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Abstract. We study the verification problem for parameterized commu-
nicating automata (PCA), in which processes synchronize via message
passing. A given PCA can be run on any topology of bounded degree
(such as pipelines, rings, or ranked trees), and communication may take
place between any two processes that are adjacent in the topology. Pa-
rameterized verification asks if there is a topology from a given topology
class that allows for an accepting run of the given PCA. In general,
this problem is undecidable even for synchronous communication and
simple pipeline topologies. We therefore consider context-bounded ver-
ification, which restricts the behavior of each single process. For sev-
eral variants of context bounds, we show that parameterized verification
over pipelines, rings, and ranked trees is decidable. More precisely, it
is PSPACE-complete for pipelines and rings, and EXPTIME-complete for
ranked trees. Our approach is automata-theoretic. We build a finite (tree,
respectively) automaton that identifies those topologies that allow for an
accepting run of the given PCA. The verification problem then reduces
to checking nonemptiness of that automaton.

1 Introduction

Communicating automata (CA) are a fundamental and well-studied model of
parallel systems [7]. They consist of finite-state machines that exchange messages
over channels determined by a fixed and known communication topology. CA are
known to be Turing equivalent so that even basic problems of formal verification
such as reachability are undecidable. Therefore, modifications and restrictions
have been considered which bring back decidability. Reachability is decidable,
for example, when the analysis is restricted to executions with a fixed maximum
number of pending messages, or when channels are lossy [2].

In some contexts such as ad-hoc networks, multi-core programming, or com-
munication-protocol verification, assuming a fixed and known communication
topology is not appropriate. Lately, there has been a lot of (ongoing) research
in the area of parameterized verification [1,3,9,13,14], which aims to validate a
given system independently of the number of processes and the communication
topology. A lot of different models of such systems have been proposed (cf. [12]



for a recent survey). In this paper, we investigate the reachability problem for
parameterized communicating automata (PCAs). A PCA is a collection of finite
automata that can be plugged into any communication topology of bounded
degree. PCAs have recently been introduced to initiate a logical study of pa-
rameterized systems [5]. Their verification problem has not been considered.
Roughly, it can be stated as follows: Given a PCA A and a regular set T of
pipeline, ring, or tree topologies, is there a topology T ∈ T such that A has
an accepting run on T ? Here, “regular” means given by some finite automaton
(for pipelines and rings) or tree automaton (for tree topologies), which is part
of the input. Note that there is also a universal variant of that problem, and our
decision procedures will take care of that case as well.

We actually consider a restriction of PCAs with rendez-vous synchronization,
albeit distinguishing between send and receive events. This considerably simpli-
fies the presentation, but the overall approach can be extended to systems with
asynchronous bounded channels. Note that rendez-vous communication can also
be seen as an underapproximation of the latter.

While bounding the channel capacity or imposing rendez-vous communica-
tion bring back decidability of reachability for CA with fixed communication
topology, this is no longer true in the case of PCAs. For various other (unde-
cidable) models of concurrent systems, decidability is achieved by introducing a
context (or “phase”) bound, limiting the part of the model simulating synchro-
nization or communication of concurrent processes [6,15,16,18,19]. We adopt the
general approach, but introduce new natural definitions of contexts that are suit-
able for our setting. An interface-context restricts communication of a process
to one neighbor in the topology (e.g., the left neighbor in the pipeline). Another
context type separates send from receive events while restricting reception to
one interface. Imposing such bounds is justified, as many distributed algorithms
use a bounded number of contexts, such as certain leader-election protocols, P2P
protocols, etc.

We show that context-bounded parameterized verification is decidable: it is
PSPACE-complete for pipelines and rings, and EXPTIME-complete for ranked
trees. Our decidability proof is automata-theoretic and uniform. We transform
a given PCA A, in several steps, into a topology acceptor (a finite automaton
or a tree automaton) that recognizes the set of pipeline and, respectively, tree
topologies allowing for an accepting run ofA. For rings, an additional adjustment
is needed, which rules out cyclic behaviors that the topology acceptor is not able
to detect on its own.

Related Work. Parameterized verification can be classified into verification
of multithreaded programs running on a single core, and protocol verification.
Context-bounded verification for systems consisting of an unbounded number
of threads has already been considered [4, 17]. In [4], a model with process cre-
ation is presented, in which a context switch is observed whenever an active
thread is interrupted and resumed. In [17], an unbounded number of threads are
scheduled in several rounds. In both cases, the context bound does not impose
a bound on the number of threads. However, every thread will be resumed and



become active a bounded number of times. For protocol verification, which is
based on the concept of independent (finite-state) processes communicating over
a network-like structure, this does not seem to be suitable. For example, take
four processes, P1, . . . , P4. Suppose P1 synchronizes unboundedly often with P2,
and P3 synchronizes unboundedly often with P4. In particular, no communica-
tion takes place between {P1, P2} and {P3, P4}. Due to the absence of a global
scheduler, there should be no bound on the number of switches between P2 and
P3 (or P1 and P3, etc.). This issue is particularly important when a system is
compared to a partial global specification that is not necessarily closed under
permutation of independent events. Our local context definition does not impose
any a priori bound on the number of switches between independent processes.

A versatile framework for parameterized verification, capturing rendez-vous
communication in pipelines, rings, and trees, is presented in [1]. The verifica-
tion problem is phrased in terms of minimal bad configurations, which does not
necessitate context bounds. Motivated by ad-hoc networks, [9] considers sys-
tems modeled by finite automata that communicate in a broadcast or unicast
manner. In the case of unicast communication, the recipient is chosen nondeter-
ministically from the set of neighbors, which is incomparable with the unicast
communication of PCAs. Direction-aware token-passing systems [3, 10, 11] can
be modeled in our framework as far as bounded-degree structures such as rings
are concerned. To the best of our knowledge, neither context bounds nor the
PCA model have been considered yet for protocol verification.

Outline. Section 2 recapitulates basic notions such as words and finite (tree)
automata. In Section 3, we introduce topologies, PCAs, and several context-
bounded verification problems. Section 4 presents our main results and illustrates
the crucial proof ideas. Missing details can be found in the full version of the
paper: http://hal.archives-ouvertes.fr/hal-00984421/

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet, i.e., a nonempty finite
set. The set of finite words over A is denoted by A∗, which includes the empty
word ε. The concatenation of words w1, w2 ∈ A∗ is denoted by w1 ·w2 or w1.w2.
Given an index set I and a tuple a = (ai)i∈I ∈ AI , we write a|i to denote ai.

A finite automaton over A is a tuple B = (S,=⇒, ι, F ) where S is the finite
set of states, ι ∈ S is the initial state, F ⊆ S is the set of final states, and =⇒ ⊆
S×A×S is the transition relation. We write s

a
=⇒ s′ instead of (s, a, s′) ∈ =⇒.

A run of B on a word w = a1 . . . an ∈ A∗ is a sequence s0s1 . . . sn ∈ S∗ of states
such that s0 = ι and si−1

ai=⇒ si for all i ∈ [n]. The run is accepting if sn ∈ F .
Finally, the language of B is defined as L(B) := {w ∈ A∗ | there is an accepting
run of B on w}.

For trees, we fix a (maximal) rank r ∈ N with r ≥ 2. An r-tree over A is a
pair (V, π) where V is a nonempty finite prefix-closed subset of {1, . . . , r}∗, and
π : V → A is a labeling function. The set V is the set of nodes of the tree, and



ε is its root. For u ∈ V and l ∈ [r] with u.l ∈ V , we say that u.l is the l-th child
of u. An r-tree automaton over A is a tuple B = (S,∆, F ) where S is the finite
set of states, F ⊆ S is the set of final states, and ∆ ⊆ S ×A× (S ] {⊥})r is the
transition relation. A run of B on an r-tree (V, π) is a mapping ρ : V → S such
that, for all u ∈ V , (ρ(u), π(u), (sl)l∈[r]) ∈ ∆ where sl = ρ(u.l) if u.l ∈ V , and
sl = ⊥ if u.l 6∈ V . The run is accepting if ρ(ε) ∈ F . By L(B), we denote the set
of r-trees accepted by B.

3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be
run on arbitrary topologies of bounded degree.

Topologies. A topology is a graph, whose nodes are connected via interfaces.
The idea is that each node runs a finite-state process (of type p, q, . . .). Some
topologies are depicted in Figures 1–3. In Figure 1, for example, nodes are ar-
ranged in a pipeline, which allows a process to communicate with a left and a
right neighbor (if they exist). When a node u emits a message m via its interface
right, then m can be received by the neighbor on the right of u, using interface
left. Let N = {a, b, c, . . .} and P = {p, q, . . .} be nonempty finite sets of interface
names (or, simply, interfaces) and process types, respectively.

Definition 1. A topology over N and P is a tuple T = (V, ν, π) where V is
the nonempty finite set of nodes (or processes), π : V → P associates with
every node a process type, and ν : V ×N ⇀ V is a partial mapping. Intuitively,
ν(u, a) = v means that the interface a of u points to v. We suppose that, for
all u ∈ V , there is at last one a ∈ N such that ν(u, a) is defined. Moreover, we
require that ν(u, a) = v implies

– u 6= v (there are no self-loops),

– ν(v, b) = u for some b ∈ N (adjacent processes are mutually connected), and

– ν(u, a′) = v′ implies [a = a′ iff v = v′], for all a′ ∈ N and v′ ∈ V (an
interface points to at most one process, and two distinct interfaces point to
distinct processes).

We write u a b v if ν(u, a) = v and ν(v, b) = u, and we write u v if
u a b v for some a, b ∈ N . This paper will focus on three topology classes:

Pipelines. A pipeline over a nonempty finite set P of process types is a topology
over N = {left, right} and P. It is of the form T = ({1, . . . , n}, ν, π), with
n ≥ 2, such that ν(i, right) = i + 1 and ν(i + 1, left) = i for all i ∈ [n − 1],
and ν(1, left) and ν(n, right) are both undefined. A finite automaton B over P
can be seen as a pipeline recognizer. Indeed, a pipeline is uniquely given by
the sequence π(1) . . . π(n) ∈ P∗. So, we let Lpipe(B) denote the set of pipelines
({1, . . . , n}, ν, π) over P such that π(1) . . . π(n) ∈ L(B). Instead of B, we may
use a classical regular expression. An example pipeline is depicted in Figure 1.
It is uniquely given by the word pqpq.
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Rings. A ring over P is a topology over N = {left, right} and P of the form
T = ({1, . . . , n}, ν, π), with n ≥ 3, where ν(i, right) = (i mod n) + 1 and
ν((i mod n) + 1, left) = i for all i ∈ [n]. Similarly to pipelines, a finite au-
tomaton B over P can be used as a ring recognizer: we let Lring(B) denote
the set of rings ({1, . . . , n}, ν, π) over P such that there is i ∈ [n] satisfying
π(i) . . . π(n)π(1) . . . π(i− 1) ∈ L(B). This takes into account that, a priori, rings
do not have an “initial” node. Figure 2 depicts a ring with five nodes.

Trees. For r ≥ 2, an r-tree topology over P is a topology T = (V, ν, π) over
{father, child1, . . . , childr} and P such that (V, π) is an r-tree over P, ν(ε, father) is
undefined, and for all u ∈ V and l ∈ [r], we have (1) u.l ∈ V implies ν(u, childl) =
u.l and ν(u.l, father) = u, and (2) u.l 6∈ V implies that ν(u, childl) is undefined.
An r-tree automaton B over P can be seen as a recognizer for tree topologies: we
write Ltree(B) for the set of r-tree topologies (V, ν, π) such that (V, π) ∈ L(B).
A sample 2-tree topology is depicted in Figure 3.

The Automata Model. Next, we introduce our system model. As suggested
above, a parameterized communicating automaton is a collection of finite-state
processes whose actions refer to an interface. Unless stated otherwise, we assume
that N is a fixed nonempty finite set of interface names.

Definition 2. A parameterized communicating automaton (PCA) over N is a
tuple A = (P,Msg , (Ap)p∈P) where
– P is a nonempty finite set of process types,
– Msg is a nonempty finite set of messages, and
– Ap is a finite automaton over ΣA := {a!m, a?m | a ∈ N and m ∈ Msg}, for

every p ∈ P.
We call the elements of ΣA actions.

A pipeline PCA or ring PCA is a PCA over {left, right}. Moreover, for r ≥ 2,
an r-tree PCA is a PCA over {father, child1, . . . , childr}.

The idea is the following: When A is run on a topology (V, ν, π) with adjacent
processes u a b v, then u runs a copy of Aπ(u) and can emit a message m
through interface a by executing a!m. Process v receives the message if it is
ready to execute b?m. We assume that communication is by rendez-vous, i.e.,
messages are received instantaneously.



For convenience, we write Σ instead of ΣA. Sometimes, we will even mention
Σ without any reference to A. However, notice that the alphabet depends on a
PCA (more precisely, on N and a set of messages). Let Σ! := {a!m | a ∈ N and
m ∈ Msg} and let Σ? be defined accordingly. These sets are further refined to
Σa! and Σa?, containing only those actions that refer to interface a ∈ N .

Semantics of PCAs. Let A = (P,Msg , (Ap)p∈P) be a PCA over N , with
Ap = (Sp,=⇒p, ιp, Fp) for all p ∈ P. The PCA A can be run on any topology
T = (V, ν, π) over N and P. Its semantics wrt. T is a finite automaton [[A]]T =
(S,=⇒, ι, F ) over ΣT ⊆ (Σ∪{ε})V . The alphabet ΣT contains, for all v a b v′

and m ∈ Msg , the tuple 〈v,m, v′〉 := (σu)u∈V where σv = a!m, σv′ = b?m, and
σu = ε for all u ∈ V \ {v, v′}. For W = γ1 . . . γn ∈ (ΣT )∗ and u ∈ V , we define
the projection of W to u as W |u := (γ1|u) · . . . · (γn|u) ∈ Σ∗.

Given a process u ∈ V , we write Au, Su,=⇒u, ιu, Fu as abbreviations for
Aπ(u), Sπ(u),=⇒π(u), ιπ(u), Fπ(u), respectively. The set of states of [[A]]T is S =∏
u∈V Su, keeping track of the local state of every process in the topology.

Accordingly, the initial state is ι = (ιu)u∈V , and the set of final states is
F =

∏
u∈V Fu. The transition relation =⇒ ⊆ S × ΣT × S is defined as fol-

lows. Let s = (su)u∈V ∈ S, s′ = (s′u)u∈V ∈ S, and σ = (σu)u∈V ∈ ΣT . Then,

s
σ

=⇒ s′ if, for all u ∈ V , we have that σu 6= ε implies su
σu==⇒u s

′
u, and σu = ε

implies su = s′u. The language of A wrt. T is defined as L(A, T ) := L([[A]]T ).

Example 1. We consider a simplified version of the IEEE 802.5 token-ring pro-
tocol, in which a binary token (carrying a value in {0, 1}) circulates in a ring.
At any time of an execution, there is exactly one process that has the token.
When a process executes an action of the form right!m, it sets the token value
to m ∈ {0, 1} and passes it to its right neighbor. The latter executes left?m to
receive the token. Since we discard actions of the form left!m and right?m, we
actually deal with a unidirectional ring.

In our protocol, a process of type p emits a message, which will circulate on
the given ring until it is received. The fact that the message is currently in transit
is indicated by token value 1 (the concrete message contents is abstracted away).
Processes of type q will just pass on the token without changing its value. When
the token reaches a process of type p̄, the message is received. The receiving
process sets the token to 0 and passes it to its right neighbor. From there, it
is again forwarded by processes of type q until it reaches the “initial” process,
which thus gets the confirmation that its message has been received.

Our protocol is modeled by the ring PCA A = (P,Msg , (Ap,Ap̄,Aq)), over
the set of interfaces N = {left, right}, where P = {p, p̄, q}, Msg = {0, 1}, and the
local languages are given as follows:

– L(Ap) = {(right!1)(left?0)}
– L(Ap̄) = {(left?1)(right!0)}
– L(Aq) = {(left?1)(right!1), (left?0)(right!0)}

Note that L(A, T ) = ∅ for all T ∈ Lring(q∗). Even though two successive pro-
cesses qq match locally, in the sense that the letter right!m in the execution of



Pipeline-Nonemptiness(t)

I: pipeline PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; finite automaton B over P
Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Lpipe(B) ?

Ring-Nonemptiness(t)

I: ring PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; finite automaton B over P
Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Lring(B) ?

Treer-Nonemptiness(t)

I: r-tree PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; r-tree automaton B over P
Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Ltree(B) ?

s⊕r1 intf

pipelines PSPACE-c PSPACE-c
rings PSPACE-c PSPACE-c
trees EXPTIME-c EXPTIME-c

Table 1. Context-bounded nonemptiness problems and summary of results

the first q matches the letter left?m in the second occurrence of q, closing a se-
quence qn towards a ring is not possible due to the causal dependencies that are
created. The receive that remains open on the first q is always scheduled before
the remaining open send in the last q. Thus, matching both will create a cyclic
dependency and not lead to a valid run of A. We actually have, for all rings T
over P, that L(A, T ) 6= ∅ iff T ∈ Lring((pq∗p̄q∗)∗). Detecting cyclic dependencies
will be one challenge when we tackle the verification problem for rings.

As we aim at modeling a token-ring protocol, we shall only consider rings that
contain exactly one process of type p (only one process can have the token). In our
decision problems, the input will contain a finite (tree, respectively) automaton
that may serve as a corresponding filter. ♦

Note that reachability in token-ring protocols is undecidable when the token
is binary [11]. Our approach to get decidability is orthogonal to that from [3,11].
Though the latter assume that a process knows whether it has the token or not,
the token itself is unary and does not carry extra information. In our setting,
simulating a unary token corresponds to letting Msg be a singleton set. In this
paper, we do not restrict the amount of (finite) information that a token can
carry (i.e., Msg can be an arbitrary nonempty finite set), but the local process
behavior. This allows us to verify protocols like in Example 1.

Context-Bounded Parameterized Nonemptiness. Next, we define several
natural variants of contexts, which restrict the behavior of each process of a PCA.
A word w ∈ Σ∗ is called an

– (s⊕r)-context if w ∈ Σ∗! ∪Σ∗? ,

– (s1+r1)-context if w ∈ (Σa! ∪Σb?)∗ for some a, b ∈ N ,

– (s⊕r1)-context if w ∈ Σ∗! ∪Σ∗a? for some a ∈ N , and

– intf-context if w ∈ (Σa! ∪Σa?)∗ for some a ∈ N .

The case s1⊕r (w ∈ Σ∗a!∪Σ∗? for some a ∈ N ) is symmetric to s⊕r1, and we only
consider the latter. All results hold verbatim when we replace s⊕r1 with s1⊕r.

Let k ≥ 1 and t ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We say that
w ∈ Σ∗ is (k, t)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · . . . ·wk
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Fig. 5. Undecidability for s⊕r

and wi is a t-context, for all i ∈ [k]. The set of all (k, t)-bounded words (over
a fixed Σ) is denoted by W(k,t). For a PCA A = (P,Msg , (Ap)p∈P) and a
topology T = (V, ν, π), we define L(k,t)(A, T ) := {W ∈ L(A, T ) | W |u ∈ W(k,t)

for all u ∈ V }. Note that W(k,t) is a regular word language that is recognized
by a finite automaton B(k,t) whose number of states is linear in k and at most
quadratic in |N | (but linear for the decidable cases of t). Let A′ be the PCA
(P,Msg , (Ap×B(k,t))p∈P) where Ap×B(k,t) is the classical product of two finite
automata. It is easy to see that L(k,t)(A, T ) = L(A′, T ). This means that the
context-bound restriction can be built into the PCA.

Applying the definitions to the PCA A from Example 1, we have L(A, T ) =
L(2,s⊕r1)(A, T ) = L(2,intf)(A, T ) for all topologies over {left, right} and {p, p̄, q}.

Note that many distributed algorithms use a bounded number of contexts (or
even a bounded number of actions) per process. Prominent examples are some
leader-election protocols and P2P protocols. Even when the number of contexts
is unbounded, there is often an exponential trade-off between the number of
contexts and the (larger) number of processes (e.g., for leader election). Thus,
context-bounded verification may sometimes be more appropriate than cut-off
techniques, which bound the number of processes.

For t ∈ {s⊕r, s1+r1, s⊕r1, intf}, we consider the problems listed in Table 1.
Note that the context bound k is part of the input. We assume that k is encoded
in unary. Table 1 also contains a summary of the positive results of the paper.
For some context types, however, all problems are undecidable.

Theorem 1. All problems listed in Table 1 are undecidable for t ∈ {s⊕r, s1+r1},
even when we restrict to one context for each process.

Proof (sketch). Figures 4 and 5 demonstrate how to generate grid-like struc-
tures of arbitrary height i and width j, using only one context on each single
process. Figure 4, for example, visualizes an execution of the form

(〈1,m(1,1), 2〉〈2,m(1,2), 3〉 . . . 〈j,m(1,j), j + 1〉) . . . (〈1,m(i,1), 2〉〈2,m(i,2), 3〉 . . . 〈j,m(i,j), j + 1〉) .

The idea is now to simulate a Turing machine, using the (unbounded) vertical
dimension to encode its tape, which changes along the (unbounded) horizon-
tal line. More precisely, the leftmost process generates a sequence of messages
(m(1,1), . . . ,m(i,1)) that corresponds to the initial configuration with arbitrarily
many cells. Each further process may locally change that configuration while
passing it to its right neighbor, and so on. In the case of s⊕r, the transfer of
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a configuration is sometimes accomplished by a receive context. Obviously, the
encoding also works for rings and for trees. ut

4 Context-Bounded Parameterized Verification

We now present our main results: decidability of all our context-bounded param-
eterized verification problems, as far as context types s⊕r1 and intf are concerned.

Theorem 2. For all t ∈ {s⊕r1, intf}, the following hold:

– Pipeline-Nonemptiness(t) is PSPACE-complete,

– Ring-Nonemptiness(t) is PSPACE-complete, and

– Treer-Nonemptiness(t) is EXPTIME-complete, for all r ≥ 2.

In the remainder of this section, we develop the main proof ideas.

General Proof Idea for Upper Bounds. We illustrate the proof by means
of pipelines and context type s⊕r1, which is slightly more difficult than the
case of intf. Given a pipeline PCA A = (P,Msg , (Ap)p∈P) and k ≥ 1, we will
construct a finite automaton BA that recognizes exactly those pipelines T such
that L(k,s⊕r1)(A, T ) 6= ∅. While reading a pipeline (i.e., a word over P), the
finite automaton will guess an accepting run of A. When every local language
L(Ap) is finite, this can be done as follows: A state of BA is a string from some
local language. When reading p, the automaton guesses an element of L(Ap)
and checks if its projection to left-actions matches the current state. A state is
final if it does not communicate through interface right. However, though we can
restrict to (k, s⊕r1)-bounded words, the local language L(Ap) of a process type
p is in general infinite so that the naive construction is not applicable.

The trick is to find a bounded abstraction of the infinitely many (local) runs.
This is illustrated in Figure 6, which depicts a (3, s⊕r1)-bounded execution (in
fact, a set of “order“-equivalent executions). Processes 1, 2, and 3 use three
contexts, while 4 and 5 can do with a single one. The dotted areas on a process
line suggest that we actually consider an arbitrary number of actions. Our aim is



to aggregate these unboundedly many actions in a bounded number of summaries
Si so that a finite automaton can read the pipeline (i.e., the word pppqq) from
left to right, while verifying that the summaries can be glued together towards
an accepting run of the given PCA.

As process 4 alternates between sending to 3 and sending to 5, its summaries
have to include the behavior of processes 3 and 5. A summary is then given by
a cell transition of the form s

pqq−−→ s′. Here, cell refers to pqq, which represents
an isomorphism type of a pipeline of length three. Moreover, s, s′ ∈ Sp×Sq ×Sq
denote how states evolve in that particular fragment within a bigger pipeline,
for example when executing all actions gathered in S5. Cells have bounded size
so that the set of cell transitions can be effectively computed and represented.

Now, the behavior of process 4 can only be captured when we use at least
two cell transitions (for S5 and S6). The reason is that receives of process 3 from
4 are interrupted by receives from process 2. Similarly, the receive context in
the middle of process 3 will belong to two different summaries, as it is inter-
rupted by a context switch on process 2. The splitting is not unique, as we could
have merged S3 and S4. However, the total number of splits can be bounded:
a send (receive) context is split whenever the complementary receives (sends,
respectively) belong to distinct contexts. Thus, it is divided into at most k · |N |
summaries. Using this, one can show that any (k, s⊕r1)-bounded execution of
a PCA is captured by a sequence of cell transitions such that each process is
involved at most k · (|N |2 +2|N |+1) times. This gives us a bounded abstraction
of a priori unbounded behaviors so that we can build a finite automaton that
guesses such an abstraction and, simultaneously, checks if it corresponds to an
accepting run of the PCA. A run of the finite automaton is depicted in Figure 7
(where we omit local states). On a process, we only keep “blocks” indicating
both the interfaces that are employed and whether we deal with a sending phase
(set of interfaces) or a receiving phase (single interface).

Note that the size of BA is exponential in k. However, nonemptiness can
be checked “on-the-fly”, which takes only polynomial space. The construction
works similarly for trees; we then come up with a tree automaton, which gives
us an EXPTIME procedure. However, the idea is not directly applicable to rings.
Consider the PCA from Example 1. Figure 8 illustrates a possible run of the
finite automaton BA over qqqq. Since the final state and the state taken after
reading the first position match locally, we are tempted to say that BA should
accept the ring T induced by qqqq. However, we have L(A, T ) = ∅. The trick
is now to retrieve cyclic dependencies that violate the run conditions of PCAs.
In the example, we have to record that the gray-shaded left-block (which arose
from a receive action) is scheduled before the gray-shaded {right}-block (which
arose from a send action). Those blocks cannot be matched, i.e., the run of the
finite automaton BA does not reflect a run of A. We will, therefore, enrich the
previous construction to obtain a decision procedure for rings.

Dependence Graphs. The idea is to add dependence graphs, which keep track
of the causal dependencies between cell transitions. They arise naturally when
we combine the behavior of two processes in terms of states of BA. For pro-
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cesses 1 and 2 in Figure 8, we obtain the dependence graph Dqq depicted in
Figure 9. There are two kinds of constraints, an undirected (i.e., symmetric) one
representing synchronizations (the thick gray lines), and a directed one for strict
causality (depicted by arrows →). In Dqq, for example, the nodes .1 and .2 on
the left represent the two strictly causally ordered blocks of the first process,
while the nodes /1 and /2 on the right represent the two blocks of the second
process. Moreover, .2 and /1 are synchronized, i.e., they happen instantaneously.

The effect of appending a further process of type q can be computed as a
composition Dqq ◦Dqq, which we obtain as follows:

1. Merge every node /i of the first graph with the corresponding node .i of the
second graph.

2. A path containing at least one→-constraint and synchronization constraints
in either direction becomes a new →-constraint.

3. The new synchronization constraints are given by the transitive closure of
the (union of the) old ones.

4. Remove the merge nodes.

Note that, in the figure, we represent the composition by a minimal set of con-
straints.

Now, “closing” the pipeline qqqq towards a ring corresponds to joining the
left and right hand side of (Dqq)

4 = (Dqq)
2. Technically, we add synchronization

constraints between .i and /i. The result is depicted as join((Dqq)
4) in Figure 9.

However, the join contains a cycle using at least one constraint of type→ (recall
that synchronization edges can be taken in either direction), which has to be
interpreted as a violation of the run condition of PCAs.

Consider, on the other hand, the “pipeline” qqpp̄. It induces the graph Dqq ◦
Dqp ◦ Dpp̄ (depicted at the bottom left of the figure), which resolves any de-
pendency between the leftmost and the rightmost process. To check whether



the pipeline can be closed towards a ring, we apply the join operation to Dqq ◦
Dqp ◦Dpp̄ ◦Dp̄q. The result is depicted at the bottom right of Figure 9. The join
is harmless, since it does not create any cycle containing at least one →-edge.
Thus, the ring given by qqpp̄ allows for an accepting run of the given PCA.

Note that, in the ring case (and for context type s⊕r1), summaries are defined
in a slightly different way to make sure that dependencies are reflected correctly.
A summary then either involves only two processes, or it has at least two alter-
nations between sending to the left and sending to the right. This guarantees
that the induced synchronization constraints in dependence graphs are indeed
symmetric. The new definition of summaries results in a linear blow up of the
number of blocks on each process.

Lower Bounds. To illustrate the lower-bound proofs, we consider trees. For t ∈
{s⊕r1, intf} and r ≥ 2, EXPTIME-hardness of Treer-Nonemptiness(t) is es-
tablished by a reduction from the intersection problem for binary-tree automata,
which is EXPTIME-complete [20] (similarly, the lower bounds for pipelines and
rings use the intersection problem for finite automata). Without loss of gener-
ality, we assume here that (1) tree automata accept only trees where the root
and every internal node have exactly two children and (2) the node labeling
tells us whether we deal with the root, a leaf, or an internal node. Given k ≥ 1
and binary-tree automata B1, . . . ,Bk, we can construct, in polynomial time, a
PCA A such that, for all 2-tree topologies T , we have L(2k,s⊕r1)(A, T ) 6= ∅ iff
L(3k,intf)(A, T ) 6= ∅ iff T ∈ Ltree(B1)∩ . . .∩Ltree(Bk). The idea is that each pro-
cess u with two children chooses transitions δ1, . . . , δk of B1, . . . ,Bk, respectively,
that are applied at u. These transitions are sent to the children u.1 and u.2 of u.
When u.1 (or u.2) receives a transition δi, it immediately sends a corresponding
transition δ′i to its own children. This is why the PCA works with 2k and 3k
contexts.

5 Conclusion

We showed that verification of PCAs running on pipelines, rings, and trees is
decidable under certain context bounds. Using automata complementation, we
also obtain decidability of the universal variants of our verification problem: Do
all topologies accepted by a finite (tree) automaton allow for an accepting run
of the given PCA?

It would be worthwhile to study if there are other natural, maybe more gen-
eral classes of graphs that come with a decidable context-bounded nonemptiness
problem. Moreover, one may consider model checking against temporal logics,
and automata models that run over topologies of unbounded degree such as star
topologies and unranked trees. These models may include registers so that a
process can remember some of its neighbors [8].
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