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Abstract. Interrupt Timed Automata (ITA) are an expressive timed nmoidéroduced to take into
account interruptions according to levels. Due to thisdfestthis formalism is incomparable with
Timed Automata. However several decidability resultstezldo reachability and model checking
have been obtained. We add auxiliary clocks to ITA, therettgreling its expressive power while
preserving decidability of reachability. Moreover, we defia parametrized version of ITA, with
polynomials of parameters appearing in guards and updaftlkiie parametric reasoning is particu-
larly relevant for timed models, it very often leads to uridability results. We prove that various
reachability problems, includingbust reachabilityare decidable for this model, and we give com-
plexity upper bounds for a fixed or variable number of clod&gels and parameters.

1. Introduction

Timed and hybrid models. In order to model timed systems, the expressive model of idyhu-
tomata (HA) has been proposed [1]. Since its expressive pleads to the undecidability of most verifi-
cation problems, several semi-decision procedures haredesigned for HA as well as subclasses with
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decidability results like Timed Automata (TA) [2]. The mdaé interrupt timed automata (ITA) [3, 4]
was proposed as a subclass of hybrid automata, incompawéthl¢he class of timed automata, where
task interruptions are taken into account. Hence ITA aréquaarly suited for the modelling of schedul-
ing with preemption.

Parametric verification. Getting a complete knowledge of a system is often imposséspecially
when integrating quantitative constraints. Moreovernef¢hese constraints are known, when the ex-
ecution of the system slightly deviates from the expectduabieur, due to implementation choices,
previously established properties may not hold anymoraitghally, considering a wide range of val-
ues for constants allows for a more flexible and robust design

Introducing parameters instead of concrete values is ayaelevay of addressing these three is-
sues. Parametrization however makes verification moreuliffi Besides, it raises new problems like
parameter synthesise., finding the set (or a subset) of values for which some prgpesids.

Parameters for timed models. Parametric reasoning is particularly relevant for quatitie features
related to timing requirements, like network delays, tiougs, response times or clock drifts.

Pioneering work on parametric real time reasoning was pteddn [5] for the now classical model
of timed automata, with parameter expressions replaciegtimstants to be compared with clock val-
ues. There a decision procedure was designed for disimeéerhodels where at most one clock is
compared to parameters (and other clocks are compared staots) and undecidablity was proved for
three clocks with parametrized constraints. Since themyratudies have been devoted to the parametric
verification of timed models. Considering dense-time medehe clock compared to parameters leads
to undecidability [6]. In [7], it is established that evemrmaving equality constraints does not bring back
decidability. Relaxing completeness requirement or guesd termination, several methods and tools
have been developed for parametrized verification or paearagnthesis in timed automata [8, 9, 10, 11],
time Petri nets [12, 13], and hybrid automata [14, 15]. Aeottesearch direction consists in defining
subclasses of parametric timed models for which some prableecome decidable. In [16, 17], L/U au-
tomata are defined by restricting the parameters to lowend®(or in an exclusive way, upper bounds)
in clock comparisons and reachability is proved decidatetis model. In [11], an alternative restric-
tion is proposed:. parameters values lie in a finite set ofjgrewhich leads to the standard complexity
(PSPACE-completeness) of reachability for timed automata[18] the problem left open by [5] is
solved: in the discrete-time framework the reachabilitglgem with two clocks against parameters is
decidable. Timed temporal parametrized logics have also btudied (see for instance [19] for decid-
ability results with integer parameters). Summarizingsthsubclasses are quite restricted either by the
number of clocks or by the kind of available comparisonshéintremains a challenging issue to define
expressive parametric timed models where reachabilitiplpros are decidable.

Contributions.  Our contributions are twofold. First we define a more expvesgersion of ITA, in-
cluding auxiliary clocks. We prove that this new model iscily more expressive than the former one
but retains decidability for the reachability problem. kiespect to complexity issues, we provide upper
bounds: 2EXPTIME in the general case, PSPACE when the nuaibevels is fixed and PTIME when
the number of clocks is fixed. We also give a PSPACE matchiwgid®ound when the number of levels
is fixed.
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Our second contribution is to enrich ITA with parametershia spirit above. A PITA is a paramet-
ric version of ITA where polynomial parameter expressioas lbe combined with clock values both as
additive and multiplicative coefficients. Considering yaldditive parametrization, we reduce reacha-
bility to the same problem in basic ITA. This reduction elstaomplexity upper bounds of respectively
2EXPTIME, PSPACE when the number of levels is fixed and PTIMitemwthe number of clocks and
parameters is fixed. The multiplicative setting is much neqgressive and also very useful in practice,
for instance to model clock drifts. We prove that reachgbih parametric ITA is decidable as well as
its robust variant, an important property for implememtatissues. To the best of our knowledge, this
is the first time such a result has been obtained for a modeldimgy a multiplicative parametrization.
Furthermore, we establish upper bounds for the computdtimymplexity: 2EXPSPACE and PSPACE
when the number of levels is fixed. Our technique combinesdhstruction of symbolic class automata
from the unparametrized case and the first order theory bhraabers.

Outline. The model of Interrupt Timed Automata with auxiliary clodksdefined in Section 2, with
reachability analysis in Section 3. The parametric ITA mdgletroduced in Section 4. The reachability
analysis is split into two sections: the additive case isdlehin Section 5 while the results for the
multiplicative case are given in Section 6. We conclude amd gome perspectives for this work in
Section 7.

2. Interrupt timed automata

2.1. Notations

The sets of natural, rational and real numbers are denospectvely byN, Q andR. We write|Z| for
the cardinality of a finite sef. Given an alphabet, we denote by* the set of finite words ovex, with
e the empty word. A timed word ovet is a finite sequence of the for(ay, 1) ... (an, t,) wherea; € X
foralli € {1,...,n} and(t;)1<i<n is a sequence of real numbers such that ¢;,, foralli <n — 1.
For atimed wordv = (ay,t1) ... (an,t,), we defineUntime(w) = a; ... ay, as its projection ox*. A
timed language is a sétof timed words, withUntime(L) = {Untime(w) | w € L}.

Given two setd", GG with I finite, we denote byin(F, &) the set of linear expressiods ;. - as f +
b where thea;'s andb belong toG. We also denote bPiff (F') the set of expressiong — f’ with

I, [ eF.

Clock constraints. Let X be a finite set of clocks and I&f Z be disjoint subsets of. We denote by
C(Y, Z) the set of constraints obtained by conjunctions of atonmdpgsitions of the fornC' < 0, where
C'is an expression i), .y Lin(Z U {y}, Q) U Diff (Y) and< € {>, >, =, <, <}. Such a constraint
either compares with zero a linear expression of clocks in Z including at most one clock df, or
compares two clocks df . We also se€(X) = Uy zcx C(Y, Z).

Updates. An updateoverX is a conjunction of assignments of the formey y := C,, whereY C X
andC, € Lin(X,Q). The set of updates is writtéd(.X'). For an expressiod’ and an update, the
expressiorC [u] is obtained by “applying’ to C, i.e., simultaneously substituting eactby C., in C, if
x = C, is the update fox: in u. For instance, for clockX = {1, x5}, expressiorC' = 2z9 — 21 + 3
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and the update defined byz; := 1 A zo := 3z + 2, applyingu to C' yields the expressiot'[u] =
2(3%1 + 2) — 2(1) + 3 =6x1 +5.

Valuations. A clock valuationis a mappingv : X — R, with 0 the valuation where all clocks have
value0. For a valuatiorv and an expressio@' € Lin(X,Q), we notev(C) € R the result of evaluating
C w.r.t.v. Given an update. and a valuatiorv, the valuationv[u] is defined byv[u|(z) = v(z) if

x is unchanged by: and vju|(z) = v(Cy) if © := C, is the update forr in u. For instance, let
X = {z1,z2,23} be a set of three clocks. For valuation= (2,1.5,3) and update. defined by
x1 := 1 A zg = x3 — 1, applyingu to v yields the valuation[u] = (1, 1.5, 1).

2.2. Interrupt Timed Automata

Definitions. The behaviour of an ITA can be viewed as the one of an operatistgm with interrupt
levels. With each level are associated a set of states andad slecks partitioned into anain clock
andauxiliary clocks. In a state of a given level, exactly one clock of tkigl is active (ratd), while
the other clocks at lower or equal levels are suspended @)atand the clocks at higher levels are
not yet activated and thus contain valiie The enabling conditions on transitions, callggards are
constraints over clocks of the current level or main clockfower levels (with some restrictions that
will be explained after the definition). Transitions agdatethe clock values. If the transition decreases
(resp. increases) the level, then each clock which is reteafter (resp. before) the transition can (1) be
left unchanged, (2) be updated with a linear expression @f iwlacks of strictly lower levels or (3) be
updated with another clock at the same level (with someicéisits). Roughly speaking, the restrictions
are introduced to forbid at some level any (direct or indiré@tfluence of the auxiliary clocks at lower
levels on the behaviour of the ITA.

Definition 2.1. An interrupt timed automatorflTA) is a tuple A = (X,n,Q,q,Qf, A, X, act,A),
where:

3 is a finite alphabet;

n 1S the number of levels;

@ is afinite set of stategy is the initial state and) is a subset of) of final states. The mapping
A: @ — {1,...,n} associates with each state its level. We denot&@by= \~!(i) the set of
states at level;

e X =4, X; is the set of clocks partitioned according to the levels Apd= {z;} & Y; includes
amainclock z; and a set ofauxiliary clocksY;. The set of main clocks of levels less thans
denoted byX?, = {x; [ i < k};

e act: @ — X withq € Q; = act(q) € X; associates with a state #stiveclock;

A C QxC(X)x (2U{e}) xU(X) x Qis afinite set of transitions. Let 2> ¢’ be a transition
in A with & = A(q) andk” = A(¢'). The guardp is a constraint ir€ (X, X2, ).

— if k < K’ then the update is of the form

/\ z:=0C,

ZeUiSk X;
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— if £ > k' then the update is of the form

/\ z:=0C, A /\ z:=0

zEUiSk/ X; zeUk’<i§k X;
where, wherr € X;,

— eitherC, = z, meaning that is unchanged,
—orC, =3, ;a;xz;+b,i.e, zis updated by an expression over main clocks of lower levels;

—orC, =2 € X, ifeitherz € Y; ori = k = k. While an auxiliary clock can be updated
by another clock of the same level, for the main clock thisnly possible when the level of
both states of the transition is the level of the clock.

The interest of distinguishing main clocks from auxiliatgaks lies in the possibility of referencing
a main clock at higher levels whereas auxiliary clocks afg ased at the current level. Referencing
multiple clocks of a same level prevents the design of a attur procedure for reachability, as defined
later on. In addition, in order to avoid indirect referenaesipdates, we forbid that a main clock at a
level lower than the current one may be updated by an auxidiack.

Example 2.2. In Figure 1, a part of an ITA is represented with all stategall2, main clocksz; andzs

at levelsl and2 respectively and auxiliary cloclq at levell. The upper transition frory, to ¢o (drawn
as a dashed arrow), is forbidden since it updates the maik e¢loof level 1 with an auxiliary clock of
the same level. If we would allow such a transition, the firifighe next transition would depend on an
indirect relation betweem, andy;. We will later show on this example when the constructionhef t

class automaton would fail. O
1=
To 1= X1 R To < x1+1
@ q1,2 q2,2 q3,2
Y1 =21

Figure 1. Restrictions on clock updates in ITA

The semantics of an ITA is described by a transition systengreva configuratiofy, v) consists of
a statey of the ITA and a clock valuation.

Definition 2.3. The semantics of an ITM is defined by the (timed) transition systéfq = (S, sg, —).
The set of configurations iS = {(¢,v) | ¢ € Q, v € R*}, with initial configurationsy = (go, 0). The
relation— on S consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all other clodkessuspended. For a state

a time step of duratior is defined by(q, v) 4 (g,v") with v'(act(q)) = v(act(q)) + d and
v'(x) = v(x) for any other clocke. We writev’ = v + d.
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Discrete steps: A discrete stefig, v) — (¢’,v’) can occur for some transitian= ¢ =>% ¢’ in A such
thatv = ¢ andv’ = vlu).

A run of A is a finite path in the transition systef, which can be written as an alternating sequence
of (possibly null) time and discrete steps. A state @ is reachablefrom ¢ if there is a path i 4
from (qo, 0) to (¢, v), for some valuatiorv. A run with labeld;a;dsas . . . d,a,, is acceptingif it starts

in (go,0) and ends ing,v), for someq € Q; and some valuation. For such a run, the timed word
w = (a1,dy)(ag,dy + da) ... (an,d1 + ...+ d,) (Where pairs withe actions are removed) is said to be
acceptedby A. The timed language ofl, denoted byC(.A), is the set of timed words accepted Ay
The untimed language of is Untime(L(A)).

We now show several properties of this model related to teegurce of auxiliary clocks.

Example 2.4. (Simulation of timing policies)

The earlier definition of ITA from [4] is a restriction of Deftion 2.1 without auxiliary clocks but where
a policy, which can be either urgent, delayed or lazy, is @ased with each state. In a lazy state time
may elapse, in an urgent state time may not elapse and in yedettate time must elapse. We show in
Figure 2 how to model timing policies with a dedicated aaxiliclock per level, say;. When entering

a stateg of level i from a state;y’ of level ; > 4, the auxiliary clocky; is updated with the value of the
active clock ofg. By definition, when entering a stajef level: from a state;” of level k < i, y; and the
active clock ofg are null. Thus checking whether time has elapsegimequivalent to check whether
act(q) > y; (Figure 2(b)), both values must be equal otherwise (Fig(@§)2Whenq is a lazy state
there is nothing to check. O

(a) For urgent state, withk < < j (b) For delayed statg, with k < i < j

Figure 2. Simulating timing policies

Example 2.5. (About expressiveness)

Consider the ITAA; of Figure 3 with a single level and single final stgte The main clocke is active

in all states ang is an auxiliary clock. Its untimed language(igh) ™. In the accepted timed words, there
is an occurrence af at each time unit and the successive occurrencésome each time closer to the
next occurrence af than previously. More formally, its timed languagie= £(.A;) is defined by:

L={(a,t1)(b;ta) ... (a,tzp1)(b;taps2)|p €N,
VO < i <p, toips =i+ landi+ 1 < tojpg <i-+2,
V1 <i<p, toipo — toip1 < loi— o1}
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It has been shown in [4] that this timed language cannot bepaed by an ITA without auxiliary clocks,
which yields the next proposition. a

Proposition 2.6. There exists a timed language of an ITA with a single level@melauxiliary clock that
cannot be accepted by an ITA without auxiliary clocks.

r=1a,x:=
O<z<lby:==x

z=1a,z:=0

—(w)

y<z<lby:==x
Figure 3. ITAA; with an auxiliary clock

Adding auxiliary clocks also has an impact on the compleaitgecision problems for ITA. In [4],
it is shown that the state reachability problem is in PTIMEddixed number of levels without auxiliary
clocks. The next proposition establishes a lower boundhisrgroblem in ITA with a single level.

Proposition 2.7. The state reachability problem for ITA with a single levePSPACE-hard.

Proof:
We proceed by reducing the planification problem to our rahitity problem. The planification problem
is defined byn propositional variableg, ..., p, and a setR of m rules. Each rule- € R is defined

by a guardA’_, ¢;, with literals £; € {p1,=p1,...,pn,~pn}, and an update\’_; p, := b; with

b; € {false, true}. Initially all propositions are false and the planificatiproblem consists in deciding
whether there exists a sequence of rules. . r;, applicable from the initial state and leading to the state
where all propositions are true. This problem is PSPACEsieta [20].

The corresponding ITA has auxiliary clocksy, . . ., y, and two stateg,, which is the initial state, and

q1, which is the final state, both with active cloak. Each rule yields a transition looping arougg

and an additional transition from to ¢; “checking” that the goal has been reached. This reduction is
illustrated in Figure 4. O

y1 =0,e,y1 :=1Aya:=1

n=1ANy2=1¢
qo oS

r1. If —p; then
p1 := true; py := false

ro. If p; then
p2 = true

1 :anayZ =1

Figure 4. lllustrating the reduction for PSPACE-hardness
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3. Reachability analysis of ITA

We prove in this section that the untimed language of an ITA iegular language for which a finite
automaton can effectively be built. Similarly to previowsses, the proof is based on the construction
of a (finite) class graph which is time abstract bisimilar ie transition systerni4. This result also
holds for infinite words with standard Biichi conditions. #sonsequence, we obtain decidability of the
reachability problem, as well as decidability for pl&iiL* model-checking.

The construction of classes is much more involved than icéise of TA. More precisely, it depends
on the expressions occurring in the guards and updates efutioenaton (while in TA it depends only
on the maximal constant occurring in the guards). Given anAllwith » levels, we associate with each
level k of A a set of expressionBy,. In addition toX;, expressions itF), only use main clocks of lower
levels (that are frozen) as their values will be needed todbepared with the active clock of levé| to
detect if a transition can be fired at this level. A class welhsist of a state and for allk < \(¢) a total
preorder onk;,. Finally we show in Theorem 3.6 how to build the class grapkctvproves the regularity
of the untimed language. This immediately yields a readityalprocedure given in Theorem 3.7.

3.1. Construction of{ E} } k<,

We first recall thenormalizationoperation [4], on expressions relative to some level. Asampd below,
this operation will be used to order expression values atengevel.

Definition 3.1. (Normalization)
Letk <nandC = ), , a;x; + b be an expression over clocks ki

< £ .11, thek-normalizationof C',
denoted byhorm(C, k), is defined by:

T+ (1/ak)(Zz‘<k a;z; +b)if a # 0
C otherwise.

norm(C, k) = {

Observe thak-normalization only operates on expressions where no slothkevels higher thawk
can be used. Lef’ < 0 be a guard occurring in a transition outgoing from a stateith level & and
C = arz + Y, a;z; + b with z € X, (in the saturation procedure we do not consider guards of the
form z — 2’ with z, 2’ in X}). By rescaling the expression and if necessary changingdh®arison
operator we may assume th@ts written asoz + >, ;. a;z; + b, with a € {0, 1}.

The construction of £}, } <, must be adapted to handle auxiliary clocks. It proceeds éemdrom
level n to level 1 after initialization £}, = X; U {0} for all &. When levelk is handled, new terms
are added tdw; for 1 < i < k. These expressions are those needed to compute a (predordee
expressions itEy,.

1. Atlevelk, first for each expressionz + 3, _, a;z; + b (with o € {0,1} andz € X},) occurring
in a guard of an edge leaving a state of levglve add— ", _; a;z; — bto E,.

2. Then the following procedure is iterated until no new tésradded to any; for 1 < i < k.



B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 9

(@) Letq 22% ¢ with A(¢) > k andA(¢/) > k. For anyC € Ej, we addC|[u] to E},. Observe
that due to our restrictions on updat@$u] is still either of the formz € X, or of the form

2j<k a;x; + b.

(b) Letq 22% ¢ with A\(¢) < k and\(¢') > k. LetC andC’ be two different expressions
in E. We computeC” = norm(C|u] — C'[u], A(¢q)), choosing an arbitrary order between
C andC” in order to avoid redundancy. Let us writé’ asa(y) + 3-, () @i%i + b with
a € {0,1}. Thenwe add-3_, ) aiz; — b10 Ey().

Note that in step 2.(b), whil€' andC” belong toFE}, due to the update, only clocks of levels less
than or equal to\(¢) occur inC[u] andC’[u]. Hence the normalization is well defined.

Lemma 3.2. For an ITAA, let H be the number of constraints in the guatdghe number of updates in
the transitions (we assunié > 2) andM = max{|X;| + 1 | 1 < k < n}. The construction procedure

of { E; } <, terminates and the size of evely, is bounded by H + M)2" ™" x 2"+,

Proof:
Given somék, we prove the termination of the stage relativét@bserve that step 2.(b) of the iteration
only adds new expressions i, for h < k. Thus steps 2.(a) and 2.(b) can be ordered. Let us prove the
termination of step 2.(a). We defid&) as the sefs;, at the beginning of this stage afy as this set after
insertion of thei” item in it. With each added iter@[u] can be associated itather C. Thus we can
view E; as an increasing forest with finite degree (due to the finiiemé the edges) and finitely many
roots. Assume that this step does not terminate. Then wedrauginite forest and by Konig lemma,
it has an infinite branci®y, Cy, ... whereC;; = C;[u;] for some update:; such thatC;, # C;.
Observe that updates of the form= 2’ do not modify the current sét;, sincez’ is one of the roots of
the forest. Moreover, the number of updates that changeatti@lesz € X, is either O or 1 since once
x disappears it cannot appear again (due to the use of clamkssitrictly lower levels only). We split the
branch into two parts before and after this update or wecstilsider the whole branch if there is no such
update. In these (sub)branches, we conclude with the saaseniag that there is at most one update
that change the variablase X ;. Iterating this process, we conclude that the number of tegsda at
most2¥ — 1 and the length of the branch is at mast

The final size off, is thus at mostE} | x U?" since the width of the forest is bounded By In step
2.(b), we add at modt’ x (|Ex| x (|Ex| — 1))/2 expressions td; for everyi < k. This concludes the
proof of termination.

We now prove by a backward induction that as soon as2, |Ej,| < (H + M)?"* x y2"" V.
The doubly exponential size @, (proved above) is propagated downwards by the saturatmsedure.
We definepy, = |Ex|.

Basis casé& = n. We havep,, < p2 xU?" wherep? is bounded by + M, hencep,, < (H+M)xU?"
which is the claimed bound.

Inductive case. Assume that the bound holds fér< j < n. After step 1.,F; containsH + M
expressions and, due to the expressions added by all exesuti step 2.(b) of the procedure at strictly
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higher levels, we have after this step:

pp < (H+M)+U X [(prr1 X (prs1 — 1)/2+ -+ + (P X (P — 1))/2]

2 g(H+Mnﬂx“H+MW*WW*M+~44H+MWﬂM]
(replacing all terms:(z — 1)/2 by 22 /2)
P < (n—k+1)x (H+M> U™ (replacing all terms by the largest)

2n(n—k+1)+n

) < (H+M)?* " xU

(here we usé/ > 2 andn > 2).
Taking into account step 2.(a) of the procedure for léyele have:
Dh S (H + M)Qn—k % U2n(n—k)+1+2k+n.

Let us consider the terd = 27(»—k+1) _ on(n=k)+1 _ ok _py — on(n—k)+1gn=1 _ 1) _ 9k _p We
haves > 2n*+1 — 27 > 0, which yields the claimed bound. O

In order to analyze the space requirements triggered byatueadion procedure, we establish the
following lemma bounding the number of bits used for intsgewolved in the rational constants of
expressions in alE.

Lemma 3.3. Let A be an ITA, and leb, be the maximal number of bits for integers occurring4n
If bis the number of bits of an integer constant, occurring in goression of somery, thend <
((n + 1)1)297bg.

Proof:

Without loss of generality we assume that> 2. Since it only induces a polynomial blow up, we also
assume that there is a single denominator, denoted foy the rationals occurring in updates.

Let b, be the number of bits of an integer occurring in some expradsefore operations of level-k are
performed. We establish a relation betwégmandb, 1. At leveln — k, step 1 involves a normalization
on guards. Thus a numerator is multiplied by a denominat@raduce the new integers leading to a
number of bits2b,. For an expression that was already present,jng, its coefficients are modified
in order to get a common denominator by taking the produchefdriginal denominators. After this
transformation the maximal number of bits is boundedby- & + 1)by.

LetC = >, aiz; + b be an expression built after step 2.(a). Examining the sisdee updates,
the coefficients; can be expressed &S ;. [, ca,; WhereD is the set of subsets df,...,n — k}
containing: andc, ; are either coefficients of the updates or coefficients of gmesssion built before
this step. The same reasoning applies.t@efore summing the products ouwérc D, the integers are
transformed in order to get the same denominator by muitiglgvery denominator (and corresponding
numerator) by’ with 0 < i < n—k. So the maximal absolute value of the numerator of such dicieett

is bounded byzr—k (2(n—k+1)bi yn—k+lg(n—k)bo < (92bi+1)(n—k+1)* \which implies a maximal number
of bits equal ton — k+1)2(2b, + 1) for the numerators of the;’s andb. The maximal absolute value of
the denominator of such a coefficient is less thaift—#+ 1) )n—k+12(=k)bo which implies a maximal
number of bits bounded biy» — k + 1)2(2b;,) for the denominators of the’s andb.

At step 2.(b), the differenc€[u] — C’[u] requires to compute the Icm of two denominators (bounded by
their product). So the difference operation leads to a bqund k + 1)?(4b;, + 2) for the numerators of
its coefficients andn — k + 1)2(4by,) for the denominators.
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The final step 2.(b) consists in multiplying a numerator amt@ominator of some coefficients leading
to aboundn — k + 1)2(8by, + 2) < (n — k + 1)%(9by) for by, 1, which yields the desired bound. O

3.2. Construction of the Class Automaton

In order to analyze the size of the class automaton definexvbale recall an adaptation of a classical
result about partitions ot-dimensional Euclidean spaces.

Definition 3.4. Let { Hy }1<x<m be a family of hyperplanes d&”. A regiondefined by this family is
a connected component Bf* \ Ulgkgm H;.. An extended regiodefined by this family is a connected
component of \,c; Hi \ Uyg; Hi Wherel C {1,..., m} with the convention thaf), .y ). = R".

Proposition 3.5.
1. [21] The number of regions defined by the fam{ilif), }1 <<y, is at mosty 7" (7).
2. [4] The number of extended regions defined by the fagly. } <<, iS at most:

> oo () 2020 (7)) < em™
Theorem 3.6. The untimed language of an ITA is regular.

Proof:
Starting from an ITAA, and handling auxiliary clocks, we build a finite automatdriah is time abstract
bisimilar to the transition systeffiy and thus accep@Sntime(L(A)).

Class definition. A state of the automaton, called class, is a syntacticaesgmtation of a subset of
reachable configurations. It is defined as a gaie= (¢, {=r}1<r<r(q)) Whereg is a state andk;, is a
total preorder oveEy, for 1 < k < A\(q). The classk describes the set of configurations:

[R]= {(q,v) | Vk < X(q), Vg,h € Ey, g[v] < hlv] iff g <4 h}

The initial state is the clasB, such that] Ry] contains(go, 0) and can be straightforwardly deter-
mined. The final states are all classes= (q, {=x}1<k<x(g)) With ¢ € Q.

Observe that fixing a state, the set of configuratifftjsof a non empty clas® is exactly an extended
region associated with the hyperplanes defined by the cosmpenf two expressions of sonig,. From

Lemma 3.2, adding allE,|'s gives an upper bound off + M)?" x UQ"2 for the total number of
expressions of any level. Hence an upper bound of the nunflefperplanes is obtained by squaring

this number, yielding H + )2 x 2" *" Using Point 2. of Proposition 3.5 with this value for
m, the number of semantically different classes for a givatess bounded by:

n n2
e2m" = 62(H —|—]\4)K2 ekt (@)}

whereK = 3", |Xi| < nM is the total number of clocks. Since semantical equalityben classes
can be tested in polynomial time w.r.t. their size [22], weiititly consider in the sequel of the proof
classes modulo the semantical equivalence.

There are two kinds of transitions, corresponding to discséeps and abstract time steps.



12 B. Bérard et al./ITA with Auxiliary Clocks and Parameters

Discrete step. Let R = (¢, {=r}1<i<r(q) @R = (¢, {=}, }1<k<r(y)) b€ two classes. There is a

p,a,u

transitionR < R’ for a transitiore : ¢ == ¢’ if there is soméq, v) € [R] and(¢’, ") € [R'] such that
(q,v) S (¢',v"). Inthis case, for alig,v) € [R] there is a¢’,v") € [R'] such thaiq,v) < (¢/,v'). We
first show how the firability condition can be decided by exaation of R and then howR' is defined
when the condition is satisfied.

firability condition. For a transitiore like above at level = A(g), write p = A ;. ; C;j ; 0. Since
we assumed rescaled guards, for evgrg; = az + >, a;xz; + b (With o € {0,1} andz in X,) or
Cj = z — 2" with 2,2’ € X,. In the first cas&”} = — >, ,a;7; — b andz belong toE, and in the
second case, 2’ € Ey both by construction. For eaghe .J, we define a condition depending oty .
For instance, in the first case if the constrainpirs C; < 0, we check thatvz =, C§, or if the constraint
in ¢ is C; > 0 we check thatez £, C} A C} <, az. The second case is handled similarly.

Successor definitionTo define class®’ we take into account both the current preorders and the
update of the transition that induces the “real” expresstorbe compared. Lét< \(¢') andg, h € E.

1. Eitherk < ¢, then by constructiory[u], h[u] € Ej, theng <} hiff g[u] <j hlu].

2. Ork > {,let D = g[u] — h[u]. Due to our restrictions on updates fox ¢, z;[u] can only be equal
tox; or -, ;o z; + B. ThusD can be written a$ >, , c;z; + d. We setC' = norm(D, ¢) and
write C' = axg + >, a;x; + b (with a € {0,1}). By constructionC’ = — >, _, a;z; — b € Ej.
Whenc¢, > 0 theng <} hiff az, <, C".

Whene, < 0theng <) hiff C" <, axy.

By definition of[ - ], we obtain:

e For any(q,v) €[R], if there exists(¢q,v) < (¢’,v") then the firability condition is fulfilled and
(¢',v") belongs tqR'].

o If the firability condition is fulfilled then for eacly, v) €[R] there existgq’,v") € [R'] such that
(q,0) = (¢, 0").
Time step. Let R = (¢, {=x}1<k<)(g)), With againl = X(¢). There is a transitiod: =~ Post(R)
for Post(R) = (¢, {=}}1<k<¢), the time successor @, which is defined as follows.
For every: < ¢, we definex,==;. Let ~ be the equivalence relatiof, N jgl induced by the
preorder. On equivalence classes, this (total) preordsorbes a (total) order. Lét be the equivalence
class containing.ct(q).

1. EitherV = {act(q)} and itis the greatest equivalence class. Thga =, (thus Post(R) = R).

2. EitherV = {act(q)} and it is not the greatest equivalence class. ebe the next equivalence
class. Thenx) is obtained by merging andV’, and preservings, elsewhere.

3. EitherV is not a singleton. Then we splitinto V' \ {act(q)} and{act(q)} and “extend"<, by
V\{act(q)} <} {act(a)}-

By definition of [ - |, for each(q,v) €[R], there existsl > 0 such thatq,v + d) €[Post(R)] and for
eachd with 0 < d’ < d, then(q,v + d') €[R] U [Post(R)].

From the properties above, this finite automaton acdéptame(L(.A)). 0
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Observe that if in Example 2.2, we add the forbidden tramsithen the saturation procedure will
produce the expressian —x1—1 in E; corresponding to the actual test for firing the rightmostgiton.
Unfortunately, the preorder of level 1 is just able to coneparto y; but not toy; + 1.

Theorem 3.7. The reachability problem for Interrupt Timed Automata isidable and belongs to 2EX-
PTIME. Itis in PTIME when the number of clocks is fixed and PEBAcomplete when the number of
levels is fixed.

Proof:

The reachability problem is solved by building the classprand applying a standard reachability
algorithm. The number of expressions in thg's is doubly exponential w.r.t. the size of the model (see
Lemma 3.2). The size of an expression is exponential wetsize of the model (see Lemma 3.3). So the
size of a class representation is also doubly exponentidlersize of the model. The size of the graph,
bounded by the number of semantically different classemlispolynomial w.r.t. the size of a class due
to Point 2. of Proposition 3.5. This leads to a 2EXPTIME coemjil. Observe that no complexity gain
can be obtained by a nondeterministic search without mglthe graph.

Again using these lemmas and Point 2. of Proposition 3.5nvthe number of clocks is fixed the size
of the graph is at most polynomial in the size of the problexading to a PTIME procedure.

On the other hand, when the number of levels is fixed, the dizectass representation is polynomial
while the number of classes is exponential (8@ Equation (1)). Thus a nondeterministic search can
be performed without building the graph, which yields a ctamijy in PSPACE. The PSPACE hardness
is a consequence of Proposition 2.7. O

Remarks. This result should be compared with the similar one for TAe Thachability problem for
TA is PSPACE-complete and thus less costly to solve thanTir Fixing the number of levels in ITA
yields the same complexity. Moreover, fixing the number otké does not reduce the complexity for
TA (when this number is greater than or equaB}avhile this problem belongs now to PTIME for ITA.
Summarizing, the main source of complexity for ITA is the menof levels and clocks, while in TA it
is the binary encoding of the constants [23].

4. Parametric interrupt timed automata

Parametric ITA are similar to ITA but they include polynotsiaf parameters from a sét, in guards and
updates. Given two sef§, GG, we denote byPol(F, G), the set of polynomials with variables i and
coefficients inG and byFrac(F, G), the set of rational functions with variablesfhand coefficients in

G (i.e. quotients of polynomials). Observe that (F, G) can be seen as the subset of polynomials with
degree at most one.

Definition 4.1. A parametric interrupt timed automatd®ITA) is atupled = (P, 3, n, Q, g, Qf, A\, X,
act, A), where:

e P s afinite set of parameters,

o all other elements are defined as for ITA except that expyrassappearing in guards or updates
belong toLin(X, Pol(P,Q)): in such an expression. .. , a.z+b, thea.’s andb are polynomials
over P with coefficients inQ.
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So an ITA is a PITA withP = (). When all expressions occurring in guards and updates are in
Lin(X U P, Q) (which can be seen as a subselLof (X, Pol(P,Q))), the PITA is said to badditively
parametrized In contrast, in the general case, it is caltadltiplicatively parametrized

As in the unparametrized case, updates operate on expresdimr instance, for clocks I =
{z1,z9}, parameters itP = {p1, p2,p3}, expressiorC = pozy — 2x1 + 3p; and the update defined
by 21 := 1 A z2 := p3x1 + p2, applyingu to C yields the expressio@'[u] = popsz1 + p3 + 3p1 — 2.
Note that the use of multiplicative parameters for clocks mesult in polynomial coefficients when
updates are applied. Hereslock valuationis a mapping : X — Pol(P,R). For a valuatiorv and an
expressiorC' € Lin(X, Pol(P,Q)), v(C) € Pol(P,R) is obtained by evaluating’ w.r.t. v. Given an
updateu and a valuatiorv, the valuatiorw([u] is defined byv[u](z) = v(C,) for z in X if x := C, is
the update for in v andv[u|(x) = v(x) otherwise. For instance, |&f = {z1, 22, 23} be a set of three
clocks. For valuatiom = (2ps, 1.5, 3p?) and update: defined byr; := 1 A 23 := pyz3 — 21, applying
u to v yields the valuation|u] = (1, 1.5, 3p3 — 2ps).

A parameter valuatioris a mappingr : P — R. For a parameter valuatiom and an expres-
sionC € Lin(X,Pol(P,Q)), n(C) € Lin(X,R) is obtained by evaluating’ w.rt. =. If C €
Pol(P,Q), thenw(C) € R. Given a parameter valuation, a clock valuationv and an expression
C € Lin(X,Pol(P,Q)) we writer,v = C 1 0 whenr(v(C)) > 0.

Given a parameter valuationand a PITAA, substituting the parameters by their value according to
w yields an ITA, denoted byl (7), where the coefficients of clocks areltn So the semantics oA w.r.t.
parameter valuatiom is defined by the (timed) transition systefm ). A stateq is reachable frong,
for valuationr if ¢ is reachable from in A(m).

Z2 T1=p1

x1 + par2 =2 1 + paxo = 2
(=) b sl

1 <p,a A~ L 9T
ren zy = (p1 — 4p3)T1 + p2 2~/f ——————
& X1
(1) 15

(a) A PITA A, with two interrupt levels (b) A possible run ind; for «

Figure 5. Anexample of PITA and a possible execution

Example 4.2. A PITA A is depicted in Figure 5(a), with two interrupt levels. Evéyeli has only a
main clockz;. Fixing the parameter valuatiornt p; = 5 andp, = —1, the run(qy, 0, 0) 4 (q1,4,0) &
(g2,4,0) 3 (q1,4,2) LN (g2,4,3) is obtained as follows. After staying ip for 4 time units,a can
be fired and the value of; is then frozen in statg,, while x5 increases. Transitioh can be taken if
x1 + pexo = 2, hence forre = 2, after whichz, is updated tare = (p; — 4p§)4 + po = 3. A geometric
view of this run w.r.t.w is given (in bold) in Figure 5(b). d

Reachability problems. We consider several reachability problems for this classt A be a PITA
with initial stateqy andq be a state ofA. The Existential (resp. Universal) Reachability Problersks



B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 15

whethergq is reachable fromy, for some (resp. all) parameter valuation(§copedvariants of these
problems are obtained by adding as input a set of parameligmticms given by a first order formula
over the reals or a polyhedral constraint. TRebust Reachability Probleasks whether there exists a
parameter valuatiom and a reak > 0 such that for allr’ with |7 — 7’| < ¢, ¢ is reachable from

qo for ' (where||7||c = mazpep|m(p)]). When satisfied, this property ensures that small paramete
perturbations do not modify the reachability result. It iscarelated to parameter synthesis where a
valuation has to be enlarged to an open region with the saachability goal.

5. Reachability analysis with additive parametrization

We start with the easier particular case of additive paremadion,i.e., expressions occurring in guards
and updates are linear expressions on clocks and paramétereational coefficients. We first prove

that the existential parametrized reachability problem ba reduced to the reachability problem on
(non-parametrized) ITA.

Proposition 5.1. For any additively parametrized PITA, with set of stateg) and initial statey, there
exists a (non-parametrized) ITA’, with set of stateg)’, containing@, and initial statey, fulfilling the
following equivalence. For every € Q:

there existsr such thay is reachable frong in A for r iff ¢ is reachable frong, in A’.

Proof:

For any additively parametrized PITAwith n levels, and: parameterg;, ..., px, we build an equivalent
ITA A" with n + k& + 1 levels and then use the complexity results of section 3. Bheteuction is shown
in Figure 6.

The ITA A’ consists of a “prefix” (the first + 1 levels) connected to the original automatdr{with its

n levels). The main clocks of levelsto k£ encode the parameteps, . . ., p, of A. In order to simplify
further references, we also call these clogks.., pi. Similarly, the main clock of the first level is called
po. None of thesé: + 1 first level has any auxiliary clock. Since level numberststai, each clockp;

is active in level + 1 in (the prefix of).A’.

In the first level of A’, clock py is active. After some arbitrary time, a transition, with neagd, is taken
to the state of the second level and clgglis frozen. In the second level, clogk is active and the same
procedure continues: after some time a transition to thelaesl is taken, and clock; is frozen, and so
on for the firstk levels. In these first levels, any run ofd’ chooses a non-negative fixed value for the
clockspy, ..., pr_1, and hence almost for the parametersdofParameters may however have negative
values so levek + 1 serves as a technicality to choose the final sign of the quoreing clocks. This is
done by assigning;_; or —p;_; to clockp;, between each two consecutive states, fof all[1..x — 1],

in a run without any delay in any of the states of lekel 1 (the other runs, with delays in the states
of level k + 1, overlap on those corresponding to other parameter vahstnd are therefore not a
problem). In the last state of levél+ 1, the frozen clockg, ..., pr can therefore have any arbitrary
real value assigned. The automaton finally proceeds to ttial istate of A keeping the values of these
additional clocks. Since they correspond to levels lowantany level ofd they can be used liberally
enough in the guards and updates/4hfThe obtained automatad’ is an ITA and parameters of are
modeled as clocks inl’.
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n levels {

Pk ‘= Pk—-1  Pk—1 ‘= Dk—2 P1:= Do true
true| Pk = —Pk—1 Dk—1 ‘= —Pk—2 P1 = —Po
Pk—1
k+1levels
p1
true
po

Figure 6. An equivalent ITAL

Let X be the set of clocks inl and X' be the set of clocks i’ (thus X’ = X U {py, ..., pr }). For any
subseft” C X and a valuation, we define the restriction afto Y as the unique valuationonY such
thatv)y (z) = v(z). We now show that a configuration= (¢, v) is reachable ind for some parameter
valuationr (i.e., in A(n)) iff there exists some configuratiori = (¢’,v’), such thaty’ = ¢ and for all
x e X, v|’X(x) = v(x), is reachable ind’.

On the one hand, if there exists a path to reslcim A’, then by construction this path goes through a
configuration(qo, vo) such thatqo, vo| x ) is the initial configuration ofA (i.e. vy, x is the zero valuation).
Let 7 be the parameter valuation such that foriall 0, 7(p;) = vo(p;), thens is reachable ind(r).

On the other hand, let be a parameter valuation amdbe a clock valuation oX such that(q, v) is
reachable ind(r). Then using an appropriate run in the prefix one rea¢figs,) with vy x is the zero
valuation and for alt > 0,vy(p;) = 7(p;). Afterwards this run is extended to reaghy mimicking the
run of A(m). 0

Using Proposition 5.1 and Theorem 3.7, we can now give the mesult of this section.

Theorem 5.2. The (polyhedral scoped) existential reachability probisrdecidable for additively pa-
rametrized PITA, and belongs to 2EXPTIME. It belongs to PEIMhen the number of clocks and
parameters is fixed. It is PSPACE-complete when the numblerels and parameters is fixed.

Proof:

Following Proposition 5.1, every additively parametriZelTA can be transformed into an equivalent
ITA, and the (unscoped) reachability problem of additiverametrized PITA is thus reduced to the
reachability problem of ITA, already known to be decidablehe complexity results follow from the
complexity results for ITA given in Theorem 3.7, since theesof A’ is only linear in the size of4: if
there aren levels, N clocks, k parametersy states ang transitions inA, the number of levels, clocks,
states and transitions jA’ aren + k + 1, N + k + 1, x + 2k + 1 andy + 3k + 1, respectively.

With a polyhedral scope, given as a finite union of polyhedra,need to guard the transition between
the last state of the prefix and the initial state/fin A’, by the given polyhedra (each polyhedra of the
union could guard a different transition, as well). O
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6. Reachability analysis with multiplicative parametrization

We now focus on the multiplicative case and this section vetil to the proof of the following result:

Theorem 6.1. The (scoped) existential, universal and robust reactalpitoblems for PITA are decid-
able and belong to 2EXPSPACE. The complexity reduces to E&P&hen the number of levels is
fixed.

We first informally present the main ideas underlying theofiravhich is based on the proof of
Theorem 3.7 but extends it by the handling of parameters.

The first novelty with respect to the unparametrized caseeisieed to build from the PITA a finite
partition of the sefR” of parameter valuations. In addition the non emptiness ottean II of this
partition should be decided. We will establish that the &eofi this partition can be specified by a
satisfiable first-order formula ovéR, +, x ), with the parameters as variables. Intuitively, insifiéhe
gualitative behaviour of4 does not depend on the precise parameter valuation. In adetep, we
build a finite automatorR (II) for each non emptyl. In R(II), a stateR, again called a class, defines
a set[R], of reachable configurations Gfy(.) for a valuationr € TI. The transition relation oR(II)
contains discrete steg® < R’ (for a transitione of .A) and abstract time ste@® — Post(R) with the
following properties:

Discrete Step (DS): If there is a transitiorR < R’ in R(IT) then for eachr € II and eact{q, v) €[R].
there existgq’,v') € [R'], such that(q,v) < (¢, v').

Conversely, letr € ITand(g,v) €[R]. If there exists a transitiofy, v) = (¢, v') in T then
for someR/, there is a transitio® < R’ in R(I1) and(¢’,v") belongs to[R'] .

Time Step (TS): Letw € I and(q,v) €[R],. There existsl > 0 such thatq,v +, d) €[Post(R)]~
and for each!’ with 0 < d’ < d, (q,v +4 d') €[R]x U [Post(R)].

Hence, we obtain a finite family of abstract time bisimulatiof the transition systenigy,), for all
parameter valuations, which gives the decidability result

The second novelty lies in the construction of expressiartheé sets{ Ej, },<,. These expressions
now contain polynomials of parameters and the main diffeeeinom the unparametrized case is the
normalization operation of an expressidi ., a;z; + b which now depends on the polynomial.

Example 6.2. Consider for instance expressipss + x1 — 2 which appear in automatad; of Fig-
ure 5(a) with a comparison t@ For a valuation wherg, = 0, a normalization should yield; — 2. If
p2 # 0, the operation should yield””;—f. In addition, the casg, # 0 should be split depending on the
sign ofps, since the operation could change the comparison operatolved in a guard. Therefore, we
also need to define a sBbl Par of polynomials appearing in the denominators like a

6.1. Construction of Pol Par and Expressions{ £ } <,

In the spirit of normalization, we define three operationserpressions, relatively to a levi] to help
building the elements if;, to which the active clock on leveél will be compared.
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Definition 6.3. Let & < n be some level and let’ be an expression idin(Xm«y4+1, Frac(P,Q)),
C= Zign a;x; + bwith ap, = ;—’; for somery, andsy, in Pol(P, Q). We associate with' the following
expressions:

e lead(C, k) =ry;
o if lead(C, k) ¢ Q\ {0}, comp(C, k) = >, aiz; + b;
o if lead(C, k) # 0 thencompnorm(C, k) = — >, otwi — b

ag

In the previous example,omp corresponds t@; — 2 while compnorm corresponds tel’;—f. More
examples are given after the constructiorPoef Par and{ E}, }<,. This construction proceeds top down
from leveln to levell after initializing Pol Par to () and Ej, to X, U {0} for all k. When handling level
k, we add new terms t&; for 1 < < k.

1. Atlevelk the first step consists in adding new expressions;tand new polynomials t&ol Par.
More precisely, leC be any expression occurring in a guard of an edge leavingte ctdevel
k. We addlead(C, k) to PolPar when it does not belong tQ and we addcomp(C, k) and
compnorm(C, k) to Ej when they are defined.

2. The second step consists in iterating the following pdace until no new term is added to afy
forl <i<k.

(a) Letqg 225 ¢/ with A(¢) > k and\(¢/) > k, and letC' € Ej. Then we add’[u] to Ej.

(b) Letq 2%% ¢ with A(¢) < k andA(¢) > k. Let{C, C’'} be a set of two expressions k,.
We computeC” = Clu] — C'[u], choosing an arbitrary order betwe€handC’. This step
ends by handling”” w.r.t. A(¢) as done folC' w.r.t. k in step 1 above.

Example 6.4. For the automaton of Figure 5(a), initially, we hael Par = 0, Ey = {x1,0} andFE; =

{z2,0}. Starting with levelk = 2, we consider in step 1 the expression = pozs + 1 — 2 appearing
in the guard of the single edge leavipg We computelead(Cs,2) = pa, comp(Cs,2) = z1 — 2, and
compnorm(Cy,2) = —%—;2. We obtainPolPar = {p2} andEy = {z2,0,z1 — 2, —%52}. For step
2.(a) and the same edge, we apply its update to the expressidf; that containz,, add them taF,,

and thus obtaify = {.TQ, 0,1 — 2, _x;;Q’ (p1 — 4;0%)561 +p2}.

In step 2.(b), considering the single edge frgmto ¢», we compute the differences between any
two expressions fronk, (after applying update which means here substituting §-.tand lettingz
unchanged) and the resulting expressib&sd, comp andcompnorm, which yields:

PolPar = {pa,ps + 1,1 — p1 + 4p3}, 1 +pps = 4p3}, .
By = {@1,0,2, 25, =2 = pa, G, B2, o ),

We proceed with level. Since expressio@; = x1—p; occurring in the guard of the considered edge
has leading coefficient equal to 1, there is no term to ad@did’ar. We addcompnorm(Cy,1) = p; to

E1, hence the final result is:

PolPar = {p2,p2+1,1—p1+4p3,1+ pips — 4p3}
_ 2(p2+1) 24y p3—2 2—p3
El = {x170,2,—T,_2 — P2, 1*p1+4p%7 2)2 ) 1+p1p234p37p1}

By = {22,0,21 -2, —J"gQ, (p1 — 4p3)x1 + pa} .



B. Bérard et al. / ITA with Auxiliary Clocks and Parameters 19

Lemma 6.5 below is used for the class automata construdti®proof is obtained by a straightfor-
ward examination of the above procedure.

Lemma 6.5. Let C belong toE), for somek andc = % be a coefficient of' with s ¢ Q. Then there
exists polynomials?, ..., P, € PolPar and some constant € Q \ {0} such thats = A.[[,,<, P;.

Lemma 6.6 is the parametrized version of Lemma 3.2 and ittt proof is almost identical.

Lemma 6.6. For a PITAA, let H be the number of constraints in the guartisthe number of updates
in the transitions (assuming > 2) andM = max{|Xx| | 1 < k < n}. The construction procedure of
{Ei}r<n terminates and the size of evel, is bounded by H + M)2" ™" x y2"" ™",

Lemma 6.7 is the parametrized version of Lemma 3.3. Howewweshe coefficients are now
rational functions, the degree of the polynomials must bisanalyzed.

Lemma 6.7. Let. A be a PITA, and lek; be the maximal total number of bits for integers of an expogss
in A andd, the maximal degree of polynomials, occurring4n If b is the total number of bits of the
integer constants anéithe degree of a polynomial, occurring in an expressioi?afPar or someEy,
thend < ((n + 1)1)%(n + 1)23" by andd < (n + 1)!5"dp.

Proof:

W.l.0.g. we assume that there is a single denominator forafi@nals occurring in updates since it only
induces a polynomial blow up.

Assume that before the level— & is performed, the total number of bits for integers occgriimsome
expression i$;. We establish by induction that < Hle(n+2—j)2(k+ 1)27+2k+1p,. The basis case

is trivial. Atleveln — k, step 1 does induces an increasing only when operatiapnorm is applied on a
original guard whose coefficients are polynomials (instefa@tional fractions). After this operation the
number of bits is bounded Hy. — k& + 1)by < (n — k + 1)bi. For an expression that was already present
in E,_y, its coefficients are modified in order to get a common denatoimby taking the product of the
original denominators. After this transformation the kotamber of bits is bounded biy: — k + 1)2by.
Examining one update applied on an expression, the totabauof bits of the coefficients of the updated
expression is increased by — k + 1)by. Since an expression built after step 2.(a) has been obitaine
less thare”~* updates, the total number of bits is less tian- k + 1)2b;, + 2" *(n — k + 1)by.

At step 2.(b), the differenc€[u| — C’[u] requires to compute the Icm of two denominators (bounded by
their product). So the difference operation leads to a bdund k + 1)4b;, + 2" ~*+1(n — k 4 1)bg for

the total number of bits.

The final step 2.(b) consists in multiplying a numerator amtaominator of some coefficients leading
to a bound:

(n — k+ 1)2(4by, + 2" 1by) < (n — k+1)? (4 Hle(n +2—§)%(k 4 1)2"+2+1py 4 2”_"7“()0)

2
(Hfill(n +2 - j)) ((k+ 1)2n+2(k+1)+1bo + 2n+2(k+1)+1b0)

(It +2 - ) (k4 2) (2200500

IN

for the number of bits.
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Assume that before the level- k is performed, the degree of a polynomial (of parametersjmocg in
some expression is at mast. We establish a relation betweép anddy 1. At leveln — k, step 1 does
not induce any increasing when operatigsmpnorm is applied on a original guard whose coefficients
are polynomials (instead of rational fractions). More sely the numerators of rational fractions are
unchanged while the denominators are numerators of somimpseexpressions. For an expression that
was already present ifi,,_y, its coefficient are modified in order to get a common denotoimay taking

the product of the original denominators. After this tramsfation the maximal degree is bounded by
Let us examine an expressigh = » ., . a;x; + b built after step 2.(a). Examining the successive
updates, the numerator of coefficientan be expressed 33, [ jea Cd,j WhereD is the set of subsets

of {i,...,n—k} containing: andc, ; are all coefficients of the updates (i.e. coefficients of potyials)
except one coefficient of the expression built before thdp.sThe same reasoning applies to the constant
coefficient of the expression. So the degree ofdf®andb is bounded by(n — k + 1)(dx + dp). The
denominators are denominators of expressions previousltyso bounded byn — k + 1)dy.

At step 2.(b), the differenc€[u] — C’[u] requires to compute the Icm of two denominators (bounded by
their product). So the difference operation leads to a bdund k + 1)(2dy, + dy) for the numerators of

its coefficients andn — k + 1)2dy, for the denominators.

The final step 2.(b) consists in multiplying a numerator amttaominator of some coefficients leading
to a boundn — k + 1)(4dy + dp). Sody1 < (n — k + 1)5dy, yielding the desired bound. 0

We now explain the partition construction. Starting frore finite setPol Par, we split the set of
parameter valuations in parameter regions specified byethdtrof comparisons t0 of the values of
the polynomials inPol Par. For instance, for the sétol Par computed above, the inequalitips < 0,
p2+1=0,1—ps—4p? = 0andl + p1p; — 4p3 = 0 define a sepreg of parameter valuations. The
parameter regiopreg is non empty since it containg = 5 andp, = —1. The set of such constraints
yielding non empty regions can be computed by solving artentisl formula of the first-order theory
of reals.

Then, given a non empty parameter regjoteg, we consider the following subset éf;, for 1 <
k < n: Eppeg = {C € Ej | the denominators of coefficients 6f are non null inpreg}. Due to
Lemma 6.5, these subsets are obtained by examining thdispgon ofpreg.

Observe that expressionsi ;.. \ X1 belong toFrac(P, Q) and that, depending on the parameter
valuation, the values of two expressions can be differeottjered. We refingreg according to a
linear preorder<; on E ., \ X1 Which is satisfiable withirpreg. We denote this refined region by
IT = (preg, <1) and we now build a finite automatd®(1T).

6.2. Construction of the Class Automata
In this paragraph, we fix a non empty parameter regloa (preg, <1).

Class definition. A state of R(II), called a class like before, is defined as a gaie (g, { =k }1<k<i(q))
wheregq is a state of4 and =<, is a total preorder oveEy, ,,.q, for 1 < k < A(¢). For a parameter
valuationr € II, the classk describes the following subset of configurationg i,

[Rl=={(q,v) | Vk < A(q) Vg,h € El preg, m(v(g)) < m(v(h)) iff g <k h}
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The initial state ofR(II) is the classRky, such that(qy, 0) €[Ro]~, which can be straightforwardly
determined by extending; t0 Ey ;.. With z <y 0 and0 =; z for all z € X, and closing=; by
transitivity.

Transitions inR(II) consist of the following discrete and time steps:

Discrete step. Let R = (¢, {=i}1<i<a(g) and R’ = (¢, {=}}1<i<)(¢)) be two classes and let :

g 2% ¢ be a transition ind. There is a transitiorR < R’ if for somer € II, there are some

(q,v) €[R], and(¢’,v") €[R'], such that(q,v) = (¢,v'). In this case, we claim that for all

(q,v) € [R]. there is a¢',v") € [R']» such thatq,v) % (¢/,v"). For this, we prove in the sequel that
the existence of transitioR = R’ is independent ofr € II and of (¢, v) € [R],. It can be seen as

follows.

We notel = A(q) for the level of transitiore.

Firability condition. We write p = A ;. ; C; =; 0 with, for eachj, eitherCj = a,z + 3>, ,a;z; +b
(with z € X;) or C; = z — 2’ with z, 2’ € X,. We consider three subcases of the first case.

e Subcasen, = 0. ThenC; = comp(C},{) € Ey,req and using the positions ofandC; w.r.t. <,, we
can decide whethef’; t; 0.

e Subcasen, € Q \ {0}. Thencompnorm(C}, /) € Ey ;4. hence using the sign af and the positions
of z andcompnorm(C}, £) w.r.t. <,, we can decide whethér; >q; 0.

e Subcasea, ¢ Q. According to the specification gfreg, we know the sign ofi, as it belongs to
PolPar. In casea; = 0, we decide as in the first subcase. Otherwise, we decide &% irecond
subcase.

The second cas€; = z — 2’ is handled similarly.

Successor definition.To build the successoR’ = (¢, {=/}1<i<x(¢)) Of R, we have to define the
preorders{ =i} <i<x(y)- Letk < A(¢') andg, h € Ej, pregy-

1. Eitherk < ¢, by step 2(a) of the constructiogu], h[u] € Ej, preq. Theng =i hiff glu] < hlu].

2. Ork > {,letD = glu] — hlu] = _,., a;z; + b. There are again three subcases.

e Subcasea) = 0. ThenD = comp(D,{) € Ep 4, SO We can decide whethé&r? <, 0 and
g =<} niff D =<,0.

e Subcasey, € Q\ {0}. Thencompnorm(D, £) € Ey 4. There are four possibilities to consider.
For instance ifzy > 0 andzy <, compnorm(D, ¢) theng’ <) h'. The other cases are similar.

e Subcasea; ¢ Q. Let us writea, = Z—i According to the specification gfreg, we know the
sign ofa, sincer, belongs taPol Par andsy is a product of items itPol Par. In casea;, = 0, we
decideg’ <) K’ as in the first case. Otherwise, we decide in a similar way #seirsecond case.
For instance ifzy > 0 andzy <, compnorm(D, ¢) theng’ <) h'.

succ

Time step. For R = (q,{=kr}i1<k<¢), there is a transitorR —— Post(R), where Post(R) =

(¢, {=}. }1<k<r) is the time successor @, defined as follows. Intuitively, all preorders beldw= \(q)

are fixed, so</==, for eachi < ¢. On level/, the value of the active clock simply progresses along the
one dimensional time line, where the expressions are atdélere precisely, let- be the equivalence
relation=<, N 5;1 induced by the preorder. A-equivalence class groups expressions yielding the same
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value, and on these classes, the (total) preorder becontwala ¢rder. Letl” be the~-equivalence class
containingact(q).

1. EitherV = {act(q)}. If V is the greatest--equivalence class, thef,==<, (and Post(R) = R).
Otherwise, lel”’ be the next--equivalence class. Thet, is obtained by merginy = {act(¢)}
andV’, and preservings, elsewhere.

2. OrV is not a singleton. Then we sphif into V' \ {act(q)} and{act(q)} and “extend”<, by
V\{act(q)} <} {act(q)}.

To conclude, observe that the automafofil) defined above has the propert{€s)and(TS) mentioned
previously, and is hence a finite time abstract bisimulatibfi4 -, for all parameter valuations < II.

Example 6.8. The construction ofR (II) is illustrated on the automatad, from Figure 5(a), for the
regionIl = (preg, <1), wherepreg was defined above by, < 0,p2 +1 = 0,1 — py — 4p? = 0 and
1+pip2 — 4p§ = 0. For =<y, we first remove fron¥’; the expressions with null denominatar; .., =

{z1,0,2, —%, —2 — pa, p%;Q,pl} and we consider the ordering @ ,,., \ {x1} specified by the
line below.

-2 ‘—pg 0, p3—2 2 P1

 2(pa+1) bz
P2

A part of the resulting class automat@®II), including the run corresponding to the one in Fig-
ure 5(b), is depicted in Figure 7, where dashed lines inditabstract) time steps.

The initial class iskRy = (qo, Zo) WhereZ, is =<, extended withr; = 0. Denoting (slightly abu-
sively) extensions with the symbgl, the time successors of the initial state are obtained byimyas

2_ 2_
to the right along the lineR} = (g0, =1 A0 < 71 < pj)f), R% = (qo, =1 Ay = p;f),...,up to
RY = (qo, =1 A 71 > p1). Transitiona can be fired from all classes up & (but not fromR$ and R}
where the constraint; < p; is not satisfied). In Figure 7, we represent only the one fiyw= (g0, Z1)

with Z; =<1 A 2 < z1 < p1, corresponding to the run in Figure 5(b).

Along this run, the orderingss is determined by regiofil and Z;, on Es preq \ {z2} = {0,217 —
2, — 22 (p1 — 4p3)x1 + po}. Itis illustrated on the line below.

(p1 — 4p3)x1 + p2

Tl — 2,
_zi=2
P2

Firing transitiona produces the clas®; = (¢1, Z1, <2 Azo = 0). Transitiond is then fired from the

(second) time successor Bf for whichx, = —x;—f. d

We are now in position to prove Theorem 6.1.
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b q1, 21,22 A
z = (p1 — 4p3)z1 + po

A
|
|
1

Rl a i
0 q1, 21,22 N q1, 21,22 A\
xr1—2
' 0<CL’2<—110—2 x2>(p1—4p%)9€1 + D2
. )\\ I k\
RS a q1, 21,22 N\
) =0
R§

Figure 7. A part ofR(II) for A,

Proof:
Starting from a PITAA, we use the above construction, whose termination is gteedrby lemma 6.6,
to design a nondeterministic procedure for existentiatmahility of a given state:

1. Build PolPar and{Ej}1<i<n.

2. Guess a parameter regi@reg, <1).

3. Check non emptiness ¢freg, <1).

4. Build the class automatoR(preg, <1) and check whethey occurs in some class.

For universal reachability af, in step 4, one checks whethgdoes not occur in any class. This gives
us a nondeterministic procedure for the complementaryl@nobFor robust reachability in step 2, one
guesses an open parameter regien only specified by strict inequalities.

We now analyze the complexity of these procedures. Due tonkesr6.6 and 6.7, the first step is per-
formed in 2EXPTIME and in PTIME when the number of clocks i®fix Guessing a parameter region
has the same complexity.

The satisfiability problem for a first-order formula is in P&FE [24]. Due to lemma 6.6, the number
of (in)equalities specifying the region fulfills = O((H + M)?" x U2"2) with the previous notations.
Let b be the total number of bits of the integers occurring in a tairg of the specification of the region.
Due to lemma 6.76 < ((n + 1)!)%(n + 1)23"*1by. Letd be the maximal degree of the polynomials
occurring in the specification of the region. Due to the saan&had < (n+ 1)!5"dy. So the emptiness
problem for a region is decided in 2EXPSPACE which becomd?ACE when the number of levels is
fixed.
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Observe now that the class automaffpreg, <) is isomorphic to the class automaton of the UTr)
that would be obtained fromal with any parameter valuation in IT = (preg, <1). It has been proved
in Section 3 that this automaton can be built in polynomialetiw.r.t. the size of the representation of
any class. As the size of the representation of a class of A Rd§ the same order as the one of the
corresponding ITA (dominated by the doubly exponential hanof expressions) and the construction
algorithms perform similar operations, this yields a coemply of 2EXPTIME and PSPACE when the
number of levels is fixed.

So the dominating factor of this nondeterministic procedathe emptiness check done in 2EXPSPACE.
By Savitch’s theorem this procedure can be determinizeld thié same complexity. O

7. Conclusion

While seminal results on parametrized timed models ledtle hope for decidability in the general
case, we provide here an expressive formalism for the asalfparametric reachability problems. Our
setting includes a restricted form of stopwatches and moiyals in the parameters occurring as both
additive and multiplicative coefficients of the clocks iragds and updates. We plan to investigate which
kind of timed temporal logic would be decidable on PITA.
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