
Weighted Specifications over Nested Words ?

Benedikt Bollig1, Paul Gastin1, and Benjamin Monmege1

LSV, ENS Cachan, CNRS & Inria, France
firstname.lastname@lsv.ens-cachan.fr

Abstract. This paper studies several formalisms to specify quantitative
properties of finite nested words (or equivalently finite unranked trees).
These can be used for XML documents or recursive programs: for in-
stance, counting how often a given entry occurs in an XML document,
or computing the memory required for a recursive program execution.
Our main interest is to translate these properties, as efficiently as possi-
ble, into an automaton, and to use this computational device to decide
problems related to the properties (e.g., emptiness, model checking, sim-
ulation) or to compute the value of a quantitative specification over a
given nested word. The specification formalisms are weighted regular ex-
pressions (with forward and backward moves following linear edges or
call-return edges), weighted first-order logic, and weighted temporal log-
ics. We introduce weighted automata walking in nested words, possibly
dropping/lifting (reusable) pebbles during the traversal. We prove that
the evaluation problem for such automata can be done very efficiently if
the number of pebble names is small, and we also consider the emptiness
problem.

1 Introduction

In this paper, we develop a denotational formalism to express quantitative prop-
erties of nested words. Nested words, introduced in [1], are strings equipped with
a binary nesting relation. Just like trees, they have been used as a model of XML
documents or recursive programs. Though nested words can indeed be encoded
in trees (and vice versa), they are often more convenient to work with, e.g., in
streaming applications, as they come with a linear order that is naturally given
by an XML document [2]. Moreover, nested words better reflect system runs
of recursive programs where the nesting relation matches a procedure call with
its corresponding return. There is indeed a wide range of works that address
logics and automata over nested words to process XML documents or to model
recursive programs e.g., [2,3,4].

Most previous approaches to nested words (or unranked trees) consider Bool-
ean properties: logical formulae are evaluated to either true or false, or to a set
of word positions if the formula at hand represents a unary query. Now, given an
XML document in terms of a nested word, one can imagine a number of quanti-
tative properties that one would like to compute: What is the number of books

? This work was partially supported by LIA INFORMEL.

of a certain author? Are there more fiction than non-fiction books? What is the
total number of entries? So, we would like to have flexible and versatile languages
allowing us to evaluate arithmetic expressions, possibly guarded by logical con-
ditions written in a standard language (e.g., first-order logic or XPath). To this
aim, we introduce (1) weighted regular expressions, which can indeed be seen
as a quantitative extension of XPath, (2) weighted first-order logic as already
studied in [5] over words, and (3) weighted nested word temporal logic in the
flavor of [3]. Their application is not restricted to XML documents, though. For
instance, when nested words model recursive function calls, these specification
languages can be used to quantify the call-depth of a given system run, i.e., the
maximal number of open calls.

Thus, when one considers expressiveness and algorithmic issues, a natural
question arises: Is there a robust automata model able to compile specifications
written in these languages? Our answer will be positive: we actually obtain a
Kleene-Schützenberger correspondence, stating the equivalence of weighted reg-
ular expressions with a model of automata. Not only do we obtain this corre-
spondence, but we also give similar complexity results concerning the size of the
automaton derived from a regular expression, and the time and space used to
construct it. We also prove that we can evaluate these automata efficiently and
that emptiness problem is decidable (in case the underlying weight structure has
no zero divisors). Towards a suitable automata device, we consider navigational
automata with pebbles, for two reasons. First, weighted automata, the classical
quantitative extensions of finite automata [6], are not expressive enough to en-
code powerful quantitative expressions, neither for words [7] nor for nested words
or trees [8,9]. Second, we are looking for a model that conforms with common
query languages for nested words or trees, such as XPath or equivalent variants
of first-order logic, aiming at a quantitative version of the latter and a suit-
able algorithmic framework. Indeed, tree-walking automata are an appropriate
machine model for compiling XPath queries [10].

Contribution. In Section 3, we introduce weighted expressions with pebbles over
nested words, mixing navigational constructs and rational arithmetic expres-
sions. As an operational counterpart of weighted expressions, we then introduce
weighted automata with pebbles in Section 4, which can traverse a nested word
along nesting edges and direct successors in both directions, and occasionally
place reusable pebbles. In a sense, these are extensions of the tree-walking au-
tomata with invisible pebbles, introduced in [11], to the weighted setting and to
nested words. We extend results over words stated in [12], namely a Kleene-
Schützenberger theorem showing correspondence between weighted expressions
with pebbles and layered weighted automata with pebbles (i.e., those that can
only use a bounded number of pebbles). We also show how to efficiently compute
the value associated to a given nested word in a weighted automaton with peb-
bles, and prove decidability (not surprinsingly, with non-elementary complexity)
of the emptiness problem in case the underlying weight structure has no zero
divisor.

2

In order to allow more flexibility, we also discuss, in Section 5, more logical
quantitative formalisms like first-order logic and temporal logics, and show how
to compile them efficiently into weighted automata with pebbles.

For lack of space, proof details are given in the full version [13].

2 Preliminaries

Nested Words We fix a finite alphabet A. For n ∈ N, we let [n] = {0, 1, . . . , n−
1}. A nested word over A is a pair W = (w,y) where w = a0 · · · an−1 ∈ A+

is a nonempty string and y ⊆ ([n] × [n]) ∩ < is a nesting relation: for all
(i, j), (i′, j′) ∈ y, we have (1) i = i′ iff. j = j′, and (2) i < i′ implies (j < i′ or
j > j′). We will more often denote (i, j) ∈y as iy j. Moreover, the inverse of
relation y will be denoted as x, so that iy j iff. jx i. For uniformity reasons,
we denote as i→ j the fact that j is the successor of i, i.e., j = i+ 1. In case we
want to stress that i is the predecessor of j, we rather denote it j← i. The length
n of W is denoted |W |, and pos(W) = [n] is the set of positions of W . In order
to ease some definitions of the paper, a virtual position n can be added to the
positions: we will then denote pos(W) = [n]∪{n} the extended set of positions.

Let T = {first, last, call, ret, int}. Each position i ∈ pos(W) in a nested word
W = (w,y) has a type τ(i) ⊆ T : first ∈ τ(i) iff. i = 0; last ∈ τ(i) iff. i = |W |;
call ∈ τ(i) iff. there exists j such that iy j; dually, ret ∈ τ(i) iff. there exists j
such that jy i; finally, int ∈ τ(i) iff. i < |W | and τ(i) ∩ {call, ret} = ∅.

a a b a a a a b a a b a b b

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. A nested word

It is convenient to represent the pairs of the relation y pictorially by curved
lines which do not cross. Fig. 1 shows a nested word W = (w,y) over A = {a, b}
of length |W | = 14. We have w = aabaaaabaababb and the nesting relation de-
fined by 1y 3, 5y 11, 6y 8 and 12y 13. Moreover, τ(0) = {first, int}, τ(13) =
{ret} and τ(14) = {last}. In the examples of this paper, we will consider the
call-depth c-d(j) of a position j ∈ pos(W), i.e., the number of contexts in which
position j lies. Formally, c-d(j) = |{(i, k) | iy k ∧ i < j < k}|. For example,
position 7 has call-depth 2, whereas position 6 has call-depth 1. The call-depth
of a nested word is the maximal call-depth among the positions: the call-depth
of W is here 2.

Weights A semiring is a set S equipped with two binary internal operations
denoted + and ×, and two neutral elements 0 and 1 such that (S,+, 0) is a
commutative monoid, (S,×, 1) is a monoid, × distributes over + and 0 × s =
s × 0 = 0 for every s ∈ S. If the monoid (S,×, 1) is commutative, the semiring

3

itself is called commutative. In this paper, we only consider continuous semirings:
intuitively, these are semirings in which sums of infinite families are always well-
defined, and such that these sums can be approximated by finite partial sums.
This allows us to define in particular a star operation: for every s ∈ S, the element
s∗ =

∑
i∈N s

i exists (where si is defined inductively by s0 = 1 and si+1 = si×s).
See [14] for more discussions about semirings, especially continuous ones. In
all the rest, S will denote a continuous semiring. Here are some examples of
continuous semirings.

– The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite dis-
junction.

– (R≥0 ∪{∞},+,×, 0, 1) with
∑

defined as usual for positive (not necessarily
convergent) series: in particular, s∗ = ∞ if s ≥ 1 and s∗ = 1/(1 − s) if
0 ≤ s < 1.

– (N ∪ {∞},+,×, 0, 1) as a continuous subsemiring of the previous one.
– (R∪ {−∞},min,+,−∞, 0) with

∑
= inf and (R∪ {∞},max,+,∞, 0) with∑

= sup.
– Complete lattices such as ([0, 1],min,max, 0, 1).
– The semiring of languages over an alphabet A: (2A

∗
,∪, ·, ∅, {ε}) with

∑
defined as (infinite) union.

3 Weighted Regular Expressions with Pebbles

In this section, we introduce weighted regular expressions with pebbles. Like
classical regular expressions, their syntax employs operations + and · , as well as
a Kleene star. However, unlike in the Boolean setting, + and · will be interpreted
as sum and Cauchy product, respectively.

We introduce first these weighted regular expressions with an example. We
consider a nested word over the alphabet {a, b}. The classical regular expression
(a + b)∗b(a + b)∗ checks that the given nested word contains an occurrence of
letter b. We will rather use the shortcut → to denote the non-guarded move to
the right encoded by the choice (a + b), and use a weighted semantics in the
semiring (N ∪ {∞},+,×, 0, 1): hence, expression →∗b→∗ counts the number of
occurrences of letter b in the nested word. We now turn to the more complex
task of counting the total number of occurrences of the letter b inside a context
with a call position labelled a: more formally we want to sum over all possible
call positions labelled a, the number of occurrences of b that appear strictly in-
between this position and the matching return. For the nested word of Fig. 1,
we must count 4 (in particular, position 7 must count for both call positions 5
and 6). In our formalism, we will achieve this task using expression:

E =→∗(a? ∧ call?)x!
[
→∗x?y (¬x?←)+ b?→∗

]
→∗ .

First, we search for a call position labelled with a: there we use the test a? to
check the label without moving. Then, we mark the call position of the interest-
ing context with a pebble named x: this permits us to compute independently the

4

subexpression between brackets on the nested word, restarting from the first posi-
tion. The latter subexpression first searches for the pebble, follows the call-return
edge and then moves backward inside the context to pick non-deterministically
a position carrying letter b.

We turn to the formal syntax of our expressions. We let Peb = {x, y, . . .}
be an infinite set of pebble names. Weighted expressions are built upon simple
Boolean tests from a set Test. The syntax of these basic tests is given as follows:

α ::= a? | τ? | x? | ¬α | α ∧ α | α ∨ α

where a ∈ A, τ ∈ T and x ∈ Peb. Thus, a test is a Boolean combination of
atomic checks allowing one to verify whether a given position in a nested word
has label a; whether it is the first or last position (which is useful since we deal
with 2-way expressions); whether it is a call, a return or an internal action; or
whether it carries a pebble with name x, respectively. Given a nested word W , a
position i ∈ pos(W) and an assignment of free pebble names given by a partial
mapping σ : Peb → pos(W), we denote W, i, σ |= α if test α is verified over the
given model: this semantics is defined as expected. Next, we present weighted
regular expressions.

Definition 1. The set pebWE of weighted expressions with pebbles is given
by the following grammar:

E ::= s | α | → | ← |y |x | x!E | E + E | E · E | E+

where s ∈ S, α ∈ Test, and x ∈ Peb.

We get the classical Kleene star as an abbreviation: E∗
def
= 1 + E+. It is also

convenient to introduce macros for “check-and-move”: a
def
= a? ·→. This allows us

to use common syntax such as (ab)+abc, or to write→∗abba←+first?→∗baab→∗
to identify words having both abba and baab as subwords.

A pebWE is interpreted over a nested word W with a marked initial position i
and a marked final position j (as is the case in rational expressions or path
expressions from XPath) and an assignment of free pebbles (as is the case in
logics with free variables), given as a partial mapping σ : Peb → pos(W). The
atomic expressions →, ←, y, x have their natural interpretation as a binary
relation R and are evaluated 1 or 0 depending on whether or not (i, j) ∈ R.
On the contrary, formulae s, α, x!E are non-progressing and require i = j. In
particular, x!E evaluates E in W with the current position marked with pebble
x. The formal semantics of pebWE is given in Table 1. By default, i and j are
the first and the last position of W , i.e., 0 and |W |, so that we use [[E]](W,σ)
as a shortcut for [[E]](W,σ, 0, |W |). In the following, we call pebble-depth of an
expression in pebWE its maximal number of nested x!E operators.

Example 2. Over (N ∪ {−∞},max,+,−∞, 0), consider the pebWE

E =
(
(1 call?→¬ret?) + (int?→¬ret?) + y + (ret?→¬ret?)

)∗
x?→∗ .

5

[[s]](W,σ, i, j) =

{
s if j = i

0 otherwise
[[α]](W,σ, i, j) =

{
1 if j = i ∧W,σ, i |= α

0 otherwise

[[d]](W,σ, i, j) =

{
1 if i d j

0 otherwise
(with d ∈ {←,→,y,x})

[[x!E]](W,σ, i, j) =

{
[[E]](W,σ[x 7→ i], 0, |W |) if j = i < |W |
0 otherwise

[[E · F]](W,σ, i, j) =
∑

k∈pos(W)

[[E]](W,σ, i, k)× [[F]](W,σ, k, j)

[[E + F]] = [[E]] + [[F]] [[E+]] =
∑
n>0

[[En]]

Table 1. Semantics of pebWE

Notice the use of 1 ∈ N which is not the unit of the semiring. Moreover, oper-
ations + are resolved by the max operator, whereas concatenation implies the
use of addition in N ∪ {−∞}. For every nested word W , and every position
i ∈ pos(W), [[E]](W, [x 7→ i]) computes the call-depth of position i: indeed the
first Kleene star is unambiguous, meaning that only one path starting from po-
sition 0 will lead to x in this iteration; along this path – the shortest one – we
only count the number of times we enter inside the context of a call position.
Hence, the call-depth of W can be computed with expression E′ =→∗(x!E)→∗.

4 Weighted Automata with Pebbles

We define an automaton that walks in a nested word W . Whether a transition
is applicable depends on the current control state and the current position i
in W , i.e., its letter and type τ(i). A transition then either moves to a succes-
sor/predecessor position (following the linear order or the nesting relation), or
drops/lifts a pebble whose name is taken from Peb. The effect of a transition is
described by a move from the set Move = {→,←,y,x, ↑} ∪ {↓x | x ∈ Peb}.

Definition 3. A pebble weighted automaton (or shortly pebWA) is a tuple
A = (Q,A, I, δ, T) where Q is a finite set of states, A is the input alphabet,
I ∈ SQ is the vector of initial weights, T ∈ SQ is the vector of final weights, and
δ : Q× Test×Move×Q→ S is a transition function with finite support1.

Informally, I assigns to any state q ∈ Q the weight Iq of entering a run in q.
Similarly, T determines the exit weight Tq at q. Finally, δ(p, α,m, q), determines
the weight of going from state p to state q depending on the move m ∈ Move
and on the outcome of a test α ∈ Test. The set of pebbles names of A is defined

1 The support of δ is the set of tuples (q, α,m, q′) such that δ(q, α,m, q′) 6= 0.

6

to be the set of pebble names that appear either in drop transitions ↓x or in
tests x? of A.

Let us turn to the formal semantics of a pebWA A = (Q,A, I, δ, T). A run
is described as a sequence of configurations of A. A configuration is a tuple
(W,σ, q, i, π). Here, W is the nested word at hand, σ : Peb → pos(W) is a val-
uation, q ∈ Q indicates the current state, i ∈ pos(W) the current position, and
π ∈ (Peb × pos(W))∗. The valuation σ indicates the position of free pebbles x,
which may be tested successfully using x? even before being dropped with ↓x. It
can be omitted when there are no free pebbles. The string π may be interpreted
as the contents of a stack (its top being the rightmost symbol of π) that keeps
track of the positions where pebbles have been dropped, and in which order.
Pebbles are reusable (or invisible as introduced in [11]): this means that we have
an unbounded supply of pebbles each marked by a pebble name in Peb. More
than one pebble with name x can be placed at the same time, but only the last
dropped is visible in the configuration. However, when the latter will be lifted,
the previous occurrence of pebble x will become visible again. Formally, this
means that a pebble name can occur at several places in π, but only its topmost
occurrence is visible. Having this in mind, we define, given σ and π, a new val-
uation σπ : Peb → pos(W) by σε = σ and σπ(x,i)(x) = i, σπ(x,i)(y) = σπ(y) if
y 6= x.

Any two configurations with fixed W and σ give rise to a concrete transition
(W,σ, p, i, π) (W,σ, q, j, π′). Its weight is defined by∑

d∈{→,←,y,x}|i d j
α∈Test|W,σπ,i|=α

δ(p, α, d, q) if π′ = π

∑
α∈Test|W,σπ,i|=α

δ(p, α, ↓x, q) if j = 0, i < |W | and π′ = π(x, i)

∑
α∈Test|W,σπ,i|=α

δ(p, α, ↑, q) if π = π′(y, j) for some y ∈ Peb

and 0, otherwise. In particular, this implies that a pebble cannot be dropped on
position |W | in agreement with the convention adopted for weighted expressions.

A run of A is a sequence of consecutive transitions. Its weight is the product
of transition weights, multiplied from left to right. We are interested in runs that
start at some position i, in state p, and end in some configuration with position
j and state q. So, let [[Ap,q]](W,σ, i, j) be defined as the sum of the weights
of all runs from (W,σ, p, i, ε) to (W,σ, q, j, ε). Since the semiring is continuous,
[[Ap,q]](W,σ, i, j) is well defined.

The semantics of A wrt. the nested word W and the initial assignment σ
includes the initial and terminal weights, and we let

[[A]](W,σ) =
∑
p,q∈Q

Ip × [[Ap,q]](W,σ, 0, |W |)× Tq .

In order to evaluate automata, or prove some expressiveness results, we con-
sider the natural subclass of pebWA that cannot drop an unbounded number

7

Layer 2:

Layer 1:

Layer 0:

→

←

y

x

→

←

y

←

→

←

→

x

→

x

→

←

y

←

↑ ↓x ↓y↑

↑ ↓x ↓z↑

⊤,→, 0

⊤, ↓x, 0
int?,→, 0
call?,→, 1

⊤,y, 0

⊤,→, 0

¬ret? ∧ x?,→, 0

x?,→, 0

⊤,→, 0

last?, ↑, 0

⊤,→, 0

(a) (b)

Fig. 2. (a) A 2-layered pebWA, (b) A pebWA computing the call-depth

of pebbles. We will hence identify K-layered automata, for K ≥ 0, where a
state contains information about the number n ∈ {0, . . . ,K} of currently avail-
able pebbles. Formally, a pebWA A = (Q,A, I,M, T) is K-layered if there is
a mapping ` : Q → {0, . . . ,K} satisfying, for all p, q ∈ Q, (i) if Iq 6= 0 or
Tq 6= 0 then `(q) = K; (ii) if there is α ∈ Test and d ∈ {←,→,y,x} such
that δ(p, α, d, q) 6= 0 then `(q) = `(p); (iii) if there is α ∈ Test such that
δ(p, α, ↑, q) 6= 0 then `(q) = `(p) + 1; and (iv) if there is α ∈ Test and x ∈ Peb
such that δ(p, α, ↓x, q) 6= 0 then `(q) = `(p)−1. Fig. 2(a) schematizes a 2-layered
pebWA.

Example 4. We depict in Fig. 2(b) a pebWA which computes the call-depth of
a nested word: it has the same semantics as expression E′ of Example 2. Notice
that this automaton is 1-layered.

We now extend the Kleene theorem to our setting. In order to express the
complexity of the construction, we define the literal-length ``(E) of an expression
as the number of occurrences of moves in {→,←,y,x} plus twice the number
of occurrences of ! (in x!−).

Theorem 5. For each pebWE E, we can construct a layered pebWA A(E)
equivalent to E, i.e., for all nested words W and for all assignments σ we
have: [[A(E)]](W,σ) = [[E]](W,σ). Moreover, the number of layers in A(E) is
the pebble-depth of E, and its number of states is 1+``(E). Conversely, for each
layered pebWA we can construct an equivalent pebWE.

Such extensions of Kleene’s theorem have been proved for various weighted
models. In [15], Sakarovitch gives a survey about different constructions estab-
lishing Schützenberger’s theorem, namely Kleene’s theorem for weighted one-way
automata over finite words. An efficient algorithm constructing an automaton
from an expression uses standard automata (which has as variants Berry-Sethi
algorithm, or Glushkov algorithm). In [12], we extended this algorithm to deal
with pebbles and two-way navigation in (non-nested) words. It is not difficult
– and not surprising – to see that this extension holds in the context of nested

8

words too. For the converse translation, weighted versions of the state elimination
method of Brzozowski-McCluskey, or the procedure of McNaughton-Yamada can
easily be applied to our two-way/pebble setting as previously stated in [12] over
(non-nested) words.

We now study the evaluation problem of a K-layered pebWA A: given a
nested word W over A and a valuation σ : Peb → pos(W), compute [[A]](W,σ).
The problem is non-trivial since, even if the nested word is fixed, the number of
accepting runs may be infinite.

Our evaluation algorithm requires the computation of the matrix N∗ given
a square matrix N ∈ Sn×n. By definition, N∗ is defined as the infinite sum∑
k≥0N

k, which is well defined since the semiring is continuous, but may seem
difficult to compute. However, using Conway’s decomposition of the star of a
matrix (see [16] for more details), we can compute N∗ with O(n) scalar star
operations and O(n3) scalar sum and product operations.

Theorem 6. Given a layered pebWA with ρ pebble names and a nested word W ,
we can compute with O((ρ+1)|Q|3|W |ρ+1) scalar operations (sum, product, star)
the values [[Ap,q]](W,σ) for all states p, q ∈ Q and valuations σ : Peb→ pos(W).

Proof (Sketch). In the whole proof, we fix a nested word W = (w,y). We follow
the same basic idea used to evaluate weighted automata over words, namely
computing matrices of weights for partial runs [12]. The 2-way navigation is
resolved by computing simultaneously matrices of weights of the back and forth
loops, whereas we deal with layers inductively. Finally, we deal with call-return
edges by using a hierarchical order based on the call-depth to compute the
different matrices. Hence, for every position i ∈ pos(W) we consider the pair
(start(i), end(i)) of start and end positions as follows:

start(i) = min{j ∈ pos(W) | j ≤ i ∧ ∀k j ≤ k ≤ i =⇒ c-d(k) ≥ c-d(i)}
end(i) = max{j ∈ pos(W) | i ≤ j ∧ ∀k i ≤ k ≤ j =⇒ c-d(k) ≥ c-d(i)}

For positions of call-depth 0, the start position is 0 whereas the end position is
|W |. For positions of call-depth at least 1 (see Fig. 3), the start position is the
linear successor of the closest call in the past such that its matched return is
after position i, whereas its end position is the linear predecessor of this return
position.

Let A = (Q,A, I,M, T) be a K-layered pebWA. For k ≤ K, we let Q(k) =
`−1(k) be the set of states in layer k. For every layer k ∈ {0, . . . ,K} and all states

p, q ∈ Q(k) we denote by B
(k)
σ,p,q the sum of weights of the runs from configuration

(W,σ, p, 0, ε) to configuration (W,σ, q, |W |, ε): observe that the stack of pebbles
is empty at the beginning of these runs, hence they stay in layers k, k− 1, . . . , 0.

Notice that B
(k)
σ,p,q = [[Ap,q]](W,σ). In the following, these coefficients (and others

that will be defined later) will be grouped into matrices: for example, we denote

by B
(k)
σ the (Q(k) ×Q(k))-matrix containing all coefficients (B

(k)
σ,p,q)p,q∈Q(k) .

Fix a layer k ∈ {0, . . . ,K} of the automaton. Suppose by induction that we

have already computed matrices B
(k−1)
σ for every valuation σ : Peb→ pos(W).

9

istart(i) end(i)

Bi→
σ

p

q

Bi

y

σ

p

q

istart(i) end(i)

B←iσ

p

q

B x

i
σ

p

q

Fig. 3. Representation of the four types of matrices

For a valuation σ : Peb → pos(W), the matrix B
(k)
σ will be obtained by the

computation of four types of matrices for every position (see Fig. 3). For exam-
ple, Bi→σ,p,q (resp. Bi

y

σ,p,q) is the sum of weights of the runs from configuration
(W,σ, p, i, ε) to (W,σ, q, end(i), ε) (resp. (W,σ, q, i, ε)) with intermediary config-
urations of the form (W,σ, r, j, π) with π 6= ε or i ≤ j ≤ end(i). These runs are
those which stay between their starting position and the corresponding end posi-
tion (except when they drop pebbles, allowing the automaton to scan the whole
nested word) stopping at the corresponding end position (resp. their starting

position). Note that B
(k)
σ = B0→

σ .
We compute these four types of matrices for every position i by decreasing

value of call-depth. Suppose this has been done for every position of call-depth
greater than c. We describe how to compute matrices Bi→σ and Bi

y

σ for every
position i of call-depth c, by decreasing values of i. Similarly, matrices B←iσ and
B xi
σ can be computed by increasing values of positions i having call-depth c.

We let Md
σ,i be the matrix with p, q-coefficient

∑
α∈Test|W,σ,i|=α δ(p, α, d, q)

for d ∈ {←,→,y,x}: this coefficient denotes the weight of taking a transition
with move d from state p to state q on position i with current valuation σ. We

similarly define matrices for drop, denoted M
↓x
σ,i, and lift moves: without loss of

generality, we assume that lift moves only occur on position |W |, so that it may
be denoted as M↑ since it does not depend on the valuation σ.

We only explain how to compute matrices Bi→σ and Bi

y

σ when i < end(i)
and i is not a call. Other cases may be found in the long version [13]. A loop
on the right of i either starts by dropping a pebble over i, or starts with a right
move, followed by a loop on the right of i + 1 and a left move. All of this may
be iterated using a star operation:

Bi

y

σ =
(∑
x∈Peb

M
↓x
σ,i ×B

(k−1)
σ[x7→i] ×M

↑ +M→σ,i ×Bi+1

y

σ ×M←σ,i+1

)∗
.

Moving to the right of position i, until end(i), can be decomposed as a loop
on the right of i, followed by a right move (from that point, we will not reach
position i anymore) and a run from i+ 1 to end(i+ 1) = end(i):

Bi→σ = Bi

y

σ ×M→σ,i ×Bi+1→
σ . ut

Notice that if the nested word is in fact a word, our algorithm only needs
to compute the two sets of matrices Bi→σ and Bi

y

σ with a backward visit of the

10

[[s]](W,σ) = s [[ϕ]](W,σ) =

{
1 if W,σ |= ϕ

0 otherwise

[[Φ+ Ψ]] = [[Φ]] + [[Ψ]]
[[∑

xΦ
]]

(W,σ) =
∑

u∈pos(W)

[[Φ]](W,σ[x 7→ u])

[[Φ× Ψ]] = [[Φ]]× [[Ψ]]
[[∏

xΦ
]]

(W,σ) =
∏

u∈pos(W)

[[Φ]](W,σ[x 7→ u])

Table 2. Semantics of wFO

positions of the word. This is indeed a different algorithm than the one presented
in [12] where the positions are visited in a forward manner.

Classical decision problems over finite state automata have natural coun-
terparts in the weighted setting. For example, the emptiness problem takes as
input a pebWA A, and asks whether there exists a nested word W such that
[[A]](W) 6= 0.

Theorem 7. The emptiness problem is decidable, with non-elementary complex-
ity, for layered pebWA over a continuous semiring S with no zero divisor, i.e.,
such that s× s′ = 0 implies s = 0 or s′ = 0.

5 Weighted Logical Specifications over Nested Words

5.1 Weighted First-Order Logic

We fix an infinite supply of first-order variables V = {x, y, . . .}. We suppose
known the fragment of (Boolean) first-order formulae, denoted as FO, over nested
words, defined by the grammar

ϕ ::= > | Pa(x) | x ≤ y | xy y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ

where a ∈ A and x, y ∈ V.
The weighted extension is based on sums and products as for FO with count-

ing (see [17], e.g.). The class of weighted first-order formulae, denoted as wFO,
is defined by:

Φ ::= s | ϕ | Φ+ Φ | Φ× Φ |
∑
xΦ |

∏
xΦ

where s ∈ S, ϕ ∈ FO, and x ∈ V.
The semantics of a wFO formula is a map from nested words to the semiring.

For the inductive definition, we need to consider formulae with free variables.
So let Φ ∈ wFO. Then, [[Φ]] maps to a value in S each pair (W,σ) where W is a
nested word and σ : V → pos(W) is a valuation of a subset V ⊆ V containing the
free variables of Φ. The inductive definition is given in Table 2. It is possible to

define a quantitative implication: given ϕ ∈ FO and Φ ∈ wFO, we let ϕ
+

=⇒ Φ

11

s · →

→

AΦ AΨ
last?

←

first?

Fig. 4. Automata for Ξ = s and Ξ = Φ× Ψ

be a macro for the formula ¬ϕ+ ϕ× Φ. Then, its semantics coincides with the
semantics of Φ if ϕ holds, and its semantics is 1 (the unit of the semiring) if ϕ
does not hold.

Example 8. In the semiring of natural numbers, the formula
∑
y(x ≤ y ∧Pa(y))

computes the number of a’s after the position of variable x in the nested word.

In a probabilistic setting, the formula Φ(x) =
∏
y

(
y ≤ x

+
=⇒ 1/2

)
maps a

position i to (1/2)i+1, hence defining a geometric probability distribution over
the positions of the nested word. We can then compute the expectation of a
formula Ψ(x) by the formula

∑
x Φ(x)× Ψ(x).

Finally, the formula
∑
x

∏
y

[(
∃z (yy z ∧ y < x < z)

) +
=⇒ 1

]
computes

the call-depth of a nested word, as it was already presented for expressions and
automata in Examples 2 and 4. Notice again that here, sum stands for max,
product for +, and the unit of the semiring is 0.

Theorem 9. Let Φ ∈ wFO be a formula and V ⊆ V be a finite set con-
taining the variables occurring in Φ (free or bound). We can effectively con-
struct an equivalent layered pebWA AΦ with O(|Φ|) states and set V of peb-
ble names: [[AΦ]](W,σ) = [[Φ]](W,σ) for every nested word W and valuation
σ : V → pos(W).

Proof. This is achieved by structural induction on the formula. We deal with
Boolean formulae below. For Ξ = s ∈ S, the automaton is given on the left of
Fig. 4. For the sum Ξ = Φ+ Ψ , we use a non-deterministic choice as usual. For
the product Ξ = Φ × Ψ , the construction is described on the right of Fig. 4.
Constructions for Ξ =

∑
xΦ and Ξ =

∏
xΦ are schematized in Fig. 5.

AΦ

→ →

↓x last?↑

AΦ

↓x last?↑

→

Fig. 5. Automata for
∑
xΦ and

∏
xΦ

We explain now the construction of pebWA for Boolean formulae. The values
computed by such automata should be in {0, 1} so we cannot freely use non-
determinism. Also, to achieve the complexity stated in the theorem, we cannot

12

ι

ok

ko

→
→

→

x? ∧ a? · →

x? ∧ ¬a? · →
ι

ok

ko

→
→

→

x? ·y

x? ∧ ¬call? · →

y? · →

¬y? · →

Fig. 6. Automata for Pa(x) and xy y

use classical constructions yielding deterministic automata. Instead, we build
unambiguous automata. Hence, for every ϕ ∈ FO and V ⊆ V containing the
free variables of ϕ, we construct a pebWA Bϕ having one initial state ι and
two (final) states ok and ko such that for all nested words W and valuations
σ : V → pos(W) we have:

[[Bϕι,ok]](W,σ) =

{
1 if W,σ |= ϕ

0 otherwise,
[[Bϕι,ko]](W,σ) =

{
0 if W,σ |= ϕ

1 otherwise.

We obtain automaton Aϕ by considering Bϕ with ι (resp. ok) having initial
(resp. final) weight 1. To get an automaton for the negation of a formula, we
simply exchange states ok and ko. Automata for atoms Pa(x) and xyy are given
in Fig. 6 and the automaton for x ≤ y is left to the reader.

Bϕ
okϕ

koϕ
Bψ

okψ

koψ
last?

←
first?

okξ

koξ

last?

last?

last?

The construction for disjunction ξ = ϕ ∨ ψ is described above. It is similar
to the one used for the product: we start computing ϕ and stop if it is verified,
otherwise, we reset to the beginning of the nested word and check formula ψ.
The construction for conjunction is obtained dually.

Bϕ
okϕ

koϕ↓x
last?↑

→

okξ

koξ

last?↑
→

last?

Finally, the construction for existential quantification ξ = ∃x ϕ is described
above. Again, the construction for universal quantification is dual. ut

5.2 Weighted Temporal Logics

A temporal logic is usually based on modalities such as next and until where
the until modality is a simple fixed point based on the next modality. When the
structures (the models) are not linear, one may follow different paths which are
in general based on elementary steps. For instance, in unranked trees, one may
move vertically down to a child or up to the father, or horizontally to the right or

13

[[s]](W, i) = s [[α]](W, i) =

{
1 if W, i |= α

0 otherwise

[[Φ+ Ψ]] = [[Φ]] + [[Ψ]] [[Φ× Ψ]] = [[Φ]]× [[Ψ]]

[[Φ SUη Ψ]](W, i) =
∑

i=i0,i1,...,inη-path

(∏
0<k<n

[[Φ]](W, ik)

)
× [[Ψ]](W, in) . (2)

Table 3. Semantics of wTL

left brother. Similarly, for nested words, several types of paths were introduced
in [3] yielding various until modalities, some of them will be discussed below.

Here, we adopt a generic definition of temporal logics where until modalities
are based on various elementary steps. Formally, an elementary step η is an
unambiguous regular expression following the syntax:

η ::= α | → | ← |y |x | η + η | η · η | η+

α ::= a? | τ? | ¬α | α ∧ α | α ∨ α (1)

with a ∈ A and τ ∈ T . By unambiguous we mean that the quantitative semantics
[[η]] as defined in Section 3 coincides with the Boolean semantics: [[η]](W, i, j) ∈
{0, 1} for all nested words W and positions i, j ∈ pos(W).

For instance, the (classical) linear until is based on the linear step η = →.
The summary-up until is based on the summary-up step σu defined as σu =
y + ¬call? · → which may move directly from a call to the matching return, or
go to the successor, but cannot “enter” a call. The summary-down until is based
on the summary-down step defined as σd = y +→ · ¬ret?. Notice that σd is
unambiguous, even though a call position may have two successors.

The syntax of the weighted temporal logic wTL over nested words is defined
by

Φ ::= s | α | Φ+ Φ | Φ× Φ | Φ SUη Φ

with s ∈ S, α simple tests as defined in (1), and η elementary steps. Since a
(weighted) temporal logic formula has an implicit free variable, the quantitative
semantics [[Φ]](W, i) ∈ S maps a nested word W and a position i ∈ pos(W) to a
value in the semiring. It is defined in Table 3. Given a nested word W , we say
that two positions i, j ∈ pos(W) form an η-step if [[η]](W, i, j) = 1. Moreover, an
η-path is a sequence i0, . . . , in ∈ pos(W) such that (ik, ik+1) is an η-step for all
0 ≤ k < n.

As usual, we may use derived modalities such as the non strict until defined
by ϕUηψ

def
= ψ+ϕ× (ϕSUηψ) and η-next defined by Xη ϕ

def
= ⊥SUηϕ. As special

cases, we get the linear next ⊥ SU→ ϕ and the jumping next Xy ϕ = ⊥ SUy ϕ.
We also get eventually with Fϕ = > U→ ϕ, but notice that > SUy ϕ = Xy ϕ
since two consecutive y-steps are not possible.

As a concrete example, the call-depth of a nested word can be computed with

the formula (1× ¬ret?× X←(call?) + X←(¬call?) + ret? + first?) Uσ
d >.

14

Cη

AΦ AΨ

→ →

x?

↓x

last?↑

↓x

last?↑

Fig. 7. Automaton for Ξ = Φ SUη Ψ

Notice that the sum in (2) may be infinite for some step expressions such as
η = ←+→. On the other hand, if a step expression only moves forward (resp.
backward) then it defines a future (resp. past) modality and the sum in (2) is
finite. The following theorem shows that wTL formulae can be translated into
equivalent layered pebWA.

Theorem 10. For each wTL formula Φ we can effectively construct an equiv-
alent layered pebWA AΦ with a single pebble name and O(|Φ|) states: for all
nested words W and positions i ∈ pos(W) we have [[AΦ]](W,x 7→ i) = [[Φ]](W, i).

Proof (Sketch). We explain the construction for SUη where η is a step expres-
sion. Using Theorem 5, from the pebWE η we obtain an equivalent pebWA Cη:
[[Cη]](W, i, j) = [[η]](W, i, j) for all nested words W and positions i, j ∈ pos(W).

Consider the wTL formula Ξ = Φ SUη Ψ and assume we have already con-
structed the pebWA AΦ and AΨ . The pebWA AΞ is given in Fig. 7. Observe
that we have added one layer and a constant number of states. ut

Notice that we can extend the wTL in several ways. First, instead of simple
(pebble-free) tests α we may allow arbitrary Boolean formula ϕ(x) ∈ FO having
a single free variable. Second, we may allow weighted regular expressions for
steps, in which case we have to include the weights of η-steps in the semantics
of the weighted until in (2).

6 Conclusion and Perspectives

We have presented a general framework to specify quantitative properties of
nested words, and compile them into automata.

Several improvements can be considered. First, concerning our procedure for
evaluation, [12] also presented an improved algorithm in the strongly layered
case, namely when at every layer, only one pebble name can be dropped. We
did not consider this case in this paper for lack of space, but we believe it can
be adapted in the nested word case, and leave it for future work. Second, we
would like to extend the decidability of emptiness in the general case, where the
semiring may have zero divisors.

Finally, notice that, contrary to [3], wFO is strictly less expressive than our
temporal logics. This is due to the power of η steps, which gives to wTL a flavor

15

of weighted transitive closure (see [5]). As other directions of research, we would
like to study this transitive closure operator in order to find a logical fragment
expressively equivalent to pebWA and pebWE.

We thank the anonymous referees for their valuable comments.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56 (May
2009) 16:1–16:43

2. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Inf. Process. Lett.
109(1) (2008) 13–17

3. Alur, R., Arenas, M., Barceló, Etessami, K., Immerman, N., Libkin, L.: First-order
and temporal logics for nested words. LMCS 4(4) (2008)

4. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Pro-
ceedings of MFCS’09. Volume 5734 of LNCS., Springer (2009) 561–573

5. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
transitive closure logics. In: ICALP’10. Volume 6199 of LNCS. Springer (2010)
587–598

6. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4 (1961) 245–270

7. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Handbook of
Weighted Automata. Springer (2009) 175–211

8. Mathissen, Ch.: Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science 6(1) (2010)

9. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory
Comput. Syst. 48(1) (2011) 23–47

10. Bojańczyk, M.: Tree-walking automata. In: LATA’08. Volume 5196 of LNCS.,
Springer (2008) 1–17

11. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: Proceedings of PODS’07. (2007) 63–72

12. Gastin, P., Monmege, B.: Adding pebbles to weighted automata. In: CIAA’12.
LNCS, Springer-Verlag (2012) 28–51

13. Bollig, B., Gastin, P., Monmege, B.: Weighted specifications over nested words.
Technical report (2013) http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/

newrapports.
14. Droste, M., Kuich, W.: Semirings and formal power series. In: Handbook of

Weighted Automata. Springer (2009) 3–27
15. Sakarovitch, J.: Automata and expressions. In: AutoMathA Handbook. (2012) To

appear.
16. Conway, J.: Regular Algebra and Finite Machines. Chapman & Hall (1971)
17. Libkin, L.: Elements of Finite Model Theory. EATCS. Springer-Verlag (2004)

16

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/newrapports
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/newrapports

	Weighted Specifications over Nested Words

