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Abstract. Testing is one of the fundamental techniques for verifying if
a computing system conforms to its specification. We take a fresh look at
the theory of testing for message-passing systems based on a natural no-
tion of observability in terms of input-output relations. We propose two
notions of test equivalence: one which corresponds to presenting all test
inputs up front and the other which corresponds to interactively feeding
inputs to the system under test. We compare our notions with those stud-
ied earlier, notably the equivalence proposed by Tretmans. In Tretmans’
framework, asynchrony is modelled using synchronous communication
by augmenting the state space of the system with queues. We show that
the first equivalence we consider is strictly weaker than Tretmans’ equiv-
alence and undecidable, whereas the second notion is incomparable. We
also establish (un)decidability results for these equivalences.

1 Introduction

Testing is a fundamental activity in verifying the correctness of systems. In this
paper, we focus on testing in the restricted context of reactive systems. A theoret-
ical foundation for testing labelled transition systems was laid in the framework
of process algebra, where an operational notion of testing was defined and shown
to have an extensional semantic characterization in terms of failures [7, 8]. These
ideas were expanded and elaborated in the work of Tretmans [16, 17], in the form
of an extensive theory of conformance testing—testing when an implementation
conforms to its specification. This theory has been used to develop automated
tools for testing, such as the TGV system [13].

The initial focus on formalizing testing for labelled transition systems was
on synchronous communication, where the send and receive actions for each
communication occur simultaneously. However, most communication protocols
are based on asynchronous communication, or message-passing via buffers that
can be modelled as queues. Many questions remain unanswered about the testing
process for such systems. In addition to the usual problem of optimizing the size
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of test suites without sacrificing coverage, there are also additional issues to be
considered, such as the possibility of distributing tests [12].

The first major effort to develop an effective theory of testing for asyn-
chronous communication originated in the thesis of Tretmans [16], in which asyn-
chronous communication is reduced to synchronous communication in a model
augmented with infinite queues. A refined version of this theory is presented in
[17], in terms of input-output transition systems that interact synchronously.

In parallel, asynchronous communication has also been an active area of
study in the field of process algebra. A process algebra with asynchronous com-
munication, whose semantics is given in terms of auxiliary data structures such
as queues to store the channel state, has been formulated in [5, 6]. The focus of
this work is to identify semantic equivalences that are congruences with respect
to process algebraic operators, rather than to formalize testing equivalence per
se. Later papers have considered testing equivalence for process algebras with
asynchronous communication [4, 2]. In these approaches, there are no explicit
channels between processes. Instead, all messages are emitted into a shared pool
and can be consumed in any order by receiving processes. This approach towards
modelling asynchronous communications is more suitable for name-passing cal-
culi such as the π-calculus, but it is difficult to import any intuition or results to
our setting in which processes with a fixed network topology exchange messages
through point-to-point queues.

Our approach to testing is to consider a natural notion of observability for
systems based on input-output pairs. Using this notion, we propose two notions
of test equivalence. The first corresponds to presenting all test inputs up front
while the other corresponds to interactively feeding inputs to the system under
test. We show that the first equivalence is strictly weaker than Tretmans’ equiv-
alence, whereas the second notion is incomparable. Our work is closely related
to the queued quiescent trace approach of [14], as explained in Section 4.

We also establish decidability results for these equivalences. We show that
the weaker equivalence that we define is undecidable for finite-state systems, as
is the equivalence proposed by Tretmans. However, the stronger equivalence is
decidable for well-structured transition systems. We also show that our weaker
notion of equivalence is decidable if we record the input-output behaviour of a
system as an unlabelled message sequence chart [11].

The paper is organized as follows. In the next section, we introduce our formal
model of asynchronously communicating systems. Three notions of asynchronous
testing are introduced in Section 3. We describe the interrelationships between
these notions in Section 4 and prove decidability and undecidability results in
Section 5. We conclude with a brief discussion on directions for future work.

2 The Model

We work in the setting of labelled transition systems. A labelled transition system
is a structure TS = (S, I, Σ,→) where S is a set of states with a subset I of



initial states, Σ is an alphabet of actions and → ⊆ S × Σ × S is a labelled
transition relation. We will write s

a
−→ s′ to denote that (s, a, s′) ∈ →.

We are interested in asynchronous systems that interact with their environ-
ment by sending and receiving messages. We represent this interaction abstractly
by partitioning Σ into two sets: Σi, the set of input actions, and Σo, the set of
output actions. We normally use a, b, c to denote input actions, x, y, z to denote
output actions and Greek letters α, β to denote generic actions from Σ.

An action α is said to be enabled at a state s ∈ S if there is some transition
s

α
−→ s′. We write s

α
−→ to denote that α is enabled at s and s

α
9 to denote that

α is not enabled at s. We can extend this to sets of actions: for X ⊆ Σ, s
X
−→ if

s
α
−→ for some α ∈ X and s

X
9 if s

α
9 for every α ∈ X . A state s is said to refuse

a set X ⊆ Σ of actions if s
X
9. A state s is quiescent if it refuses Σo.

A run of the transition system TS is a sequence of transitions of the form
s0

α1−→ s1
α2−→ · · ·

αm−−→ sm where s0 ∈ I. We call this a run of TS over the word
α1α2 . . . αm. Let L(TS) = {w ∈ Σ∗ | TS admits a run over w}. It is easy to see
that L(TS) is a prefix-closed language.

Without loss of generality, we assume that in the transition systems we con-
sider, there is no loop s0

x1−→ s1
x2−→ · · ·

xm−−→ sm = s0 labelled by a sequence
of output labels x1x2 . . . xm ∈ Σ∗

o . Such a loop would generate an unbounded
behaviour of the system that does not require any input from the environment.
This kind of spontaneous infinite behaviour is not normally expected from the
class of systems we are interested in. In particular, this restriction implies that
every transition system we consider has at least one quiescent state.

Asynchronous systems are normally assumed to be receptive—at each state
s, every input action a should be possible. In practice, a system description will
limit itself to providing moves for “useful” input actions at each state. One way
to deal with missing inputs is to assume a dead state sd that refuses Σo and has
a self loop sd

a
−→ sd for every input a. Whenever a state s refuses an input a, we

add a move s
a
−→ sd. In this interpretation of receptiveness, unexpected inputs

cause the system to hang. Our semantics will implicitly capture this version of
receptiveness, without requiring the explicit addition of such a dead state. An
alternative approach, which we do not consider, is to allow the system to swallow
unexpected inputs and continue with normal execution. This can be modelled
by adding a self-loop labelled a at any quiescent state that refuses an input a.

In [3], Bourdonov et al study test equivalence for asynchronous systems with
forbidden or refused inputs (for instance, an interactive form in which some but-
tons are disabled). They focus on adapting the testing formalism of [17] to such
systems, with specific emphasis on compositionality. Here, on the other hand,
we concentrate on expressiveness and decidability, rather than compositionality.

Queue semantics In [16], a queue semantics is defined for transition systems
with asynchronous communication which is used to transfer notions from the
theory of testing for synchronous systems to the asynchronous framework.

Let TS = (S, I, Σ,→) be a transition system, where Σ = Σi ⊎ Σo. A con-
figuration of TS is a triple (s, σi, σo) where s is a state in S and σi ∈ Σ∗

i and
σo ∈ Σ∗

o are the input and output queues associated with the system.



Initially, the system is in a configuration (i, ε, ε), where i is an initial state and
both queues are empty. Each input/output move of the original system breaks
up into a visible move that alters the input/output queue without changing the
internal state and an invisible move in which the input/output action updates
the internal state as per the transition relation of the original system.

First, we have two rules describing how the queue based system reads inputs.

Input (s, σi, σo)
a
−→ (s, σia, σo)

s
a
−→ s′

(s, aσi, σo)
τ
−→ (s′, σi, σo)

External inputs are appended to the input queue, leaving the internal state
unchanged. The system can then silently consume the action at the head of the
input queue and update its state using a transition of the original system.

Similarly, we have two rules for output actions.

Output s
x
−→ s′

(s, σi, σo)
τ
−→ (s′, σi, σox)

(s, σi, xσo)
x
−→ (s, σi, σo)

Any output action of the original system results in a silent internal move that
changes the state of the system and appends the action to the output queue.
The system can then spontaneously emit the action at the head of output queue.

This semantics implies that, at the visible level, output actions can always

be postponed. A path of the form s
a
−→ s1

x
−→ s2

b
−→ s′ in the original system may

be observed asynchronously as a sequence abx by delaying the output x.
We denote by Q(TS) the transition system whose states are the configura-

tions of TS and whose transitions are governed by the queue semantics.

3 Asynchronous testing equivalence

Our main aim is to formalize what we can observe about the behaviour of an
asynchronous system through testing. We define two natural notions of testing
for asynchronous systems based on input-output pairs.

3.1 IO Behaviours

If w ∈ Σ∗ and X ⊆ Σ, we denote by w↓X the subword obtained by erasing all
letters not in X . We also write � for the prefix relation on words.

As usual, let TS = (S, I, Σ,→) be a transition system, where Σ = Σi ⊎ Σo.

A maximal run of TS is an execution sequence i
α1−→ s1

α2−→ · · ·
αn−−→ sn such

that i ∈ I and sn is quiescent. If TS has a maximal run over a word w, we call
w a δ-trace (sometimes referred to in the literature as a quiescent trace) of TS,
written δTS(w). Let δtraces(TS) denote the δ-traces of TS.

The IO-behaviour of TS corresponds to an operational model of testing
where, for each test case, the tester generates a sequence of inputs, supplies
them up front, and observes the effect. This corresponds, roughly, to static test
generation. Formally, IOBeh(TS) is the set of pairs (u, v) ∈ Σ∗

i ×Σ∗
o such that,



in TS, there is a maximal run i
w
−→ s labelled w with w↓Σo

= v, and either
w↓Σi

= u or w↓Σi
a � u and s refuses a for some a ∈ Σi.

The condition that s refuses a for the case w↓Σi
a � u implicitly captures the

first notion of receptiveness, where unexpected inputs lead the system to hang.
Formally, this means that if we add a dead state sd to TS as described earlier,
the resulting system will have the same IO-behaviours as the original system.

We can provide additional discriminating power to the tester by assuming
that inputs are supplied incrementally, instead of being provided up front, anal-
ogous to on-the-fly test case generation.

A block observation of TS is a sequence (u1, v1) · · · (un, vn) ∈ (Σ∗
i ×Σ∗

o)(Σ+
i ×

Σ∗
o )∗ such that there is a run s0

w1−−→ s1 · · ·
wk−−→ sk with 1 ≤ k ≤ n starting from

an initial state s0 ∈ I and going through quiescent states s1, . . . , sk with:

– vj = wj↓Σo
for all 1 ≤ j ≤ n, and vj = ε for all k < j ≤ n, and

– uj = wj↓Σi
for all 1 ≤ j < k, and either (k = n and un = wn↓Σi

) or
(wk↓Σi

a � uk for some a ∈ Σi such that sk refuses a).

A block observation consists of supplying inputs in blocks u0u1 . . . un and
observing the incremental output associated with each block. The first input
block is permitted to be empty, to account for a spontaneous initial output v0.
Let IOBlocks(TS) denote the set of block observations of TS.

Definition 1. We define two testing equivalences on asynchronous systems, cor-
responding to IO-behaviours and block observations.

TS ∼io TS′ def
= IOBeh(TS) = IOBeh(TS′)

TS ∼ioblock TS′ def
= IOBlocks(TS) = IOBlocks(TS′)

3.2 Synchronous testing on queues

In contrast to our direct definition of testing based on the observed input-output
behaviour of asynchronous systems, the approach taken in [16] is to reduce asyn-
chronous testing to synchronous testing via the queue semantics. Two systems
are said to be testing equivalent in an asynchronous sense if the corresponding
interpretations with queues are testing equivalent in a synchronous sense.

Let ∼Q denote asynchronous testing equivalence under the queue semantics
and ∼syn denote the normal synchronous testing equivalence, which coincides
with failures semantics [7, 8]. Then,

TS ∼Q TS′ def
= Q(TS) ∼syn Q(TS′).

We do not recall the formal definition of synchronous testing equivalence,
because we do not require this branching-time formulation of ∼Q . Instead, it
turns out that ∼Q admits a linear-time characterization (Corollary 5.15 in [16]).

Theorem 2. TS ∼Q TS′ iff L(Q(TS)) = L(Q(TS′)) and δtraces(Q(TS)) =
δtraces(Q(TS′)).

In the rest of this section, we define some notions related to L(Q(TS)) and
δtraces(Q(TS)) that will prove useful in later analysis.



Tracks We begin by defining an ordering @ on words. Intuitively, w @ w′ (read
as “w is aped by w′”) if w can be observed as w′ by postponing some outputs.
In the process, w′ could accept additional inputs. Formally, w @ w′ if:

– w↓Σi
� w′↓Σi

.
– w↓Σo

= w′↓Σo
.

– For every pair of prefixes wj , w
′
j of w, w′ of length j, w′

j↓Σo
� wj↓Σo

.

The relation @ is a partial order on Σ∗. It is easy to see that L(Q(TS)), the
prefix closed language of TS under the queue semantics, is upward-closed with
respect to @: if w ∈ L(Q(TS)) and w @ w′ then w′ ∈ L(Q(TS)).

A track is an @-minimal word in L(Q(TS)). It is shown in [16] that every
track is actually a word in L(TS), the original transition system interpreted
without the queue semantics. Moreover, since L(Q(TS)) is upward-closed with
respect to @, the set of tracks completely determines the set of traces. Note
that not every word in L(TS) is a track: for instance, TS could explicitly have
execution sequences axby and abxy. Since axby @ abxy, abxy is not a track. Let
Tracks(TS) denote the set of tracks of TS.

Empty and blocked deadlocks We can classify quiescent traces into two
groups. Recall that we have assumed a receptive model of asynchronous commu-
nication in which input actions are always enabled but unexpected inputs cause
the system to hang. This gives rise to two possible scenarios when a system
deadlocks. In the first scenario, the system is waiting for input with an empty
input queue and can potentially make progress if a suitable input arrives. In
the second scenario, the system has received an unexpected input and can never
recover. We refer to these as empty and blocked deadlocks, respectively.

To define empty and blocked deadlocks formally, we need a new relation. We
say that w ∈ Σ∗ is strictly aped by w′ ∈ Σ∗, denoted w |@| w′, if w @ w′ and
|w| = |w′|. We can then define the empty and blocked deadlocks of Q(TS).

δempty(Q(TS)) = {w ∈ Σ∗ | ∃ i
w′

−→ s in TS with i ∈ I,

s quiescent and w′ |@| w}.

δblock(Q(TS)) = {w ∈ Σ∗ | ∃ i
w′

−→ s in TS with i ∈ I, ∃ a ∈ Σi such that

s refuses Σo ∪ {a} and w′a @ w}.

Observe that δempty(Q(TS)) is |@|-upward closed and consists of traces w such

that (i, ε, ε)
w
−→ (s, ε, ε) in Q(TS) with s quiescent. Similarly, δblock(Q(TS)) is @-

upward closed and consists of traces w such that (i, ε, ε)
w
−→ (s, aσi, ε) in Q(TS)

where s refuses Σo ∪ {a}. It is not difficult to see that

δtraces(Q(TS)) = δempty(Q(TS)) ∪ δblock(Q(TS)).

However, note that the sets δempty(Q(TS)) and δblock(Q(TS)) may overlap. In
fact, it is even possible TS1 ∼Q TS2 but δempty(Q(TS1)) 6= δempty(Q(TS2)) or
δblock(Q(TS1)) 6= δblock(Q(TS2)) [16]. Despite these shortcomings, we will find
these notions very useful.



4 Comparing the three equivalences

Our first set of results compare the three testing equivalences we have introduced
earlier. We show that ∼io is strictly weaker than ∼Q and ∼ioblock , but ∼Q and
∼ioblock are incomparable.

Proposition 3. If TS1 ∼ioblock TS2, then TS1 ∼io TS2.

Proof. This follows from the fact that IOBeh(TS) = IOBlocks(TS)∩ (Σ∗
i ×Σ∗

o)
for any transition system TS. ⊓⊔

Proposition 4. If TS1 ∼Q TS2, then TS1 ∼io TS2.

Proof. Let TS1 and TS2 be two transition systems such that TS1 ∼Q TS2. We

show that TS1 ∼io TS2. Let (u, v) ∈ IOBeh(TS1) and let i
w
−→ s be a maximal

run in TS1 labelled w, with w↓Σo
= v, and either w↓Σi

= u or w↓Σi
a � u and

s refuses a for some a ∈ Σi.

Case 1: Suppose w↓Σi
= u. By definition of the empty deadlocks, we obtain

w ∈ δempty(Q(TS1)). Since TS1 ∼Q TS2, we have w ∈ δtraces(Q(TS2)).

If w ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ with
w′ |@| w. Since w′↓Σi

= w↓Σi
= u and w′↓Σo

= w↓Σo
= v, we have (u, v) ∈

IOBeh(TS2).

If w ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ where s′

refuses Σo ∪ {b} and w′b @ w for some b ∈ Σi. Since (w′b)↓Σi
� w↓Σi

= u and
w′↓Σo

= w↓Σo
= v, we have (u, v) ∈ IOBeh(TS2).

Case 2: Suppose w↓Σi
a � u and s refuses a ∈ Σi. As above, by definition of the

blocked deadlocks we get wa ∈ δblock(Q(TS1)). Let u′ be such that u = w↓Σi
au′.

We have wa @ wau′ and we obtain wau′ ∈ δblock(Q(TS1)) since this set is @-
upward closed. Since TS1 ∼Q TS2 we deduce wau′ ∈ δtraces(Q(TS2)).

If wau′ ∈ δempty(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′

with w′ |@| wau′. Since w′↓Σi
= w↓Σi

au′ = u and w′↓Σo
= w↓Σo

= v, we have
(u, v) ∈ IOBeh(TS2).

If wau′ ∈ δblock(Q(TS2)) then, in TS2, there is a maximal run i′
w′

−→ s′ where
s′ refuses Σo∪{b} and w′b @ wau′ for some b ∈ Σi. Since w′↓Σi

b � w↓Σi
au′ = u

and w′↓Σo
= w↓Σo

= v, we have (u, v) ∈ IOBeh(TS2). ⊓⊔

The implications we have proved are strict. Below, we show two systems that
are related by ∼io but not by ∼Q . Here Σi = {a} and Σo = {x}. For both sys-
tems, the IO-behaviours are given by {(ε, ε), (a, x), (a, xx)}∪ {(an, x), (an, x2),
(an, x3) | n > 1}, so TS1 ∼io TS2. However, notice that axaxx ∈ Tracks(TS1) \
Tracks(TS2) because axxax ∈ L(TS2) and axxax @ axaxx. Hence, TS1 6∼Q

TS2. This example also establishes that ∼io is strictly weaker than ∼ioblock

since (a, x)(a, xx) ∈ IOBlocks(TS1) \ IOBlocks(TS2).



TS1
a

x

a

x

x

a

x

a

x

x

TS2
a

x

a

x

x

a

x

x

a

x

The equivalences ∼Q and ∼ioblock are incomparable. Below, we show two
systems that are related by ∼Q but not by ∼ioblock . Here, Σi = {a} and Σo =
{w, x, y, z}. We have Tracks(TS1) = Tracks(TS2) = {ε, ax, axy, axyaz, axaw}.
Also, the set of empty deadlocks for both systems is the |@|-upper closure of
{ε, ax, axy, axyaz, axaw}. Finally, the set of blocked deadlocks for both sys-
tems is the @-upper closure of {axyaza, axawa}. Hence TS1 ∼Q TS2. However,
(a, x)(a, yz) is in IOBlocks(TS1) \ IOBlocks(TS2), so TS1 6∼ioblock TS2.

TS1
a

x

y

a

z

a

x

a

y

z

w

TS2
a

x

y

a

z

a

x

a

w

Similarly, we give below two systems that are related by ∼ioblock but not by
∼Q . We have axax ∈ δtraces(Q(TS1)) \ δtraces(Q(TS2)), so TS1 6∼Q TS2. On the
other hand, TS1 ∼ioblock TS2 since the block observations of TS1 and TS2 are

{(ε, ε)} ∪ {(an, x), (an, xy), (aan, x2) | n ≥ 1} · (a+ × {ε})

∪ {(ε, ε)} · {(an, x), (an, xy), (aan, x2) | n ≥ 1} · (a+ × {ε})

TS1

a

x

a

x

x

y

TS2

a

a

x

x

x
x

y

Queued quiescent traces Our equivalences ∼io and ∼ioblock correspond to
the notions queued quiescent trace equivalence and queued suspension trace



equivalence, respectively, defined in [14]. While we directly provide extensional
characterizations of these equivalences, the corresponding notions are developed
in [14] via an intensional definition of testing that uses a variant of IO-automata
with queues, from which an extensional definition is derived.

In [14], queued quiescent trace equivalence is compared with an equivalence
called ioco, defined by Tretmans in [17], which differs slightly from the queue
equivalence ∼Q that we consider here. It is shown, by examples, that some sys-
tems distinguished by ioco are equated by queued quiescent trace equivalence
and that some systems equated by queued quiescent trace equivalence are dis-
tinguished by queued suspension trace equivalence. However, there is no formal
characterization of the relative expressive powers of these three equivalences.

5 Decidability of asynchronous test equivalence

We now examine the decidability of test equivalence for finite-state systems.

5.1 Undecidability of ∼io

We prove this result using a reduction from the equivalence problem for rational
relations [1, 15]. We start by recalling some definitions. Let A, B be two finite
alphabets. With componentwise concatenation, the set A∗ × B∗ is a monoid. A
rational relation over A and B is a rational subset R of A∗×B∗. Equivalently, R
is a mapping from A∗ to P(B∗) where u ∈ A∗ 7→ R(u) = {v ∈ B∗ | (u, v) ∈ R}.

Le (K, +,×, 0, 1) be a semiring. A K-automaton over A is a tuple A =
(S, λ, µ, γ) with S a finite set of states, λ, γ ∈ KS and µ(a) ∈ KS×S for each
a ∈ A. Intuitively, the automaton outputs λi when it is entered in state i, then
it outputs µ(a)i,j whenever a transition labelled a from i to j is taken and
finally, it outputs γj when the input word has been completely read and we
exit the automaton in state j. The value (A, u) computed by A on the input
word u = a1 · · · ak ∈ A∗ is the sum over all paths i0, . . . , ik ∈ S of the products
λi0µ(a1)i0,i1 · · ·µ(ak)ik−1,ik

γik
. Since K is a semiring, the set of matrices KS×S

equipped with matrix multiplication is a monoid and we can extend µ to a
monoid morphism µ : A∗ → KS×S. Viewing λ as a row vector and γ as a column
vector, we have (A, u) = λµ(u)γ for each u ∈ A∗. Without loss of generality, we
may assume that λi 6= 0 implies λi = 1 for each state i ∈ S.

The set K = Rat(B∗) equipped with union as addition and concatenation as
multiplication is a semiring with ∅ as zero element and {ε} as unit. A relation
R ⊆ A∗ × B∗ is rational if and only if it can be realized by some Rat(B∗)-
automaton. We denote by R(A) the rational relation realized by A and for
u = a1 · · · ak ∈ A∗ we have (u, v) ∈ R(A) iff v ∈ λi0µ(a1)i0,i1 · · ·µ(ak)ik−1,ik

γik

for some i0, . . . , ik ∈ S. The equivalence problem for rational relations given
by Rat(B∗)-automata is undecidable [1, 15]. This undecidability holds even for
rational relation for which |B| = 1 and given by a K-automaton where K is the
semiring Pfin(B

∗) of finite subsets of B∗. So in the following we assume that
B = {b} is a singleton and that K = Pfin(B

∗).



We prefer to avoid ε-transitions. We call a K-automaton A = (S, λ, µ, γ)
strict if none of the sets µ(a)p,q and γq contain the empty word ε. We show that
the undecidability still holds for rational relations given by strict K-automata.
Let A = (S, λ, µ, γ) be a K-automaton. Define As = (S, λ, µs, γs) by µs(a)p,q =
bµ(a)p,q and γs

q = bγq. Then, As is strict and for each u ∈ A∗ we have λµs(u)γs =

b|u|+1λµ(u)γ (recall that B = {b} so the semiring K is commutative). Then,
R(A) = R(B) if and only if R(As) = R(Bs). Therefore, equivalence is undecid-
able for rational relations given by strict K-automata.

We now associate to a strict K-automaton A = (S, λ, µ, γ) a transition sys-
tem A′ over Σ with Σi = A and Σo = B ⊎ {#} where # is a new output letter.
For each (p, a, q) ∈ S×A×S we consider an automaton Ap,a,q recognizing µ(a)p,q

and such that Ap,a,q has a unique initial state ip,a,q with no ingoing transition,
a unique final state fp,a,q with no outgoing transition and all other states have
outgoing transitions. To construct A′, we first take the disjoint union of the
automata Ap,a,q for (p, a, q) ∈ S × A × S. Then, for each q ∈ S, we merge all
states fp,a,q with (p, a) ∈ S ×A into a single state denoted simply by q. Finally,

for each (p, a, q) ∈ S × A × S, we add the transition p
a
−→ ip,a,q. Thus we obtain

the transition system A′ = (S′, I, Σ,→) with I = {i ∈ S | λi 6= ∅}. Note that in
A′, all transitions leaving the states in S are labelled with input letters and all
transitions leaving states in S′ \ S are labelled with output letters. Hence, the
deadlocked states in A′ are exactly those in S.

For each pair of states p, q ∈ S we consider the relation

Tp,q = {(w↓A, w↓B) ∈ A∗ × B∗ | p
w
−→ q in A′}.

The following lemma is a standard result from the theory of rational relations
and K-automata.

Lemma 5. For each p, q ∈ S, we have

Tp,q = {(u, v) ∈ A∗ × B∗ | v ∈ µ(u)p,q}.

For each q ∈ S we consider an automaton Aq recognizing γq# and such that
Aq has a unique initial state iq with no ingoing transition, a unique final state
fq with no outgoing transition and all other states have outgoing transitions. We

let A+
q be Aq with the additional transitions fq

a
−→ f ′

q for a ∈ A and f ′
q

#
−→ fq so

that fq does not refuse any input letter. Finally, we let A′′ be the disjoint union
of A′ together with the automata A+

q for q ∈ S and the additional transitions

x
b
−→ iq for each transition x

b
−→ q of A′. Note that the deadlocked states of A′′

are S ∪ {fq | q ∈ S}.

Lemma 6. IOBeh(A′′) = IOBeh(A′) ∪R(A) · {(x, #1+|x|) | x ∈ A∗}.

Proof. First, maximal paths in A′ are of the form p
w
−→ q for p ∈ I and q ∈ S.

These are also maximal paths in A′′. Moreover, a state q ∈ S refuses exactly the
same input letters in A′ and in A′′. Hence, IOBeh(A′) ⊆ IOBeh(A′′). Conversely,



the maximal paths in A′′ which do not use the letter # cannot enter one of the
automata Aq. Hence, they are also maximal paths in A′ and we deduce that
IOBeh(A′′) ∩ A∗ × B∗ = IOBeh(A′).

Second, let (u, v) ∈ R(A). We have v ∈ λµ(u)γ hence we find p, q ∈ S
with v ∈ λpµ(u)p,qγq. It follows that λp 6= ∅ (i.e., p ∈ I), which implies λp =
{ε} by our assumption on K-automata. Hence we can write v = v′v′′ with

v′ ∈ µ(u)p,q and v′′ ∈ γq. By Lemma 5 we find a path p
w
−→ q in A′ with

u = w↓A and v′ = w↓B. Replacing the last transition x
b
−→ q of this path by

x
b
−→ iq we find a path p

wv′′#
−−−−→ fq in A′′. For x = a1 · · ·ak, this path can be

extended with fq
w′

−→ fq where w′ = a1# · · · ak#. We have ux = (wv′′#w′)↓Σi

and v#1+|x| = (wv′′#w′)↓Σo
. Since fq is a deadlocked state we deduce that

(ux, v#1+|x|) ∈ IOBeh(A′′).

Conversely, let (u′, v′) ∈ IOBeh(A′′) \ A∗ × B∗. Let p
w′

−→ s be a run in A′′

with p ∈ I, s deadlocked, w′↓Σo
= v′ and either w′↓Σi

= u′ or w′↓Σi
a � u′

and s refuses a ∈ Σi. Since v′ /∈ B∗, we must have s = fq for some q ∈ S
and w′ = w#a1# · · · ak# with w ∈ (A ∪ B)∗ and x = a1 · · ·ak ∈ A∗. Since
s = fq does not refuse any input letter, we get w′↓Σi

= u′. With u = w↓Σi
and

v = w↓Σo
we have v′ = v#1+k and u′ = ux. The path p

w′

−→ fq can be split in

p
w1−−→ iq

w2#
−−−→ fq

a1#···ak#
−−−−−−−→ fq so that p

w1−−→ q is a path in A′ and iq
w2#
−−−→ fq

is a path in Aq and w = w1w2. We deduce that w2 ∈ γq, u = w1↓A and
v = (w1↓B)w2. By Lemma 5 we have w1↓B ∈ µ(u)p,q. Therefore, v ∈ µ(u)p,qγq.
Since p ∈ I we have λp = {ε} and we obtain v ∈ λµ(u)γ = R(A)(u). ⊓⊔

If we have another rational relation defined by a strict K-automaton B then
we define similarly B′ and B′′.

Theorem 7. A′ ⊎ B′′ ∼io A′′ ⊎ B′ if and only if R(A) = R(B). Therefore, the
∼io equivalence is undecidable.

Proof. The result follows from the following equations obtained from Lemma 6.

IOBeh(A′ ⊎ B′′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(B){(x, #1+|x|) | x ∈ A∗}

IOBeh(A′′ ⊎ B′) = IOBeh(A′) ∪ IOBeh(B′) ∪R(A){(x, #1+|x|) | x ∈ A∗} ⊓⊔

5.2 Undecidability of ∼Q

Let A and B be two finite alphabets and let f, g : A+ → B+ be two morphisms
corresponding to an instance of Post’s Correspondence Problem (PCP). The
PCP instance has a solution if and only if we have f(u) = g(u) for some u ∈ A+.

We consider a new symbol $ and define the input and output alphabets as
Σi = A ∪ {$} and Σo = B. We then construct two transition systems from the
ingredients shown in the figure on the next page.

The transition system Sf corresponds to the morphism f and has one loop
ab1b2 . . . bk for each a ∈ A such that f(a) = b1b2 . . . bk. Formally the set of states
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of Sf is Qf = {I, F, X, Y, Z, Z ′, ∆f} ∪ {(a, i) | a ∈ A, 0 < i ≤ |f(a)|} and its
initial state is I. The transitions between states in {I, F, X, Y, Z, Z ′, ∆f} are
precisely given in the picture above, which also contains the intuition for the
other transitions defined, for each a ∈ A with f(a) = b1b2 · · · bk, by:

– I
a
−→ (a, 1)

b1−→ (a, 2)
b2−→ (a, 3) · · · (a, k − 1)

bk−1

−−−→ (a, k)
bk−→ I,

– (a, i)
b
−→ Y if 1 ≤ i ≤ k and b ∈ B \ {bi},

– (a, i)
bi−→ X if 1 ≤ i < k, and (a, k)

bk−→ Z ′.

For the morphism g, we construct an analogous system Sg. We want to compare
the following two systems, where Si + Sj denotes the disjoint union of the two
systems with multiple initial states.

– M1 = S0 + Sf + Sg

– M2 = Sf + Sg

The only deadlocked state in S0 is ∆0. Since this state does not refuse any
input letter, δblock(S0) = ∅. Similarly, the only deadlocked states in Sf are
X and ∆f and neither refuses any input letter, so δblock(Sf ) = ∅. Therefore,
δtraces(M1) = δempty(S0)∪δempty(M2) and δtraces(M2) = δempty(M2) and M1 ∼Q

M2 if and only if Tracks(M1) = Tracks(M2) and δempty(S0) ⊆ δempty(M2).

Lemma 8. Tracks(M1) = Tracks(M2) = Tracks(Sf ) = B∗.

Proof. First, let v ∈ B+. Then v is @-minimal and I
v
−→ F in Sf . Therefore,

B∗ ⊆ Tracks(Sf ). Since any word w ∈ Σ∗ apes its projection on the output
alphabet B, we deduce that Tracks(Sf ) = B∗. ⊓⊔

Lemma 9. δempty(S0) is the |@|-upper closure of A+B+$.



Proof. Follows from the definition of δempty and the fact that the set of words

w′ ∈ Σ∗ having a run I
w′

−→ ∆0 in S0 is A+B+$. ⊓⊔

Lemma 10. Let u ∈ A+ and v ∈ B+. Then, uv$ ∈ δempty(Sf ) iff v 6= f(u).

Proof. If v 6= f(u), the construction of Sf guarantees that there is some witness-
ing interleaving w of u and v that leads to one of the states X , Y or Z. Formally,
assuming that v 6= f(u) with u = a1 · · · ap, we distinguish three cases:

1. If v ≺ f(u), let j be such that f(a1 · · · aj−1) � v ≺ f(a1 · · · aj). Consider
w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · · aj−1)

−1v)aj+1 · · · ap. Then w |@| uv

and I
w
−→ X in Sf .

2. If v = f(a1 · · · aj−1)v
′bv′′ with v′ ≺ f(aj), b ∈ B and v′b 6� f(aj). Consider

w = a1f(a1) · · · aj−1f(aj−1)ajv
′bv′′aj+1 · · · ap. Then w |@| uv and I

w
−→ Y

in Sf .
3. If f(u) ≺ v. Consider w = a1f(a1) · · ·apf(ap)(f(u)−1v). Then w |@| uv and

I
w
−→ Z in Sf .

Hence, there is a run I
w$
−−→ ∆f in Sf . Since w$ |@| uv$, uv$ ∈ δempty(Sf ).

Conversely, let I
w′

−→ s be a run in Sf with s deadlocked and w′ |@| uv$.
Since $ must occur in w′ we deduce that s = ∆f and w′ = w$ with w |@| uv.
Moreover, there is a run in Sf labelled w going from I to one of the states X ,
Y or Z. Let u = a1 · · · ap.

1. If I
w
−→ X then we have

w = a1f(a1) · · · aj−1f(aj−1)aj(f(a1 · · ·aj−1)
−1v)aj+1 · · · ap for some j such

that f(a1 · · · aj−1) � v ≺ f(a1 · · · aj) and we deduce that v 6= f(u).

2. If I
w
−→ Y then we have w = a1f(a1) · · · aj−1f(aj−1)ajv

′bw′′ for some j such
that v′ ≺ f(aj), b ∈ B and v′b 6� f(aj). We deduce that v 6= f(u).

3. If I
w
−→ Z then we have w = a1f(a1) · · · apf(ap)v

′ with v′ ∈ B+ and we
deduce that v 6= f(u). ⊓⊔

Theorem 11. M1 ∼Q M2 iff the PCP instance (f, g) has no solution.

Proof. First, assume that the PCP instance (f, g) has a solution and let u ∈ A+

be such that v = f(u) = g(u). Then, uv$ ∈ δempty(S0)\δempty(M2) by Lemmas 9
and 10. Therefore, M1 6∼Q M2.

Conversely, if the PCP instance (f, g) has no solution, then for every u ∈ A+

and v ∈ B+ we have either v 6= f(u) or v 6= g(u). Hence, uv$ ∈ δempty(M2) by
Lemma 10. Using Lemma 9 we deduce that δempty(S0) ⊆ δempty(M2) since these
sets are |@|-upward closed. Therefore, M1 ∼Q M2. ⊓⊔

5.3 Decidability of ∼ioblock for well structured systems

Let α and β be block-observations. We say that α is finer than β, denoted α � β,
if β can be obtained from α by merging consecutive blocks. More precisely,



if α = (u1, v1) · · · (un, vn) and 0 < j1 < · · · < jp = n (p ≥ 1) then α is
finer than β = (u1 · · ·uj1 , v1 · · · vj1) · · · (u1+jp−1

· · ·ujp
, v1+jp−1

· · · vjp
). Clearly,

if α ∈ IOBlocks(TS) and α � β then β ∈ IOBlocks(TS).
We say that a block observation α = (u1, v1) · · · (un, vn) is reduced if u1 = ε

and uj ∈ Σi for 1 < j ≤ n. A transition system is well structured (WS) if
each state either refuses Σi or refuses Σo. A transition system is receptive if no
quiescent state s refuses an input: s

a
−→ for all a ∈ Σi.

Lemma 12. Assume that TS is WS. If β ∈ IOBlocks(TS) then there exists α ∈
IOBlocks(TS) reduced with α � β. Therefore, IOBlocks(TS) is characterized by
its reduced block-observations.

Let Lδ(TS) be the language accepted by TS with quiescent states as final.

Lemma 13.

1. Assume that TS is WS. If w = v1a2v2 · · ·anvn ∈ Lδ(TS) with vj ∈ Σ∗
o and

aj ∈ Σi then (ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS).
2. Let TS be WS and receptive. If (ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS)

with vj ∈ Σ∗
o and aj ∈ Σi then w = v1a2v2 · · · anvn ∈ Lδ(TS).

We deduce from the lemmata above that ∼ioblock is decidable for WS and
receptive transition systems since for these systems ∼ioblock amounts to language
equivalence: TS1 ∼ioblock TS2 iff Lδ(TS1) = Lδ(TS2).

For a ∈ Σi, we define Lδ,a(TS) as the language accepted by TS when the
final states are all the quiescent states that refuse a.

Lemma 14. Assume that TS is WS. If w = v1a2v2 · · · akvk ∈ Lδ,ak+1
(TS)

with vj ∈ Σ∗
o for 1 ≤ j ≤ k and aj ∈ Σi for 2 ≤ j ≤ n (k < n) then

(ε, v1)(a2, v2) · · · (an, vn) ∈ IOBlocks(TS).

From this we derive a sufficient condition for ∼ioblock .

Lemma 15. Assume that TS1 and TS2 are well-structured and that Lδ(TS1) =
Lδ(TS2) and Lδ,a(TS1) = Lδ,a(TS2) for all a ∈ Σi. Then, TS1 ∼ioblock TS2.

5.4 Decidability of ∼io for unlabelled MSC tests

A message sequence chart, or MSC, visually represents a sequence of communi-
cations between a set of agents [11]. In an MSC, processes are represented by
vertical lines, with time flowing downward, and messages are drawn as arrows
connecting the vertical lines. One way of characterizing patterns of communica-
tions is in terms of the MSCs they generate. For these characterizations, message
labels are often omitted, as in the treatment of regular MSC languages in [10].
When restricted to the communications between the tester and the system under
test, this corresponds to a setting in which the input and output alphabets are
both singletons, since all messages to and from the system under test are un-
labelled. The reduction used to prove Theorem 7 allows us to model ∼io using
rational relations. It is known that equality is decidable for rational relations
over a pair of unary alphabets. Hence, we have the following.

Theorem 16. For tests described using unlabelled MSCs, ∼io is decidable.



6 Future work

We have presented two intuitive notions of asynchronous testing and compared
their expressive power with the definition due to Tretmans. Much work remains
to be done to apply these new notions to make testing more effective. As men-
tioned in the introduction, the key problem remains that of identifying efficient
yet exhaustive test sets for a given system. There is also the question of how to
efficiently represent a family of such tests—see for instance [9]. Another inter-
esting issue is to see how testing can be done in a distributed manner, extending
the work reported in [12].
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