
Fundamenta Informaticae 143 (2016) 1–25 1

DOI 10.3233/FI-2016-1301

IOS Press

Interrupt Timed Automata with Auxiliary Clocks and Paramet ers∗

Beatrice Bérard†

Sorbonne Université
UPMC-Paris 6, CNRS UMR 7606
Paris, France
Beatrice.Berard@lip6.fr

Serge Haddad
ENS Cachan, LSV, CNRS, INRIA
Cachan, France
haddad@lsv.ens-cachan.fr

Aleksandra Jovanovíc
Department of Computer Science
University of Oxford
Oxford, UK
Aleksandra.Jovanovic@cs.ox.ac.uk

Didier Lime
École Centrale de Nantes, IRCCyN, CNRS
Nantes, France
Didier.Lime@ec-nantes.fr

Abstract. Interrupt Timed Automata (ITA) are an expressive timed model, introduced to take into
account interruptions according to levels. Due to this feature, this formalism is incomparable with
Timed Automata. However several decidability results related to reachability and model checking
have been obtained. We add auxiliary clocks to ITA, thereby extending its expressive power while
preserving decidability of reachability. Moreover, we define a parametrized version of ITA, with
polynomials of parameters appearing in guards and updates.While parametric reasoning is particu-
larly relevant for timed models, it very often leads to undecidability results. We prove that various
reachability problems, includingrobust reachability, are decidable for this model, and we give com-
plexity upper bounds for a fixed or variable number of clocks,levels and parameters.

1. Introduction

Timed and hybrid models. In order to model timed systems, the expressive model of Hybrid Au-
tomata (HA) has been proposed [1]. Since its expressive power leads to the undecidability of most verifi-
cation problems, several semi-decision procedures have been designed for HA as well as subclasses with

∗This work has been supported by projects ImpRo ANR-2010-BLAN-0317 and PACS ANR-14-CE28-0002
†Address for correspondence: Sorbonne Université, UPMC-Paris 6, CNRS UMR 7606, Paris, France

2 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

decidability results like Timed Automata (TA) [2]. The model of interrupt timed automata (ITA) [3, 4]
was proposed as a subclass of hybrid automata, incomparablewith the class of timed automata, where
task interruptions are taken into account. Hence ITA are particularly suited for the modelling of schedul-
ing with preemption.

Parametric verification. Getting a complete knowledge of a system is often impossible, especially
when integrating quantitative constraints. Moreover, even if these constraints are known, when the ex-
ecution of the system slightly deviates from the expected behaviour, due to implementation choices,
previously established properties may not hold anymore. Additionally, considering a wide range of val-
ues for constants allows for a more flexible and robust design.

Introducing parameters instead of concrete values is an elegant way of addressing these three is-
sues. Parametrization however makes verification more difficult. Besides, it raises new problems like
parameter synthesis,i.e., finding the set (or a subset) of values for which some property holds.

Parameters for timed models. Parametric reasoning is particularly relevant for quantitative features
related to timing requirements, like network delays, time-outs, response times or clock drifts.

Pioneering work on parametric real time reasoning was presented in [5] for the now classical model
of timed automata, with parameter expressions replacing the constants to be compared with clock val-
ues. There a decision procedure was designed for discrete-time models where at most one clock is
compared to parameters (and other clocks are compared to constants) and undecidablity was proved for
three clocks with parametrized constraints. Since then, many studies have been devoted to the parametric
verification of timed models. Considering dense-time models, one clock compared to parameters leads
to undecidability [6]. In [7], it is established that even removing equality constraints does not bring back
decidability. Relaxing completeness requirement or guaranteed termination, several methods and tools
have been developed for parametrized verification or parameter synthesis in timed automata [8, 9, 10, 11],
time Petri nets [12, 13], and hybrid automata [14, 15]. Another research direction consists in defining
subclasses of parametric timed models for which some problems become decidable. In [16, 17], L/U au-
tomata are defined by restricting the parameters to lower bounds (or in an exclusive way, upper bounds)
in clock comparisons and reachability is proved decidable for this model. In [11], an alternative restric-
tion is proposed: parameters values lie in a finite set of integers which leads to the standard complexity
(PSPACE-completeness) of reachability for timed automata. In [18] the problem left open by [5] is
solved: in the discrete-time framework the reachability problem with two clocks against parameters is
decidable. Timed temporal parametrized logics have also been studied (see for instance [19] for decid-
ability results with integer parameters). Summarizing, these subclasses are quite restricted either by the
number of clocks or by the kind of available comparisons. It then remains a challenging issue to define
expressive parametric timed models where reachability problems are decidable.

Contributions. Our contributions are twofold. First we define a more expressive version of ITA, in-
cluding auxiliary clocks. We prove that this new model is strictly more expressive than the former one
but retains decidability for the reachability problem. With respect to complexity issues, we provide upper
bounds: 2EXPTIME in the general case, PSPACE when the numberof levels is fixed and PTIME when
the number of clocks is fixed. We also give a PSPACE matching lower bound when the number of levels
is fixed.

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 3

Our second contribution is to enrich ITA with parameters in the spirit above. A PITA is a paramet-
ric version of ITA where polynomial parameter expressions can be combined with clock values both as
additive and multiplicative coefficients. Considering only additive parametrization, we reduce reacha-
bility to the same problem in basic ITA. This reduction entails complexity upper bounds of respectively
2EXPTIME, PSPACE when the number of levels is fixed and PTIME when the number of clocks and
parameters is fixed. The multiplicative setting is much moreexpressive and also very useful in practice,
for instance to model clock drifts. We prove that reachability in parametric ITA is decidable as well as
its robust variant, an important property for implementation issues. To the best of our knowledge, this
is the first time such a result has been obtained for a model including a multiplicative parametrization.
Furthermore, we establish upper bounds for the computational complexity: 2EXPSPACE and PSPACE
when the number of levels is fixed. Our technique combines theconstruction of symbolic class automata
from the unparametrized case and the first order theory of real numbers.

Outline. The model of Interrupt Timed Automata with auxiliary clocksis defined in Section 2, with
reachability analysis in Section 3. The parametric ITA model is introduced in Section 4. The reachability
analysis is split into two sections: the additive case is handled in Section 5 while the results for the
multiplicative case are given in Section 6. We conclude and give some perspectives for this work in
Section 7.

2. Interrupt timed automata

2.1. Notations

The sets of natural, rational and real numbers are denoted respectively byN, Q andR. We write|Z| for
the cardinality of a finite setZ. Given an alphabetΣ, we denote byΣ∗ the set of finite words overΣ, with
ε the empty word. A timed word overΣ is a finite sequence of the form(a1, t1) . . . (an, tn) whereai ∈ Σ
for all i ∈ {1, . . . , n} and(ti)1≤i≤n is a sequence of real numbers such thatti ≤ ti+1 for all i ≤ n− 1.
For a timed wordw = (a1, t1) . . . (an, tn), we defineUntime(w) = a1 . . . an as its projection onΣ∗. A
timed language is a setL of timed words, withUntime(L) = {Untime(w) | w ∈ L}.

Given two setsF,G with F finite, we denote byLin(F,G) the set of linear expressions
∑

f∈F aff+
b where theaf ’s and b belong toG. We also denote byDiff (F) the set of expressionsf − f ′ with
f, f ′ ∈ F .

Clock constraints. LetX be a finite set of clocks and letY,Z be disjoint subsets ofX. We denote by
C(Y,Z) the set of constraints obtained by conjunctions of atomic propositions of the formC ⊲⊳ 0, where
C is an expression in

⋃

y∈Y Lin(Z ∪ {y},Q) ∪ Diff (Y) and⊲⊳∈ {>,≥,=,≤, <}. Such a constraint
either compares with zero a linear expression of clocks inY ∪ Z including at most one clock ofY , or
compares two clocks ofY . We also setC(X) =

⋃

Y,Z⊆X C(Y,Z).

Updates. An updateoverX is a conjunction of assignments of the form∧y∈Y y := Cy, whereY ⊆ X
andCy ∈ Lin(X,Q). The set of updates is writtenU(X). For an expressionC and an updateu, the
expressionC[u] is obtained by “applying”u toC, i.e., simultaneously substituting eachx byCx in C, if
x := Cx is the update forx in u. For instance, for clocksX = {x1, x2}, expressionC = 2x2 − 2x1 + 3

4 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

and the updateu defined byx1 := 1 ∧ x2 := 3x1 + 2, applyingu to C yields the expressionC[u] =
2(3x1 + 2)− 2(1) + 3 = 6x1 + 5.

Valuations. A clock valuationis a mappingv : X 7→ R, with 0 the valuation where all clocks have
value0. For a valuationv and an expressionC ∈ Lin(X,Q), we notev(C) ∈ R the result of evaluating
C w.r.t. v. Given an updateu and a valuationv, the valuationv[u] is defined byv[u](x) = v(x) if
x is unchanged byu and v[u](x) = v(Cx) if x := Cx is the update forx in u. For instance, let
X = {x1, x2, x3} be a set of three clocks. For valuationv = (2, 1.5, 3) and updateu defined by
x1 := 1 ∧ x3 := x3 − x1, applyingu to v yields the valuationv[u] = (1, 1.5, 1).

2.2. Interrupt Timed Automata

Definitions. The behaviour of an ITA can be viewed as the one of an operatingsystem with interrupt
levels. With each level are associated a set of states and a set of clocks partitioned into amain clock
andauxiliary clocks. In a state of a given level, exactly one clock of this level is active (rate1), while
the other clocks at lower or equal levels are suspended (rate0), and the clocks at higher levels are
not yet activated and thus contain value0. The enabling conditions on transitions, calledguards, are
constraints over clocks of the current level or main clocks of lower levels (with some restrictions that
will be explained after the definition). Transitions canupdatethe clock values. If the transition decreases
(resp. increases) the level, then each clock which is relevant after (resp. before) the transition can (1) be
left unchanged, (2) be updated with a linear expression of main clocks of strictly lower levels or (3) be
updated with another clock at the same level (with some restrictions). Roughly speaking, the restrictions
are introduced to forbid at some level any (direct or indirect) influence of the auxiliary clocks at lower
levels on the behaviour of the ITA.

Definition 2.1. An interrupt timed automaton(ITA) is a tupleA = 〈Σ, n,Q, q0, Qf , λ,X, act,∆〉,
where:

• Σ is a finite alphabet;

• n is the number of levels;

• Q is a finite set of states,q0 is the initial state andQf is a subset ofQ of final states. The mapping
λ : Q → {1, . . . , n} associates with each state its level. We denote byQi = λ−1(i) the set of
states at leveli;

• X =
⊎n

i=1Xi is the set of clocks partitioned according to the levels andXi = {xi} ⊎ Yi includes
a main clock xi and a set ofauxiliary clocksYi. The set of main clocks of levels less thank is
denoted byXm

<k = {xi | i < k} ;

• act : Q → X with q ∈ Qi ⇒ act(q) ∈ Xi associates with a state itsactiveclock;

• ∆ ⊆ Q×C(X)× (Σ∪{ε})×U(X)×Q is a finite set of transitions. Letq
ϕ,a,u
−−−→ q′ be a transition

in ∆ with k = λ(q) andk′ = λ(q′). The guardϕ is a constraint inC(Xk,X
m

<k).

– if k ≤ k′ then the updateu is of the form
∧

z∈
⋃

i≤k Xi

z := Cz

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 5

– if k > k′ then the updateu is of the form

∧

z∈
⋃

i≤k′ Xi

z := Cz ∧
∧

z∈
⋃

k′<i≤k Xi

z := 0

where, whenz ∈ Xi,

– eitherCz = z, meaning thatz is unchanged;

– orCz =
∑

j<i ajxj + b, i.e., z is updated by an expression over main clocks of lower levels;

– or Cz = z′ ∈ Xi if either z ∈ Yi or i = k = k′. While an auxiliary clock can be updated
by another clock of the same level, for the main clock this is only possible when the level of
both states of the transition is the level of the clock.

The interest of distinguishing main clocks from auxiliary clocks lies in the possibility of referencing
a main clock at higher levels whereas auxiliary clocks are only used at the current level. Referencing
multiple clocks of a same level prevents the design of a saturation procedure for reachability, as defined
later on. In addition, in order to avoid indirect referencesin updates, we forbid that a main clock at a
level lower than the current one may be updated by an auxiliary clock.

Example 2.2. In Figure 1, a part of an ITA is represented with all states at level2, main clocksx1 andx2
at levels1 and2 respectively and auxiliary clocky1 at level1. The upper transition fromq1 to q2 (drawn
as a dashed arrow), is forbidden since it updates the main clock x1 of level 1 with an auxiliary clock of
the same level. If we would allow such a transition, the firingof the next transition would depend on an
indirect relation betweenx2 andy1. We will later show on this example when the construction of the
class automaton would fail. �

q0, 2 q1, 2 q2, 2 q3, 2
x2 := x1

x1 := y1

y1 := x1

x2 < x1 + 1

Figure 1. Restrictions on clock updates in ITA

The semantics of an ITA is described by a transition system, where a configuration(q, v) consists of
a stateq of the ITA and a clock valuationv.

Definition 2.3. The semantics of an ITAA is defined by the (timed) transition systemTA = (S, s0,→).
The set of configurations isS =

{

(q, v) | q ∈ Q, v ∈ RX
}

, with initial configurations0 = (q0,0). The
relation→ onS consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all other clocks are suspended. For a stateq,

a time step of durationd is defined by(q, v)
d
−→ (q, v′) with v′(act(q)) = v(act(q)) + d and

v′(x) = v(x) for any other clockx. We writev′ = v +q d.

6 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

Discrete steps:A discrete step(q, v)
e
−→ (q′, v′) can occur for some transitione = q

ϕ,a,u
−−−→ q′ in ∆ such

thatv |= ϕ andv′ = v[u].

A run of A is a finite path in the transition systemTA, which can be written as an alternating sequence
of (possibly null) time and discrete steps. A stateq ∈ Q is reachablefrom q0 if there is a path inTA
from (q0,0) to (q, v), for some valuationv. A run with labeld1a1d2a2 . . . dnan is acceptingif it starts
in (q0,0) and ends in(q, v), for someq ∈ Qf and some valuationv. For such a run, the timed word
w = (a1, d1)(a2, d1 + d2) . . . (an, d1 + . . .+ dn) (where pairs withε actions are removed) is said to be
acceptedby A. The timed language ofA, denoted byL(A), is the set of timed words accepted byA.
The untimed language ofA is Untime(L(A)).

We now show several properties of this model related to the presence of auxiliary clocks.

Example 2.4. (Simulation of timing policies)
The earlier definition of ITA from [4] is a restriction of Definition 2.1 without auxiliary clocks but where
a policy, which can be either urgent, delayed or lazy, is associated with each state. In a lazy state time
may elapse, in an urgent state time may not elapse and in a delayed state time must elapse. We show in
Figure 2 how to model timing policies with a dedicated auxiliary clock per level, sayyi. When entering
a stateq of level i from a stateq′ of level j ≥ i, the auxiliary clockyi is updated with the value of the
active clock ofq. By definition, when entering a stateq of level i from a stateq′′ of levelk < i, yi and the
active clock ofq are null. Thus checking whether time has elapsed inq is equivalent to check whether
act(q) > yi (Figure 2(b)), both values must be equal otherwise (Figure 2(a)). Whenq is a lazy state
there is nothing to check. �

q, i

q′, j

q′′, k

yi = act(q)

yi := act(q)

(a) For urgent stateq, with k < i ≤ j

q, i

q′, j

q′′, k

yi < act(q)

yi := act(q)

(b) For delayed stateq, with k < i ≤ j

Figure 2. Simulating timing policies

Example 2.5. (About expressiveness)
Consider the ITAA1 of Figure 3 with a single level and single final stateq2. The main clockx is active
in all states andy is an auxiliary clock. Its untimed language is(ab)+. In the accepted timed words, there
is an occurrence ofa at each time unit and the successive occurrences ofb come each time closer to the
next occurrence ofa than previously. More formally, its timed languageL = L(A1) is defined by:

L =
{

(a, t1)(b, t2) . . . (a, t2p+1)(b, t2p+2) | p ∈ N,

∀0 ≤ i ≤ p, t2i+1 = i+ 1 andi+ 1 < t2i+2 < i+ 2,

∀1 ≤ i ≤ p, t2i+2 − t2i+1 < t2i − t2i−1

}

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 7

It has been shown in [4] that this timed language cannot be accepted by an ITA without auxiliary clocks,
which yields the next proposition. �

Proposition 2.6. There exists a timed language of an ITA with a single level andone auxiliary clock that
cannot be accepted by an ITA without auxiliary clocks.

q0 q1 q2 q3

x = 1, a, x := 0 0 < x < 1, b, y := x

x = 1, a, x := 0

y < x < 1, b, y := x

Figure 3. ITAA1 with an auxiliary clock

Adding auxiliary clocks also has an impact on the complexityof decision problems for ITA. In [4],
it is shown that the state reachability problem is in PTIME for a fixed number of levels without auxiliary
clocks. The next proposition establishes a lower bound for this problem in ITA with a single level.

Proposition 2.7. The state reachability problem for ITA with a single level isPSPACE-hard.

Proof:
We proceed by reducing the planification problem to our reachability problem. The planification problem
is defined byn propositional variablesp1, . . . , pn and a setR of m rules. Each ruler ∈ R is defined
by a guard

∧k
j=1 ℓj, with literals ℓj ∈ {p1,¬p1, . . . , pn,¬pn}, and an update

∧h
j=1 pαj

:= bj with
bj ∈ {false, true}. Initially all propositions are false and the planificationproblem consists in deciding
whether there exists a sequence of rulesr1 . . . rk applicable from the initial state and leading to the state
where all propositions are true. This problem is PSPACE-complete [20].
The corresponding ITA hasn auxiliary clocksy1, . . . , yn and two statesq0, which is the initial state, and
q1, which is the final state, both with active clockx1. Each rule yields a transition looping aroundq0
and an additional transition fromq0 to q1 “checking” that the goal has been reached. This reduction is
illustrated in Figure 4. ⊓⊔

r1: If ¬p1 then

p1 := true; p2 := false

r2: If p1 then

p2 := true

q0 q1

y1 = 1 ∧ y2 = 1, ε

y1 = 0, ε, y1 := 1 ∧ y2 := 1

y1 = 0, ε, y2 := 1

Figure 4. Illustrating the reduction for PSPACE-hardness

8 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

3. Reachability analysis of ITA

We prove in this section that the untimed language of an ITA isa regular language for which a finite
automaton can effectively be built. Similarly to previous cases, the proof is based on the construction
of a (finite) class graph which is time abstract bisimilar to the transition systemTA. This result also
holds for infinite words with standard Büchi conditions. Asa consequence, we obtain decidability of the
reachability problem, as well as decidability for plainCTL∗ model-checking.

The construction of classes is much more involved than in thecase of TA. More precisely, it depends
on the expressions occurring in the guards and updates of theautomaton (while in TA it depends only
on the maximal constant occurring in the guards). Given an ITA A with n levels, we associate with each
levelk of A a set of expressionsEk. In addition toXk, expressions inEk only use main clocks of lower
levels (that are frozen) as their values will be needed to be compared with the active clock of levelk, to
detect if a transition can be fired at this level. A class will consist of a stateq and for allk ≤ λ(q) a total
preorder onEk. Finally we show in Theorem 3.6 how to build the class graph which proves the regularity
of the untimed language. This immediately yields a reachability procedure given in Theorem 3.7.

3.1. Construction of{Ek}k≤n

We first recall thenormalizationoperation [4], on expressions relative to some level. As explained below,
this operation will be used to order expression values at a given level.

Definition 3.1. (Normalization)
Let k ≤ n andC =

∑

i≤k aixi + b be an expression over clocks inXm

<k+1, thek-normalizationof C,
denoted bynorm(C, k), is defined by:

norm(C, k) =

{

xk + (1/ak)(
∑

i<k aixi + b) if ak 6= 0

C otherwise.

Observe thatk-normalization only operates on expressions where no clocks of levels higher thank
can be used. LetC ⊲⊳ 0 be a guard occurring in a transition outgoing from a stateq with level k and
C = akz +

∑

i<k aixi + b with z ∈ Xk (in the saturation procedure we do not consider guards of the
form z − z′ with z, z′ in Xk). By rescaling the expression and if necessary changing thecomparison
operator we may assume thatC is written asαz +

∑

i<k aixi + b, with α ∈ {0, 1}.

The construction of{Ek}k≤n must be adapted to handle auxiliary clocks. It proceeds top down from
level n to level 1 after initializationEk = Xk ∪ {0} for all k. When levelk is handled, new terms
are added toEi for 1 ≤ i ≤ k. These expressions are those needed to compute a (pre)orderon the
expressions inEk.

1. At levelk, first for each expressionαz +
∑

i<k aixi + b (with α ∈ {0, 1} andz ∈ Xk) occurring
in a guard of an edge leaving a state of levelk, we add−

∑

i<k aixi − b to Ek.

2. Then the following procedure is iterated until no new termis added to anyEi for 1 ≤ i ≤ k.

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 9

(a) Letq
ϕ,a,u
−−−→ q′ with λ(q) ≥ k andλ(q′) ≥ k. For anyC ∈ Ek, we addC[u] to Ek. Observe

that due to our restrictions on updatesC[u] is still either of the formz ∈ Xk or of the form
∑

j<k ajxj + b.

(b) Let q
ϕ,a,u
−−−→ q′ with λ(q) < k andλ(q′) ≥ k. Let C andC ′ be two different expressions

in Ek. We computeC ′′ = norm(C[u] − C ′[u], λ(q)), choosing an arbitrary order between
C andC ′ in order to avoid redundancy. Let us writeC ′′ asαxλ(q) +

∑

i<λ(q) aixi + b with
α ∈ {0, 1}. Then we add−

∑

i<λ(q) aixi − b to Eλ(q).

Note that in step 2.(b), whileC andC ′ belong toEk, due to the updateu, only clocks of levels less
than or equal toλ(q) occur inC[u] andC ′[u]. Hence the normalization is well defined.

Lemma 3.2. For an ITAA, letH be the number of constraints in the guards,U the number of updates in
the transitions (we assumeU ≥ 2) andM = max{|Xk|+ 1 | 1 ≤ k ≤ n}. The construction procedure
of {Ek}k≤n terminates and the size of everyEk is bounded by(H +M)2

n−k
× U2n(n−k+1)

.

Proof:
Given somek, we prove the termination of the stage relative tok. Observe that step 2.(b) of the iteration
only adds new expressions toEh for h < k. Thus steps 2.(a) and 2.(b) can be ordered. Let us prove the
termination of step 2.(a). We defineE0

k as the setEk at the beginning of this stage andEi
k as this set after

insertion of theith item in it. With each added itemC[u] can be associated itsfatherC. Thus we can
view Ek as an increasing forest with finite degree (due to the finiteness of the edges) and finitely many
roots. Assume that this step does not terminate. Then we havean infinite forest and by König lemma,
it has an infinite branchC0, C1, . . . whereCi+1 = Ci[ui] for some updateui such thatCi+1 6= Ci.
Observe that updates of the formx := x′ do not modify the current setEi

k sincex′ is one of the roots of
the forest. Moreover, the number of updates that change the variablesx ∈ Xk is either 0 or 1 since once
x disappears it cannot appear again (due to the use of clocks from strictly lower levels only). We split the
branch into two parts before and after this update or we stillconsider the whole branch if there is no such
update. In these (sub)branches, we conclude with the same reasoning that there is at most one update
that change the variablesx ∈ Xk−1. Iterating this process, we conclude that the number of updates is at
most2k − 1 and the length of the branch is at most2k.

The final size ofEk is thus at most|E0
k | ×U2k since the width of the forest is bounded byU . In step

2.(b), we add at mostU × (|Ek| × (|Ek| − 1))/2 expressions toEi for everyi < k. This concludes the
proof of termination.

We now prove by a backward induction that as soon asn ≥ 2, |Ek| ≤ (H +M)2
n−k

× U2n(n−k+1)
.

The doubly exponential size ofEn (proved above) is propagated downwards by the saturation procedure.
We definepk = |Ek|.

Basis casek = n. We havepn ≤ p0n×U2n wherep0n is bounded byH+M , hencepn ≤ (H+M)×U2n

which is the claimed bound.

Inductive case. Assume that the bound holds fork < j ≤ n. After step 1.,Ek containsH + M
expressions and, due to the expressions added by all executions of step 2.(b) of the procedure at strictly

10 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

higher levels, we have after this step:

p0k ≤ (H +M) + U × [(pk+1 × (pk+1 − 1))/2 + · · ·+ (pn × (pn − 1))/2]

p0k ≤ (H +M) + U ×
[

(H +M)2
n−k

U2n(n−k)+1
+ · · · + (H +M)2U2n+1

]

(replacing all termsx(x− 1)/2 by x2/2)

p0k ≤ (n − k + 1)× (H +M)2
n−k

U2n(n−k)+1
(replacing all terms by the largest)

p0k ≤ (H +M)2
n−k

× U2n(n−k+1)+n

(here we useU ≥ 2 andn ≥ 2).

Taking into account step 2.(a) of the procedure for levelk, we have:

pk ≤ (H +M)2
n−k

× U2n(n−k)+1+2k+n.

Let us consider the termδ = 2n(n−k+1) − 2n(n−k)+1 − 2k − n = 2n(n−k)+1(2n−1 − 1) − 2k − n. We
haveδ ≥ 2n+1 − 2n ≥ 0, which yields the claimed bound. ⊓⊔

In order to analyze the space requirements triggered by the saturation procedure, we establish the
following lemma bounding the number of bits used for integers involved in the rational constants of
expressions in allEk.

Lemma 3.3. Let A be an ITA, and letb0 be the maximal number of bits for integers occurring inA.
If b is the number of bits of an integer constant, occurring in an expression of someEk, then b ≤
((n+ 1)!)29nb0.

Proof:
Without loss of generality we assume thatb0 ≥ 2. Since it only induces a polynomial blow up, we also
assume that there is a single denominator, denoted bys, for the rationals occurring in updates.
Let bk be the number of bits of an integer occurring in some expression before operations of leveln−k are
performed. We establish a relation betweenbk andbk+1. At leveln− k, step 1 involves a normalization
on guards. Thus a numerator is multiplied by a denominator toproduce the new integers leading to a
number of bits2bk. For an expression that was already present inEn−k, its coefficients are modified
in order to get a common denominator by taking the product of the original denominators. After this
transformation the maximal number of bits is bounded by(n− k + 1)bk.
Let C =

∑

i≤n−k aixi + b be an expression built after step 2.(a). Examining the successive updates,
the coefficientai can be expressed as

∑

d∈D

∏

j∈d cd,j whereD is the set of subsets of{i, . . . , n − k}
containingi andcd,j are either coefficients of the updates or coefficients of an expression built before
this step. The same reasoning applies tob. Before summing the products overd ∈ D, the integers are
transformed in order to get the same denominator by multiplying every denominator (and corresponding
numerator) bysi with 0 ≤ i ≤ n−k. So the maximal absolute value of the numerator of such a coefficient
is bounded by2n−k(2(n−k+1)bk)n−k+12(n−k)b0 ≤ (22bk+1)(n−k+1)2 which implies a maximal number
of bits equal to(n−k+1)2(2bk+1) for the numerators of theai’s andb. The maximal absolute value of
the denominator of such a coefficient is less than(2(n−k+1)bk)n−k+12(n−k)b0 which implies a maximal
number of bits bounded by(n − k + 1)2(2bk) for the denominators of theai’s andb.
At step 2.(b), the differenceC[u]−C ′[u] requires to compute the lcm of two denominators (bounded by
their product). So the difference operation leads to a bound(n− k+1)2(4bk +2) for the numerators of
its coefficients and(n− k + 1)2(4bk) for the denominators.

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 11

The final step 2.(b) consists in multiplying a numerator and adenominator of some coefficients leading
to a bound(n− k + 1)2(8bk + 2) ≤ (n− k + 1)2(9bk) for bk+1, which yields the desired bound. ⊓⊔

3.2. Construction of the Class Automaton

In order to analyze the size of the class automaton defined below, we recall an adaptation of a classical
result about partitions ofn-dimensional Euclidean spaces.

Definition 3.4. Let {Hk}1≤k≤m be a family of hyperplanes ofRn. A region defined by this family is
a connected component ofRn \

⋃

1≤k≤mHk. An extended regiondefined by this family is a connected
component of

⋂

k∈I Hk \
⋃

k/∈I Hk whereI ⊆ {1, . . . ,m} with the convention that
⋂

k∈∅ Hk = Rn.

Proposition 3.5.
1. [21] The number of regions defined by the family{Hk}1≤k≤m is at most

∑n
i=0

(m
i

)

.
2. [4] The number of extended regions defined by the family{Hk}1≤k≤m is at most:
∑n

p=0

(m
p

)
∑n−p

i=0

(m−p
i

)

≤ e2mn.

Theorem 3.6. The untimed language of an ITA is regular.

Proof:
Starting from an ITAA, and handling auxiliary clocks, we build a finite automaton which is time abstract
bisimilar to the transition systemTA and thus acceptsUntime(L(A)).

Class definition. A state of the automaton, called class, is a syntactical representation of a subset of
reachable configurations. It is defined as a pairR = (q, {�k}1≤k≤λ(q)) whereq is a state and�k is a
total preorder overEk, for 1 ≤ k ≤ λ(q). The classR describes the set of configurations:

[[R]]= {(q, v) | ∀k ≤ λ(q), ∀g, h ∈ Ek, g[v] ≤ h[v] iff g �k h}

The initial state is the classR0 such that[[R0]] contains(q0,0) and can be straightforwardly deter-
mined. The final states are all classesR =

(

q, {�k}1≤k≤λ(q)

)

with q ∈ Qf .
Observe that fixing a state, the set of configurations[[R]] of a non empty classR is exactly an extended

region associated with the hyperplanes defined by the comparison of two expressions of someEk. From

Lemma 3.2, adding all|Ek|’s gives an upper bound of(H + M)2
n

× U2n
2

for the total number of
expressions of any level. Hence an upper bound of the number of hyperplanes is obtained by squaring

this number, yielding(H +M)2
(n+1)

× U2(n
2+1)

. Using Point 2. of Proposition 3.5 with this value for
m, the number of semantically different classes for a given state is bounded by:

e2mn = e2(H +M)K2n+1
× UK2n

2+1
(1)

whereK =
∑n

k=1 |Xk| ≤ nM is the total number of clocks. Since semantical equality between classes
can be tested in polynomial time w.r.t. their size [22], we implicitly consider in the sequel of the proof
classes modulo the semantical equivalence.

There are two kinds of transitions, corresponding to discrete steps and abstract time steps.

12 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

Discrete step. Let R = (q, {�k}1≤k≤λ(q)) andR′ = (q′, {�′
k}1≤k≤λ(q′)) be two classes. There is a

transitionR
e
−→ R′ for a transitione : q

ϕ,a,u
−−−→ q′ if there is some(q, v) ∈ [[R]] and(q′, v′) ∈ [[R′]] such that

(q, v)
e
−→ (q′, v′). In this case, for all(q, v) ∈ [[R]] there is a(q′, v′) ∈ [[R′]] such that(q, v)

e
−→ (q′, v′). We

first show how the firability condition can be decided by examination ofR and then howR′ is defined
when the condition is satisfied.

firability condition. For a transitione like above at levelℓ = λ(q), writeϕ =
∧

j∈J Cj ⊲⊳j 0. Since
we assumed rescaled guards, for everyj, Cj = αz +

∑

i<k aixi + b (with α ∈ {0, 1} andz in Xℓ) or
Cj = z − z′ with z, z′ ∈ Xℓ. In the first caseC ′

j = −
∑

i<ℓ aixi − b andz belong toEℓ and in the
second casez, z′ ∈ Eℓ both by construction. For eachj ∈ J , we define a condition depending on⊲⊳j .
For instance, in the first case if the constraint inϕ isCj ≤ 0, we check thatαz �ℓ C

′
j , or if the constraint

in ϕ isCj > 0 we check thatαz �ℓ C
′
j ∧ C ′

j �ℓ αz. The second case is handled similarly.

Successor definition.To define classR′ we take into account both the current preorders and the
update of the transition that induces the “real” expressions to be compared. Letk ≤ λ(q′) andg, h ∈ Ek.

1. Eitherk ≤ ℓ, then by construction,g[u], h[u] ∈ Ek theng �′
k h iff g[u] �k h[u].

2. Ork > ℓ, letD = g[u]−h[u]. Due to our restrictions on updates fori ≤ ℓ, xi[u] can only be equal
to xi or

∑

j<i αjxj + β. ThusD can be written as
∑

i≤ℓ cixi + d. We setC = norm(D, ℓ) and
writeC = αxℓ +

∑

i<ℓ aixi + b (with α ∈ {0, 1}). By construction,C ′ = −
∑

i<ℓ aixi − b ∈ Eℓ.
Whencℓ ≥ 0 theng �′

k h iff αxℓ �ℓ C
′.

Whencℓ < 0 theng �′
k h iff C ′ �ℓ αxℓ.

By definition of [[·]], we obtain:

• For any(q, v) ∈[[R]], if there exists(q, v)
e
−→ (q′, v′) then the firability condition is fulfilled and

(q′, v′) belongs to[[R′]].

• If the firability condition is fulfilled then for each(q, v) ∈[[R]] there exists(q′, v′) ∈ [[R′]] such that
(q, v)

e
−→ (q′, v′).

Time step. Let R = (q, {�k}1≤k≤λ(q)), with againℓ = λ(q). There is a transitionR
succ
−−→ Post(R)

for Post(R) = (q, {�′
k}1≤k≤ℓ), the time successor ofR, which is defined as follows.

For everyi < ℓ, we define�′
i=�i. Let ∼ be the equivalence relation�ℓ ∩ �−1

ℓ induced by the
preorder. On equivalence classes, this (total) preorder becomes a (total) order. LetV be the equivalence
class containingact(q).

1. EitherV = {act(q)} and it is the greatest equivalence class. Then�′
ℓ=�ℓ (thusPost(R) = R).

2. EitherV = {act(q)} and it is not the greatest equivalence class. LetV ′ be the next equivalence
class. Then�′

ℓ is obtained by mergingV andV ′, and preserving�ℓ elsewhere.

3. EitherV is not a singleton. Then we splitV into V \ {act(q)} and{act(q)} and “extend”�ℓ by
V \ {act(q)} �′

ℓ {act(q)}.

By definition of [[·]], for each(q, v) ∈[[R]], there existsd > 0 such that(q, v + d) ∈[[Post(R)]] and for
eachd with 0 ≤ d′ ≤ d, then(q, v + d′) ∈[[R]] ∪ [[Post(R)]].

From the properties above, this finite automaton acceptsUntime(L(A)). ⊓⊔

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 13

Observe that if in Example 2.2, we add the forbidden transition then the saturation procedure will
produce the expressiony1−x1−1 in E1 corresponding to the actual test for firing the rightmost transition.
Unfortunately, the preorder of level 1 is just able to comparex1 to y1 but not toy1 + 1.

Theorem 3.7. The reachability problem for Interrupt Timed Automata is decidable and belongs to 2EX-
PTIME. It is in PTIME when the number of clocks is fixed and PSPACE-complete when the number of
levels is fixed.

Proof:
The reachability problem is solved by building the class graph and applying a standard reachability
algorithm. The number of expressions in theEk’s is doubly exponential w.r.t. the size of the model (see
Lemma 3.2). The size of an expression is exponential w.r.t. the size of the model (see Lemma 3.3). So the
size of a class representation is also doubly exponential inthe size of the model. The size of the graph,
bounded by the number of semantically different classes, isonly polynomial w.r.t. the size of a class due
to Point 2. of Proposition 3.5. This leads to a 2EXPTIME complexity. Observe that no complexity gain
can be obtained by a nondeterministic search without building the graph.
Again using these lemmas and Point 2. of Proposition 3.5, when the number of clocks is fixed the size
of the graph is at most polynomial in the size of the problem, leading to a PTIME procedure.
On the other hand, when the number of levels is fixed, the size of a class representation is polynomial
while the number of classes is exponential (seeK in Equation (1)). Thus a nondeterministic search can
be performed without building the graph, which yields a complexity in PSPACE. The PSPACE hardness
is a consequence of Proposition 2.7. ⊓⊔

Remarks. This result should be compared with the similar one for TA. The reachability problem for
TA is PSPACE-complete and thus less costly to solve than for ITA. Fixing the number of levels in ITA
yields the same complexity. Moreover, fixing the number of clocks does not reduce the complexity for
TA (when this number is greater than or equal to3) while this problem belongs now to PTIME for ITA.
Summarizing, the main source of complexity for ITA is the number of levels and clocks, while in TA it
is the binary encoding of the constants [23].

4. Parametric interrupt timed automata

Parametric ITA are similar to ITA but they include polynomials of parameters from a setP , in guards and
updates. Given two setsF,G, we denote byPol(F,G), the set of polynomials with variables inF and
coefficients inG and byFrac(F,G), the set of rational functions with variables inF and coefficients in
G (i.e. quotients of polynomials). Observe thatLin(F,G) can be seen as the subset of polynomials with
degree at most one.

Definition 4.1. A parametric interrupt timed automaton(PITA) is a tupleA = 〈P,Σ, n,Q, q0, Qf , λ,X,
act,∆〉, where:

• P is a finite set of parameters,

• all other elements are defined as for ITA except that expressions appearing in guards or updates
belong toLin(X,Pol(P,Q)): in such an expression

∑

z∈Z azz+b, theaz ’s andb are polynomials
overP with coefficients inQ.

14 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

So an ITA is a PITA withP = ∅. When all expressions occurring in guards and updates are in
Lin(X ∪ P,Q) (which can be seen as a subset ofLin(X,Pol(P,Q))), the PITA is said to beadditively
parametrized. In contrast, in the general case, it is calledmultiplicatively parametrized.

As in the unparametrized case, updates operate on expressions. For instance, for clocks inX =
{x1, x2}, parameters inP = {p1, p2, p3}, expressionC = p2x2 − 2x1 + 3p1 and the updateu defined
by x1 := 1 ∧ x2 := p3x1 + p2, applyingu to C yields the expressionC[u] = p2p3x1 + p22 + 3p1 − 2.
Note that the use of multiplicative parameters for clocks may result in polynomial coefficients when
updates are applied. Here aclock valuationis a mappingv : X 7→ Pol(P,R). For a valuationv and an
expressionC ∈ Lin(X,Pol(P,Q)), v(C) ∈ Pol(P,R) is obtained by evaluatingC w.r.t. v. Given an
updateu and a valuationv, the valuationv[u] is defined byv[u](x) = v(Cx) for x in X if x := Cx is
the update forx in u andv[u](x) = v(x) otherwise. For instance, letX = {x1, x2, x3} be a set of three
clocks. For valuationv = (2p2, 1.5, 3p

2
1) and updateu defined byx1 := 1 ∧ x3 := p1x3 − x1, applying

u to v yields the valuationv[u] = (1, 1.5, 3p31 − 2p2).
A parameter valuationis a mappingπ : P 7→ R. For a parameter valuationπ and an expres-

sion C ∈ Lin(X,Pol(P,Q)), π(C) ∈ Lin(X,R) is obtained by evaluatingC w.r.t. π. If C ∈
Pol(P,Q), thenπ(C) ∈ R. Given a parameter valuationπ, a clock valuationv and an expression
C ∈ Lin(X,Pol(P,Q)) we writeπ, v |= C ⊲⊳ 0 whenπ(v(C)) ⊲⊳ 0.

Given a parameter valuationπ and a PITAA, substituting the parameters by their value according to
π yields an ITA, denoted byA(π), where the coefficients of clocks are inR. So the semantics ofA w.r.t.
parameter valuationπ is defined by the (timed) transition systemTA(π). A stateq is reachable fromq0
for valuationπ if q is reachable fromq0 in A(π).

q1, 1

q2, 2

x1 < p1, a

x1 + p2x2 = 2

b

x2 := (p1 − 4p22)x1 + p2

(a) A PITAA2 with two interrupt levels

x1

x2

4

2
3

5

x1 = p1

x1 + p2x2 = 2

(b) A possible run inA2 for π

Figure 5. An example of PITA and a possible execution

Example 4.2. A PITA A2 is depicted in Figure 5(a), with two interrupt levels. Everylevel i has only a

main clockxi. Fixing the parameter valuationπ: p1 = 5 andp2 = −1, the run(q1, 0, 0)
4
−→ (q1, 4, 0)

a
−→

(q2, 4, 0)
3
−→ (q1, 4, 2)

b
−→ (q2, 4, 3) is obtained as follows. After staying inq1 for 4 time units,a can

be fired and the value ofx1 is then frozen in stateq2, while x2 increases. Transitionb can be taken if
x1 + p2x2 = 2, hence forx2 = 2, after whichx2 is updated tox2 = (p1 − 4p22)4+ p2 = 3. A geometric
view of this run w.r.t.π is given (in bold) in Figure 5(b). �

Reachability problems. We consider several reachability problems for this class. Let A be a PITA
with initial stateq0 andq be a state ofA. TheExistential (resp. Universal) Reachability Problemasks

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 15

whetherq is reachable fromq0 for some (resp. all) parameter valuation(s).Scopedvariants of these
problems are obtained by adding as input a set of parameter valuations given by a first order formula
over the reals or a polyhedral constraint. TheRobust Reachability Problemasks whether there exists a
parameter valuationπ and a realε > 0 such that for allπ′ with ‖π − π′‖∞ < ε, q is reachable from
q0 for π′ (where‖π‖∞ = maxp∈P |π(p)|). When satisfied, this property ensures that small parameter
perturbations do not modify the reachability result. It is also related to parameter synthesis where a
valuation has to be enlarged to an open region with the same reachability goal.

5. Reachability analysis with additive parametrization

We start with the easier particular case of additive parametrization, i.e., expressions occurring in guards
and updates are linear expressions on clocks and parameterswith rational coefficients. We first prove
that the existential parametrized reachability problem can be reduced to the reachability problem on
(non-parametrized) ITA.

Proposition 5.1. For any additively parametrized PITAA, with set of statesQ and initial stateq0, there
exists a (non-parametrized) ITAA′, with set of statesQ′, containingQ, and initial stateq′0 fulfilling the
following equivalence. For everyq ∈ Q:

there existsπ such thatq is reachable fromq0 in A for π iff q is reachable fromq′0 in A′.

Proof:
For any additively parametrized PITAA with n levels, andk parametersp1, ..., pk, we build an equivalent
ITA A′ with n+ k+1 levels and then use the complexity results of section 3. The construction is shown
in Figure 6.
The ITAA′ consists of a “prefix” (the firstk + 1 levels) connected to the original automatonA (with its
n levels). The main clocks of levels1 to k encode the parametersp1, . . . , pk of A. In order to simplify
further references, we also call these clocksp1, ..., pk. Similarly, the main clock of the first level is called
p0. None of thesek + 1 first level has any auxiliary clock. Since level numbers start at 1, each clockpi
is active in leveli+ 1 in (the prefix of)A′.
In the first level ofA′, clockp0 is active. After some arbitrary time, a transition, with no guard, is taken
to the state of the second level and clockp0 is frozen. In the second level, clockp1 is active and the same
procedure continues: after some time a transition to the next level is taken, and clockp1 is frozen, and so
on for the firstk levels. In these firstk levels, any run ofA′ chooses a non-negative fixed value for the
clocksp0, . . . , pk−1, and hence almost for the parameters ofA. Parameters may however have negative
values so levelk+1 serves as a technicality to choose the final sign of the corresponding clocks. This is
done by assigningpi−1 or−pi−1 to clockpi, between each two consecutive states, for alli ∈ [1..k − 1],
in a run without any delay in any of the states of levelk + 1 (the other runs, with delays in the states
of level k + 1, overlap on those corresponding to other parameter valuations and are therefore not a
problem). In the last state of levelk + 1, the frozen clocksp1, ..., pk can therefore have any arbitrary
real value assigned. The automaton finally proceeds to the initial state ofA keeping the values of these
additional clocks. Since they correspond to levels lower than any level ofA they can be used liberally
enough in the guards and updates ofA. The obtained automatonA′ is an ITA and parameters ofA are
modeled as clocks inA′.

16 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

p0

p1

pk−1

pk

An levels

true

true

true

k + 1 levels

pk := pk−1

pk := −pk−1

pk−1 := pk−2

pk−1 := −pk−2

p1 := p0

p1 := −p0

Figure 6. An equivalent ITAA′

LetX be the set of clocks inA andX ′ be the set of clocks inA′ (thusX ′ = X ∪ {p0, ..., pk}). For any
subsetY ⊆ X and a valuationv, we define the restriction ofv to Y as the unique valuationv onY such
thatv|Y (x) = v(x). We now show that a configurations = (q, v) is reachable inA for some parameter
valuationπ (i.e., inA(π)) iff there exists some configurations′ = (q′, v′), such thatq′ = q and for all
x ∈ X, v′|X(x) = v(x), is reachable inA′.
On the one hand, if there exists a path to reachs′ in A′, then by construction this path goes through a
configuration(q0, v0) such that(q0, v0|X) is the initial configuration ofA (i.e. v0|X is the zero valuation).
Let π be the parameter valuation such that for alli > 0, π(pi) = v0(pi), thens is reachable inA(π).
On the other hand, letπ be a parameter valuation andv be a clock valuation onX such that(q, v) is
reachable inA(π). Then using an appropriate run in the prefix one reaches(q0, v0) with v0|X is the zero
valuation and for alli > 0, v0(pi) = π(pi). Afterwards this run is extended to reachq by mimicking the
run ofA(π). ⊓⊔

Using Proposition 5.1 and Theorem 3.7, we can now give the main result of this section.

Theorem 5.2. The (polyhedral scoped) existential reachability problemis decidable for additively pa-
rametrized PITA, and belongs to 2EXPTIME. It belongs to PTIME when the number of clocks and
parameters is fixed. It is PSPACE-complete when the number oflevels and parameters is fixed.

Proof:
Following Proposition 5.1, every additively parametrizedPITA can be transformed into an equivalent
ITA, and the (unscoped) reachability problem of additivelyparametrized PITA is thus reduced to the
reachability problem of ITA, already known to be decidable.The complexity results follow from the
complexity results for ITA given in Theorem 3.7, since the size ofA′ is only linear in the size ofA: if
there aren levels,N clocks,k parameters,x states andy transitions inA, the number of levels, clocks,
states and transitions inA′ aren+ k + 1, N + k + 1, x+ 2k + 1 andy + 3k + 1, respectively.
With a polyhedral scope, given as a finite union of polyhedra,we need to guard the transition between
the last state of the prefix and the initial state ofA, in A′, by the given polyhedra (each polyhedra of the
union could guard a different transition, as well). ⊓⊔

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 17

6. Reachability analysis with multiplicative parametrization

We now focus on the multiplicative case and this section is devoted to the proof of the following result:

Theorem 6.1. The (scoped) existential, universal and robust reachability problems for PITA are decid-
able and belong to 2EXPSPACE. The complexity reduces to PSPACE when the number of levels is
fixed.

We first informally present the main ideas underlying the proof, which is based on the proof of
Theorem 3.7 but extends it by the handling of parameters.

The first novelty with respect to the unparametrized case is the need to build from the PITA a finite
partition of the setRP of parameter valuations. In addition the non emptiness of anitem Π of this
partition should be decided. We will establish that the items of this partition can be specified by a
satisfiable first-order formula over(R,+,×), with the parameters as variables. Intuitively, insideΠ the
qualitative behaviour ofA does not depend on the precise parameter valuation. In a second step, we
build a finite automatonR(Π) for each non emptyΠ. In R(Π), a stateR, again called a class, defines
a set[[R]]π of reachable configurations ofTA(π) for a valuationπ ∈ Π. The transition relation ofR(Π)

contains discrete stepsR
e
−→ R′ (for a transitione of A) and abstract time stepsR −→ Post(R) with the

following properties:

Discrete Step (DS): If there is a transitionR
e
−→ R′ in R(Π) then for eachπ ∈ Π and each(q, v) ∈[[R]]π

there exists(q′, v′) ∈ [[R′]]π such that(q, v)
e
−→ (q′, v′).

Conversely, letπ ∈ Π and(q, v) ∈[[R]]π. If there exists a transition(q, v)
e
−→ (q′, v′) in TA(π) then

for someR′, there is a transitionR
e
−→ R′ in R(Π) and(q′, v′) belongs to[[R′]]π.

Time Step (TS): Let π ∈ Π and(q, v) ∈[[R]]π. There existsd > 0 such that(q, v +q d) ∈[[Post(R)]]π
and for eachd′ with 0 ≤ d′ ≤ d, (q, v +q d

′) ∈[[R]]π ∪ [[Post(R)]]π.

Hence, we obtain a finite family of abstract time bisimulations of the transition systemsTA(π), for all
parameter valuations, which gives the decidability result.

The second novelty lies in the construction of expressions in the sets{Ek}k≤n. These expressions
now contain polynomials of parameters and the main difference from the unparametrized case is the
normalization operation of an expression

∑

i≤k aixi + b which now depends on the polynomialak.

Example 6.2. Consider for instance expressionp2x2 + x1 − 2 which appear in automatonA2 of Fig-
ure 5(a) with a comparison to0. For a valuation wherep2 = 0, a normalization should yieldx1 − 2. If
p2 6= 0, the operation should yield−x1−2

p2
. In addition, the casep2 6= 0 should be split depending on the

sign ofp2, since the operation could change the comparison operator involved in a guard. Therefore, we
also need to define a setPolPar of polynomials appearing in the denominators likep2. �

6.1. Construction ofPolPar and Expressions{Ek}k≤n

In the spirit of normalization, we define three operations onexpressions, relatively to a levelk, to help
building the elements inEk to which the active clock on levelk will be compared.

18 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

Definition 6.3. Let k ≤ n be some level and letC be an expression inLin(Xm<n+1,Frac(P,Q)),
C =

∑

i≤n aixi + b with ak = rk
sk

, for somerk andsk in Pol(P,Q). We associate withC the following
expressions:

• lead(C, k) = rk;

• if lead(C, k) /∈ Q \ {0}, comp(C, k) =
∑

i<k aixi + b;

• if lead(C, k) 6= 0 thencompnorm(C, k) = −
∑

i<k
ai
ak
xi −

b
ak

.

In the previous example,comp corresponds tox1 − 2 while compnorm corresponds to−x1−2
p2

. More
examples are given after the construction ofPolPar and{Ek}k≤n. This construction proceeds top down
from leveln to level1 after initializingPolPar to ∅ andEk toXk ∪ {0} for all k. When handling level
k, we add new terms toEi for 1 ≤ i ≤ k.

1. At levelk the first step consists in adding new expressions toEk and new polynomials toPolPar.
More precisely, letC be any expression occurring in a guard of an edge leaving a state of level
k. We addlead(C, k) to PolPar when it does not belong toQ and we addcomp(C, k) and
compnorm(C, k) toEk when they are defined.

2. The second step consists in iterating the following procedure until no new term is added to anyEi

for 1 ≤ i ≤ k.

(a) Letq
ϕ,a,u
−−−→ q′ with λ(q) ≥ k andλ(q′) ≥ k, and letC ∈ Ek. Then we addC[u] toEk.

(b) Let q
ϕ,a,u
−−−→ q′ with λ(q) < k andλ(q′) ≥ k. Let {C,C ′} be a set of two expressions inEk.

We computeC ′′ = C[u] − C ′[u], choosing an arbitrary order betweenC andC ′. This step
ends by handlingC ′′ w.r.t. λ(q) as done forC w.r.t. k in step 1 above.

Example 6.4. For the automaton of Figure 5(a), initially, we havePolPar = ∅, E1 = {x1, 0} andE2 =
{x2, 0}. Starting with levelk = 2, we consider in step 1 the expressionC2 = p2x2 + x1 − 2 appearing
in the guard of the single edge leavingq2. We computelead(C2, 2) = p2, comp(C2, 2) = x1 − 2, and
compnorm(C2, 2) = −x1−2

p2
. We obtainPolPar = {p2} andE2 = {x2, 0, x1 − 2,−x1−2

p2
}. For step

2.(a) and the same edge, we apply its update to the expressions ofE2 that containx2, add them toE2,
and thus obtainE2 = {x2, 0, x1 − 2,−x1−2

p2
, (p1 − 4p22)x1 + p2}.

In step 2.(b), considering the single edge fromq1 to q2, we compute the differences between any
two expressions fromE2 (after applying update which means here substituting 0 tox2 and lettingx1
unchanged) and the resulting expressionslead, comp andcompnorm, which yields:
PolPar = {p2, p2 + 1, 1 − p1 + 4p22, 1 + p1p2 − 4p32},

E1 = {x1, 0, 2,−
2(p2+1)

p2
,−2− p2,

2+p2
1−p1+4p22

,
p22−2
p2

,
2−p22

1+p1p2−4p32
}.

We proceed with level1. Since expressionC1 = x1−p1 occurring in the guard of the considered edge
has leading coefficient equal to 1, there is no term to add toPolPar. We addcompnorm(C1, 1) = p1 to
E1, hence the final result is:

PolPar = {p2, p2 + 1, 1 − p1 + 4p22, 1 + p1p2 − 4p32}

E1 = {x1, 0, 2,−
2(p2+1)

p2
,−2− p2,

2+p2
1−p1+4p22

,
p22−2
p2

,
2−p22

1+p1p2−4p32
, p1}

E2 = {x2, 0, x1 − 2,−x1−2
p2

, (p1 − 4p22)x1 + p2}
�

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 19

Lemma 6.5 below is used for the class automata construction.Its proof is obtained by a straightfor-
ward examination of the above procedure.

Lemma 6.5. Let C belong toEk for somek andc = r
s be a coefficient ofC with s /∈ Q. Then there

exists polynomialsP1, . . . , Pℓ ∈ PolPar and some constantA ∈ Q \ {0} such thats = A.
∏

1≤i≤ℓ Pi.

Lemma 6.6 is the parametrized version of Lemma 3.2 and its (omitted) proof is almost identical.

Lemma 6.6. For a PITAA, let H be the number of constraints in the guards,U the number of updates
in the transitions (assumingU ≥ 2) andM = max{|Xk| | 1 ≤ k ≤ n}. The construction procedure of
{Ek}k≤n terminates and the size of everyEk is bounded by(H +M)2

n−k

× U2n(n−k+1)
.

Lemma 6.7 is the parametrized version of Lemma 3.3. However since the coefficients are now
rational functions, the degree of the polynomials must alsobe analyzed.

Lemma 6.7. LetA be a PITA, and letb0 be the maximal total number of bits for integers of an expression
in A andd0 the maximal degree of polynomials, occurring inA. If b is the total number of bits of the
integer constants andd the degree of a polynomial, occurring in an expression ofPolPar or someEk,
thenb ≤ ((n + 1)!)2(n+ 1)23n+1b0 andd ≤ (n+ 1)!5nd0.

Proof:
W.l.o.g. we assume that there is a single denominator for therationals occurring in updates since it only
induces a polynomial blow up.
Assume that before the leveln− k is performed, the total number of bits for integers occurring in some
expression isbk. We establish by induction thatbk ≤

∏k
j=1(n+2−j)2(k+1)2n+2k+1b0. The basis case

is trivial. At leveln−k, step 1 does induces an increasing only when operationcompnorm is applied on a
original guard whose coefficients are polynomials (insteadof rational fractions). After this operation the
number of bits is bounded by(n− k+1)b0 ≤ (n− k+1)bk. For an expression that was already present
in En−k, its coefficients are modified in order to get a common denominator by taking the product of the
original denominators. After this transformation the total number of bits is bounded by(n− k + 1)2bk.
Examining one update applied on an expression, the total number of bits of the coefficients of the updated
expression is increased by(n− k + 1)b0. Since an expression built after step 2.(a) has been obtained by
less than2n−k updates, the total number of bits is less than(n− k + 1)2bk + 2n−k(n− k + 1)b0.
At step 2.(b), the differenceC[u]−C ′[u] requires to compute the lcm of two denominators (bounded by
their product). So the difference operation leads to a bound(n − k + 1)4bk + 2n−k+1(n− k + 1)b0 for
the total number of bits.
The final step 2.(b) consists in multiplying a numerator and adenominator of some coefficients leading
to a bound:

(n− k + 1)2(4bk + 2n−k+1b0) ≤ (n − k + 1)2
(

4
∏k

j=1(n+ 2− j)2(k + 1)2n+2k+1b0 + 2n−k+1b0

)

≤
(

∏k+1
j=1(n + 2− j)

)2
((k + 1)2n+2(k+1)+1b0 + 2n+2(k+1)+1b0)

=
(

∏k+1
j=1(n + 2− j)

)2
(k + 2)(2n+2(k+1)+1b0)

for the number of bits.

20 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

Assume that before the leveln−k is performed, the degree of a polynomial (of parameters) occurring in
some expression is at mostdk. We establish a relation betweendk anddk+1. At leveln− k, step 1 does
not induce any increasing when operationcompnorm is applied on a original guard whose coefficients
are polynomials (instead of rational fractions). More precisely the numerators of rational fractions are
unchanged while the denominators are numerators of some previous expressions. For an expression that
was already present inEn−k, its coefficient are modified in order to get a common denominator by taking
the product of the original denominators. After this transformation the maximal degree is bounded by
(n− k + 1)dk.
Let us examine an expressionC =

∑

i≤n−k aixi + b built after step 2.(a). Examining the successive
updates, the numerator of coefficientai can be expressed as

∑

d∈D

∏

j∈d cd,j whereD is the set of subsets
of {i, . . . , n−k} containingi andcd,j are all coefficients of the updates (i.e. coefficients of polynomials)
except one coefficient of the expression built before this step. The same reasoning applies to the constant
coefficient of the expression. So the degree of theai’s andb is bounded by:(n − k + 1)(dk + d0). The
denominators are denominators of expressions previously built so bounded by(n− k + 1)dk.
At step 2.(b), the differenceC[u]−C ′[u] requires to compute the lcm of two denominators (bounded by
their product). So the difference operation leads to a bound(n− k+1)(2dk + d0) for the numerators of
its coefficients and(n− k + 1)2dk for the denominators.
The final step 2.(b) consists in multiplying a numerator and adenominator of some coefficients leading
to a bound(n− k + 1)(4dk + d0). Sodk+1 ≤ (n− k + 1)5dk yielding the desired bound. ⊓⊔

We now explain the partition construction. Starting from the finite setPolPar, we split the set of
parameter valuations in parameter regions specified by the result of comparisons to0 of the values of
the polynomials inPolPar. For instance, for the setPolPar computed above, the inequalitiesp2 < 0,
p2 + 1 = 0, 1 − p2 − 4p21 = 0 and1 + p1p2 − 4p32 = 0 define a setpreg of parameter valuations. The
parameter regionpreg is non empty since it containsp1 = 5 andp2 = −1. The set of such constraints
yielding non empty regions can be computed by solving an existential formula of the first-order theory
of reals.

Then, given a non empty parameter regionpreg, we consider the following subset ofEk for 1 ≤
k ≤ n: Ek,preg = {C ∈ Ek | the denominators of coefficients ofC are non null inpreg}. Due to
Lemma 6.5, these subsets are obtained by examining the specification ofpreg.

Observe that expressions inE1,preg \X1 belong toFrac(P,Q) and that, depending on the parameter
valuation, the values of two expressions can be differentlyordered. We refinepreg according to a
linear preorder�1 on E1,preg \ X1 which is satisfiable withinpreg. We denote this refined region by
Π = (preg,�1) and we now build a finite automatonR(Π).

6.2. Construction of the Class Automata

In this paragraph, we fix a non empty parameter regionΠ = (preg,�1).

Class definition.A state ofR(Π), called a class like before, is defined as a pairR = (q, {�k}1≤k≤λ(q))
whereq is a state ofA and�k is a total preorder overEk,preg, for 1 ≤ k ≤ λ(q). For a parameter
valuationπ ∈ Π, the classR describes the following subset of configurations inTA,π:

[[R]]π= {(q, v) | ∀k ≤ λ(q) ∀g, h ∈ Ek,preg, π(v(g)) ≤ π(v(h)) iff g �k h}

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 21

The initial state ofR(Π) is the classR0, such that(q0,0) ∈[[R0]]π, which can be straightforwardly
determined by extending�1 to E1,preg with x �1 0 and0 �1 x for all x ∈ X1, and closing�1 by
transitivity.

Transitions inR(Π) consist of the following discrete and time steps:

Discrete step. Let R = (q, {�i}1≤i≤λ(q)) andR′ = (q′, {�′
i}1≤i≤λ(q′)) be two classes and lete :

q
ϕ,a,u
−−−→ q′ be a transition inA. There is a transitionR

e
−→ R′ if for someπ ∈ Π, there are some

(q, v) ∈ [[R]]π and (q′, v′) ∈ [[R′]]π such that(q, v)
e
−→ (q′, v′). In this case, we claim that for all

(q, v) ∈ [[R]]π there is a(q′, v′) ∈ [[R′]]π such that(q, v)
e
−→ (q′, v′). For this, we prove in the sequel that

the existence of transitionR
e
−→ R′ is independent ofπ ∈ Π and of(q, v) ∈ [[R]]π. It can be seen as

follows.
We noteℓ = λ(q) for the level of transitione.

Firability condition. We writeϕ =
∧

j∈J Cj ⊲⊳j 0 with, for eachj, eitherCj = aℓz +
∑

i<ℓ aixi + b
(with z ∈ Xℓ) orCj = z − z′ with z, z′ ∈ Xℓ. We consider three subcases of the first case.
• Subcaseaℓ = 0. ThenCj = comp(Cj , ℓ) ∈ Eℓ,preg and using the positions of0 andCj w.r.t. �ℓ, we
can decide whetherCj ⊲⊳j 0.
• Subcaseaℓ ∈ Q \ {0}. Thencompnorm(Cj , ℓ) ∈ Eℓ,preg, hence using the sign ofaℓ and the positions
of z andcompnorm(Cj , ℓ) w.r.t. �ℓ, we can decide whetherCj ⊲⊳j 0.
• Subcaseaℓ /∈ Q. According to the specification ofpreg, we know the sign ofaℓ as it belongs to
PolPar. In caseaℓ = 0, we decide as in the first subcase. Otherwise, we decide as in the second
subcase.
The second caseCj = z − z′ is handled similarly.

Successor definition.To build the successorR′ = (q′, {�′
i}1≤i≤λ(q′)) of R, we have to define the

preorders{�′
i}1≤i≤λ(q′). Let k ≤ λ(q′) andg, h ∈ Ek,preg.

1. Eitherk ≤ ℓ, by step 2(a) of the construction,g[u], h[u] ∈ Ek,preg. Theng �′
k h iff g[u] �k h[u].

2. Ork > ℓ, letD = g[u]− h[u] =
∑

i≤ℓ aixi + b. There are again three subcases.

• Subcaseaℓ = 0. ThenD = comp(D, ℓ) ∈ Eℓ,preg, so we can decide whetherD �ℓ 0 and
g′ �′

k h′ iff D �ℓ 0.

• Subcaseaℓ ∈ Q\{0}. Thencompnorm(D, ℓ) ∈ Eℓ,preg. There are four possibilities to consider.
For instance ifaℓ > 0 andxℓ �ℓ compnorm(D, ℓ) theng′ �′

k h′. The other cases are similar.

• Subcaseaℓ /∈ Q. Let us writeaℓ = rℓ
sℓ

. According to the specification ofpreg, we know the
sign ofaℓ sincerℓ belongs toPolPar andsℓ is a product of items inPolPar. In caseaℓ = 0, we
decideg′ �′

k h′ as in the first case. Otherwise, we decide in a similar way as inthe second case.
For instance ifaℓ > 0 andxℓ �ℓ compnorm(D, ℓ) theng′ �′

k h′.

Time step. For R = (q, {�k}1≤k≤ℓ), there is a transitionR
succ
−−→ Post(R), wherePost(R) =

(q, {�′
k}1≤k≤ℓ) is the time successor ofR, defined as follows. Intuitively, all preorders belowℓ = λ(q)

are fixed, so�′
i=�i for eachi < ℓ. On levelℓ, the value of the active clock simply progresses along the

one dimensional time line, where the expressions are ordered. More precisely, let∼ be the equivalence
relation�ℓ ∩ �−1

ℓ induced by the preorder. A∼-equivalence class groups expressions yielding the same

22 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

value, and on these classes, the (total) preorder becomes a (total) order. LetV be the∼-equivalence class
containingact(q).

1. EitherV = {act(q)}. If V is the greatest∼-equivalence class, then�′
ℓ=�ℓ (andPost(R) = R).

Otherwise, letV ′ be the next∼-equivalence class. Then�′
ℓ is obtained by mergingV = {act(q)}

andV ′, and preserving�ℓ elsewhere.

2. Or V is not a singleton. Then we splitV into V \ {act(q)} and{act(q)} and “extend”�ℓ by
V \ {act(q)} �′

ℓ {act(q)}.

To conclude, observe that the automatonR(Π) defined above has the properties(DS)and(TS) mentioned
previously, and is hence a finite time abstract bisimulationof TA,π, for all parameter valuationsπ ∈ Π.

Example 6.8. The construction ofR(Π) is illustrated on the automatonA2 from Figure 5(a), for the
regionΠ = (preg,�1), wherepreg was defined above by:p2 < 0, p2 + 1 = 0, 1 − p2 − 4p21 = 0 and
1+ p1p2 − 4p32 = 0. For�1, we first remove fromE1 the expressions with null denominator:E1,preg =

{x1, 0, 2,−
2(p2+1)

p2
,−2− p2,

p22−2
p2

, p1} and we consider the ordering onE1,preg \ {x1} specified by the
line below.

−2− p2 0,

− 2(p2+1)
p2

p
2

2
−2
p2

2 p1

A part of the resulting class automatonR(Π), including the run corresponding to the one in Fig-
ure 5(b), is depicted in Figure 7, where dashed lines indicate (abstract) time steps.

The initial class isR0 = (q0, Z0) whereZ0 is �1 extended withx1 = 0. Denoting (slightly abu-
sively) extensions with the symbol∧, the time successors of the initial state are obtained by moving x1

to the right along the line:R1
0 = (q0,�1 ∧ 0 < x1 <

p22−2
p2

), R2
0 = (q0,�1 ∧ x1 =

p22−2
p2

), . . . , up to

R7
0 = (q0,�1 ∧ x1 > p1). Transitiona can be fired from all classes up toR5

0 (but not fromR6
0 andR7

0

where the constraintx1 < p1 is not satisfied). In Figure 7, we represent only the one fromR5
0 = (q0, Z1)

with Z1 =�1 ∧ 2 < x1 < p1, corresponding to the run in Figure 5(b).

Along this run, the ordering�2 is determined by regionΠ andZ1, onE2,preg \ {x2} = {0, x1 −
2,−x1−2

p2
, (p1 − 4p22)x1 + p2}. It is illustrated on the line below.

0 x1 − 2,

−x1−2
p2

(p1 − 4p22)x1 + p2

Firing transitiona produces the classR1 = (q1, Z1,�2 ∧x2 = 0). Transitionb is then fired from the
(second) time successor ofR1 for whichx2 = −x1−2

p2
. �

We are now in position to prove Theorem 6.1.

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 23

R0

R1
0

...

R5
0

...

R7
0

q1, Z1,�2 ∧

x2 = 0

q1, Z1,�2 ∧

0 < x2 < −x1−2
p2

q1, Z1,�2 ∧

x2 = −x1−2
p2

q1, Z1,�2 ∧

x2 = (p1 − 4p22)x1 + p2

q1, Z1,�2 ∧

x2 > (p1 − 4p22)x1 + p2

· · ·
a

· · ·
a

b

a

Figure 7. A part ofR(Π) for A2

Proof:
Starting from a PITAA, we use the above construction, whose termination is guaranteed by lemma 6.6,
to design a nondeterministic procedure for existential reachability of a given stateq:

1. BuildPolPar and{Ek}1≤k≤n.

2. Guess a parameter region(preg,�1).

3. Check non emptiness of(preg,�1).

4. Build the class automatonR(preg,�1) and check whetherq occurs in some class.

For universal reachability ofq, in step 4, one checks whetherq does not occur in any class. This gives
us a nondeterministic procedure for the complementary problem. For robust reachability in step 2, one
guesses an open parameter regioni.e., only specified by strict inequalities.

We now analyze the complexity of these procedures. Due to lemmas 6.6 and 6.7, the first step is per-
formed in 2EXPTIME and in PTIME when the number of clocks is fixed. Guessing a parameter region
has the same complexity.
The satisfiability problem for a first-order formula is in PSPACE [24]. Due to lemma 6.6, the numbers

of (in)equalities specifying the region fulfillss = O((H +M)2
n

× U2n
2

) with the previous notations.
Let b be the total number of bits of the integers occurring in a constraint of the specification of the region.
Due to lemma 6.7,b ≤ ((n + 1)!)2(n + 1)23n+1b0. Let d be the maximal degree of the polynomials
occurring in the specification of the region. Due to the same lemma,d ≤ (n+1)!5nd0. So the emptiness
problem for a region is decided in 2EXPSPACE which becomes PSPACE when the number of levels is
fixed.

24 B. Bérard et al. / ITA with Auxiliary Clocks and Parameters

Observe now that the class automatonR(preg,�1) is isomorphic to the class automaton of the ITAA(π)
that would be obtained fromA with any parameter valuationπ in Π = (preg,�1). It has been proved
in Section 3 that this automaton can be built in polynomial time w.r.t. the size of the representation of
any class. As the size of the representation of a class of a PITA has the same order as the one of the
corresponding ITA (dominated by the doubly exponential number of expressions) and the construction
algorithms perform similar operations, this yields a complexity of 2EXPTIME and PSPACE when the
number of levels is fixed.
So the dominating factor of this nondeterministic procedure is the emptiness check done in 2EXPSPACE.
By Savitch’s theorem this procedure can be determinized with the same complexity. ⊓⊔

7. Conclusion

While seminal results on parametrized timed models leave little hope for decidability in the general
case, we provide here an expressive formalism for the analysis of parametric reachability problems. Our
setting includes a restricted form of stopwatches and polynomials in the parameters occurring as both
additive and multiplicative coefficients of the clocks in guards and updates. We plan to investigate which
kind of timed temporal logic would be decidable on PITA.

References

[1] Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH,Nicollin X, et al. The algorithmic analysis of
hybrid systems. Theoretical Computer Science. 1995;138:3–34.

[2] Alur R, Dill DL. Automata for modeling real-time systems. In: ICALP’90. Springer; 1990. p. 322–335.

[3] Bérard B, Haddad S. Interrupt Timed Automata. In: FoSSaCS’09. vol. 5504 of LNCS. Springer; 2009. p.
197–211.

[4] Bérard B, Haddad S, Sassolas M. Interrupt Timed Automata: Verification and Expressiveness. Formal
Methods in System Design. 2012;40(1):41–87.

[5] Alur R, Henzinger TA, Vardi MY. Parametric real-time reasoning. In: ACM Symp. on Theory of Computing.
ACM; 1993. p. 592–601.

[6] Miller JS. Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata. In:
HSCC’00. vol. 1790 of LNCS. Springer; 2000. p. 296–309.

[7] Doyen L. Robust Parametric Reachability for Timed Automata. Information Processing Letters.
2007;102(5):208–213.

[8] Bérard B, Fribourg L. Automated Verification of a Parametric Real-Time Program: The ABR Conformance
Protocol. In: CAV’99. vol. 1633 of LNCS. Springer; 1999. p. 96–107.

[9] André É, Chatain Th, Encrenaz E, Fribourg L. An Inverse Method for Parametric Timed Automata. Int J of
Foundations of Comp Sci. 2009;20(5):819–836.

[10] AndréÉ, Fribourg L, Kühne U, Soulat R. IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling
Problems. In: FM’12. vol. 7436 of LNCS. Springer; 2012. p. 33–36.

[11] Jovanović A, Lime D, Roux OH. Integer Parameter Synthesis for Real-Time Systems. IEEE Transactions on
Software Engineering (TSE). 2015;41(5):445–461.

B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 25

[12] Traonouez LM, Lime D, Roux OH. Parametric Model-Checking of Stopwatch Petri Nets. Journal of Univer-
sal Computer Science (JUCS). 2009;15(17):3273–3304.

[13] Lime D, Roux OH, Seidner C, Traonouez LM. Romeo: A Parametric Model-Checker for Petri Nets with
Stopwatches. In: TACAS’09. vol. 5505 of LNCS. Springer; 2009. p. 54–57.

[14] Alur R, Henzinger TA, Ho PH. Automatic Symbolic Verification of Embedded Systems. IEEE Transactions
on Software Engineering. 1996;22:181–201.

[15] Henzinger TA, Ho PH, Wong-Toi H. HyTech: A Model-Checker for Hybrid Systems. Software Tools for
Technology Transfer. 1997;1:110–122.

[16] Hune T, Romijn J, Stoelinga M, Vaandrager F. Linear Parametric Model Checking of Timed Automata. J of
Logic and Alg Prog. 2002;52-53:183–220.

[17] Bozzelli L, La Torre S. Decision problems for lower/upper bound parametric timed automata. Formal
Methods in System Design. 2009;35(2):121–151.

[18] Bundala D, Ouaknine J. Advances in Parametric Real-Time Reasoning. In: MFCS’14. vol. 8634 of LNCS.
Springer; 2014. p. 123–134.

[19] Bruyère V, Dall’Olio E, Raskin J. Durations and parametric model-checking in timed automata. ACM Trans
Comput Log. 2008;9(2).

[20] Bylander T. The Computational Complexity of Propositional STRIPS Planning. Artificial Intelligence.
1994;69:165–204.

[21] Zaslavsky T. Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes.
AMS Memoirs. 1975;1(154).

[22] Roos C, Terlaky T, Vial JP. Theory and Algorithms for Linear Optimization. An Interior Point Approach.
Wiley-Interscience, John Wiley & Sons Ltd; 1997.

[23] Courcoubetis C, Yannakakis M. Minimum and Maximum Delay Problems in Real-Time Systems. Formal
Methods in System Design. 1992;1(4):385–415.

[24] Canny JF. Some algebraic and geometric computations inPSPACE. In: ACM Symp. on Theory of Comput-
ing. ACM; 1988. p. 460–467.

