
. If V is the greatest ∼-equivalence class, then

�′λ(q)=�λ(q) (and Post(R) = R). Otherwise, let V ′ be the next ∼-

equivalence class. Then �′λ(q) is obtained by merging V and V ′, and
preserving �λ(q) elsewhere.

2. Or V is not a singleton. Then we split V into V \
{
xλ(q)

}
and

{
xλ(q)

}
and “extend” �λ(q) by V \

{
xλ(q)

}
�′λ(q)

{
xλ(q)

}
.

Example 3. This construction is illustrated on automaton A1 of Fig. 1(a),
for the region Π = (preg,�1), where preg was defined above by: p2 < 0,



p2 + 1 < 0, 1 − p2 − 1
68p

2
1 > 0 and −1 − p22 − 1

68p
2
1p2 > 0 and �1 is the

ordering of the expressions in E1,preg = E1 specified by the line below.

2+p2
1−p2− 1

68
p21

−2(p2+1)
p2

0 2 −2− p2 2−p22
p2

2−p22
1+p22+

1
68
p21p2

p1

A part of the resulting class automatonR(Π), including the run corre-
sponding to the one in Fig. 1(b), is depicted in Fig. 2, where dashed lines
indicate (abstract) time steps. The initial class isR0 = (q0, Z0) where Z0 is
�1 extended with x1 = 0. Time successors of the initial state are obtained
by moving x1 to the right along the line: R1

0 = (q0,�1 ∧ 0 < x1 < 2),
R2

0 = (q0,�1 ∧ x1 = 2), . . . , up to R11
0 = (q0,�1 ∧ p1 < x1).

R0

R1
0

...

R9
0

...

R11
0

q1, Z1, Z2 ∧
x2 = 0

q1, Z1, Z2 ∧
0 < x2 < −x1−2

p2

q1, Z1, Z2 ∧
x2 = −x1−2

p2

q1, Z1, Z2 ∧
x2 = (p2 + 1

68
p21)x1 + p2

q1, Z1, Z2 ∧
(p2 + 1

68
p21)x1 + p2 < x2 < x1 − 2

q1, Z1, Z2 ∧
x2 = x1 − 2

q1, Z1, Z2 ∧
x1 − 2 < x2

a

a

b

a

Fig. 2. A part of R(Π) for A1

Transition a can be fired from all these classes except from R10
0 and

R11
0 . In Fig. 2, we represent only the one from R9

0, and we denote by Z1

the ordering �1 extended with
2−p22

1+p22+
1
68
p21p2

< x1 < p1. Region Π and Z1

determine the ordering Z2 =�2 on E2,preg \{x2} = E2 \{x2}, specified by
the line below. This firing produces R1 = (q1, Z1, Z2∧x2 = 0)). Transition
b is fired from the time (second) successor of R1 for which x2 = −x1−2

p2
.

0 −x1−2
p2

(p2 + 1
68
p21)x1 + p2 x1 − 2

To conclude, observe that the automaton R(Π) defined above has the
properties (DS) and (TS) mentionned previously, and is hence a finite
time abstract bisimulation of TA,π, for all parameter valuations π ∈ Π.



4 Conclusion

While seminal results on parametrised timed models leave little hope for
decidability in the general case, we provide here an expressive formalism
for the analysis of parametric reachability problems. Our setting includes
a restricted form of stopwatches and polynomials in the parameters occur-
ring as both additive and multiplicative coefficients of the clocks in guards
and updates. We plan to investigate which kind of timed temporal logic
would be decidable on PITA.
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8. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: TACAS’13. Volume 7795 of LNCS., Springer (2013) 391–405

9. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded
Systems. IEEE Transactions on Software Engineering 22 (1996) 181–201

10. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A Model-Checker for Hybrid
Systems. Software Tools for Technology Transfer 1 (1997) 110–122

11. Bozzelli, L., Torre, S.L.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2) (2009) 121–151

12. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. J. of Logic and Alg. Prog. 52-53 (2002) 183–220
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