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Abstract— Active diagnosis of a discrete-event system consists
in controlling the system such that faults can be detected. Here
we extend the framework of active diagnosis by introducing
modalities for actions and states and a new capability for
the controller, namely observing that the system is quiescent.
We design a game-based construction for both the decision
and the synthesis problems that is computationally optimal.
Furthermore we prove that the size and the delay provided by
the active diagnoser (when it exists) are almost optimal.

I. INTRODUCTION

Diagnosis and control are important tasks in managing
discrete-event systems (DES). In this paper, we contribute
to the study of active diagnosis, which combines the two
aspects: In a system whose events are partially observable,
a controller observing an ongoing execution is charged with
diagnosing whether a certain event, usually called fault and
not directly observable, has happened or not. To this end,
the controller may intervene and restrict the behaviour of
the system in precisely defined ways. The active-diagnosis
problem is to determine whether it is possible to control the
system in such a way that diagnosis is always possible and,
if so, synthesize a corresponding controller.

The active-diagnosis problem for DES was first studied
in [1]. More recently, [2] proposed a new construction for
active diagnosers based on automata and game theory that
is provably optimal w.r.t. the size of the computed controller
and the computational complexity for building it. Moreover,
a number of variations have been studied. They range from
the selection of minimal sets of observable labels that make
the system diagnosable [3], to online aspects that either turn
on and off sensors [3], [4] or modify an action plan [5] in
order to reduce the amount of ambiguity, and to the case of
probabilistic systems [6]. See also [7] for an extensive survey
of DES problems.

In this work, we extend the frameworks of [1], [2]. Most
importantly, we consider the case where the controller is
able to observe that the system is quiescent and to exploit
such observations for active diagnosis. While we believe that
such an extension is natural and worth studying, it has a
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Fig. 1. Examples of LTS. In (c), lazy events are indicated by dashed arrows
and idle states by a double boundary.

suprisingly large effect on the formal framework for active
diagnosis. Notably, one of the tasks of the controller is, given
the stream of observations σ, to decide whether σ indicates
that a fault has happened. In [1], [2], this decision depends
on σ alone, whereas in our framework it also depends on the
control exercised during the execution that produced σ.

We will present details of the model together with mo-
tivating examples in Section II. Section III presents our
framework for active diagnosis, while in Section IV we
show how to solve the active-diagnosis problem with the
aforementioned additions, and Section V establishes worst-
case lower bounds for certain aspects. For lack of space,
some proofs have been omitted from this paper. They are
published in [8], together with a few supplementary results.

II. THE MODEL

Before giving a formal definition of our framework, we
discuss some motivating examples for active diagnosis and
our extensions. As in [1], [2], we consider systems whose
events can be observable or unobservable; a controller ob-
serving an ongoing execution of the system will only see its
observable events. Consider Figure 1 (a). As in the examples
that follow, all events except f and u are observable, where
f represents the fault. In a purely passive diagnosis setting,
that system is considered undiagnosable: an observer seeing
only a stream of bs cannot decide whether f has happened or
not. However, suppose that event b is controllable, meaning
that the observer can enable or disable it. Then, after seeing
a number of bs, the observer may temporarily disable b, and
the next observable action of the system must be a or c,
revealing whether the fault has happened or not.

The first of our extensions w.r.t. [1], [2] concerns the
ability of the diagnoser to deal with temporary quiescence



of the system. The concept of quiescence is well-established
and used in conformance testing, see e.g. Tretmans [9]–[11],
where it is used to observe that the system under test will not
produce any output unless provided with additional input.

We shall construct controllers with the capacity to observe
that the system is quiescent and react by re-enabling some
events. Quiescence can be exploited in active diagnosis, as
the example in Figure 1 (b) shows, where only c is control-
lable. That system is considered non-actively-diagnosable in
the frameworks of [1], [2], which are language-based: the
upper half of the system can only do (a prefix of) fbc, which
is undistinguishable from a sequence possible in the lower
half; yet, a controller cannot prevent the system from entering
the upper half with uncontrollable actions fb. Suppose now
another approach in which a controller blocks c after seeing
b and then has the capacity to observe that either d happens
(i.e. the system is in q′) or that the system is quiescent
(i.e. the current state is q). The controller can then issue
the corresponding diagnosis verdict and, e.g., re-enable c to
let the system continue.

Quiescence is semantically different from extending the
system with some event δ symbolising “passage of time”.
While, e.g., Figure 1 (b) can be made actively diagnosable
in the sense of [1], [2] by adding a δ-loop to q, our
method has at least two advantages: First, it does not require
the designer of a system to add artefacts that are merely
required by deficiencies of some analysis method. Secondly,
such a transformation is not always possible. In fact, the
long version of this paper [8] shows an example that is
actively diagnosable in our framework but not in [1], [2],
and no addition of δ-loops can render it so, even when δ
is considered controllable. Treating quiescence directly thus
genuinely extends the power of active diagnosers.

Moreover, quiescence allows us to meaningfully distin-
guish two types of events that we call eager and lazy.
An eager event enabled in some state eventually happens
unless another event pre-empts it; typically, eager events are
those happening during the normal course of the system. By
contrast, a lazy event represents an entirely non-deterministic
action, e.g. a fault or input from the environment. Thus,
quiescence can be observed in a state even when one or
more lazy actions are enabled.

Figure 1 (c) represents a three-stage production process
with actions a, b, c, all controllable. The fault f is lazy, indi-
cated by dashed arcs. If all goes well, the system proceeds
from state 1 to state 4 with abc. However, steps a and b can be
erroneous, which must be tested for before proceeding with b
resp. c. E.g., after seeing a, the system could be in states 2 or
6, and the controller will temporarily disable b to see whether
it observes a′ or quiescence. However, if the system is in
state 2, this temporary disabling does not necessarily provoke
the lazy event f . In our framework, the system can reach
state 4 without fault while enabling a controlling observer
to verify that the execution was fault-free. By contrast, [1],
[2] consider all events to be eager; for them, the system is
actively diagnosable but at the price of eliminating all non-
faulty executions.

Finally, notice that state 4 in Figure 1 (c) has a double
boundary. We use this to indicate so-called idle states, and
we forbid controllers to observe quiescence forever unless the
system is in such an idle state. In the example, this allows the
designer of the system to formulate the requirement that an
active diagnoser either detect a fault or allow the production
to run to completion. This concept generalizes the liveness
requirement made in [2], where all runs must be infinite.
We remark that a similar concept called marked states is
discussed for controllability problems in [7]. However, in
our case quiescence may be a temporary state of the system
from which it may re-awaken, e.g. following a lazy event
triggered by the environment.

III. DEFINITIONS

This section serves to provide formal notations related to
discrete-event systems and active diagnosis. As mentioned
in Section II, we shall study discrete-event systems whose
events, here called actions, have additional properties, such
as being observable, controllable, or eager, and we will
successively introduce the notions related to these concepts.
Given a set X , we use the standard notations X∗ (resp. X+,
Xω) to denote the finite (resp. non empty finite, infinite)
sequences over X; the empty sequence is denoted ε, and
the length of a finite sequence σ by |σ|. Given a sequence
σ = a1 · · · an ∈ X+, last(σ) denotes an. Given a sequence
σ = a1 · · · ∈ X∗ ∪Xω and 1 ≤ i ≤ j ≤ |σ|, σ[i] denotes ai
and σ[i, j] denotes ai · · · aj .

Labeled transition systems

We consider an extension of labeled transition systems:
Definition 1: A labeled transition system (LTS) is a tuple

A = 〈Q, q0,Σ, T 〉 where Q is a set of states with initial state
q0 ∈ Q, Σ is a finite set of actions, and T ⊆ Q × Σ × Q
is the set of transitions. A is deterministic if for every pair
q ∈ Q, a ∈ Σ there is at most one q′ such that 〈q, a, q′〉 ∈ T ,
and complete if there is at least one.

If 〈q, a, q′〉 ∈ T , we write q a−→ q′ and say that a is enabled
in q; for a deterministic automaton we also write T (q, a) =
q′. The set of enabled actions in state q is denoted en(q).
An infinite run over the word σ = a1a2 . . . ∈ Σω is an
alternating sequence of states and actions (qiai+1)i≥0 such
that qi

ai+1−−−→ qi+1 for all i ≥ 0, and we write q0
σ
=⇒ if such a

run exists. A finite run over w ∈ Σ∗ is defined analogously,
and we write q w

=⇒ q′ if such a run ends at state q′. A state
q is reachable if there exists a run q0

w
=⇒ q for some w.

Definition 2 (languages): Let A = 〈Q, q0,Σ, T 〉 be an
LTS. The finite and infinite language of A are defined by
L∗(A) = {w ∈ Σ∗ | ∃q : q0

w
=⇒ q } and Lω(A) = {σ ∈

Σω | q0
σ
=⇒}.

Partially observable controllable systems

We now define partially observable controllable systems
(POCS) on which we shall perform active diagnosis. Syn-
tactically, a POCS S is an LTS A enlarged with three binary
partitions: an action may be (1) observable (in Σo) or unob-
servable (in Σuo), (2) controllable (in Σc) or uncontrollable



(in Σuc), and (3) eager (in Σe) or lazy (in Σ`). We require
that unobservable actions are uncontrollable. Below, we shall
define the semantics of a POCS under a controller cont
as a new LTS Scont . Intuitively, during an execution of
system A, a controller may forbid a subset of the controllable
actions based on the observable actions seen so far, thereby
restricting the behaviour of A. This implies that A must
be convergent, i.e. there is no infinite run with a suffix of
unobservable actions: Lω(A)∩Σ∗Σωuo = ∅. Occasionally, the
control may lead to a situation in which the system reaches a
state where all non-blocked actions are lazy. In this situation,
either one such action occurs or the controller sees that
“nothing is happening”, represented by a special observation
symbol δ. We say that the system is in a quiescent state (not
to be confused with a deadlock state). The controller may
then once again change the set of allowed actions. The set
Idle indicates the states in which the system may legitimately
remain quiescent forever; in particular, a correct controller
should not block all eager actions indefinitely when A is in
a state q /∈ Idle . The next two definitions formalize POCS
and their semantics.

Definition 3: A partially observable controllable system
(POCS) is a tuple S = 〈A,Σo,Σc,Σe, f, Idle〉, where A =
〈Q, q0,Σ, T 〉 is a convergent LTS with Σo,Σe ⊆ Σ such that
Idle ⊆ Q, Σc ⊆ Σo, and f ∈ Σ\Σo is a distinguished action
called fault.

As previously discussed, we write Σuo,Σuc,Σ` for the
complements of Σo,Σc,Σe. Let us denote Ξ := Σ∪{δ} and
Ξo := Σo∪{δ} the set of (observable) actions extended with
δ, and let σ ∈ Ξ∗. The projection P(σ) erases all letters not
from Ξo, more precisely P(ε) = ε, and P(σa) equals P(σ)a
if a ∈ Ξo and P(σ) otherwise. For σ ∈ Ξω , its projection is
the limit of the projections of its finite prefixes. When using
the projection to another subset X , we write PX .

A controller for S is a mapping cont : Ξ∗o → 2Σc . The
behaviour of an LTS S under control of cont is defined
by another LTS Scont whose states are pairs where the
first component is the sequence of observations associated
with the current execution and the second component is the
current state of S. The transitions are those allowed by the
controller w.r.t. the observed sequence with an update of the
observed sequence in case of an observable event.

Definition 4 (Controlled system): Let S be a POCS and
cont a controller. Then Scont := 〈Qcont , q0cont ,Ξ, Tcont〉 is
defined as the smallest LTS satisfying:

(i) q0cont := 〈ε, q0〉 ∈ Qcont ;
(ii) if 〈σ, q〉 ∈ Qcont , a ∈ cont(σ) ∪ Σuc, and q

a−→ q′,
then 〈σP(a), q′〉 ∈ Qcont and 〈〈σ, q〉, a, 〈σP(a), q′〉〉 ∈
Tcont ;

(iii) if 〈σ, q〉 ∈ Qcont and cont(σ) ∩ en(q) ⊆ Σ` then
〈σδ, q〉 ∈ Qcont and 〈〈σ, q〉, δ, 〈σδ, q〉〉 ∈ Tcont .

An observable sequence is an item of Ξ∗o. An observed
sequence is an item of Λ(cont) := {σ | 〈σ, q〉 ∈ Qcont }.

Ambiguity

A finite or infinite word σ over Σ (resp. Ξ) is faulty
if it contains an occurrence of f ; otherwise it is called

correct. Given an observed sequence σ, the aim of diagnosis
is to determine whether a fault has surely occurred. The
ambiguous sequences are exactly the observed sequences
where diagnosis is not yet possible.

Definition 5 (ambiguous and surely faulty sequence):
Let Scont be a controlled system, σ1, σ2 ∈ Lω(Scont) be two
sequences and σ ∈ Ξωo such that: (i) P(σ1) = P(σ2) = σ,
(ii) σ1 is correct, and (iii) σ2 is faulty. Then σ is called
ambiguous in Scont , and the pair 〈σ1, σ2〉 is a witness for
the ambiguity of σ. Ambiguous finite sequences are defined
analogously. A sequence σ′ ∈ Ξ∗o is surely faulty in Scont
for all σ ∈ L∗(Scont) such that P(σ) = σ′, σ is faulty.

Active diagnosability

In the diagnosis framework, the goal of the controller is
to make the system diagnosable, and to perform diagnosis.
Thus, an active diagnoser is a controller equipped with a
diagnosis function. The active dignoser must (1) eliminate
ambiguity, (2) detect fault and (3) does not leave the system
stuck forever in a non-idle quiescent state.

Definition 6 (Active Diagnoser): Let S be a POCS and
h = 〈cont , diag〉, where cont is a controller and diag
a mapping from Λ(cont) to {⊥,>}. We call h active
diagnoser for S iff:

1) Scont does not contain any infinite ambiguous sequence;
2) diag(σ) = > if and only if σ is surely faulty in Scont ;
3) For all infinite runs (siai+1)i≥0 of Scont , if there exists

i0 with ai = δ for all i ≥ i0 then si0 = 〈σ′, q〉 for some
σ′ and q ∈ Idle .

For k ≥ 1, h is called a k-active diagnoser if for all σ =
σ′fσ′′ ∈ L∗(Scont) with |P(σ′′)| ≥ k, diag(P(σ)) = >,
i.e. every fault is diagnosed after at most k observations.
The minimal k s.t. h is a k-active diagnoser is called the
delay of h. We call S (k-)actively diagnosable if a (k-)active
diagnoser exists, and the minimal such k the index of S.

An active diagnoser does not necessarily have a finite
delay [2]. However, we will see that if S is actively diag-
nosable, there does exist a k-active diagnoser for some k.

We are now in a position to formally state the relevant
problems for active diagnosis. Let S be a POCS with finitely
many states. We are interested in:
• the active diagnosis decision problem, i.e. decide

whether S is actively diagnosable;
• the synthesis problem, i.e. build an active diagnoser (if
S is actively diagnosable);

• the minimal-delay synthesis problem, i.e. decide
whether S is actively diagnosable and in the positive
case build an active diagnoser with minimal delay.

We introduce the notion of pilot as a finite representation
of an active diagnoser.

Definition 7 (pilot): Let S be a POCS. Then
C = 〈BC , contC , diagC〉 is called pilot for S if
BC = 〈Qc, qc0,Ξo, T c〉 is a deterministic complete LTS,
〈contC , diagC〉 : Qc → 2Σc × {⊥,>}, are labellings.
Let hC = 〈cont , diag〉 associated with C be defined by
cont(σ) = contC(q) and diag(σ) = diagC(q) for all



σ ∈ Λ(cont), where q is the unique state such that qc0
σ
=⇒ q.

Then C is a (k-)active diagnoser for S if hC is one.

IV. DIAGNOSER CONSTRUCTION

We simultaneously solve the decision and synthesis prob-
lems. We shall try to construct a pilot-based active diagnoser
for a POCS S . The construction succeeds iff S is actively
diagnosable. According to Definition 6, the main challenges
in building an active diagnoser are to ensure that (i) the
controlled system does not get stuck forever in a non-idle
quiescent state, (ii) the controller excludes the ambiguous
sequences, and (iii) diagnosis information is provided.

The approach in [2] consisted of two stages. First one
builds a Büchi automaton that accepts the infinite unambigu-
ous observed sequences of A. Then using this automaton,
one builds a Büchi game where the Control player chooses
the allowed controllable actions and then the Environment
player selects the next observable action. The correctness of
this approach partly relies on the fact that given two controls
cont and cont ′ and an observed sequence σ of both Scont
and Scont′ , σ is ambiguous in Scont iff it is ambiguous
in Scont′ . This is no longer the case here. For instance,
suppose that in Figure 1 (b) both c, d are controllable. Then
bδ is ambiguous if the controller blocks both c and d, and
unambiguous if the controller blocks only c.

Here, our solution consists in directly building a general-
ized Büchi game and taking into account the control that has
already been performed to specify the relevant information
that must be memorized to define the winning states.

Definition 8 (game): A game (between two players
called Control and Environment) is a tuple G =
〈VC , VE , E, v0,PF 〉, where VC are the vertices owned by
Control, VE are the vertices owned by Environment; VG =
VC ] VE denotes all vertices, and v0 ∈ VC is an initial
vertex. E ⊆ VG × VG is a set of directed edges such that
for all v ∈ VC there exists (v, w) ∈ E, and PF ⊆ 2VG is a
winning condition.
A play ρ is a sequence of V ωG such that ρ[0] = v0 and
〈ρ[i], ρ[i+ 1]〉 ∈ E for all i ≥ 0; we call ρ[0, k], for
some k ≥ 0, a partial play if ρ[k] ∈ VC , and define
state(ρ[0, k]) := ρ[k]. We write Play∗(G) for the set of
partial plays of G. A play ρ is called winning (for Control)
if, for all V ∈ PF , ρ[i] ∈ V for infinitely many i.

Definition 9 (strategy): Let G = 〈VC , VE , E, v0,PF 〉
be a game. A strategy (for Control) is a function
θ : Play∗(G) → VG such that 〈state(ξ), θ(ξ)〉 ∈ E for all
ξ ∈ Play∗(G). A play ρ adheres to θ if ρ[i] ∈ VC implies
ρ[i+1] = θ(ρ[0, i]) for all i ≥ 0. A strategy is called winning
if every play ρ that adheres to θ is winning.

Let M = 〈QM , qM , VG , TM 〉 be a complete deterministic
LTS, where FM(ξ) denotes the state q ∈ QM such that
qM

ξ
=⇒ q, and let α : QM × VC → VG such that for all

q ∈ QM and v ∈ VC we have 〈q, α(q, v)〉 ∈ E. The strategy
θM,α defined by θ(ξ) = α(FM(ξ), state(ξ)) is called finite-
memory strategy if QM is finite; it is called one-bit strategy
if QM = {0, 1}.

In the games that we have defined, a play can only be
stuck in a state of Environment and considered as losing for
this player. Thus we do not consider finite maximal plays
for defining the winning strategies of Control.

The controller we are looking for will memorize a tuple of
subsets of states 〈U, V,W,X〉 with the following meaning.
Whatever the subset, it represents possible states that have
been reached after the last observable action or that corre-
sponds to a quiescent state w.r.t. the current control. U repre-
sents the possible states reached by a correct run, and V ]W
represent the possible states reached by a faulty run. Among
the latter, W represents the states for which the controller
tries to solve the ambiguity with U , while V is some “waiting
room”; the ambiguity between U and V will be resolved
later. X represents a subset of the possible non-idle states
reached by a run for which no action has been performed
between the two last observations. The controller tries to
discard these states either by observing that they could not
occur or by allowing an urgent action. The other states with
the same features will be handled later. We denote S =
{〈U, V,W,X〉 | U, V,W ⊆ Q ∧X ⊆ (U ∪ V ∪W ) \ Idle ∧
U ∪V ∪W 6= ∅∧V ∩W = ∅}, Solved1 = {〈U, V,W,X〉 ∈
S | U = ∅ ∨ W = ∅}, Solved2 = {〈U, V,W,X〉 ∈ S |
X = ∅}, and Reach(〈U, V,W,X〉) = U ∪ V ∪W . The next
definition describes how the controller updates its tuple once
an observed action occurs (including the quiescent signal δ).
The range of this function also includes the tuple 〈∅, ∅, ∅, ∅〉
in order to capture the impossible observations.

Definition 10 (Knowledge update): Let S be a POCS.
Then ∆, the knowledge transition partial function from
S × 2Σc × (Σo ∪ {δ}) to S ∪ {〈∅, ∅, ∅, ∅〉}, is defined for
s = 〈U, V,W,X〉, Σ′ ∈ 2Σc , a ∈ Σ′ ∪ {δ} ∪ Σuc \ Σuo by
∆(s,Σ′, a) := 〈U ′, V ′,W ′, X ′〉 as follows.
• When a 6= δ, let Va = { q′ | q ∈ V, q

σa
=⇒ q′, σ ∈

Σ∗uo } ∪ { q′ | q ∈ U, q
σa
=⇒ q′, σ ∈ Σ∗uofΣ∗uo }. Then:

• U ′ = { q′ | q ∈ U, q σa
=⇒ q′, σ ∈ (Σuo \ {f})∗ };

• If W = ∅ then W ′ = Va
else W ′ = { q′ | q ∈W, q σa

=⇒ q′, σ ∈ Σ∗uo };
• If W = ∅ then V ′ = ∅ else V ′ = Va \W ′;
• X ′ = ∅.

• When a = δ, let QuietΣ′ = { q ∈ Q | en(q) ∩ Σe ⊆
Σc \ Σ′ } and Vδ = { q′ ∈ QuietΣ′ | q ∈ V, q

σ
=⇒ q′, σ ∈

Σ∗uo } ∪ { q′ ∈ QuietΣ′ | q ∈ U, q
σ
=⇒ q′, σ ∈ Σ∗uofΣ∗uo }.

Then:

• U ′ = { q′ ∈ QuietΣ′ | q ∈ U, q
σ
=⇒ q′, σ ∈ (Σuo \

{f})∗ };
• If W = ∅ then W ′ = Vδ

else W ′ = { q′ ∈ QuietΣ′ | q ∈W, q σ
=⇒ q′, σ ∈ Σ∗uo };

• If W = ∅ then V ′ = ∅ else V ′ = Vδ \W ′;
• If X = ∅ then X ′ = (QuietΣ′ ∩ Reach(s)) \ Idle

else X ′ = QuietΣ′ ∩X .
Before formally defining the game, we discuss its in-

tuition: Control and Environment play alternatingly; the
Control chooses the allowed controllable actions based on
its knowledge of the possible states, and the Environment
chooses an action among those permitted by the Control.



s1 s1, {a} s1, {a}, a s26

s15 s1, {a}, δs1, ∅ s1, ∅, δ

Fig. 2. Excerpt of the Büchi game for the POCS of Figure 1 (c). Environ-
ment states are shown with dashed boundary. We use s1 := 〈{1}, ∅, ∅, ∅〉,
s15 := 〈{1}, ∅, {5}, {1}〉, and s26 := 〈{2}, ∅, {6}, ∅〉.

The controller states VC are the tuples 〈U, V,W,X〉. Once
the controller chooses a set of actions, the play moves to
a state in VC × 2Σc ⊆ VE , where Environment selects an
allowed observable action in Ξo and reaches a game state
in VC × 2Σc × Ξo ⊆ VE . This state has (1) either a single
successor, a controller state whose tuple is given by the above
update function when the tuple is not empty, (2) or none at
all, when the action leads to an empty tuple, meaning that the
behaviour was not possible. The generalized Büchi condition
is given by {Solved1, Solved2}.

Definition 11 (controller-synthesis game): Let S be a
POCS. We denote G(S) the game 〈VC , VE , E, v0,PF 〉,
where VC = S, v0 = 〈{q0}, ∅, ∅, ∅〉, VE = (VC × 2Σc) ∪
(VC × 2Σc × Ξo), E = E1 ∪ E2 ∪ E3, where
• E1 = { 〈s, 〈s,Σ′〉〉 | s ∈ S, Σ′ ∈ 2Σc };
• E2 = { 〈〈s,Σ′〉, 〈s,Σ′, a〉〉 | s ∈ S,

Σ′ ∈ 2Σc , a ∈ Σ′ ∪ {δ} ∪ Σuc \ Σuo};
• E3 = { 〈〈s,Σ′, a〉, s′〉 | s′ = ∆(s,Σ′, a)}.

and PF = {Solved1, Solved2}.
Example 1: Figure 2 depicts an excerpt of the game for

for POCS of Figure 1 (c). From the initial state, we have
represented two control decisions: either Control allows {a}
or disallows all controllable actions. If Control chooses {a},
and Environment chooses action δ, the next state has no
successor, since under this control, a is the single observable
action, so Environment loses immediately. If Control chooses
∅ and Environment chooses action δ, the triple of the reached
state is 〈{1}, ∅, {5}〉 as f is lazy and may have occurred or
not. The booleans of all next Control states that are reached
from the initial state are false, since the initial state belongs
to F , and the possible subsets of states after the move (like
{1, 5} or {2, 6}) are not included in Idle .

We can now address the decision and synthesis problems.
To this aim, we shall mainly exploit the following facts: (1)
Generalized Büchi games can be solved in polynomial time
(see, e.g., [12]), (2) a one-bit winning strategy (when the
number of winning conditions is two) can always be chosen
for Control if it wins and (3) there is a tight correspondence
between winning strategies and active diagnosers.

Let ξ ∈ Play∗(G(S)) be a partial play. We define word(ξ)
as the observable actions played along ξ, i.e. word(ε) =
ε, word(ξv) = word(ξ) if v /∈ VC × 2Σc × Ξo, and
word(ξ〈v,Σ′, a〉) = word(ξ)a. In a similar way, states(ξ)
are the states of VC touched along ξ, formally states(ξ) =
PVC

(ξ). We naturally extend these notions to plays ρ.
Definition 12 (from control to strategy and play): Let

cont be a controller for S. The strategy θcont of the
game G(S) is defined as follows. Let ξ ∈ Play∗(G(S))

be a partial play ending in a state of the controller. Then
θcont(ξ) = cont(word(ξ)). Let σ be an observed sequence
of Scont . Then the play ξcont(σ) is inductively defined by:
• If σ = ε then ξcont(σ) = 〈{q0}, ∅, ∅, ∅〉.
• If σ = σ′a, then ξcont(σ) = ξcont(σ

′)〈l,Σ′〉〈l,Σ′, a〉s′,
where l := last(ξcont(σ

′)), Σ′ := cont(σ′), and s′ is the
single successor of 〈l,Σ′, a〉 in G(S).

The following observation is straightforward. Let ξ be an
infinite play that adheres to strategy θcont . Then word(ξ) is
an observed sequence of Scont .

Proposition 1: If cont is a controller for S and σ an
observed sequence of Scont , the following are equivalent:

1) the play ξcont(σ) is winning for the controller;
2) σ is unambiguous and for all σ′ = q0a1 · · · an(qnδ)

ω

such that P(a1 · · · ) = σ, qn ∈ Idle .
We can now state the main result of this section:
Theorem 1: Let S be a POCS with n states and m con-

trollable actions. The active-diagnosis decision and synthesis
problems for S can be solved in 2O(n+m) time. If S is
actively diagnosable, then one can synthesize a pilot C with
at most 2 · 11n states, where C is an active diagnoser for S.

By a straightforward adaptation of the proof of Theorem 1
in [13], we can prove EXPTIME-hardness of the decision
problem. So we get the following corollary.

Corollary 1: The active diagnosis decision problem is
EXPTIME-complete.

Observe that in any play of a winning one-bit strategy,
one can visit at most twice (one per bit value) the same
state while U and W remain non empty since otherwise, a
losing play could be built ending with a loop. So once a fault
has occurred, there are two possible situations: (1) either W
remains non empty and after at most 2|VC |+1 observations,
U becomes empty, or (2) while U remains non empty, W
becomes empty after at most 2|VC |+1 observations and filled
again by at least the state in V that corresponds to the faulty
run and then after at most 2|VC | additional observations U
becomes empty. Summarizing, the delay achieved by our
active diagnoser is at most 4|VC |+ 1 ≤ 4 · 11n + 1 = 2O(n).
The active diagnoser that we synthesize does not necessarily
have minimal delay. However Theorem 5 of the next section
shows that 2O(n) states are not enough for obtaining such
an active diagnoser, and Theorem 4 shows that for some
systems, the minimal achievable delay is indeed exponential.
For completeness, we mention the following result whose
proof can be found in [8].

Theorem 2: Let S be an actively diagnosable POCS with
n states. One can construct a pilot C with 2O(n2) states such
that C is an active diagnoser for S with minimal delay.

V. LOWER BOUNDS

In this section, we establish that the active diagnoser built
in the proof of Theorem 1 is almost optimal w.r.t. the number
of states and the delay before fault detection provided by any
diagnoser (both in 2O(n) for our construction). We remark
that the lower bounds in this section match those shown in
[2] despite the extended capabilities of our diagnosers. The
examples demonstrating the lower bounds are inspired by [2]
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but had to be carefully adapted to deal with the capacity of
controllers to detect quiescence.

Theorem 3 (lower bound for active-diagnoser): There is
a family (Sn)n≥1 of actively diagnosable POCS such that the
size of Sn is O(n) and any pilot that is an active diagnoser
for Sn has at least 2n states.
Sn is shown in Figure 3. Its key idea is that the controller

must remember a sequence of the n last observed actions
that are a or b. Theorem 3 means that an active diagnoser
with 2Ω(n) states may be required for a POCS of size n.

Theorem 4: There exists a family (Sn)n≥1 of actively
diagnosable POCS such that Sn has O(n) states and Sn has
an index ≥ 2n + 2.

In Figure 4, states r0 . . . rn−1 implement a binary counter
initialized to 2n − 1 after reading the first a, which has
to be decremented one by one to zero before a diagnosis.
Theorem 4 means that a delay of 2Ω(n) may be the best
possible delay for a POCS of size n.

Theorem 5 (minimal-delay diagnoser): There exists a
family (Sn)n≥1 of f(n)-actively diagnosable POCS (for
some function f ) with O(n) states such that for all n, any
pilot that is an active diagnoser for Sn has at least n! states.

Consider Figure 5, where in order to guarantee a delay
n + 3 one has to remember the sequence of the last n
observation (in case when they are pairwise different) i.e. a
permutation of actions {a1 . . . an}. Thus an active diagnoser
with 2Ω(n log(n)) states may be required for a POCS of size
n to achieve minimal delay.

ds

C \ {cn}r1 r2 rn· · ·C \ {c2}
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Fig. 5. A POCS Sn whose minimal-delay active diagnoser requires at
least n! states. In the figure, A := {a1, . . . , an}, C := {c1, . . . , cn},
Σo = A ∪ C ∪ {b, d}, Σc = C,Σ` = Idle = ∅.

Note that the families of examples in Theorems 4 and 5
use alphabets of variable size. However, the results also hold
for fixed-size alphabets; the proofs are contained in [8].

VI. CONCLUSION

We have extended the scope of active diagnosis in two
directions: (1) enlarging the behaviour of the system with
modalities for actions and (2) allowing the controller to
observe quiescence of the system. We have adressed this
problem by modeling it by a Büchi game and obtained almost
optimal decision and synthesis procedures. We plan to study
other extensions like action priorities and multiple faults. We
also want to analyze the safe active diagnosis introduced in
a probabilistic framework [6], where the active diagnoser is
required to preserve correct behaviours as most as possible.
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