
A Comparison of Succinctly Represented
Finite-state Systems ?

Romain Brenguier1, Stefan Göller2, and Ocan Sankur1

1 LSV, CNRS & ENS Cachan, France.
2 Institut für Informatik, Universität Bremen, Germany

Abstract. We study the succinctness of different classes of succinctly
presented finite transition systems with respect to bisimulation equiv-
alence. Our results show that synchronized product of finite automata,
hierarchical graphs, and timed automata are pairwise incomparable in
this sense. We moreover study the computational complexity of deciding
simulation preorder and bisimulation equivalence on these classes.

1 Introduction

In formal verification model checking is one of the most successful approaches; it
asks to test automatically whether a given system meets a given specification.
Unfortunately, model checking tools have to deal with a combinatorial blow up
of the state space, commonly known as the state explosion problem, that can be
seen as one of the biggest challenges in real-world problems. Different sources
of explosion arise, for instance the number of program variables or clocks, the
number of concurrent components, or the number of different subroutines, just to
mention few of them. Numerous techniques to tame the state explosion problem
have been introduced such as abstraction methods, partial order reduction or
counterexample guided abstraction refinement.

Flip side of the coin, when modeling everyday systems that are potentially ex-
ponentially big (also called the flattened system or just flat system), it is desirable
to have succinct representations for them. Three fundamental models include (i)
products of flat systems, (ii) timed automata (more precisely the transitions sys-
tems evolving from the time-abstract semantics of timed automata), and (iii)
hierarchical systems, each of them successfully being used to tame the state ex-
plosion problem in their dimension (these dimensions are pairwise orthogonal):
(i) Products of flat systems allow to succinctly account for the number of concur-
rently running components, (ii) Timed automata [2] allow to succinctly model
the behavior of programs involving program variables or clocks, and finally (iii)
hierarchical systems (also known as hierarchical state machines [3] or hierarchi-
cal structures [16]) allow to succinctly represent systems that are decomposed
from numerous sub-systems. See also [18] for a recent work, where web services
are modeled as the asynchronous product of flat systems.

? This work has been partly supported by project ImpRo (ANR-10-BLAN-0317)

An important algorithmic question in this context is whether two given (suc-
cinctly presented) systems behave equivalently, or whether one system can be
simulated by another one. For instance, if it turns out that a complex system (im-
plementation) is behaviorally equivalent to a simple system (implementation),
the system designer can well replace the complex one by the simple one.

Numerous notions of behavioral equivalences have been proposed by van
Glabbeek [21, 22]. Among them, bisimulation equivalence is undoubtedly the cen-
tral one of them in formal verification. For instance beautiful characterizations
of the bisimulation-invariant fragments of established logics such as first-order
logic and monadic second-order have been proven in terms of modal logic [20]
and the modal µ-calculus [9], respectively; we refer to [17] for a further such
characterization in terms of CTL∗.

Our contributions and related work. In the first part of this paper we study
the succinctness with respect to bisimulation equivalence of three established
models of succinctly representing finite systems, namely products of flat systems,
timed automata, and hierarchical systems. The main contribution of this paper
is to pinpoint to the sources of succinctness when comparing any two of the
(orthogonally defined) three models of systems, mainly focusing on the different
proof ideas for establishing exponential succinctness. We show that each of the
three models can be exponentially more succinct than any of the other two. Such
a rigorous comparison of fundamental models for succinctly representing finite
systems has not yet been carried out in the context of formal verification to the
best of the authors’ knowledge.

In the second part of this paper we study the computational complexity of
simulation preorder and bisimulation equivalence checking for products of flat
systems, timed systems and hierarchical systems. We provide a general reduction
that shows EXPTIME-hardness (and thus completeness) of checking simulation
preorder on hierarchical systems and on timed automata. The former is a new
result; the latter was already proven in [14] but we believe our proof is more
direct. Moreover, our reduction is quite generic, and can be easily applied to a
wide range of succinctly presented models.

We also study the problem of deciding simulation preorder and bisimulation
equivalence between one of the three above-mentioned succinct systems and a flat
system. We show that checking the simulation preorder of a hierarchical system
by a flat system is PSPACE-complete. The problem is known to be EXPTIME-
complete for (synchronization-free) non-flat systems and timed automata [5].

Via a standard reduction to model checking EF logic we describe a PSPACE
algorithm to check bisimilarity of any of the discussed succinctly presented finite
systems and a flat system. Essentially since reachability of all of these systems
is in PSPACE, it follows that the problem is PSPACE-complete; the upper bound
was left open in [5], where it was shown to be PSPACE-hard.

Finally, we study language inclusion between the three above-mentioned suc-
cinct models. We show that checking untimed language equivalence (and in fact
language universality) is EXPSPACE-hard (and thus EXPSPACE-complete) for
hierarchical systems and timed automata. We would like to mention that this

problem has been wrongly cited in the literature as being in PSPACE for timed
automata [1, 19]. Our results are summarized in Table 1. Some proofs are omitted
due to space constraints; they can be found in [6].

Table 1. Complexity results

Hierarchical Timed Prod. of Flat

Simulation EXPTIME-c EXPTIME-c [14] EXPTIME-c [8]
Bisimulation PSPACE-hard EXPTIME-c [14] EXPTIME-c [10]

Bis. with Flat PSPACE-c PSPACE-c PSPACE-c [5]
Sim. by Flat PSPACE-c EXPTIME-c [5] EXPTIME-c [8, 5]

Language Inc. EXPSPACE-c EXPSPACE-c EXPSPACE-c [14]

2 Definitions

A transition system (also flat system or just system) over a finite alphabet Σ is

a tuple T = (S, (
σ−→)σ∈Σ), where S is an arbitrary set of states and each relation

σ−→⊆ S × S, is the set of σ-labeled transitions. Its size is |T | = |S| +
∑
σ |

σ−→ |.
We say that an action σ ∈ Σ is enabled at state s ∈ S if there is a transition
s

σ−→ s′ for some s′ ∈ S. T is deterministic if each
σ−→ is a partial function.

An initialized transition system is (S, s0, (
σ−→)σ∈Σ), where s0 ∈ S is the initial

state. A simulation is a relation R ⊆ S × S, with the following property: for
any states s, t ∈ S with sRt, for any σ ∈ Σ and s′ ∈ S such that s

σ−→ s′, there
exists t′ ∈ S with t

σ−→ t′ and s′Rt′. A simulation is a bisimulation whenever
it is symmetric. For two states s, t ∈ S, we write s v t (resp. s ∼ t) if there
exists a simulation (resp. bisimulation) R ⊆ S × S such that sRt. An initialized

transition system T = (S, s0, (
σ−→)σ∈Σ) is simulated by an initialized transition

system T ′ = (S′, s′0, (
σ−→
′
)σ∈Σ), if there is a simulation R in the disjoint union of

T and T ′ such that s0Rs
′
0. We extend notations v and ∼ to initialized transition

systems. We also define ∼k, bisimilarity up-to k steps: we have s ∼k t for two
states s, t ∈ S if, and only if the unfolding of T from s up-to k steps is bisimilar
to the unfolding at t up-to k steps. A path of T is a sequence of states that
are connected by transitions. The length of a path of a transition system is the
number of transitions it contains. For a path π, πi denotes the i-th state it
visits, and we denote by πi...j the subpath of π from πi to πj . For any initialized
transition system T , we define L(T) as the language accepted by T , that is the
set of words made of the transition labels in all paths of T starting at s0.

A product of flat systems is a tuple S = (T1, . . . , Tk), where Ti = (Si, (
σ−→i)σ∈Σ)

is a flat system for each 1 ≤ i ≤ k. S defines a transition system T (S) =

(
∏
i Si, (

σ−→)σ∈Σ), where (si)i
σ−→ (ti)i if, and only if, for all 1 ≤ i ≤ k, either

si
σ−→ ti in Ti, or ti = si and σ is not enabled at si. An example is given in Fig. 1.

0

1

2

...

p1−1

β1

α

α

α

α

α ‖

0

1

2

...

p2−1

β2

α

α

α

α

α ‖ ... ‖

0

1

2

...

pn−1

βn

α

α

α

α

α

Fig. 1. The system An, where p1, . . . , pn are the first n prime numbers, is defined as
the product of components Fi made of a α-cycle of length pi, along where each state
corresponds to a value modulo pi. The self-loop βi is only available at state 0, which is
also the initial state. Then, when the system reads a word αm, one can read the values
m mod pi for all 1 ≤ i ≤ n, looking at the states of all components.

Hierarchical systems are a modeling formalism used to succinctly describe
finite systems, by allowing the reuse of subsystems. A hierarchical system is de-
fined by a simple grammar that generates a single transition system, in which
each nonterminal defines a system by explicitly introducing states and transi-
tions, and using other nonterminals. The reuse relation is required to be acyclic,
so as to ensure that the generated transition system is finite. These were intro-
duced in [15] in the context of VLSI design.

An n-pointed system is a transition system with n selected states, numbered
from 1 to n. It is denoted by a pair (T , τ), where T = (S, (

σ−→)σ∈Σ) is a transition
system and τ : {1, . . . , n} → S an injection.

Definition 1. A hierarchical system [16] is a tuple H = (N, I, P) where

1. N is a finite set of nonterminals. Each B ∈ N has a rank denoted by
rank(B) ∈ N. I is the initial nonterminal with rank(I) = 0.

2. P is the set of productions, that contains for each B ∈ N a unique pro-
duction B → (A, τ, E) where (A, τ) is a rank(B)-pointed system with the set
of states A, and E is the set of references with E ⊆ {(B′, σ) | B′ ∈ N, σ :
{1, . . . , rank(B′)} → A is injective}.

3. Define relation EH ⊆ N ×N as follows: (B,C) ∈ EH if, and only if for the
unique production B → (A, τ, E), E contains some reference of the form
(C, σ). We require that EH is acyclic.

Its size is defined as |H| =
∑

(B→(A,τ,E))∈P |A|+ |E|. For any production B →
(A, τ, E), the states τ(i) are called contact states. Each production produces
an n-pointed system, that is, a finite system with n contact states. In fact,
a hierarchical system H = (N, I, P) describes a single finite system, obtained by
taking, for each production B → (A, τ, E), the disjoint union of the (explicitly
given) system A and those systems defined by nonterminals B′ for all references
(B′, σ) ∈ E, and merging the i-th contact state of B′ with σ(i). Thus, the
function σ is used to merge the contact states of the references with the states
at the current level. Figure 2 gives an example of a hierarchical system.

Formally, each nonterminal B, produces a rank(B)-pointed system denoted
evalH(B) (also written as eval(B) in the rest) as follows. If the production B →

(A, τ, E) satisfies E = ∅, then eval(B) is the rank(B)-pointed system (A, τ). Oth-
erwise, let E = {(B1, σ1), . . . , (Bk, σk)} and consider systems eval(Bi) = (Ai, τi)
for each i. Let U denote the disjoint union of all Ai and A. We let eval(B) =
(U/≡, π≡ ◦ τ), where≡ is the equivalence relation generated by {(σi(j), τi(j)), 1 ≤
i ≤ k, 1 ≤ j ≤ rank(Bi)}, and π≡ is the projection to the equivalence classes.
Thus, ≡ merges contact state j of system Ai with the state σi(j), for each
1 ≤ i ≤ k. Note that eval(B) is well-defined since EH is acyclic. We define the
generated transition system T (H) of H as eval(I).

We denote by unfolding(H) the tree defined as follows. States are labeled by
nonterminals, and the root is the initial nonterminal S. The children of each state
labeled by nonterminal B are given as follows. If B → (A, τ, E) is the production
of nonterminal B, and if (B1, σ1), . . . , (Bk, σk) are the references in E, then B
has a child for each 1 ≤ i ≤ k, labeled by Bi. Observe that for each state v
of eval(H), there is a unique state in unfolding(H) labeled by a nonterminal
B → (A, τ, E), such that v is an internal state in A, i.e. v ∈ A \ range(τ). We
denote this state by unfolding(H, v)

For any nonterminal B in H, an inner path in B is a path of eval(B) that
does not contain any contact states of eval(B), except possibly for the first and
the last states. An inner path of B is traversing if its first and last states are
contact states of eval(B).

G1
1 2

Gi
1 2

Gi−1 Gi−1 2 ≤ i ≤ n1 2 1 2

eval(G3) =
1 2

Fig. 2. The figure shows a hierarchical system with nonterminals Gi for 1 ≤ i ≤ n. G1

produces an explicit system with no references, with two contact states (shown by 1
and 2). Gi creates three states, where the leftmost and the rightmost are two contact
states, and uses two references to Gi−1. The dashed arrows show how to merge the
contact states of each copy Gi−1 with the states of Gi. For instance, the contact state 1
of the leftmost copy of Gi−1 is merged with contact state 1 of Gi. Then, for n = 3,
eval(G3) is the system depicted on the bottom.

Timed automata are finite automata equipped with a finite set of real-valued
clocks. Clocks grow at a constant rate, and are used to enable/disable the tran-
sitions of the underlying finite automaton. They can be reset during transitions.

To formally define timed automata, we need the following notations. Given a
finite set of clocks X , we call valuations the elements of RX≥0. For a subset R ⊆ X
and a valuation v, v[R← 0] is the valuation defined by v[R ← 0](x) = v(x) for
x ∈ X \ R and v[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v,
the valuation v+ d is defined by (v+ d)(x) = v(x) + d for all x ∈ X . We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock. An atomic clock constraint is a formula
of the form k � x �′ l or k � x− y �′ l where x, y ∈ X , k, l ∈ Z∪{−∞,∞} and

�,�′ ∈ {<,≤}. Guards are conjunctions of atomic clock constraints. The set
ΦX denotes the guards over clocks X . A valuation v satisfies a guard g, denoted
v |= g, if all constraints are satisfied when each x ∈ X is replaced with v(x).

Definition 2 ([2]). A timed automaton A is a tuple (L, Σ,X , `0, E), consisting
of finite sets L of locations, a finite alphabet Σ, X of clocks, E ⊆ L×ΦX ×Σ×
2X × L of edges, and where `0 ∈ L is the initial location.

`0

α,y<2n,x=1,x:=0

Fig. 3. A timed automaton with
one location and two clocks x, y,
modelling a “counter” ranging
from 0 to 2n that can only be incre-
mented. At any state (`0, v) with
v(x) = 0, v(y) encodes the value
of the counter. Taking the self-loop
increments the counter. Any run
stops after at most 2n increments.

We are interested in the time-abstract
semantics of timed automata in the fol-
lowing sense. A timed automaton A =
(L, Σ,X , `0, E), defines a transition system
on the state space L × RX≥0, with the initial

state (`0,0). There is a transition (`, v)
σ−→

(`′, v′) if, and only if there is d ≥ 0 and an
edge (`, g, σ,R, `′) such that v + d |= g and
(v + d)[R ← 0] = v′. Although timed au-
tomata define infinite transition systems, it
is well-known that any timed automaton A is
bisimilar to a computable flat system T (A),
whose size can be exponentially larger than
that of A [2]. See Figure 3 for a timed au-
tomaton bisimilar to a large flat system.

3 Succinctness

We compare hierarchical systems, products of
flat systems, and timed automata with respect
to succinctness of models. Our results show that these classes are pairwise in-
comparable in terms of succinctness: inside each class, there are infinite families
of models which are exponentially more succinct than any bisimilar family of
models in another class.

3.1 Hierarchical Systems vs. Products of Flat Systems

We show that hierarchical systems can be exponentially more succinct than
products of flat systems: it is easy to define long finite chains with the former,
as in Fig. 2, although this is not possible with the latter.

Theorem 1. Hierarchical systems can be exponentially more succinct than prod-
ucts of flat systems.

The other direction, in the next theorem, is more difficult.

Theorem 2. Products of flat systems can be exponentially more succinct than
hierarchical systems.

This theorem also establishes a non-trivial property of hierarchical systems, giv-
ing insight into the differences with the other classes. It shows that any hierarchi-
cal graph of size n defining an exponentially large graph contains necessarily two
states that are bisimilar up-to Ω(n) steps. The proof is based on the observation
that this is not the case for products of flat systems.

We consider the system An described in Fig. 1. We first give simple properties
of An, based on the Chinese Remainder Theorem:

Theorem 3 (Chinese Remainder Theorem). Let p1, . . . , pn denote pair-
wise coprime numbers. For any integers a1, . . . , an, there exists a unique m ∈
[0, p1p2 . . . pn − 1] such that m ≡ ai mod pi for all 1 ≤ i ≤ n.

Let p1, . . . , pn denote the first n prime numbers, and consider An given as the
product of components F1, . . . , Fn. Observe that An has p1p2 · · · pn states. By
the Chinese Remainder Theorem, all bisimulation classes of An are singletons.
In fact, consider a state s reached from the initial state by reading αm. While
executing the word αpn from s, measuring the minimal distance to some state
that enables βi, we can deduce m modulo pi for each 1 ≤ i ≤ n, and this uniquely
determines m modulo p1 · · · pn. This is formalized in the following lemma. In
the rest of the section, we refer to states of An by natural numbers from 0 to
p1p2 · · · pn − 1.

Lemma 1. For any pair of states 0 ≤ c < c′ < p1p2 · · · pn of An, c 6∼pn c′.
Moreover, c ∼pn c′ if, and only if c ∼ c′.

Let us first explain the idea of the proof of Theorem 2. Any (sufficiently large)
hierarchical graph of size polynomial in n that is bisimilar to An contains two
occurrences of a nonterminal since An contains an exponential number of states.
Similarly, some contact states of a same nonterminal appear several times. We
will show moreover that for any hierarchical graph, there is a bisimilar one whose
size is polynomially bounded, with the property that for some nonterminal B,
the same contact state of two different copies of eval(B) belong to inner paths of
eval(B) that are bisimilar up-to pn steps. Thus, both occurrences of the contact
state must be bisimilar to the same state of An by Lemma 1. However, we also
show that these are reachable from the initial states in less than p1p2 · · · pn steps,
which leads to a contradiction. We now give a formal proof following these ideas.

The size of An can be seen to be polynomially bounded in n from below and
above since pn ∼ n log(n) for large n by the Prime Number Theorem. Assume
there are hierarchical systems Hn such that T (Hn) ∼ T (An) for all n ≥ 0,
such that |Hn| ≤ f(n) for some polynomial f . We first show, in the following
lemma, that each Hn can be assumed to satisfy the following Property (?): for
all nonterminals B, all traversing paths of eval(B) have length either 0 or at
least pn + 2.

Lemma 2. For any family (Hn)n≥0 of pointed hierarchical systems, there exist
pointed hierarchical systems (H ′n)n≥0 such that |H ′n| ≤ p(|Hn|) for some polyno-
mial p, T (Hn) ∼ T (H ′n) and H ′n satisfies Property (?), for all n ≥ 0.

The idea of the transformation is the following. We consider each production
B → (A, τ, E), in the reverse topological order w.r.t. EHn . Then, for all produc-
tions C → (A′, τ ′, E′) with (C,B) ∈ EHn , we add to A′ a copy of each traversing
path ρ of A of size less than pn + 2, and remove all edges labeled by α leaving
the first state of ρ. The construction is illustrated in Fig. 4.

Proof of Theorem 2. We assume that Property (?) holds, by Lemma 2. Con-
sider any n ≥ 0, such that 12f(n)4 < p1p2 · · · pn, and let us write Hn = (N, I, P).
Consider a path π obtained in Hn by reading αp1···pn from the initial state.
For all nonterminals B ∈ N , with the unique production B → (A, τ, E), and
i ∈ {1, . . . , range(τ)}, let us mark by (B, i) in π all states that are equivalent,
under relation ≡, to the state τ(i) of A. A single state in eval(Hn) can be marked
by several pairs (B, i) since the equivalence ≡ merges states. For example, if
we were to apply this marking to the graph of Fig. 2, then the leftmost state
would be marked by (G1, 1), (G2, 1), . . . , (Gn, 1), since at each production Gi,
this state is merged with contact state 1 of the leftmost occurrence of nontermi-
nal Gi−1. Note that at least one state among any consecutive |Hn| states must
be marked by some (B, i) in π. Otherwise π would not visit any contact states,
and therefore would stay inside the same explicit graph, which has size less
than |Hn|, and some state would appear twice since p1p2 · · · pn > f(n) ≥ |Hn|.
Then, a same state of T (Hn) would be bisimilar to two distinct states of T (An),
which contradicts Lemma 1. Since the number of pairs (B, i) is bounded by |Hn|
at least m = |π|

|Hn|2 states of π are marked by some pair (B, i). Observe that

m = |π|/|Hn|2 = Ω(2n/f(n)2). Now, at least half the states marked by (B, i)
mark the beginning of traversing paths of eval(B).

Among these states, assume that there are πj and πj′ for 0 ≤ j < j′ <
p1 · · · pn, such that the traversing paths starting at these states have positive
length (therefore, at least pn + 2, thus contain at least pn inner states). By
assumption, these states are bisimilar to the states of An corresponding to the
numbers j and j′ respectively. Consider the inner paths πj...j+pn and πj′...j′+pn
of eval(B). These paths belong to different instances of the production of B,
so the visited states are pairwise disjoint. However, states πj and πj′ , seen as
states of eval(B) are bisimilar, since they correspond to the same contact state
of eval(B). Since all α-labelled transitions from πj lead to bisimilar states in
eval(B), all internal paths starting at πj are bisimilar. In particular, πj and πj′

are bisimilar up-to pn steps, since they stay inside eval(B). So, each βi is enabled
in πj+k iff it is enabled at πj′+k, for all 1 ≤ k ≤ pn. But then πj and πj′ must
be bisimilar to the same state of An by Lemma 1, and this is a contradiction.

Assume now that there is no more than one state πj marked by (B, i) with a
positive-length traversing path; so there are at least m/2− 1 states correspond-
ing to beginnings of traversing paths of length 0 (consisting of single states). Let
(αj)1≤j denote the indices such that παj is marked by (B, i) and is a travers-
ing path of length 0. We argue that some state marked by a pair (B′, i′) with
(B, i) 6= (B′, i′), that is the beginning or the end of a traversing path of positive
length must occur in πα1...α1+|Hn|. Consider the nonterminal C labeling the state
unfolding(Hn, πα1

). By definition, πα1
is an inner state of C, so πα1

is part of

Bk
Bm′

σ(i) σ(j)
α α α α

β1 β2

τm′ (i) τm′ (j)

α
α α α

α

α β1

β2

Fig. 4. The construction of Theorem 2 that removes a small traversing path created
in a production Bm′ → (Am′ , τm′ , Em′). Here, Bm′ has an internal path of length 4
between τm′(i) and τm′(j), where internal states are represented by unfilled states.
The contact states τm′(i) and τm′(j) are to be merged with the states σ(i) and σ(j)
created in the production of Bk. The construction removes all edges of Am′ leaving
τm′(i) (shown by dotted arrows). Then, the red dashed path ρ′ is added instead from
σ(i) and σ(j) in Ak.

an inner path of eval(C). Since the structure defined in the production of C has
size less than |Hn|, πα1...α1+|Hn| must visit a state labeled by (B′, i′) that is the
beginning or the end of an inner path of positive length: this is either a contact
state of eval(C) (the end of the inner path containing πα1

), or the beginning of
an inner path inside eval(B′), where (C,B′) ∈ EHn . In fact, if this subpath does
not visit contact states of C and if it only contains inner paths of length 0 for
other nonterminals B′, then it stays inside the explicit graph defined in the pro-
duction of C. This is again a contradiction with the bisimilarity with An since a
state then must appear twice. This shows that every chunk of |Hn| starting at
some παi contains a state marked by some other (B′, i′), which is the beginning
or the end of some traversing path of positive length of eval(B′). Then, at least
m/2−1
2|Hn|2 states are marked by the same (B′, i′), and are the beginning of traversing

paths of positive length, and we can apply the previous case.

3.2 Timed Automata vs. Product of Flat Systems

Theorem 4. Timed automata can be exponentially more succinct than products
of flat systems.

Proof. The proof immediately follows from Theorem 1 and the fact that the
timed automaton of Fig. 3 is time-abstract bisimilar to the system Gn. ut

We now show that products of flat systems can be more succinct than timed
automata. This result requires new techniques since the nature of state-space
explosion of timed automata is different; it is due to the complex relation between
its clock values, rather than to its structure. To show this result, we use the
well-known notion of zones, which are convex sets of the state space with integer
corners. We only need the fact that zones are closed under basic operations
such as time predecessors and intersection. We refer to [4] for definitions and
properties of zones.

The main idea behind the proof is the following: a state in the transition sys-
tem defined by a timed automaton can have an exponential number of a priori
pairwise non-bisimilar successors but we show that the pairwise non-bisimilarity
of an exponential number of successors of a state cannot be detected by looking
only one step further in the transition system. This important property is es-
tablished using geometric properties of regions, and it is inherent to transition
systems defined by timed automata. We show, on the other hand, that such
a system can be defined by a small product of automata (system A′n defined
below), which yields the following theorem.

Theorem 5. Products of flat systems can be exponentially more succinct than
timed automata.

For any n ≥ 1, we define the finite transition system Tn on the set of states
Sn = {(c1, . . . , cn) | ∀1 ≤ i ≤ n, 0 ≤ ci < pi}, where pi is the i+2-th prime num-
ber (so that we have pi ≥ 5, see below). From any state (c1, . . . , cn) ∈ Sn and

any vector (b1, . . . , bn) ∈ {1, 2}n, there is a transition (c1, . . . , cn)
α−→ (c1 + b1

mod p1, . . . , cn + bn mod pn). Moreover, we have a self-loop (c1, . . . , cn)
βi−→

(c1, . . . , cn) whenever ci ≡ 0 mod pi. Tn can be defined by adapting the sys-
tem An of Fig. 1, by adding an edge from x to x + 2 (modulo pi) inside each
component Fi. Let us call A′n this product of flat systems. It is clear that A′n
has size O(n2 log(n)) since pn ∼ n log n.

The following lemma shows that states of Tn cannot simulate each other.

Lemma 3. For all states c, c′ of Tn, there is no simulation R such that c R c′.

Proof (of Thm. 5). We consider any timed automaton Tn bisimilar to Tn (thus,
to A′n). By definition, all states of Tn have 2n transitions, all leading to pairwise
non-bisimilar states. We show that such a branching is not possible in Tn unless
Tn has exponential size.

We consider the state c = (p1 − 1, . . . , pn − 1) of Tn, which is reachable. Let
(`, v) be any state of Tn that is bisimilar to c. In Tn, c has 2n α-successors.
Moreover, for each 1 ≤ i ≤ n, βi is enabled in exactly half of these successor
states. In fact, for any subset P ⊆ {β1, . . . , βn}, there is a successor where the
set of enabled transition labels is exactly P ∪ {α}. Let E(`) denote the number
of edges from `. For each successor c′ of c, pick a transition from (`, v) in Tn,
leading to a state bisimilar to c′. Then, at least 2n/E(`) of these transitions are
along some edge e = (`, φ, α,R, `′). This means that there exist d1, . . . , dm ≥ 0
with m = b2n/E(`)c such that states (`, v+di) satisfy the guard φ; and the states
(`′, v′i) = (`′, (v+di)[R← 0]) are each bisimilar to a successor of c. States (`, v′i)
are therefore pairwise non-simulating, by Lemma 3. Let us note here that R
cannot be empty, since otherwise (`′, v + di) can simulate (`′, v + dj) whenever
di ≤ dj , which contradicts Lemma 3. We are going to show that there must
be Ω(2n) edges leaving `′.

Valuations v + di belong to a line of direction 1, that contains v. So the
projections v′i = (v + di)[R ← 0] also belong to a line D. Consider the set
g1, . . . , gm of guards of the edges leaving `′. Such a transition can be taken from

v′i if, and only if v′i +d ∈ gj for some delay d ≥ 0. This condition is equivalent to
v′i ∈

∧
x∈R(x = 0) ∧ Pre(gi), where Pre gives the set of time-predecessors of gi,

i.e. Pre(gi) = {v | ∃d ≥ 0, v+d |= gi}. It is well-known that the right hand side of
the above expression can be expressed by a guard [4]. Therefore, for simplicity,
but without loss of generality, let us replace gi by the right hand side of the
above. Thus, we have now a line D that contains all valuations v′i, and convex
sets defined by the guards. The intersection of each guard with D is a segment.
From now on, we are only interested in valuations and segments that lie in D.
Each segment along D thus can be seen as an interval.

Now, we will show that only a small number of bisimulation classes can be
distinguished inside D, looking only at the immediate enablement of m guards.
For a set of real intervals I = {I1, . . . , In}, we denote by χI the equivalence
relation among real numbers given by (x, y) ∈ χI if, and only if x ∈ I ⇔ y ∈ I,
for all I ∈ I. When I is finite, this relation is finite too. For instance, if I =
{[a, b]}, then χI has index 2. We denote by |χI | the index of χI .

Lemma 4. Let I be a finite set of real intervals, and let J be a real interval.
Then |χI∪{J}| ≤ |χI |+ 2.

Now, using m guards, one can only define 2m subsets of D which are pairwise
distinguished with respect to the satisfaction of all guards gi. By the previous
lemma, there are at most 2m equivalence classes defined by χ{g1,...,gE(`′)}. On the

other hand, any pair of states v′i and v′j can be distinguished by the satisfaction of
some guard gk, since this is the case for the 2n successors of c = (p1−1, . . . , pn−1)
inside Tn. It follows that 2m ≥ 2n/E(`). Therefore, |Tn| ≥ m = Ω(2n). ut

3.3 Timed Automata vs. Hierarchical Systems

Theorem 6. Timed automata can be exponentially more succinct than hierar-
chical systems, and vice versa.

The proof of the first direction is similar to that of Theorem 2: we give a
timed automaton that describes a system similar to An. The other direction
uses the techniques of Theorem 5.

4 Complexity of Preorder Checking

4.1 Hardness of Simulation

The main result of this section is that deciding simulation between two hierar-
chical systems is EXPTIME-complete. Our proof is based on a simple reduction
from countdown games [11]. Our reduction is quite generic, and it can be applied
to any class with a set of simple properties (discussed at the end of the section).
As an example, we apply the reduction to timed automata. Note the EXPTIME-
hardness of checking simulation for timed automata was already proved in [14]
by a reduction based on Turing machines; we obtain here a simpler proof.

Theorem 7. Checking simulation between two hierarchical systems (resp. two
timed automata) is EXPTIME-complete.

Our reduction is based on countdown games [11], defined as follows. A count-
down game C is played on a weighted graph (S, T), whose edges are labeled with
positive integer weights encoded in binary. A move of the game from configu-
ration (s, c) ∈ S × N is determined jointly by both players, as follows. First,
Eve chooses a number d ≤ c such that (s, d, s′) ∈ T for some state s′. Then
Adam chooses a state s′ ∈ S such that (s, d, s′) ∈ T . The resulting configuration
is (s′, c−d). The game stops when Eve has no available moves: configuration (s, c)
is winning for Eve if c = 0. Given a countdown game, one can build an equiva-
lent turn-based graph game of exponential size with a reachability objective. We
note that given a countdown game and an initial configuration, the existence of
a winning strategy for Eve is EXPTIME -complete [11].

We first reduce the problem of determining the winner in countdown games
to the simulation problem on finite automata, that may have exponential size.
We then show how these automata can be described in polynomial size by hier-
archical systems and timed automata. This proves the EXPTIME-hardness (thus,
completeness) of the simulation problem on these classes.

Consider a countdown game C = (S, T) with initial state q ∈ S and initial
value c. Let Σ denote the set of constants used in C. We define two finite au-
tomata on the alphabet Γ = Σ ∪ {e, α, β}. The first one, called CounterC(c), is
a directed path of length c with some additional states, defined in Fig. 5. The
bottom left state is the initial state. Intuitively, this is used to count down from c
when simulating the countdown game.

... ...

e Σ e Σ e Σ e Σ e
β

α α α α α

Fig. 5. System CounterC(c).

The second automaton is called ControlC , and has the same structure as the
game C = (S, T), except that each transition labeled by k ∈ Σ is replaced by a
module ChainC(k), which is roughly a directed path of length k + 1 labeled by
αk. In addition, in every state, an edge leads to a sink state by any symbol of
Γ \ {α} from all but the last state, and by any symbol in Γ \ {e} from the last
state. Sink states have self-loops on all symbols. The module is given in Fig. 6.

Now, automaton ControlC is defined by replacing each transition labeled
by k in the game C, with an instance of module ChainC(k), as shown in Fig. 7.
Moreover, from each state si, there is an edge going to a sink state, labeled by
all labels in Γ \ (Σ(si)∪{β}), where Σ(si) denotes the set of labels of the edges
leaving si in game C. This ensures that a path in ControlC encodes a correct
simulation of the game. The initial state of ControlC is the initial state of C.

...α α α

α α α e

Fig. 6. Module ChainC(k). Here, x de-
notes the complement of the set {x}. All
gray states at the bottom in the figure are
sink states with (omitted) self-loops on all
symbols.

s1

ChainC(5) s2

ChainC(5) s3 ...

ChainC(3) s4 ...

5

e

5 e

3 e

{β
,3
,5
}

Fig. 7. A part of ControlC for a count-
down game C with states s1, s2, s3, s4 and
edges (s1, 5, s2), (s1, 5, s3), (s1, 3, s4).

Proposition 1. For any countdown game C = (S, T) with initial state s1 and
initial value c, CounterC(c) v ControlC if, and only if Eve does not have a
winning strategy in C from configuration (s1, c).

We now explain how this reduction can be applied to hierarchical systems
and timed automata, in polynomial time. For hierarchical systems, in order to
succinctly represent CounterC(c) and modules ChainC(k), we use the trick of
Fig. 2. For instance, in order to define ChainC(k), one can generate all systems
G1, G2, . . . , Gdlog(k)e and combine these according to the binary representation
of k. For timed automata, a pair of clocks can be simply used to count up-
to k, as in Fig. 3. Thus, modules CounterC(c) and ChainC(k) can be defined in
polynomial space in these classes, which yields a polynomial-time reduction.

4.2 Simulation and Bisimulation with a Flat System

We show that checking whether a hierarchical graph is simulated by a finite au-
tomaton is PSPACE-complete. The PSPACE-membership follows from the fact
that simulation by a finite automaton can reduced to µ-calculus model-checking
(see e.g. [13]), which is in turn in PSPACE [7]. The corresponding lower bound
can in fact be deduced from results from [12] and [13] by using lengthy defini-
tions, however, we decided to give a direct reduction from quantified Boolean
satisfiability problem.

Theorem 8. Checking whether a flat system simulates a hierarchical system is
PSPACE-complete.

Second, we show that the problems of checking bisimilarity between a timed
automaton and a flat system, and between a hierarchical system and a flat
system are PSPACE-complete. In fact, one can reduce bisimilarity with a flat
system to model checking CTL’s fragment EF (where formulas are represented
as DAGs) in polynomial time [13]. This yields a polynomial space algorithm for
this problem since EF model-checking is easily seen to be in PSPACE for products
of flat systems, timed automata and hierarchical systems since reachability for
all these systems is in PSPACE.

Theorem 9. Checking bisimilarity between a timed automaton (resp. hierarchi-
cal system, product of flat systems) and a flat system is PSPACE-complete.

The PSPACE-hardness for product of finite automata was already proved
in [5]. For timed automata, it follows from PSPACE-hardness of control state
reachability that checking any relation between time-abstract language equiv-
alence and time-abstract bisimulation between a timed automaton and a finite
automaton is PSPACE-hard. For hierarchical systems, we observe that the reduc-
tion of [13] that shows the PSPACE-hardness of checking bisimulation between
a pushdown automaton and a finite automaton can be adapted to hierarchical
systems.

4.3 Language Inclusion and Universality

Given any timed automaton A, one can effectively construct an exponential-size
finite automaton, called the region automaton that is time-abstract bisimilar
to A [2]. Then, using region automata, one can decide the inclusion between
the untimed languages of two timed automata in exponential space. The exact
complexity of these problems had not been characterized, and the problem was
wrongly cited in the literature as being PSPACE in [1, 19]. In this section, we
prove that untimed language universality and inclusion are actually EXPSPACE-
complete. The result holds already for two clocks. For one clock, the problem is
PSPACE-complete. Language inclusion can also be decided in exponential space
for hierarchical systems, since the system generated has at most exponential size.
We adapt the proof to hierarchical systems, and obtain the same complexity
results.

Theorem 10. Checking untimed language universality is EXPSPACE-complete
for timed automata with two clocks, and PSPACE-complete with one clock. Lan-
guage universality is EXPSPACE-complete for hierarchical systems.

To prove this, we consider the acceptance problem on exponential-space Tur-
ing machines, and show how to compute timed automata (resp. hierarchical
systems) that accept all words but those encoding correct accepting executions.

5 Conclusion

In this paper, we compared products of automata, timed automata and hier-
archical systems, which are used to succinctly describe finite-state systems. We
showed that each of them contains models that are exponentially more succinct
than the others, formalizing the intuition that the nature of the state space ex-
plosion is different in each formalism. Several variants of these systems were not
considered in this paper. For instance, silent transitions improve succinctness in
general: the main argument in the proof of Theorem 5 does not hold for timed
automata with silent transitions. One could also study different synchronization
semantics for products of automata. We also studied the computational complex-
ity of several preorder and equivalence relations. The complexity of bisimilarity
between hierarchical systems remains open.

References

1. Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive
Systems: Modelling, Specification and Verification. Cambridge University Press,
NY, USA, 2007.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

3. Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state ma-
chines. ACM Trans. Program. Lang. Syst., 23(3):273–303, 2001.

4. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, p. 87–124, 2003.

5. Laura Bozzelli, Axel Legay, and Sophie Pinchinat. Hardness of preorder checking
for basic formalisms. In LPAR (Dakar), p. 119–135, 2010.

6. Romain Brenguier, Stefan Göller, and Ocan Sankur. A comparison of succinctly
represented finite-state systems. Technical Report LSV-12-13, Lab. Specification &
Verification, ENS Cachan, France, June 2012.

7. Stefan Göller and Markus Lohrey. Fixpoint logics over hierarchical structures.
Theory Comput. Syst., 48(1):93–131, 2011.

8. David Harel, Orna Kupferman, and Moshe Y. Vardi. On the complexity of verifying
concurrent transition systems. Inf. Comput., 173:143–161, March 2002.

9. David Janin and Igor Walukiewicz. On the Expressive Completeness of the Propo-
sitional mu-Calculus with Respect to Monadic Second Order Logic. In Proc. of
CONCUR, LNCS 1119, p. 263–277. Springer, 1996.

10. Lalita Jategaonkar and Albert R. Meyer. Deciding true concurrency equivalences
on safe, finite nets. Theoretical Computer Science, 154(1):107–143, 1996.

11. Marcin Jurdziński, François Laroussinie, and Jeremy Sproston. Model checking
probabilistic timed automata with one or two clocks. In TACAS’07, LNCS 4424,
p. 170–184. Springer, March 2007.

12. Antońın Kučera and Richard Mayr. Why is simulation harder than bisimulation?
In CONCUR, LNCS 2421, p. 594–610. Springer, 2002.

13. Antońın Kučera and Richard Mayr. On the complexity of checking semantic equiv-
alences between pushdown processes and finite-state processes. Information and
Computation, 208(7):772–796, 2010.

14. François Laroussinie and Philippe Schnoebelen. The state explosion problem from
trace to bisimulation equivalence. In FOSSACS’07, p. 192–207. Springer, 2000.

15. Thomas Lengauer and Egon Wanke. Efficient solution of connectivity problems on
hierarchically defined graphs. SIAM J. Comput., 17(6):1063–1080, 1988.

16. Markus Lohrey. Model-checking hierarchical structures. J. Comput. Syst. Sci.,
78(2):461–490, 2012.

17. Faron Moller and Alexander Moshe Rabinovich. Counting on CTL*: on the ex-
pressive power of monadic path logic. Inf. Comput., 184(1):147–159, 2003.

18. Anca Muscholl and Igor Walukiewicz. A lower bound on web services composition.
Logical Methods in Computer Science, 4(2), 2008.

19. Jiri Srba. Comparing the expressiveness of timed automata and timed extensions
of Petri nets. In FORMATS’08, LNCS 5215, p. 15–32. Springer, 2008.

20. Johan van Benthem. Modal Correspondence Theory. PhD thesis, University of
Amsterdam, 1976.

21. Rob J. van Glabbeek. The linear time-branching time spectrum (extended ab-
stract). In CONCUR, LNCS 458, p. 278–297. Springer, 1990.

22. Rob J. van Glabbeek. The linear time - branching time spectrum ii. In CONCUR,
LNCS 715, p. 66–81. Springer, 1993.

