
Entanglement and the Complexity of Directed Graphs

Dietmar Berwangera, Erich Grädelb, Lukasz Kaiserc, Roman Rabinovichb

aLSV, CNRS & Ecole Normale Supérieure de Cachan, France
bMathematische Grundlagen der Informatik, RWTH Aachen University, Germany

cLIAFA, CNRS & Université Paris Diderot, France

Abstract

Entanglement is a parameter for the complexity of finite directed graphs that
measures to which extent the cycles of the graph are intertwined. It is defined
by way of a game similar in spirit to the cops and robber games used to describe
tree width, directed tree width, and hypertree width. Nevertheless, on many
classes of graphs, there are significant differences between entanglement and the
various incarnations of tree width.

Entanglement is intimately related with the computational and descriptive
complexity of the modal µ-calculus. The number of fixed-point variables needed
to describe a finite graph up to bisimulation is captured by its entanglement.
This plays a crucial role in the proof that the variable hierarchy of the µ-calculus
is strict.

We study complexity issues for entanglement and compare it to other struc-
tural parameters of directed graphs. One of our main results is that parity
games of bounded entanglement can be solved in polynomial time. Specifically,
we establish that the complexity of solving a parity game can be parametrised in
terms of the minimal entanglement of subgames induced by a winning strategy.

Furthermore, we discuss the case of graphs of entanglement two. While
graphs of entanglement zero and one are very simple, graphs of entanglement
two allow arbitrary nesting of cycles, and they form a sufficiently rich class for
modelling relevant classes of structured systems. We provide characterisations
of this class, and propose decomposition notions similar to the ones for tree
width, DAG-width, and Kelly-width.

Keywords: Structural graph theory, Graph searching games, Parity games,
Digraph algorithms

Email addresses: dwb@lsv.ens-cachan.fr (Dietmar Berwanger),
graedel@logic.rwth-aachen.de (Erich Grädel), kaiser@liafa.univ-paris-diderot.fr
(Lukasz Kaiser), rabinovich@logic.rwth-aachen.de (Roman Rabinovich)

Preprint submitted to Elsevier July 2, 2012

1. Introduction

In recent years, several parameters have been proposed for measuring the
structural complexity of directed graphs in a similar way to which tree width [27]
measures the complexity of undirected graphs. The intuition behind such pa-
rameters is that acyclic graphs are simple, and that the complexity of a graph
is reflected by the degree in which its cycles are intertwined, or entangled. Two
main approaches to making the idea precise rely on graph decompositions similar
to tree decompositions, and graph searching games, also called cops and robber
games: here, a number of cops seek to capture a fugitive that can move along
the edges of the graph, and the number of cops needed to capture the fugitive
determines the complexity of the graph.

Tree width of a directed graph G can be defined as the tree width of the
undirected graph that underlies G. However, discarding the direction of
edges may lead to the loss of relevant information. For instance, an acyclic
orientation of a complete graph has maximal (undirected) tree width, in
spite of the fact that the directed graph is acyclic, and thus simple.

Directed tree width, the first generalisation of tree width to directed graphs,
is defined by means of an arboreal decomposition similar to the tree de-
composition for the undirected case [17]. A variant of the graph searching
game for the undirected case, where the robber is restricted to stay in her
strongly connected component, characterises directed tree width only up
to a constant additive factor.

DAG-width, introduced in [3, 24, 4], is defined by DAG-decompositions. A
DAG-decomposition of width k for a graph G is described by a directed
acyclic graph (DAG) D and a map that associates, with every node of the
DAG, a set of at most k nodes of G, covering the entire graph G in such
a way that, for every d ∈ D, the edges of G leaving a node strictly below
d are guarded by nodes in d. DAG-width can also be characterised by a
variant of a graph searching game (the directed cops and visible robber
game), but with the somewhat unsatisfactory restriction that the cops
are only allowed to use robber-monotone strategies, i.e., a move of the
cops must never enlarge the portion of the graph in which the robber can
move. It has been proved [22] that this restriction is necessary: there exist
families of graphs where the difference between the DAG-width and the
number of cops that can capture the robber with a non-monotone strategy
is unbounded.

Kelly-width, introduced in [16], is a similar measure that can be characterised
either by a refined notion of decomposition, called Kelly-decomposition, or
by a graph searching game in which the robber is invisible to the cops and
inert, in the sense that she can move only when a cop is about to land on
her current position. Again, the correspondence between decompositions
and games only holds with the restriction to monotone strategies [22].

2

Entanglement, introduced in [5], has been motivated by applications concern-
ing the modal µ-calculus and parity games. It is defined by a game where
the moves of both the cops and the robber are more restricted than in
other graph searching games: In each move the cops either stay where
they are or place one of them on the current position of the robber; here,
strategies need not be monotone.

Entanglement is, in a sense, more delicate than (directed) tree width, DAG-
width, or Kelly-width [15]. There exist graphs of DAG-width, Kelly-width and
directed tree width three and arbitrarily large entanglement. For a survey of
further complexity measures for directed graphs, such as pathwidth [26], cycle
rank [11], D-width [28], we refer to [14, 25].

The strengths of entanglement are the close connection with modal logics
and bisimulation invariant properties, and the natural game-theoretic character-
isation. Thus, entanglement has been instrumental in the proof that the variable
hierarchy of the modal µ-calculus is strict [7]. Furthermore, parity games can be
solved efficiently on game graphs of bounded entanglement — analogous results
hold for bounded DAG-width and bounded Kelly-width. Finally, entanglement
does not increase when we take bisimulation quotients, and it has been proved
that, as a consequence, winning regions of parity games are definable in least
fixed point logic on graphs of bounded entanglement [10].

The main weakness of entanglement as a measure (at the current state of
the art) is that it does not come with a natural notion of decomposition, such
as the ones for tree width, DAG-width, or Kelly-width. Decompositions are
crucial for algorithmic applications, since they allow to break structures into
smaller parts that can be processed independently. In Section 3 we present a
structural characterisation of entanglement in terms of the minimal feedback of
finite unravellings of the graph as a tree with back-edges. However, while this
produces a game-free definition of entanglement, it does not yield a notion of a
decomposition.

For the particular case of graphs with entanglement two, studied in [2, 13], we
provide structural characterisations via decompositions similar to the ones for
tree width, DAG-width, and Kelly-width. While graphs of entanglement zero
and one are very simple, graphs of entanglement two allow complex nesting
of cycles, and they are rich enough to model interesting classes of structured
systems. We show that all graphs of entanglement two have both DAG-width
and Kelly-width three.

2. Entanglement via graph searching games

Let G = (V,E) be a finite directed graph. The entanglement of G, denoted
by ent(G), is defined through a game EGk(G) played in rounds by a robber
against k cops according to the following rules. Initially the robber selects an
arbitrary position v0 of G and the cops are outside the graph. In every round,
the cops may either stay where they are, or place one of them on the current
position v of the robber. The robber may try to escape by moving to a successor

3

w ∈ vE that is not occupied by a cop. If no such position exists, the robber is
captured and the cops win. Note that, in every round, the robber is informed
about the move of the cops before she decides on her own move, and that she
has to leave her current position no matter whether the cops move or not. The
entanglement of G is the minimal number k ∈ N such that k cops have a strategy
to win the game EGk(G).

For a formal definition of strategies in the entanglement game EGk(G) on
a graph G = (V,E), we describe a play by a sequence π ∈ S≤ω, where S =
V × P≤k(V). Hereby P≤k(V) is the set of subsets of V of size at most k, and
(v, P) ∈ S denotes a position where the robber is on v and the cops occupy the
nodes in P . As the turns of the players alternate, we do not represent the turn
information explicitly.

Then, a strategy of the robber in EGk(G) is a partial function ρ : S∪{ε} → V
with the property that ρ(v, P) ∈ vE \ P . Here, ρ(ε) describes the choice of the
initial node by the robber.

Similarly, a strategy of the cops is a partial function σ : S → V ∪ {�,⊥}
describing which cop, if any, moves to the current node occupied by the robber:

• if σ(v, P) =⊥ then the cops remain idle, and the next position is (v, P)
(but now it is the robber’s turn);

• if σ(v, P) = � then it must be the case that |P | < k and the next position
is (v, P ∪ {v}) (a cop from outside moves to node v);

• otherwise σ(v, P) = u ∈ P (the cop from node u goes to v), and the next
position is (v, (P \ {u}) ∪ {v}).

Note that we distinguish between cops only according to their position in the
graph; in particular, we do not distinguish cops that stay outside of it.

A strategy ρ of the robber together with a strategy σ of the cops define a
unique play π = (v0, P0)(v1, P1)(v2, P2) . . . that follows ρ and σ. The starting
position is (v0, P0) = (ε, ∅) meaning that the cops and the robber are outside of
the graph. After the initial move of the robber the position is (v1, P1) = (ρ(ε), ∅).
For every n > 0 the node v2n+1 occupied by the robber after her (n+1)-st move
is determined by ρ(v2n, P2n), and the set P2n occupied by the cops after their
n-th move is determined by σ(v2n−1, P2n−1). Finally, we have P2n+1 = P2n and
v2n = v2n−1. A play ends with a win for the cops, if, for some n, there is no
position w ∈ v2nE \ P2n. Infinite plays are winning for the robber. A robber
(or cop) strategy is winning, if the robber (cop) wins every play that follows it,
regardless of the strategy of the opponent.

The entanglement game is a reachability game: the cops try to reach a state
of the game at which the robber is captured. It is well known that such games
are determined via memoryless strategies, i.e., one of the two players has a
winning strategy that depends only on the current position, and not on the
history of the play (see, e.g., [31]).

Lemma 2.1. For every graph G and every k, the game EGk(G) is determined
with memoryless winning strategies, that is, either the cops or the robber have
a memoryless winning strategy.

4

Entanglement is an interesting measure on directed graphs. To deal with
undirected graphs, we view undirected edges {u, v} as pairs (u, v) and (v, u) of
directed edges. In the following a graph is always understood to be directed
and finite.

To get a feeling for this measure we quote a few observations concerning the
entanglement of certain familiar graphs. The proofs are simple exercises.

Proposition 2.2. Let G be a directed graph.

(1) ent(G) = 0 if, and only if, G is acyclic.
(2) If G is the graph of a unary function, then ent(G) = 1.
(3) If G is an undirected tree, then ent(G) ≤ 2.
(4) If G is the complete directed graph with n nodes, then ent(G) = n− 1.

Let Cn denote the directed cycle with n nodes. Given two graphs G = (V,E)
and G′ = (V ′, E′) their asynchronous product is the graph G ×G′ = (V ×V ′, F)
where

F = {(uu′, vv′) : [(u, v) ∈ E ∧ u′ = v′] ∨ [u = v ∧ (u′, v′) ∈ E′]}.

Note, that Tmn := Cm × Cn is the (m × n)-torus or, to put it differently, the
graph obtained from the directed (m+ 1)× (n+ 1)-grid by identifying the left
and right border and the upper and lower border.

Proposition 2.3.
(1) For every n, ent(Tnn) = n.
(2) For every m 6= n, ent(Tmn) = min(m,n) + 1.

Proof. On Tnn, a team of n cops can capture the robber by placing themselves
on a diagonal, thus blocking every row and every column of the torus. If there
are less than n cops, the robber can guarantee the free-lane property to hold
again and again: there is a cop free column in the torus and a cop free path to
this column from her node. At the beginning of a play this is clear. In general,
assume that the property holds and let the robber move on a cop free column
until a cop announces to land on her node. In that moment, there is another
cop free column, say number c, as we have n columns and at most n− 1 cops,
but one cop is on his way to the robber’s node and thus outside of the graph.
For the same reason, there is a cop free row r. The robber runs to the crossing
of row r and the column she is on and then along row r to column c. When
she arrives at column c, the free-lane property holds again. It follows that the
robber wins the game.

On Tmn withm < n, m cops are needed to block every row, and an additional
cop forces the robber to leave any row after at most n moves, so that she finally
must run into a cop. The same proof as above shows that the robber escapes if
there are less than m+ 1 cops.

The following proposition characterises the graphs with entanglement one.
It is more difficult to describe graphs with entanglement two, and we defer
the characterisation to Section 8. The problem of characterising graphs with
entanglement 3 and above is open.

5

Proposition 2.4. The entanglement of a directed graph is one, if, and only if,
the graph is not acyclic, and in every strongly connected component, there is a
node whose removal makes the component acyclic.

Proof. On any graph with this property, one cop captures the robber by placing
himself on the critical node in the current strongly connected component when
the robber passes there. The robber will have to return to this node or leave the
current component. Eventually she will be captured in a terminal component.

Conversely if there is a strongly connected component without such a critical
node, then the robber may always proceed from her current position towards
an unguarded cycle and thus escape forever.

As acyclicity in directed graphs is Nlogspace-complete [19], we immedi-
ately obtain the following corollary.

Corollary 2.5. For k = 0 and k = 1, the problem whether a given graph has
entanglement k is Nlogspace-complete.

3. Entanglement via trees with back-edges and partial unravellings

Let T = (V,E) be a directed tree. We write �E for the associated partial
order on T , that is, the reflexive, transitive closure of E. A directed graph
T = (V, F) is a tree with back-edges if there is a partition F = E ∪ B of the
edges into tree-edges and back-edges such that (V,E) is indeed a directed tree
with edges oriented away from the root, and whenever (u, v) ∈ B, then v �E u.

The following observation shows that, up to the choice of the root, the
decomposition into tree-edges and back-edges is unique.

Lemma 3.1. Let T = (V, F) be a tree with back-edges and v ∈ V . Then there
exists at most one decomposition F = E∪B into tree-edges and back-edges such
that (V,E) is a tree with root v.

Let T = (V,E,B) be a tree with back-edges. The feedback of a node v of
T is the number of ancestors of v that are reachable by a back-edge from a
descendant of v. The feedback of T , denoted fb(T) is the maximal feedback of
nodes on G. More formally,

fb(T) = max
v∈V
|{u ∈ V : ∃w(u �E v �E w ∧ (w, u) ∈ B)}|.

We call a back edge (w, u), and likewise its target u, active at a node v in T , if
u �E v �E w.

Note that the feedback of T may depend on how the edges are decomposed
into tree-edges and back-edges, i.e., on the choice of the root. Consider, for
instance, the following graph C+

3 (the cycle C3 with an additional self-loop on
one of its nodes). Clearly, for every choice of the root, C+

3 is a tree with two
back-edges. If the node with the self-loop is taken as the root, then the feedback
is 1, otherwise it is 2.

6

Lemma 3.2. Let T = (V,E,B) be a tree with back-edges of feedback k. Then
there exists a partial labelling i : V 7→ {0, . . . , k − 1} assigning to every target
u of a back edge an index i(u) in such a way that no two nodes u, u′ that are
active at the same node v have the same index.

Proof. The values of this labelling are set while traversing the tree in breadth-
first order. Notice that every node u with an incoming back-edge is active at
itself. As T has feedback k, there can be at most k − 1 other nodes active at
u. All of these are ancestors of u, hence their index is already defined. There is
at least one index which we can assign to u so that no conflict with the other
currently active nodes arises.

Lemma 3.3. The entanglement of a tree with back-edges is at most its feedback:
ent(T) ≤ fb(T).

Proof. Suppose that fb(T) = k. By Lemma 3.2 there is a labelling i of the
targets of the back-edges in T by numbers 0, . . . , k−1 assigning different values
to any two nodes u, u′ that are active at the same node v. This labelling induces
the following strategy for the k cops: at every node v reached by the robber,
send cop number i(v) to that position or, if the value is undefined, do nothing.
By induction over the stages of the play, we can now show that this strategy
maintains the following invariant: in every round of the play on T , when the
robber reaches a node v, then all active nodes u 6= v are occupied and, if the
current node is itself active, a cop is on the way. To see this, let us trace the
evolution of the set Z ⊆ T of nodes occupied by a cop. In the beginning of
the play, Z is empty. A node v can be included into Z if it is visited by the
robber and active with regard to itself. At this point, our strategy appoints
cop i(v) to move to v. Since, by construction of the labelling, the designated
cop i(v) must come from a currently inactive position and, hence, all currently
active positions except v remain in Z. But if every node which becomes active
is added to Z and no active node is ever given up, the robber can never move
along a back edge, so that after a finite number of steps she reaches a leaf of
the tree and loses. But this means that we have a winning strategy for k cops,
hence ent(T) ≤ k.

It is well-known that every graph G can be unravelled from any node v to a
tree TG,v whose nodes are the paths in G from v. Clearly TG,v is infinite unless
G is finite and no cycle in G is reachable from v. A finite unravelling of a (finite)
graph G is defined in a similar way, but rather than an infinite tree, it produces
a finite tree with back-edges. To construct a finite unravelling we proceed as
in the usual unravelling process with the following modification: whenever we
have a path v0v1 . . . vn in G with corresponding node v = v0v1 . . . vn in the
unravelling, and a successor w of vn that coincides with vi (for any i ≤ n),
then we may, instead of creating the new node vw (with a tree-edge from v
to vw) put a back-edge from v to its ancestor v0 . . . vi. Clearly this process is
nondeterministic. Accordingly, any finite graph can be unravelled, in several
different ways, to a finite tree with back-edges.

7

Definition 3.4. Let G = (V,E) be a graph and let v0 be a node in G. A
tree T = (T,ET) with back-edges is a finite unravelling of G, if it is finite and
there is a labelling h : T → V with the following property:

for all paths v0 . . . vn in G, there is a unique path w0 . . . wn
in T such that, for all i ∈ {0, . . . , n}, we have h(wi) = vi.

Note that different finite unravellings of a graph may have different feedback
and different entanglement.

Clearly the entanglement of a graph is bounded by the entanglement of its
finite unravellings. Indeed a winning strategy for k cops on a finite unravelling
of G immediately translates to a winning strategy on G.

Proposition 3.5. The entanglement of a graph is the minimal feedback (and
the minimal entanglement) of its finite unravellings:

ent(G) = min{fb(T) : T is a finite unravelling of G}
= min{ent(T) : T is a finite unravelling of G}.

Proof. For any finite unravelling T of a graph G, we have ent(G) ≤ ent(T) ≤
fb(T). It remains to show that for any graph G there exists some finite unrav-
elling T with fb(T) ≤ ent(G).

To prove this, we view winning strategies for the cops as descriptions of finite
unravellings. A strategy for k cops tells us, for any finite path πv of the robber
whether a cop should be posted at the current node v, and if so, which one. Such
a strategy can be represented by a partial function g mapping finite paths in G
to {0, . . . , k− 1}. On the other hand, during the process of unravelling a graph
to a (finite) tree with back edges, we need to decide, for every successor v of
the current node, whether to create a new copy of v or to return to a previously
visited one, if any is available. To put this notion on a formal ground, we define
an unravelling function for a rooted graph G, v0 as a partial function ρ between
finite paths from v0 through G, mapping any path v0, . . . , vr−1, vr in its domain
to a strict prefix v0, v1, · · · , vj−1 such that vj−1 = vr. Such a function gives rise
to an unravelling of G in the following way: we start at the root and follow finite
paths through G. Whenever the current path π can be prolonged by a position v
and the value of ρ at πv is undefined, a fresh copy of v corresponding to πv is
created as a successor of π. In particular, this always happens if v was not yet
visited. Otherwise, if ρ(π v) is defined, then the current path π is bent back to
its prefix ρ(π) which also corresponds to a copy of v. Formally, the unravelling
of G driven by ρ is the tree with back edges T defined as follows:

• the domain of T is the smallest set T which contains v0 and for each path
π ∈ T , it also contains all prolongations πv in G at which ρ is undefined;

• the tree-edge partition is

ET := { (v0, . . . , vr−1, v0, . . . , vr−1, vr) ∈ T × T | (vr−1, vr) ∈ EG };

8

• for all paths π := v0, . . . , vr−1 ∈ T where ρ(πv) is defined, the back-
relation BT contains the pair (π, ρ(πv)) if (vr−1, v) ∈ EG .

We are now ready to prove that every winning strategy g for the k cops on
G, v0 corresponds to an unravelling function ρ for G, v0 that controls a finite
unravelling with feedback k.

Note that the strategy g gives rise to a k-tuple (g0, . . . , gk−1) of functions
mapping every initial segment π of a possible play according to g to a k-tuple
(g0(π), . . . , gk−1(π)) where each gi(π) is a prefix of π recording the state of the
play (i.e. the current path of the robber) at the last move of cop i.

Now, for every path π and possible prolongation by v, we check whether,
after playing π, there is any cop posted at v. If this is the case, i.e, when, for
some i, the end node of gi(π) is v, we set ρ(π v) := πi. Otherwise we leave
the value of ρ undefined at π, v. It is not hard to check that, if g is a winning
strategy for the cops, the associated unravelling is finite and has feedback k.

4. Computational complexity

Many algorithmic issues in graph theory are related to the problem of cy-
cle detection, typically, to determine whether a given graph contains a cycle
satisfying certain properties. When alternation comes into play, that is, when
we consider paths formed interactively, the questions become particularly in-
teresting but often rather complex, too. In this framework, we will study the
entanglement of a graph as a measure of how much memory is needed to deter-
mine on the fly whether a path formed interactively enters a cycle.

As a basis for later development, let us first describe a procedure for deciding
whether k cops are sufficient to capture the robber on a given graph. The
following algorithm represents a straightforward implementation of the game as
an alternating algorithm, where the role of the robber is played by the universal
player while the cops are controlled by the existential player.

procedure Entanglement(G, v0, k)
input graph G = (V,E), initial position v0, candidate k ≤ |V |
// accept iff ent(G, v0) ≤ k
v := v0, (di)i∈[k] := ⊥; // current position of robber and cops
do

existentially guess i ∈ [k] ∪ {pass} // appoint cop i or pass
if i 6= pass then di := v // guard current node
if vE \ {d} = ∅ then accept
else universally choose v ∈ vE \ {d};

repeat

Since this algorithm requires space only to store the current positions of
the robber and the k cops, it runs in alternating space O((k + 1) log |V |) which
corresponds to deterministic polynomial time [9].

Lemma 4.1. The problem of deciding, for a fixed parameter k, whether a given
graph G with n nodes has ent(G) ≤ k can be solved in time O(nk+1).

9

Notice that if we regard the parameter k as part of the input, the algorithm
yields an Exptime upper bound for complexity of deciding the entanglement of
a graph. We know no non-trivial lower bounds.

5. Parity games

As usual for measures of graph complexity, we are not only interested in com-
puting the entanglement of a graph, but also in identifying complex problems
that become tractable when restricted to graphs of small entanglement. In this
section, we discuss one prominent example: parity games. These games are sub-
ject to an intriguing open problem related to the µ-calculus, the computational
complexity of its evaluation problem: Given a formula ψ and a finite transition
structure K, v, decide whether ψ holds in K, v. The natural evaluation games
for Lµ are parity games [30].

Parity games are path-forming games played between two players on labelled
graphs G = (V, V0, E,Ω) equipped with a priority labelling Ω : V → N. All
plays start from a given initial node v0. At every node v ∈ V0, the first player,
called Player 0, can move to a successor w ∈ vE; at positions v ∈ V1 := V \V0, his
opponent Player 1 moves. Once a player gets stuck, he loses. If the play goes on
infinitely the winner is determined by looking at the sequence Ω(v0), Ω(v1), . . .
of priorities seen during the play. In case the least priority appearing infinitely
often in this sequence is even, Player 0 wins the play, otherwise Player 1 wins.

A memoryless strategy for Player i in a parity game G is a function σ that
indicates a successor σ(v) ∈ vE for every position v ∈ Vi. A strategy for a
player is winning, if he wins every play that is consistent with the strategy.
The Memoryless Determinacy Theorem of Emerson and Jutla states that parity
games are always determined with memoryless strategies.

Theorem 5.1 (Memoryless Determinacy, [12]). In any parity game, one of the
players has a memoryless winning strategy.

Any memoryless strategy σ induces a subgraph Gσ of the game graph G,
obtained by removing every edge (v, w) ∈ E where v ∈ Vi and w 6= σ(v). Then,
σ is a winning strategy for Player i if, and only if, he wins every play on Gσ.
As these subgames are small objects and it can be checked efficiently whether a
player wins every play on a given graph, the winner of a finite parity game can be
determined in NP∩ co-NP. In general, the best known deterministic algorithms
to decide the winner of a parity game have running times that are polynomial
with respect to the size of the game graph, but exponential with respect to the
number of different priorities occurring in the game [20]. However, for game
graphs of bounded tree width, DAG-width or Kelly-width, it is known that the
problem can be solved in polynomial time with respect to the the size of the
graph, independently of the number of priorities [23, 4, 16].

In the remainder of this section we will show that the entanglement of a
parity game graph is a pivotal parameter for its computational complexity.
To maintain a close relationship between games and algorithms, we base our
analysis on alternating machines (for a comprehensive introduction, see e.g. [1]).

10

Similar to the robber and cop game, the dynamics of a parity game consists
in forming a path through a graph. However, while in the former game the cops
can influence the forming process only indirectly, by obstructing ways of return,
in a parity game both players determine directly how the path is prolonged.
Besides this dynamic aspect, also the objectives of players are quite different
at a first sight. While the cops aim at making the play return to a guarded
position, each player of a parity game tries to achieve that the least priority
seen infinitely often on the path is of a certain parity.

The key insight which brings the two games to a common ground is the
Memoryless Determinacy Theorem for parity games: whichever player has a
winning strategy in a given game G = (V, V0, E,Ω), also has a memoryless one.
This means, that either player may commit, for each reachable position v ∈ V
which he controls, to precisely one successor σ(v) ∈ vE and henceforth follow
this commitment in every play of G without risking his chance to win. It follows
that, whenever a play returns to a previously visited position v, the winner can
be established by looking at the least priority seen since the first occurrence
of v. Therefore we can view parity games on finite game graphs as path forming
games of finite duration where the objective is to reach a cycle with minimal
priority of a certain parity.

With this insight, we obtain a method for determining the winner of a par-
ity game by simulating the moves of players while maintaining the history of
visited positions in order to detect whether a cycle was reached and to keep
track of the occurring priorities. To store the full history, an implementation
of this method requires space O(|V | log |V |) in the worst case; since the pro-
cedure uses alternation to simulate the single game moves, this situates us in
Aspace(O(|V | log |V |)), or Dtime(|V |O(|V |)).

What makes this approach highly impractical is the extensive representation
of the play history. In fact, the power of alternation is limited to the formation
of the path, while the history is monitored in a deterministic way. We can
improve this significantly, by interleaving robber and cop games with parity
games in such a way that the formation of cycles is monitored using the power
of alternation.

Intuitively, we may think of a parity game as an affair involving three agents,
Player 0 and 1, and a referee who seeks to establish which of the two has a
winning strategy. In the approach presented above, the referee memorises the
entire history of the game. But as we could see, the occurrence of a cycle in
a path-forming game on a graph G can already be detected by storing at most
ent(G) many positions. Hence, if we could provide the referee with the power
of sufficiently many cops, this would reduce the space requirement. The crux of
the matter is how to fit such a three-player setting into the two-player model of
alternating computation.

Our proposal is to let one of the players act as a referee who challenges the
opponent in the parity game, and, at the same time, controls the cops in an
auxiliary cops-and-robber game played on the side, where the path formed in
the parity game is regarded as if it would be formed by the robber alone.

Formally, this leads to a new game. For a game graph G = (V, V0, E,Ω), a

11

player i ∈ {0, 1}, and a number k, the supercop game G[i, k] is played between
two players: the Supercop, which controls k cops and the positions of Vi, and
the Challenger which controls the positions in V1−i. Starting from an initial
position v0, in any move, the Supercop may place one of the k cops on the
current position v, or leave them in place. If the current position v belongs to
V1−i, Challenger has to move to some position w ∈ vE, otherwise the Supercop
moves. If a player gets stuck, he loses immediately. The play ends, if it reaches
a position w occupied by a cop, and the Supercop wins if the least priority seen
since the cop was placed at w has the same parity as i. All infinite plays are
winning for the Challenger.

The following lemma states that parity games can be reduced to Supercop
games with an appropriate number of cops.

Lemma 5.2.

(1) If Player i has a winning strategy for the parity game G, then the Supercop
wins the supercop game G[i, k] with k = ent(G).

(2) If, for some k ∈ N, the Supercop wins the game G[i, k], then Player i has
a winning strategy for the parity game G.

Proof. Let σ be a memoryless winning strategy of Player i for the game G,
and let Gσ be the subgame of G induced by this strategy. Then, the least
priority seen on any cycle of Gσ is favourable to Player i. This remains true
for any cycle formed in G[i, k] where Player i acting as a Supercop follows the
same strategy σ. On the other hand, obviously ent(Gσ) ≤ ent(G) = k, which
means that the Supercop also has a strategy to place the k cops so that every
path through Gσ will finally meet a guarded position v and hence form a cycle,
witnessing that he wins.

For the converse, assume that the Supercop wins the game G[i, k] whereas
Player 1− i had a memoryless winning strategy τ in the parity game G. Then
Player 1− i could follow this strategy when acting as a Challenger in G[i, k], so
that the play remains in Gτ [i, k]. However, in this game no cycle is favourable
to Player i and, hence, the Supercop i cannot win, in contradiction to our
assumption.

Note that computing the winner of a supercop game G[i, k] requires alter-
nating space (2k + 1) log |V |. Indeed, one just plays the game recording the
current position of the robber and the current position of each cop, along with
the minimal priority that has been seen since he was last posted.

procedure Supercop(G, v0, j, k)
input parity game G = (V, V0, E,Ω), initial position v0 ∈ V , player j, k cops
// accept iff Supercop has a winning strategy in G[j, k] with k cops
v := v0 // current position
(di)i∈[k] := ⊥ // positions guarded by cops
(hi)i∈[k] := ⊥ // most significant priorities
repeat

if j = 0 then

12

existentially guess i ∈ [k] ∪ {pass} // appoint cop i or pass
else

universally choose i ∈ [k] ∪ {pass} // other player’s cop
if i 6= pass then
di := v; hi := Ω(v) // guard current node

v := Move(G, v) // simulate a game step
forall i ∈ [k] do // update history
hi := min(hi, Ω(v))

repeat
until (v = di for some i) // cycle detected
if (j = 0 and hi is even) or (j = 1 and hi is odd) then accept
else reject

We are now ready to prove that parity games of bounded entanglement
can be solved in polynomial time. In fact we establish a more specific result,
taking into account the minimal entanglement of subgames induced by a winning
strategy.

Theorem 5.3. The winner of a parity game G = (V, V0, E,Ω) can be deter-
mined in Aspace(O(k log |V |)), where k is the minimum entanglement of a
subgame Gσ induced by a memoryless winning strategy σ in G.

Proof. We first describe the procedure informally, in the form of a game. Given
a parity game G = (V, V0, E,Ω) and an initial position v0, each player i selects a
number ki and claims that he has a winning strategy from v0 such that ent(Gσ) ≤
ki. The smaller of the two numbers k0, k1 is then chosen to verify that Supercop
wins the game G[i, ki]. If this is the case the procedure accepts the claim of
Player i, otherwise Player (1− i) is declared the winner.

Here is a more formal description of the procedure:

procedure SolveParity(G, v)
input parity game G = (V, V0, E,Ω), initial position v ∈ V
// accept iff Player 0 wins the game
existentially guess k0 ≤ |V |
universally choose k1 ≤ |V |
if k0 ≤ k1 then

if Supercop(G, v, 0, k0) then accept
else reject

else
if Supercop(G, v, 1, k1) then reject
else accept

fi

We claim that Player 0 has a winning strategy in a parity game G, v if, and
only if, the alternating procedure ParitySolve(G, v) accepts.

To see this, assume that Player 0 has a memoryless winning strategy σ
from v. Then, the guess k0 := ent(Gσ) leads to acceptance. Indeed, for k1 ≥ k0,
Player 0 wins the supercop game G[0, k0] by using the strategy σ as a parity
player together with the cop strategy for Gσ. On the other hand, for k1 < k0,

13

the procedure accepts as well, since Player 1 cannot win the supercop game
G[1, k1] without having a winning strategy for the parity game.

The converse follows by symmetric arguments exchanging the roles of the
two players.

Corollary 5.4. Parity games of bounded entanglement can be solved in poly-
nomial time.

6. Descriptive complexity

The modal µ-calculus Lµ, introduced by Kozen [21], is a highly expressive
formalism which extends basic modal logic with monadic variables and binds
them to extremal fixed points of definable operators.

Syntax. For a set act of actions, a set prop of atomic propositions, and a set
var of monadic variables, the formulae of Lµ are defined by the grammar

ϕ ::= false | true | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

where p ∈ prop, a ∈ act, and X ∈ var. An Lµ-formula in which no universal
modality [a]ϕ occurs is called existential.

The number of variables occurring in a formula provides a relevant measure
of its conceptual complexity. For any k ∈ N, the k-variable fragment Lµ[k] of
the µ-calculus is the set of formulae ψ ∈ Lµ that contain at most k distinct
variables.

Semantics. Formulae of Lµ are interpreted on transition systems, or Kripke
structures. Formally, a transition system K =

(
V, (Ea)a∈act, (Vp)p∈prop

)
is

a coloured graph with edges labelled by action and nodes labelled by atomic
propositions. Given a sentence ψ and a structure K with state v, we write
K, v |= ψ to denote that ψ holds in K at state v. The set of states v ∈ K such
that K, v |= ψ is denoted by [[ψ]]K.

Here, we only define [[ψ]]K for fixed-point formulae ψ. Towards this, note that
a formula ψ(X) with a monadic variable X defines on every transition structure
K (providing interpretations for all free variables other than X occurring in
ψ) an operator ψK : P(K) → P(K) assigning to every set X ⊆ K the set
ψK(X) := [[ψ]]K,X = {v ∈ K : (K, X), v |= ψ}. As X occurs only positively in
ψ, the operator ψK is monotone for every K, and therefore, by a well-known
theorem due to Knaster and Tarski, has a least fixed point lfp(ψK) and a greatest
fixed point gfp(ψK). Now we put

[[µX.ψ]]K := lfp(ψK) and [[νX.ψ]]K := gfp(ψK).

As a modal logic, the µ-calculus distinguishes between transitions structures
only up to behavioural equivalence, captured by the notion of bisimulation.

Definition 6.1. A bisimulation between two transition structuresK =
(
V, (Ea)a∈A,

(Pi)i∈I
)

and K′ =
(
V ′, (E′a)a∈A, (P

′
i)i∈I

)
is a relation Z ⊆ V × V ′ such that for

all (v, v′) ∈ Z,

14

• for all i ∈ I, v ∈ Pi if and only if v′ ∈ P ′,

• for all a ∈ A and w ∈ V , if (v, w) ∈ Ea then there is some w′ ∈ V ′

with (v′, w′) ∈ E′a and (w,w′) ∈ Z, and

• for all a ∈ A and w′ ∈ V ′, if (v′, w′) ∈ E′a then there is some w ∈ V
with (v, w) ∈ Ea and (w,w′) ∈ Z.

Two transition structures K, u and K′, u′ are bisimilar , if there is a bisimulation
Z between them, with (u, u′) ∈ Z.

An important model-theoretic feature of modal logics is the tree model prop-
erty meaning that every satisfiable formula is satisfiable in a tree. This is a
straightforward consequence of bisimulation invariance, since K, u is bisimilar
to its infinite unravelling, i.e., a tree where the nodes correspond to the finite
paths in K, u. Every such path π inherits the atomic propositions of its last node
v; for every node w reachable from v in K via an a transition, π is connected to
its prolongation by w via an a-transition. Notice that in terms of our notion of
unravelling defined in the proof of Proposition 3.5, the infinite unravelling of a
system is just the unravelling driven by a function defined nowhere.

The entanglement of a transition system K =
(
V, (Ea)a∈act, (Vp)p∈prop

)
is

the entanglement of the underlying graph (V,E) where E =
⋃
a∈actEa. We

now show that every transition structure of entanglement k can be described,
up to bisimulation, in the µ-calculus using only k fixed-point variables.

Proposition 6.2. Let K be a finite transition system with ent(K) = k. For
any node v of K, there is a formula ψv ∈ Lµ[k] such that

K′, v′ |= ψv ⇔ K′, v′ ∼ K, v.

Proof. According to Proposition 3.5, the system K can be unravelled from any
node v0 to a finite tree T with back-edges, with root v0 and feedback k. Clearly
T , v0 ∼ K, v0. Hence, it is sufficient to prove the proposition for T , v0. For
every action a ∈ act, the transitions in T are partitioned into tree-edges and
back edges Ea ·∪Ba.

Let i : T 7→ {0, . . . , k−1} be the partial labelling of T defined in Lemma 3.2.
At hand with this labelling, we construct a sequence of formulae (ψv)v∈T over
fixed-point variables X0, . . . , Xk−1 while traversing the nodes of T in reverse
breadth-first order.

The atomic type of any node v is described by the formula

αv :=
∧

p∈prop

v∈Vp

p ∧
∧

p∈prop

v 6∈Vp

¬p.

15

To describe the relationship of v with its successors, let

ϕv := αv ∧
∧

a∈act

(∧
(v,w)∈Ea

〈a〉ψw ∧
∧

(v,w)∈Ba

〈a〉Xi(w)

∧ [a]

(∨
(v,w)∈Ea

ψw ∨
∨

(v,w)∈Ba

Xi(w)

))
.

If v has an incoming back-edge, we set ψv := νXi(v) . ϕv, if this is not the
case we set ψv := ϕv. Note that since we proceed from the leaves of T to
the root, this process is well-defined, and that in ψv the variables Xi(u) occur
free, for any node u 6= v that is active at v. In particular the formula ψv0 ,
corresponding to the root of T , is closed.

It remains to prove that K′, v′ |= ψv0 ⇔ K′, v′ ∼ T , v0. We first show that
T , v0 |= ψv0 , and hence K′, v′ |= ψv0 for any K′, v′ ∼ T , v0. To see this we prove
that Verifier has a winning strategy for the associated model checking game.

Note that, since ψv0 has only greatest fixed points, any infinite play of the
model checking game is winning for Verifier. It thus suffices to show that from
any position of form (v, ϕv), Verifier has a strategy to make sure that the play
proceeds to a next position of form (w,ϕw), unless Falsifier moves to position
(v, αv) and then loses in the next move. But by the construction of the formula,
it is obvious that Verifier can play so that any position at which she has to move
has one of the following three types:

(1) (v, 〈a〉ψw), where (v, w) ∈ Ea. In this case, Verifier moves to position
(w,ψw).

(2) (v, 〈a〉Xi(w)), where (v, w) ∈ Ba. In this case Verifier moves to (w,Xi(w)).
(3) (w,

∨
(v,w)∈Ea

ψw ∨
∨

(v,w)∈Ba
Xi(w)) where w ∈ vEa ∪ vBa. In this case,

Verifier selects the appropriate disjunct and moves to either (w,ψw) or
(w,Xi(w)).

In all cases the play will proceed to (w,ϕw). Hence, Falsifier can force a play
to be finite only by moving to a position (v, αv). Otherwise the resulting play
is infinite and thus also winning for Verifier.

For the converse, suppose that K′, v′ 6∼ T , v0. Since T is finite, the non-
bisimilarity it witnessed by a finite stage. That is, there is a basic modal formula
separating K′, v′ from T , v0, and Falsifier can force the model checking game for
ψv0 on K′, v′ in finitely many moves to a position of form (w′, αw) such that w
and w′ have distinct atomic types. This proves that K′, v′ 6|= ψv0 .

As the entanglement of a transition system regards only the underlying
graph, one can easily find examples of high entanglement that can be described
with very few variables. For instance, in a transition structure over a strongly
connected finite graph with no atomic propositions and only a single action a,
all states are bisimilar, and can be described by νX.(〈a〉X ∧ [a]X), regardless of
the entanglement of the underlying graph. Nevertheless, the following theorem
establishes a strong relationship between the notion of entanglement and the
descriptive complexity of Lµ.

16

Theorem 6.3 ([7]). Every strongly connected graph of entanglement k can be
labelled in such a way that no µ-calculus formula with less than k variables can
describe the resulting transition structure, up to bisimulation.

This theorem, which generalises a result of [6], provides the witnesses for the
expressive strictness of the µ-calculus variable hierarchy proved in [7].

7. Entanglement and other complexity measures

The definition of entanglement is reminiscent of the characterisation of other
complexity measures defined via cops and robber games [29, 18, 4, 16]. However,
we will see that entanglement is a quite different, and for some purposes more
accurate, measure.

The precise relationship between entanglement and other measures is not
well understood yet. The following sufficient condition for the existence of a
winning strategy for k cops will be helpful to see that entanglement of the
undirected (n × n)-grid is at most 3n. It is well known that the tree width of
the (n× n)-grid is precisely n.

Lemma 7.1. Let G = (V,E) be a directed graph. If for some k ∈ N, there exists
a partial labelling i : V → [k] under which every strongly connected subgraph
C ⊆ G contains a uniquely labelled node v, that is, i(v) 6= i(w) for all w ∈ C
with w 6= v, then we have ent(G) ≤ k.

Proof. We may interpret the proposed labelling as a memoryless strategy for
the cops, indicating at every position v ∈ dom(i) occurring in a play of G, that
cop i(v) shall be posted there, or that no cop shall move, if i(v) is undefined.

Towards a contradiction, suppose that, although the cops move according
to strategy i, the robber has a strategy to escape. That is, he can form an
infinite path without meeting any cop. Let C be the set of positions visited
infinitely often by this path. Clearly, C induces in G a strongly connected
subgraph. Let v ∈ C be a node whose label i(v) is unique in C. According
to the cop strategy, i(v) never moved since the play stabilised in C. But this
contradicts our assumption that the robber has visited every position v ∈ C
infinitely often.

Proposition 7.2. For every n, the undirected (n × n)-grid has entanglement
at most 3n.

Proof. Consider the labelling i : [n]× [n]→ [3n] obtained by first assigning the
values 0, . . . , n − 1 to the horizontal median of the grid, i.e. i(dn2 e, j) := j for
all j ∈ [n]. For the two bn2 c × n grids obtained when removing the positions
already labelled, we proceed independently and assign the values n, . . . , n+ bn2 c
to their respective medians, and so on, in step k applying the procedure to the
still unlabelled domain consisting of 2k many b n

2k
c × b n

2k
c disconnected grids.

Summing up, we get at most

(n+
n

2
) + (

n

2
+
n

4
) + · · · =

n∑
k=1

3n

2k
< 3n

17

many different labels. It is easy to verify that the labelling obtained in this
way satisfies the condition of Lemma 7.1, implying that the entanglement of the
initial grid is at most 3n.

Most often, it turns out that the entanglement of a graph is greater than the
other measures. For the next result we need game theoretic characterisations
of DAG-width, Kelly-width and directed tree width. We will use the notation
ReachG(v) to denote the set of nodes from which a node v is reachable in a
graph G, and write G \ U for the graph obtained by removing a set of nodes U
from G; when U consists of a single element u we simply write G \ u.

The (directed) k cops and (visible) robber game used to characterise DAG
width [4] is played on a graph G = (V,E) similar to the entanglement game.
A position where the cops are in turn to move is described by (r, C) where
C ⊆ V ≤k is the set of nodes occupied by cops and r ∈ V is the node occupied
by the robber. From (r, C), the cops can move to positions (r, C,C ′) of the
robber, where C ′ ⊆ V ≤k is the set of nodes the cops announce to occupy.
From a position (r, C,C ′), the robber can move to the positions (r′, C ′) where
r′ ∈ ReachG\(C∩C′)(r), i.e., the robber can run along cop-free paths. A play is
called monotone, if the robber cannot occupy a node that has been previously
been unreachable to her. The cops win a monotone play if it reaches a position
(r, C,C ′) with ReachG\(C∩C′)(r) = ∅. The robber wins every play that is non-
monotone or infinite. In [4] it is shown that the DAG-width of G is the minimal
number k such that the cops win the k cops and robber game on G.

The rules of the k cops and invisible inert robber game for defining Kelly
width [15] are similar, except that the cops are not informed about the current
position of the robber and (he is invisible), in turn, the robber moves only if the
cops threaten to occupy his current position (he is inert). It is convenient to
describe game positions by giving the set of possible R of possible locations of
the robber, together with the current or announced locations of the cops. Thus,
we have a one-player game: the position following (R,C,C ′) is (R′, C ′) with

R′ = (R ∪ ReachG\(C∩C′)(R ∩ C ′)) \ C ′.

The term Reach...(R ∩ C ′) describes the inertness of the robber, whereas the
term R ∪ . . . means that the robber may stay on the a previous node if no cop
is about to occupy it. Kelly-width is the minimal k such that k cops have a
strategy to capture the robber in any monotone play.

Finally, the game for directed tree width [18] differs from the k cops and
robber game in that, firstly, monotonicity is not required, and secondly, the
robber cannot leave her strongly connected component: a move from (r, C,C ′)
to (r′, C ′) is only possible if additionally holds that r ∈ ReachG\(C∩C′)(r

′).

Proposition 7.3. There is a family of finite undirected graphs with unbounded
entanglement and tree width two, and DAG-width, Kelly-width and directed tree
width three.

Proof. Let Gk be the graph consisting of two full binary undirected trees whose
corresponding nodes are connected to each other: Gk = (Vk ·∪V k, Ek ·∪Ek ·∪E′k)

18

where Vk = {0, 1}≤k−1 is the set of words over {0, 1} of length at most k − 1,
V k = {0, 1}≤k−1, (Vk, Ek) = T is an undirected full binary tree, (V k, Ek) = T
is its copy and E′k =

{
{u, u} | u ∈ {0, 1}≤k−1

}
.

It is easy to see that Gk has tree width 2, and DAG-width, Kelly-width and
directed tree width three. For entanglement, we show that, for every even k,
the robber starting from node ε or from node ε can ensure to

• escape k/2− 2 cops and

• after the (k/2− 1)-th cop enters Gk,

– if started on ε, reach ε, and

– if started in ε, reach ε .

This suffices to describe a winning strategy for the robber on Gk+1: by switching
between the two subtrees of the root.

For k = 2, the statement is trivial. Assume that the statement is true for an
even number k and consider the situation for k+2. We need two strategies: one
for ε as the starting position and one for ε. By symmetry, it suffices to describe
only a strategy for ε. For a word u ∈ {0, 1}≤k ∪ {0, 1}≤k, let T u be the subtree
of T rooted at u together with the corresponding subtree of T . The robber can
play in a way such that the following invariant is true.

If the robber is in T xy, for x, y ∈ {0, 1}, and starts from y, there are no
cops on {ε, x} .

By induction, it follows from the invariant that ε and y are reachable for the
robber.

At the beginning, the robber moves to the (cop free) subtree T 00 via the
path (ε, 0, 00) and plays there from 00 according to the strategy given by the
induction hypothesis for T 00. Furthermore, 00 remains reachable and so is ε
via 0. Either that play lasts forever (and we are done), or the (k/2− 2)-nd cop
comes to T 00 and the robber can reach 00. While he is doing that, no cops can
be placed outside of T 00 as the robber does not leave T 00.

Assume that the robber enters a tree T xy, for x, y ∈ {0, 1} which is free of
cops (this is, in particular, the case at the beginning). By symmetry, we can
assume that x = y = 0. Further assume, without loss of generality, that the
robber enters T 00 at 00. Either the play remains in T 00 forever (and we are
done), or the (k/2− 1)-st cop enters T 00 and the robber reaches 00. Note that
while the robber is moving towards 00, no cops can be placed outside of T 00 as
the robber does not leave T 00.

If the last cop is already placed, the robber goes to 0 and then to ε, which
are not occupied by cops, according to the invariant, and we are done. If the
last cop is not placed yet, all cops are in T 00, so the robber runs along the path
00, 0, 0, ε, 1, 10 to T 10. Note that the nodes ε and 1 are not occupied by cops,
so the invariant still holds. The robber plays as in T 00 and so on.

19

While entanglement is not bounded in the other measures, we can prove
that it grows only logarithmically in the size of the graph if the tree width is
fixed. For the proof we recall the definition of a tree decomposition [27]. Let
G = (V,E) be an undirected graph. A tree decomposition of G is an undirected
tree T = (T, F) together with a collection X = {Xt | t ∈ T} of subsets of V ,
called bags, indexed by elements of T that satisfy the following properties.

(1)
⋃
X = V .

(2) For all {v, w} ∈ E there is some some t ∈ T with {v, w} ⊆ Xt .

(3) For every v ∈ V , the set {t ∈ T | v ∈ Xt} induces a (connected) subtree
of T .

The width of a tree decomposition (T ,X) is the size of the largest Xt ∈ X . The
tree width of G is the minimal width over all tree decompositions of G minus
one.

Proposition 7.4. For any finite undirected graph G of tree width k, we have
that ent(G) ≤ (k + 1) · log |G|.

Proof. Let T be a decomposition tree of minimal width of G. Without loss
of generality, we can assume that T is a binary tree. Our argument uses the
separator properties of tree decompositions (see, e.g., [8]). In every subtree S
of T , there exists a node s, we may call it the centre of S, which balances S in
the sense that the subtrees in S \ {s} carry almost the same number of nodes
in their bags (differences up to k are admissible). Consider now the following
memoryless cop strategy. First, all nodes in the centre s of the decomposition
tree receive indices 0, . . . , k. Then, we repeat the process independently for
the two subtrees disconnected by the removal of s and assign to the nodes in
their respective centres indices k + 1, . . . , 2k + 2. The process ends when all
nodes of G are labelled. In this way, at most (k + 1) log |V | cop indices are
assigned. Since the bags of a tree decomposition separate the graph, every
strongly connected subgraph of G will contain at least one unique label. By
Lemma 7.1, the constructed labelling indeed represents a memoryless strategy
for at most (k + 1) log |V | cops.

Very little is known about the opposite direction, whether other measures are
bounded in entanglement. We have no general characterisation of entanglement
in terms of a decomposition and it is not clear how to construct decompositions
for other measures from a winning strategy for the cops in the entanglement
game. On the other side, it is difficult to translate winning strategies from the
entanglement game other graph searching games where monotonicity is required.

In contrast, the relationship between entanglement and path width and di-
rected path width is better understood. The latter measures are defined in the
same way as tree width, only that the word “tree” is replaced with “path” and

“directed path”, respectively. Let G be an undirected graph. We denote by
←→
G

the directed graph obtained from G by replacing every undirected edge {v, w}
by two directed edges (v, w) and (w, v).

20

Proposition 7.5.

(1) Let G be a directed graph. Then ent(G) ≤ dpw(G) + 1.

(2) There exists a class of undirected graphs Gn such that, for every n > 1,

ent(
←→
Gn) = 2 and pw(Gn) = dpw(

←→
Gn) are unbounded.

Proof.

(1) Let (P,X , f) be a path decomposition of G of minimal width k with P =
(P,EP) and P = (p0, . . . , pm). Then, the largest bag has size k + 1. The
strategy of the Cop player is to expel the robber from f(p0), then from
f(p1) and so on, until the robber is captured in the last bag. For every
such step, at most k cops are needed (remember that the robber has to
move when it is her turn).

(2) Let Gn be the undirected full binary tree of height n. Then pw(Gn) =

dpw(
←→
Gn) are unbounded while n grows, see [8]. In the entanglement game,

two cops have the following winning strategy. A play is divided in rounds
that are separated by a downward move of the robber. In each round the
same cop follows the robber in every move, the other cop remains idle.
The cops alternate in each round. It is easy to see that the robber will be
captured.

8. Graphs of entanglement two

To motivate and present intuitions for the class of graphs of entanglement
two, we first introduce a class F of graphs (V,E, F) where F ⊆ V is a set of
marked nodes. The class F is defined inductively, as follows:

(1) The graph consisting of one marked node and without edges is in F .

(2) F is closed under removal of edges, i.e., if (V,E, F) ∈ F and E′ ⊆ E then
(V,E′, F) ∈ F .

(3) For G1,G2 ∈ F with marked nodes F1 and F2, the disjoint union of G1 and
G2 with marked F1 ∪ F2 is in F .

(4) For G1 = (V1, E1, F1),G2 = (V2, E2, F2) ∈ F , their marked sequential com-
position G is in F , where

G = (V1 ∪ V2, E1 ∪ E2 ∪ F1 × V2, F1 ∪ F2).

(5) For G = (V,E, F) ∈ F , the graph G′ with added marked loop is in F , where
for a new node v,

G′ = (V ∪ {v}, E ∪ (F × {v}) ∪ ({v} × V), {v}).

Notice that the rules (2)–(4) add no cycles and do not increase the entangle-
ment. New cycles are created in (5), but only between the marked nodes and a
new node, which afterwards becomes the only marked node.

21

v0

v1

v2

v3v4

Figure 1: Example graph of entanglement two.

All graphs in the class F have entanglement two. Before we explain the
meaning of the marked nodes F (in Section 8.1) and present the strategy for
the cops in EG2(G) for graphs G ∈ F (in the proof of Theorem 8.15), let us
describe a few sub-classes of F and possible uses for graphs of entanglement
two.

One sub-class of F consists trees with edges directed to the root and, ad-
ditionally, any set of back-edges going downwards. More formally, such trees
can be described as structures T = (T,ET ∪Eback) where (T,ET) is a tree with
edges directed to the root and for any back-edge (w, v) ∈ Eback it must be the
case that w is reachable from v in (T,ET). Such graphs have entanglement
at most two. A winning strategy for the cops is to chase the robber with one
cop until she goes along a back-edge (w, v). Then she is blocked by this cop in
the subtree rooted at w. Now the second cop chases the robber until she takes
another back-edge, and so on, until she is captured at a leaf.

Another class of graphs included in F are control-flow graphs for well-
structured programs (which do not use goto). Such graphs are constructed
using sequential and parallel composition (corresponding to items (3) and (4)
in the definition of F), and loops with a single entry and a single exit point,
which are a special case of item (5) in the definition of F .

Consider, for example, the graph depicted in Figure 1. Removing v0 from
this graph leaves only two non-trivial strongly connected components, namely
the v1-loop and the v2-loop, and one trivial component consisting of a single
node.1 The loops can be decomposed as well by removing v1 and v2; finally,
the v3-loop and the v4-loop can be decomposed as well. This decomposition
induces a strategy for the cops: first place one of them on v0 and then chase the

1We consider only non-trivial strongly connected components, i.e., not single nodes without
self-loops.

22

robber on v1 with the other cop. If the robber enters the v1-loop, the cop from
v0 chases her on v3 and v4 and so she is captured. If the robber does not enter
the v1-loop, the cop from v1 chases her on v2 and so she is captured.

One of the main results in this section is Theorem 8.14 where we show that a
decomposition, generalising the above example, can be found for each graph of
entanglement two. As a consequence, we prove in Theorem 8.15 that graphs of
entanglement two can be characterised in a way similar to the above definition
of the class F . More precisely, a graph has entanglement at most two if, and
only if, each of its strongly connected components belongs to a class F ′, which
is defined similarly to the class F , but with rule (5) changed as follows.

(5′) For G = (V,E, F) ∈ F ′, the graph G′ with added loop is in F ′, where

G′ = (V ∪ {v}, E ∪ (F × {v}) ∪ ({v} × V), {v} ∪ F ′),

and F ′ is any subset of the previously marked nodes F such that G[F ′] is
acyclic and no nodes in F ′ are reachable from V \ F ′.

A consequence of our proofs, stated in Proposition 8.20, is that graphs of
entanglement two have both DAG-width and Kelly-width at most 3. This con-
firms that graphs of entanglement two are simple according to all known graph
measures, and strengthens our motivation to study them as the most basic class
of graphs where cycles are already nested in interesting ways.

8.1. Entanglement of graphs with exit nodes

In this section, we introduce a technical notion which is crucial for subsequent
proofs: the entanglement of a graph with exit nodes. To provide an intuition for
this notion, consider the graph in Figure 1 with the node v0 removed. This graph
contains two non-trivial strongly connected components: the v1-loop and the v2-
loop. The v2-loop has entanglement one, so it is clearly simpler than the entire
graph. On the other hand, the v1-loop has entanglement two. Nevertheless, we
claim that also the v1-loop is in a sense simpler than the entire graph, despite
having the same entanglement. Indeed, observe that not only can two cops
capture the robber on the v1-loop, but they can do it in such a way that the
only node through which the robber can exit this loop, v1, remains blocked
during the whole play after the robber visits it. This observation leads to the
notion we study here.

8.1.1. Simple and complex components

In the rest of this section, we focus on strongly connected subgraphs of a
graph. Let G be a graph and G′ a strongly connected subgraph of G. The set
Ex(G,G′) of exit nodes of G′ in G is the set of all v ∈ G′ for which there is a node
u ∈ G \ G′ with (v, u) ∈ E (note that we sometimes write v ∈ G if G = (V,E)
and v ∈ V).

To study subgraphs that contain exit nodes in a way that is independent of
the bigger graph in the context, we say that G∗ is a graph with exit nodes when
G∗ = (V,E, F), where (V,E) is a graph and F is any subset of V representing
the exits. The following notion is used while decomposing a graph G.

23

Definition 8.1. Let G be a graph and let v ∈ G. A v-component of G is a
graph C = (C,E, F) with exit nodes such that (C,E) is a strongly connected
component of G \ v and F = Ex(G, C).

In a strongly connected graph G, for a node v, let ≤v be the topological
order on the set of strongly connected components of G \ v, i.e.,

C ≤v C′ ⇔ there is a path from C to C′ in G \ v.

The entanglement game with exit nodes EG∗k(G) is played on a graph G =
(V,E, F) with exit nodes in the same way as the entanglement game, but with
an additional winning condition for the robber: she wins a play if she succeeds
in reaching an exit node after the last cop has entered G from outside. More
formally, the robber wins a play if it reaches a position (v, P) such that v ∈ F
and |P | = k. (This includes the case when the robber already sits on an exit
node at the time when the last cop moves to that node.) In the context of
subgraphs inside a larger graph this new winning condition means that the
robber can leave the subgraph and get back to the bigger graph.

We define a further variant of the entanglement game to mark the node from
that a play starts. Let v be a node of G. The game EG∗k(G, v) is played in the
same way as EG∗k(G), except that the robber does not choose a node to start
on, but starts on v.

Definition 8.2. A graph with exit nodes G is k-complex if the robber has a
winning strategy (which we call a robber G-strategy) in the entanglement game
with exit nodes EG∗k+1(G). If the cops have a winning strategy in EG∗k+1(G)
(called a cops G-strategy), then G is k-simple.

To start with, let us show that existence of a node with only k-simple com-
ponents gives a bound on entanglement.

Proposition 8.3. If there is a node v in a graph G such that all v-components
are k-simple, then ent(G) ≤ k + 1.

Proof. Let v be a node such that all v-components of G are k-simple. Let σ be
any strategy for the cops in EGk+1(G) with the following properties:

• if the robber is on v then chase her there with any cop, i.e., σ(v, P) 6=⊥,

• if the robber is on a node u that is not in a v-component, then wait:
σ(u, P) =⊥,

• if the robber is on a node u in a k-simple v-component C, then use a
C-strategy σC moving the cop from v only as the last resort, i.e.,

σ(u, P) =

σC(u, P ∩ C) if σC(u, P ∩ C) ∈ C or σC(u, P ∩ C) =⊥,
� if σC(u, P ∩ C) = �, P \ C = {v} and |P | ≤ k,
w if σC(u, P ∩ C) = � and w ∈ P \ C with w 6= v,

v if σC(u, P ∩ C) = � and |P | = k + 1.

24

We show that σ is winning for the cops in EGk+1(G). Assume that the
robber has a counter-strategy ρ to win the play that is consistent with both
ρ and σ. First we show that this play visits v. Indeed, if it starts in a node
v0 6= v then the robber will either be captured in the v-component C containing
v0 (we can assume that v0 is in a v-component, otherwise the cops stay idle until
the robber enters such a component or visits v), or she will be expelled from
C, because the cops use a C-strategy. Since we assumed that the robber wins,
she is expelled from C. This will continue until v is reached. In this moment
an arbitrary cop goes to v. Afterwards the cop from v is moved only as the
(k + 1)-st one to enter a component C. Therefore the robber will always either
be captured in C or expelled again without using the cop from v — and thus
finally captured.

In the remainder of this section, we prove that the converse holds for the
case k = 1. This will lead to Theorem 8.11 and provide the basis of a structural
characterisation of graphs of entanglement two in Section 8.2.

8.1.2. Independence from the starting node

Lemma 8.4. Let G be a strongly connected k-complex graph with exit nodes.
Then the robber wins EG∗k+1(G, v) for all v ∈ G.

Proof. Let us divide the nodes of G into two subsets: the set VR of nodes v from
which the robber wins EG∗k+1(G, v) and the set VC of nodes v from which the
cops win EG∗k+1(G, v). These sets are disjoint and as G is k-complex, VR is not
empty.

Let us assume that VC is not empty. As G is strongly connected, there exists
an edge from VC to VR. Pick such an edge (w, v) ∈ E and let

• ρv be a winning strategy for the robber in EG∗k+1(G, v),

• σw be a winning strategy for the cops in EG∗k+1(G, w).

First, observe that in no play consistent with ρv, the robber enters w before
the last (k+ 1)-st cop moves into G. Indeed, if this was the case, the cops could
just continue playing σw from w as if all cops placed already were outside. As
σw is winning, this continued play has to end in a position where the robber
can neither move nor reach an exit node. But this contradicts the fact that the
play was consistent with ρv, which is winning for the robber.

We show that the following robber strategy ρw is winning: first move from w
to v and then continue playing ρv, ignoring any cop that may be placed on w in
the first move of the cops. Indeed, if the cops are idle in the first move, then the
play proceeds according to ρv and is thus winning for the robber. Otherwise,
the play proceeds according to ρv as if there was no cop on w. But, as observed
above, this infinite play never visits w and thus the cop standing there makes
no difference – the play is winning for the robber.

Since ρw is winning for the robber in EG∗k+1(G, w) and σw is winning for the
cops in the same game, we get a contradiction. Thus VC is empty, so all nodes
of G belong to VR.

25

The following result follows from the above lemma by taking F = ∅.

Corollary 8.5 ([7]). Let G be a strongly connected graph of entanglement k.
Then the robber wins the game EGk(G) with a changed starting rule, stating
that, at the beginning of a play it is not the robber, but the cops who choose the
node from which the robber has to start.

To prove a converse of Proposition 8.3 we need to consider various confi-
gurations of complex components. We will show that the existence of certain
combinations of 1-complex components implies that the graph has entanglement
greater than two. This will be used in the Section 8.1.6 to show that every graph
of entanglement two contains a node so that after its removal all components are
1-simple. We will later prove that the corresponding property fails for graphs
of entanglement k ≥ 3.

8.1.3. Topologically incomparable components

Lemma 8.6. Let G be a strongly connected graph and let v ∈ G. Further, let
C0 and C1 be two k-complex v-components. If C0 and C1 are incomparable with
respect to ≤v, then ent(G) > k + 1.

Proof. Assume that C0 and C1 have entanglement at most k+ 1. Otherwise the
robber wins playing in the component of entanglement greater than k+1. Thus,
the robber’s C0-strategy ρ0 and the robber’s C1-strategy ρ1 prescribe the robber
to go to an exit node when all k + 1 cops arrive in the component. Note that
these strategies are not defined for positions (w,P) where, for some i ∈ {0, 1},
w ∈ Ex(G, Ci) and |P ∩ Ci| = k + 1.

The following strategy ρ is winning for the robber in EGk+1(G):

• the robber starts on any node w ∈ C0;

• ρ(w,P) = ρi(w,P) if

– w ∈ Ci, for i ∈ {0, 1}, and

– |P ∩ Ci| ≤ k + 1, or both |P ∩ Ci| < k + 1 and w 6∈ Ex(G, Ci);

• ρ(w,P) prescribes to run to C1−i in any possible way if w ∈ Ex(G, Ci) and
|P ∩ Ci| = k + 1, for i ∈ {0, 1};

• ρ(w,P) prescribes to run to C1−i in any possible way if w 6∈ C0 ∪ C1 and
P ∩ Ci 6= ∅, for i ∈ {0, 1};

• ρ(w,P) prescribes to run to C0 in any possible way if w 6∈ C0 ∪ C1 and
P ∩ Ci 6= ∅, for each i ∈ {0, 1}.

To see that ρ is indeed winning for the robber, and that there always is a
possible path from w to Ci in the second and the third cases of the definition
above, let us consider a play consistent with ρ.

The robber starts on some node in C0 and plays ρ0 until all k + 1 cops are
in C0. When the last cop moves to C0, she reaches an exit node u, because C0 is

26

k-complex and ρ0 was a C0-strategy. From u, she can run to v and then to C1
(without entering C0 again), because the components are incomparable and all
paths between them lead through v (note that v 6∈ C0 and the graph is strongly
connected). Now she plays according to ρ1 until all k + 1 cops come to C1, and
analogously proceeds to C0 via v. This goes on indefinitely, so k + 1 cops never
capture her.

8.1.4. Disjoint components

We first consider the case of disjoint components that contain each others
basis node, and then a more general case.

Lemma 8.7. Let G be a strongly connected graph, and let a0, a1 ∈ G such that,
for i ∈ {0, 1}, ai is in a k-complex (a1−i)-component C1−i. If C0 ∩ C1 = ∅, then
ent(G) > k + 1.

Proof. The proof of this lemma is analogous to the proof of Lemma 8.6. Assume
again that C0 and C1 have entanglement at most k + 1. Otherwise the robber
wins playing in the component of entanglement greater than k + 1. Thus, C0-
strategy ρ0 and C1-strategy ρ1 prescribe the robber to go to an exit node when
all k + 1 cops arrive in the component.

The following strategy ρ is winning for the robber in EGk+1(G):

• the robber starts on any node w ∈ C0;

• ρ(w,P) = ρi(w,P) if

– w ∈ Ci, for i ∈ {0, 1}, and

– |P ∩ Ci| ≤ k + 1, or both |P ∩ Ci| < k + 1 and w 6∈ Ex(G, Ci);

• ρ(w,P) prescribes to run along any path leading to ai ∈ C1−i until the
robber enters C1−i if w ∈ Ex(G, Ci) and |P ∩ Ci| = k + 1, for i ∈ {0, 1};

• ρ(w,P) prescribes to run along any path leading to ai ∈ C1−i until the
robber enters C1−i if w 6∈ C0 ∪ C1 and |P ∩ Ci| 6= ∅, for i ∈ {0, 1};

• ρ(w,P) prescribes to run to C0 in any possible way if w 6∈ C0 ∪ C1 and
P ∩ Ci 6= ∅, for both i ∈ {0, 1}.

To see that ρ is indeed winning for the robber, and that there always is a
possible path from w to Ci in the second and in the third cases of the definition
above, let us consider a play consistent with ρ.

The robber starts on some node in C0 and plays ρ0 until all k + 1 cops are
in C0. When the last cop moves to C0, she reaches an exit node u, because C0
is k-complex and ρ0 was a C0-strategy. From u, she can run to a0 and thus (as
a0 ∈ C1) to C1 (without entering C0 again), because a0 6∈ C0 and the graph is
strongly connected. Now she plays according to ρ1 until all k + 1 cops come to
C1, and analogously proceeds to C0 on a way to a1. This goes on indefinitely, so
k + 1 cops never capture her.

27

Lemma 8.8. Let G be a strongly connected graph. For i ∈ {0, 1}, let ai be
two distinct vertices and let Ci be two k-complex ai-components such that C0 is
maximal with respect to ≤a0 and a1 ∈ C0. If C0 ∩ C1 = ∅ then ent(G) > k + 1.

Proof. It is sufficient to prove that a0 ∈ C1; then, the desired result follows from
Lemma 8.7. Towards a contradiction, assume that a0 6∈ C1. We distinguish three
cases according to how C1 can be combined with k-complex a0-components.

Case 1: There is a k-complex a0-component C′ and C1 ⊆ C′. If the compo-
nents C′ and C0 are incomparable with respect to ≤a0 then Lemma 8.6 guaran-
tees a winning strategy for the robber in the entanglement game on G against
k + 1 cops. Because C0 is maximal, we have that C′ ≤a0 C0 and there is a path
P1 from C1 to C0 with a0 6∈ P1 (see Figure 2).

Since G is strongly connected, there exists a path P2 from a0 to C1, but
no such path includes nodes of C0. Otherwise C0 and C′ would be in the same
strongly connected component of G \ a0. Furthermore, every path P3 from C′
to a0 (there is at least one) goes through a1 (otherwise a0 ∈ C1).

a0

a1

P3

C′

P3

C1

P2

C0

P1

Figure 2: Case 1: C1 is in an a0-component C′.

This guarantees that the robber wins the entanglement game on G against
k + 1 cops switching between C′ and C0, because playing according to a C0-
strategy and being expelled from C0 by k + 1 cops she can reach a0 and then
C1. Playing according to a C1-strategy and being expelled from C1 she can reach
a0 and thus C0, which on the way to a0. Lemma 8.4 assures that it makes
no difference at which node the robber enters C′ (or C0): she always has a
C′-strategy (or a C0-strategy).

Case 2. The component C1 includes nodes of two different strongly connected
components of G\a0. Then there is a path in C1 from one such strongly connected
component to the other that does not go through a1, but through a0. (If all
such paths avoided a0, the two strongly connected components would not be
distinct.) But then we have a0 ∈ C1.

Case 3. C1 does not include nodes of different a0-components and is not a
strict subset of a k-complex a0-component. Due to our assumption, a0 6∈ C1,
and we distinguish two subcases.

28

Case 3a. C1 consists of some nodes from an a0-component C′ and some nodes
that are in no strongly connected component of G \ a0. In this case, these nodes
must also be a part of C′, because all nodes of C1 are connected by paths that
contain neither a0 nor a1. So, in fact, this subcase is not possible.

Case 3b. C1 lies in a k-simple a0-component C′. We show that because C1 is
k-complex, C′ must be k-complex as well, which contradicts the assumption of
this subcase. We describe a C′-strategy for the robber. She starts in C1 and plays
according to her C1-strategy. We can assume that it prescribes to wait until all
k + 1 cops come to C1, because otherwise ent(C1) > k + 1 and ent(C′) > k + 1.
When all cops come to C1 the robber can leave C1. We show that she can leave
C′ as well. It suffices to show that from every v ∈ Ex(C′, C1) there is a path to
a node w ∈ Ex(G, C′) that avoids C1 (except the node v). Otherwise every path
P from v to some w (there is such path because C′ is strongly connected) leaves
C1, goes through at least one node u ∈ C′ \ C1 and then goes back to C1. Then
a1 6∈ P because P ⊆ C′, a1 ∈ C0, and C′ and C0 are distinct a0-components. So
we have u ∈ C1, but we assumed that u 6∈ C1.

The maximality of C0 in Lemma 8.8 is essential. Consider the graph in
Figure 3. All requirements of Lemma 8.8 are fulfilled for this graph except
the maximality of C0: C0 is a 1-complex a0-component, C1 is a 1-complex a1-
component, and a1 ∈ C0. The entanglement of the graph is two, although C0 and
C1 are disjoint. The cops have the following winning strategy. We only assume
moves of the robber that lead to a strongly connected cop free subgraph. The
cops expel the robber from C1, if she is there, and place one of the cops on node
a1, which must be visited by the robber leaving C1. The robber visits node v
and the other cop goes there. The robber proceeds to w and the cop who is not
on v occupies w. Then the cop from v forces the robber to leave C1 and follows
her to a1. The robber visits v again, the cop from a1 follows her there. As node
w is occupied, the robber has to remain in C0 ∪ {a0}. The cop from w goes to
a1 and captures the robber.

Note that we actually have shown that all w-components are 1-simple and
used the strategy for the cops described in the proof of Proposition 8.3.

a0

a1

v

w

C0

C1

Figure 3: Importance of maximality of the components.

29

8.1.5. Pairwise intersecting 1-complex components

Lemma 8.9. Let G be a strongly connected graph. Let I = {0, . . . ,m} be an
index set for some m ∈ {1, . . . , |V | − 1}. For i ∈ I, let ai ∈ G and let Ci be a 1-
complex ai-component such that ai ∈ Cj for all i 6= j and j ∈ I. If

⋂
i∈I Ci = ∅,

then ent(G) > 2.

Proof. If m = 1, then we have the conditions of Lemma 8.7, so assume that
m ≥ 2. We, further, can assume that ent(Ci) ≤ 2 for all i ∈ I. Then Ci-
strategies prescribe the robber to wait in the component until both cops come
and then to reach an exit node.

We give a winning strategy for the robber in the game EG2(G). She starts
in a cop free component Cj and plays according to her Cj-strategy. When the
second cop moves to Cj she escapes from Cj . Now it suffices to show that she
can reach a new cop free component. Let the second cop come to Cj on a node
v, the first cop being on a node w ∈ Cj . At this point, since

⋂
l∈I Cl = ∅, there

is an ai-component Ci with w 6∈ Ci. If v ∈ Ci, the robber plays her Ci-strategy
starting from v and assuming that a cop followed her there. If v 6∈ Ci, then the
robber can escape from Cj and reach aj , which is in the cop free component Ci.
On entering Ci, the robber continues with a Ci-strategy.

8.1.6. A node having only simple components

Before we prove Theorem 8.11, we need one more lemma about possible
configurations of incomparable strongly connected components.

Lemma 8.10. Let G be a strongly connected graph. Let Cv be a v-component,
and Cw be a w-component of G, for distinct nodes v and w such that Cv∩Cw 6= ∅
and Cv 6⊆ Cw. If v is in Cw, then w is in Cv.

Proof. Assume that the conditions of the lemma hold, but w 6∈ Cv (Figure 4).
Let u ∈ Cv∩Cw and u′ ∈ Cv\Cw. Because u′, u ∈ Cv, which is strongly connected,
there are paths from u′ to u and vice versa that do not include v. None of these
paths includes w (because otherwise w ∈ Cv), so u′ and u lie in the same w-
component. But we assumed that u′ 6∈ Cw, and u ∈ Cw, and Cw is strongly
connected: contradiction.

With the above lemma, we can finally prove the converse of Proposition 8.3.

Theorem 8.11. On a strongly connected graph G = (V,E), two cops have a
winning strategy in the game EG2(G) if, and only if, there exists a node a ∈ G
such that every a-component is 1-simple.

Proof. The direction from right to left is proven in Proposition 8.3: if every
a-component is 1-simple, then ent(G) ≤ 2. We show the other direction.

Towards a contradiction, assume that the cops win EG2(G), but, for all
a ∈ V there is a a-component C of G such that they lose EG∗2(C).

We construct a sequence a0, a1, . . . , am of nodes from V and a sequence
C0, C1, . . . , Cm of corresponding ai-components Ci. We require that all Ci are
maximal 1-complex ai-components with respect to ≤ai , and that

⋂m
i=0 Ci 6= ∅.

30

v

w

u

u′

Cw

Cv

Figure 4: The w-component Cw contains v, but the v-component Cv does not include w.

Take an arbitrary node as a0. There is a 1-complex a0-component C0, due
to the assumption. Choose among all such strongly connected components
a maximal one with respect to ≤a0 . In general, suppose that ai and Ci are
already constructed, and, for j ≤ i, every Cj is maximal with respect to ≤aj ,
and

⋂
j≤i Cj 6= ∅ holds. Choose a node ai+1 from

⋂
j≤i Cj and a 1-complex ai+1-

component Ci+1 that is maximal with respect to ≤ai+1
. Due to Lemma 8.8, it

intersects all Cj , for j ≤ i (otherwise ent(G) > 2). By Lemma 8.10, ai ∈ Cj ,
for all i 6= j. Thus, according to Lemma 8.9,

⋂
j≤i+1 Cj 6= ∅ (or otherwise

ent(G) > 2), and we can continue the construction.
Note that for all i, ai 6∈ Ci. Finally, for some m < |V |, there is no cor-

responding 1-complex (am+1)-component for am+1 and the construction stops.
This means that all am+1-components are 1-simple, which contradicts our as-
sumption that for every node a there is a 1-complex a-component. Otherwise
there is a 1-complex am+1 component Cm+1, but

⋂m+1
i=0 Ci = ∅. In this case we

have ent(G) > 2, according to Lemma 8.9.

It is clear that the entanglement of a graph is at most two if, and only if,
the entanglement of all its strongly connected components is at most two, so we
have the following corollary.

Corollary 8.12. Let G be a graph. In EG2(G), the cops have a winning strategy
if, and only if, in every strongly connected component C of G, there exists a node
a ∈ C, such that every a-component of C is 1-simple.

Note that the above fails for graphs of entanglement three or greater, as
proven in Section 8.7.

8.2. Decompositions for entanglement two

The proof of Theorem 8.11 shows the structure of a strongly connected
graph G of entanglement two. It has a node a0 such that the graph G \ a0
can be decomposed in 1-simple a0-components. We can divide them into two
classes: leaf components, from which one cop expels the robber, and inner
components, where one cop does not win, but blocks all exit nodes making the
other cop free from guarding the simple component. It turns out that every

31

inner component C0 again has a node a1 such that C0 decomposes in 1-simple
a1-components an so on. We shall show that a1 is the node where the second
cop stays (blocking all exit nodes of C0) when the first cop leaves a0. Let us
define the decomposition for graphs of entanglement two.

Definition 8.13. An entanglement two decomposition of a strongly connected
graph G = (VG, EG) is a triple (T , F, g), where T is a nontrivial directed tree
T = (T,E) with root r and edges directed away from the root, and F and g are
functions F : T → 2VG and g : T → VG with the following properties:

(1) F (r) = VG,

(2) g(v) ∈ F (v) for all v ∈ T ,

(3) if (v, w1) ∈ E and (v, w2) ∈ E, then F (w1) ∩ F (w2) = ∅, for w1 6= w2,

(4) for (v, w) ∈ E, G[F (w)] is a strongly connected component of G[F (v)]\g(v),

(5) the subgraph of G induced by the node set
(
F (v) \ g(v)

)
\
(⋃

w∈vE F (w)
)

is acyclic for all v ∈ T ,

(6) no node in Ex(G,G[F (v)]) is reachable from G[
⋃
w∈vE F (w)] in G \ g(v), for

all v ∈ T .

We shall call tree nodes and (abusing the notation) their F -images bags and
g-images decomposition points.

Note that from the definition follows that if (v, w) ∈ E then F (w) (F (v),
and that if v ∈ T is a leaf in T then G[F (v)] \ g(v) is acyclic. Observe further
that successors of a bag are partially ordered in the sense that, for each bag v,
its successors vE = {w1, . . . , wm} form a DAG D = (vE,ED) such that, for all
wi, wj ∈ vE, wj is reachable from wi in D if, and only if, F (wj) is reachable
from F (wi) in G[F (v)] \ g(v). An example of a graph and its entanglement two
decomposition is given in Figure 5.

We look again at the class of trees with back-edges defined in Section 3.
Let us look at decompositions of members of graph classes defined at the
beginning of this section. The decomposition tree of a tree with back-edges
T = (T,ET , Eback) can be given as (T ′, E′T , F, idT ′) where T ′ is T without
leaves, E′T is

{(v, w) | (w, v) ∈ ET and v is not a leaf in T },

and if v ∈ T ′ then F (v) is the subtree rooted at v and g(v) = v. It is easy to
verify that (T ′, E′T , F, idT ′) is an entanglement two decomposition of T .

8.3. Characterisations of graphs of entanglement two

Having defined the decomposition for entanglement two, we are ready to
state our two main results characterising directed graphs of entanglement two.

Theorem 8.14. A strongly connected graph G = (V,E) has entanglement at
most two if, and only if, G has an entanglement two decomposition.

32

a0
a010

a01

a00

a001

a000a0000

a000200

a00020a00021

a0001

a00010

a000100

a000101

a0001010

C01

C010

C0011

C00

C000

C0002

C0000

C0000

V a0

C00 a00

C000 a000

C0000 a0000 C0001 a0001

C00010 a00010

C000100 a000100 C000101 a000101

C0001010 a0001010

C0002 a0002

C00020 a00020

C000200 a000200

C001 a001

C01 a01

C010 a010

Figure 5: A typical graph of entanglement two and its entanglement two decomposition. On
the upper picture, the components (images of function F) are shown as squares (only up to
level 4), blocking nodes (images of function g) are shown as filled circles. On the picture
below, the decomposition tree of the graph is given. The bags are labelled with images from
functions F and g.

33

The above theorem, which we will prove in the subsequent subsections, al-
lows us to complete the characterisation of directed graphs of entanglement
two. Observe first, that there is a connection between the entanglement two
decomposition and the characterisations of undirected graphs of entanglement
two given by Belkhir and Santocanale [2]. They prove that an undirected graph
has entanglement at most two if, and only if, each of its connected components
is a tree where every edge {v, w} may be replaced or extended by some nodes
v1, . . . , vn with edges {v, vi} and {vi, w} for all i = 1, . . . , n.

For an entanglement two decomposition of an undirected graph G = (V,E),
consider a connected component, which is an undirected tree T = (VT , ET) with
additional nodes as above. Choose an arbitrary leaf v ∈ VT as a root. We get
a decomposition tree after orienting all edges from ET (if an edge was deleted,
restore it before orienting) away from the root and deleting all leaves other than
v. We define the functions F and g as follows: F (v) is VT and g(v) is v. In
general, if, for a bag w, the functions F and g on w are already defined, let C
be a strongly connected component of G[F (w)] \ g(w). Choose a node u in C
with an edge between w and u and set F (u) = C and g(u) = u.

Recall the definition of the class F ′ at the beginning of this section for the
following theorem.

Theorem 8.15. A strongly connected directed graph G has entanglement at
most two if, and only if, G ∈ F ′.

Proof. Let G = (V,E) be a strongly connected directed graph of entanglement
at most two. We prove that G can be constructed using operations (1)–(4), (5′)
from the definition of the class F ′. Let T = (T,ET , F, g) be an entanglement
two decomposition of G. We prove by induction on the structure of T in a
bottom-up manner that one can construct all successor bags F (w1), . . . , F (wm)
of a bag v such that, for all i = 1, . . . ,m, the marked nodes of F (wi) include
g(wi) and all nodes that are not reachable in G[F (v)] \ g(v) from a bag F (wi).

A leaf bag F (v) becomes acyclic when the node g(v) is deleted. First, we
construct G[F (v)] \ g(v) such that all nodes are marked, which is possible with
the operations (1)–(4). Then we apply rule (5′) adding node g(v) such that the
whole bag F (v) is marked. This marking is possible as G[F (v)] \ g(v) is acyclic.

Having constructed all bags F (w1), . . . , F (wm) with marked nodes as in the
induction hypothesis described above, we construct the bag F (v). Let vET =
{w1, . . . , wm}. Note that F (v) consists of g(v), all bags F (wi) of the next
lower level, and nodes of F (v) \ g(v) not reachable from a bag F (wi) within
G[F (v)]\g(v). We denote the latter nodes by A and the induced subgraph G[A]
by A. Our aim is to construct G[F (v)] such that marked nodes are precisely
g(v) and the nodes of A. We first construct A using rules (1)–(4) such that all
nodes of A are marked. Then we apply rule (3) to get the disjoint union of A
and bags G[F (wi)]. If there are edges from A to a bag F (wi) we add these with
rule (4), which is possible because all nodes in A are marked. Now we use rule
(5′) to add node g(v) and the edges (that exist in G) between g(v), and F (wi)
and A. We show that this is possible. There can be edges in G of the following
kinds:

34

• From Ex(G,G[F (wi)]) to g(v). We can add these, as nodes of Ex(G,G[F (wi)])
are not reachable from

⋃m
i=1 F (wi) in G[F (v)] \ g(v) (due to property (6)

of the entanglement two decomposition) and thus are contained in A. But
A is marked by induction hypothesis.

• From A to g(v). We can add these edges because A is marked.

• From g(v) to any node in F (v). This is possible due to rule (5′).

There are no other edges in G between g(v), A and F (wi) because of the defini-
tion of Ex(G,G[F (wi)])). It remains to define marked nodes in F (v). Node g(v)
is marked (rule (5′)) as needed for induction hypothesis. We also let nodes in
A remain marked. (This is needed because these can be exit nodes of G[F (v)]
in G.) Note that A is not reachable from a bag F (wi) in G[F (v)] \ g(v), so these
nodes must be marked as well.

For the other direction, assume that G = (V,E) is strongly connected and
in F ′. Note that during the construction of G we get a sequence of graphs with
marked nodes. We show by induction on the construction of G according to rules
(1)–(4), (5′) that the cops have a winning strategy in the game EG∗2(V,E, F)
where F is the set of marked nodes of G. The graph consisting of one node and
without edges (arising after the application of rule (1)) has entanglement zero.
Applications of rules (2)–(4) do not increase entanglement because they do not
introduce new cycles. Assume that two cops have a winning strategy σ on a
graph G′ = (V ′, E′, F ′) with marked nodes F ′. Let G′′ be the graph we get from
G′ after adding a new node v via rule (5′). We give a winning strategy for the
cops on G′′. First, they play according to σ on G′ thus capturing the robber or
expelling her to v. When she visits v one cop follows her there. The robber runs
to a strongly connected component of G′. The cops play again according to σ
using the other cop (who is not on v) first and letting the cop on v guard G′.
When σ prescribes to use the second cop in G′ the robber cannot escape from
G′ any more (because σ is a winning strategy for the cops in EG∗(G′)). So the
cops capture the robber in G′ and thus also in G′′.

8.4. A characterisation of 1-complex components

Lemma 8.16. Let G = (V,E, F) be a strongly connected graph with exit nodes.
If, for all v ∈ V , there is a cycle C in G \ v from that a node in F is reachable
in G \ v, then G is 1-complex.

Proof. Let C(v) be a cycle in G \ v from which a node in F is reachable in G \ v.
Let C be any cycle in G. The following strategy ρ is winning for the robber in
EG∗2(G).

• start on an arbitrary node in C;

• ρ(v, ∅) prescribes the robber to stay in C;

• ρ(v, {w}) prescribes to run to a node in the cycle C(w) if v 6∈ C(w);

• ρ(v, {w}) prescribes to stay in the cycle C(w) if v ∈ C(w);

35

• ρ(v, {w, u}) prescribes to run to an exit node (and thus win).

By the assumption, in a position (v, {w, v}) there is a cop free path (possibly
except the cop on v) to an exit node, so ρ is indeed winning for the robber.

Let G be a graph with exit nodes. We call a node v ∈ G a blocking node, if
there is no strongly connected component of G \ v from which there is a path
to an exit node in G \ v. We denote the set of blocking nodes B(G) and define
a binary relation → on B(G):

v → w if, and only if, w is not on a cycle in G \ v.

Lemma 8.17. If G = (V,E, F) is a 1-simple graph with exit nodes then the
relation → on B(G) is a total preorder, i.e., it is transitive and total.

Proof. For transitivity, let u, v, w ∈ B(G) and assume that it is u → v and
v → w. Then all cycles with w contain v and all cycles with v contain u. It
follows that all cycles with w contain u and w is not on a cycle in G \ u.

It remains to show the totality of →. Because the reflexivity is trivial, let v
and w be distinct nodes in B(G). Assume that neither v → w nor w → v holds,
i.e., w is on a cycle Cv in C \ v and v is on a cycle Cw in C \ w. Further, every
path from Cv to an exit node leads through v, because v is blocking, and there
is such a path, because G is strongly connected. Consider the part of this path
from v to an exit node. Together with Cw it witnesses that w is not blocking,
in contradiction to the choice of w.

Note that → is not necessarily antisymmetric, so we define the symmetrisa-
tion ∼ of → on B(G) and extend the relation → on B(G)

/
∼. Let [v] denote the

equivalence class of v with respect to ∼. The binary relation→∼ is well defined
by

[v]→∼ [w]⇔ v → w.

The transitivity and the totality are inherited by→∼ from→, the antisymmetry
is guaranteed by including all not antisymmetric pairs of elements into the same
class, thus the following holds.

Lemma 8.18. If G is a 1-simple graph with exit nodes then the relation →∼
on B(G) is a total order on B(G)

/
∼.

If, for nodes v and w in a graph with exit nodes G, v → w holds then we say
that node v blocks node w. The next lemma follows from the previous one.

Lemma 8.19. If G = (V,E, F) is a 1-simple graph with exit nodes such that
(V,E) has entanglement two then there is a node v ∈ G that blocks all nodes
from B(G).

36

8.5. The correctness of the decomposition

Theorem 8.14 A strongly connected graph G = (V,E) has entanglement
at most two if, and only if, G has an entanglement two decomposition.

Proof.
(⇒) For a graph G with ent(G) = 2, we construct the tree T = (T,ET) and

the functions F and g in a top-down manner. In each step we enlarge the tree
adding to a bag v that is currently a leaf some successors {w1, . . . , wm} and
define the functions F and g on them. We require that all g(wi)-components of
G[F (wi)] are 1-simple.

To start with, by Theorem 8.11 there exists a node a0 ∈ V such that all a0-
components of G are 1-simple. For the root r of the tree T we set F (r) = V and
g(r) = a0. In general, for every bag v that is a leaf of the already constructed
part of the tree, let C1, . . . , Cm induce all strongly connected components of
F (v) \ g(v). If there are no such components (i.e., m = 0), skip this bag and
proceed with a next one, if there is any. If m ≥ 1, create, for each i ∈ {1, . . . ,m},
a successor wi of v and set F (wi) = Ci. From the construction we know that each
Ci induces a 1-simple g(v)-component. If it has a node a whose removal makes
the component acyclic, i.e., the cops win EG1(G[Ci]), then set g(wi) = a. If the
cops lose EG1(G[Ci]) then, according to the definition of a 1-simple component,
one cop can block all exit nodes (to win with help of the other cop), i.e., he can
place himself on a blocking node of G[Ci]. Among all blocking nodes there is
a node a that blocks all nodes in B(G[Ci]), due to Lemma 8.19. Set g(v) = a.
Then all a-components of G[F (wi)] are 1-simple. We check that all requirements
of the entanglement two decomposition are fulfilled. The first four properties
follow immediately from the construction. Let vET = {w1, . . . , wm}. Then

the subgraph of G induced by the node set
(
F (v) \ g(v)

)
\
(⋃m

i=1 F (wi)
)

is

acyclic because a cycle would induce a new strongly connected component, but⋃m
i=1 F (wi) includes all components of F (v). Finally assume that a node w ∈

Ex(G,G[F (v)]) is reachable from a node u ∈ F (wi) for some wi ∈ {w1, . . . , wm}.
Then F (wi) is a strongly connected component of G[F (v)]\ g(v) and g(v) is not
blocking in G[F (v)], but we chose it to be blocking.

(⇐) We show that an entanglement two decomposition induces a winning
strategy for two cops on G. Observe that if a cop is on a node g(v), for a bag
v, and the robber is in a bag on a lower level of the tree, then the cop blocks
the robber in the bags under v. Consider a node a with the robber on it. Let
v be the bag with the smallest F -image (it is the lowest in the tree) among all
with a ∈ F (v) and let vET = {w1, . . . , wm}, for m ≥ 0 (if m = 0 then vET
is empty). The cops wait for the robber to enter a component G[F (wi)] or to
go to g(v). In the first case, they play according to the same strategy with wi
instead of v. This descending along the tree is finite and on some level (w.l.o.g.
already on that where v is) the robber visits g(v). One cop goes there. If the
robber proceeds to a component G[F (wi)], the second cop continues to chase
her using the same strategy. If she leaves F (v) and enters a brother bag v′ of
v, the cop from v follows her there and so on until the robber is forced to go

37

to g(u), where u is the predecessor of v. The first cop goes to g(u) as well and
chases the robber in this manner upwards. This process is finite and when the
robber goes downwards, the second cop plays the described strategy with the
difference that the robber cannot climb so high as before. Continuing in this
way the cops finally capture the robber.

Observe that it follows that, in time O(n3), where n is the size of the input
graph G, one can not only decide whether G has entanglement at most two, but
also compute an entanglement two decomposition of G. The algorithm proceeds
by first looking for the node a0 by linear search. Then the a0-components are
computed. In every component the algorithm finds a node a1 that blocks all
blocking nodes of that component. If there is no such a1, the algorithm returns
“robber wins”. Otherwise the procedure continues with the node a1 instead
of a0 until there is no ai-component for some i (i.e., the ai−1-component is
of entanglement one). In this case the algorithm returns “Cops win” and the
computed decomposition.

8.6. DAG-width and Kelly-width for entanglement two

Entanglement two decomposition of a graph leads to winning strategies for
three cops in games that correspond to DAG-width and to Kelly-width. The
games characterising DAG-width and Kelly-width were discussed in Section 7.

Proposition 8.20. For any graph G, if ent(G) ≤ 2, then the DAG-width and
the Kelly-width of G are at most 3.

Proof. We first use the entanglement two decomposition to describe a winning
strategy for the cops in the cops and visible robber game on graphs of entan-
glement two and then adjust this strategy to the cops and invisible inert robber
game. We can assume that G is not acyclic. Consider an entanglement two
decomposition (T , F, g) of G. In the cops and visible robber game, a cop places
himself on the g-image of the root of T at the beginning of a play. In general,
assume that, for a bag v, a cop is on a blocking node g(v) and the robber is
on a node in F (w), for a successor bag w of v. The component F (w) has also
a blocking node g(w). A cop who is not on g(v) goes to g(w) and the third
cop visits every node in F (w) that is not in a strongly connected component
of F (w). Thus the robber is forced to move down the decomposition tree and
finally loses.

The strategy of the cops in the cops and invisible inert robber game is similar.
Assume that a cop is on a blocking node g(v). The cops do not know where the
robber is, so they decontaminate a strongly connected component of F (v)\g(v)
as described for the visible robber game, move a cop back on node g(v) and
continue with the next strongly connected component. Note that both winning
strategies are monotone.

Proposition 8.20 gives the best possible upper bound for the number of cops
needed to capture the robber in the same graph in the invisible inert robber
game. Note that the third cop in the visible robber game and the invisible inert

38

robber game is used to force the robber to move. Figure 6 shows a graph of
entanglement two and both DAG-width and Kelly-width three, which is easy to
verify.

Figure 6: A graph of entanglement two, and DAG-width and Kelly-width three.

8.7. Failure of a generalisation to entanglement k

We give counterexamples to a generalisation of Corollary 8.12 to arbitrary
number of cops. We show that, for every k > 2, there is a graph Gk of entan-
glement k in that, for every node a, there is a (k − 1)-complex a-component.
In Figure 7 such a graph is given. As the case for k = 3 is not obvious, a
counterexample graph of entanglement three is given as well (Figure 8). Circles
circumscribe parts of the graph. An arrow leading to (from) a circle denotes
edges to (from) all nodes in the circle. Lines without arrows denote edges in
both directions. For m > 2, Cm denotes an m-clique.

We show first that for nodes a0, a1 and a2 there are (k−1)-complex compo-
nents giving corresponding strategies of the robber. Note that, for all of them,
the existence of a cop free path to an exit node of the component is an invariant.
The a0-component C0 is induced by nodes from T , U , B and the node a2. The
C0-strategy of the robber is to wait in U until k−1 cops come to U , then proceed
to B and wait there for k − 1 cops to come and so on. On the other hand, k
cops can expel the robber from C0.

The a1-component C1 is induced by a0, a2 and nodes of L, R, S, and F . The
C1-strategy does not use nodes of L. The robber waits in S and R (which build
a k-clique) for k − 1 cops to come and then goes to F . Three of the cops from
S ∪R are needed to expel her from there. Thus a path back to S ∪R becomes
free for the robber and she plays further as in the beginning.

The a2-component C2 is induced by a0, T , L, R and S whereby R is not used
by the robber. The C2-strategy is analogous to the C1-strategy. One can see
that one of the three given strategies can be used to show that, in fact, every
node a of the graph has a (k − 1)-complex a-component.

Still, the entanglement of the graph is k. The cops have the following winning
strategy in the entanglement game. One cop is placed on node a2 and the robber
is expelled from the component C0 defined above. If the robber visits U or F ,
she is captured, because a2 is blocked by a cop. Then k − 3 other cops occupy
nodes of S. If the robber goes to R or to T , the last two cops force her to leave
it, so she visits the node b. One of those two cops goes to b and the other one
expels the robber from L and follows her to a1. The robber must remain in T .

39

a0

a2
a1

Ck−3

S

L b

R

F

T
Ck

U

Ck

B

Figure 7: A graph of entanglement k with only (k − 1)-complex components.

In this game position, one cop is on a2, one on a1, one on b and k − 3 cops
occupy S. At this time, the k-th cop moves from a2 into the a2-component C2
allowing the robber to leave it. The entanglement game in C2 with exit nodes
Ex(G, C2) would be lost by the cops, but they win the game on the whole graph.
The cop from a2 expels the robber from T . As a0 is a dead end for her, she
proceeds to a2 and then to B. Then all cops except the one on a1 capture her
in B.

Acknowledgements.. This work has been partially supported by the ESF Net-
working Programme GAMES.

40

a0

a2

a1

F

T

U

B

Figure 8: A graph of entanglement 3 with only 2-complex components.

References

[1] J. L. Balcazar, J. Diaz, J. Gabarro, Structural complexity 1, Springer, 1988.

[2] W. Belkhir, L. Santocanale, Undirected Graphs of Entanglement 2, in:
Proceedings of FSTTCS 2007: Foundations of Software Technology and
Theoretical Computer Science, vol. 4855 of LNCS, Springer, 508–519, 2007.

[3] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, DAG-width and parity
games, in: Proceedings of STACS 2006: Symposium on Theoretical Aspects
of Computer Science, vol. 3884 of LNCS, Springer, 524–536, 2006.

[4] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, J. Obdrzálek, The DAG-
width of directed graphs, J. Comb. Theory, Ser. B 102 (4) (2012) 900–923.

[5] D. Berwanger, E. Grädel, Entanglement – A Measure for the Complexity of
Directed Graphs with Applications to Logic and Games, in: Proceedings of
LPAR 2004: Logic for Programming and Automated Reasoning, vol. 3452
of LNCS, Springer, 209–223, 2005.

[6] D. Berwanger, E. Grädel, G. Lenzi, On the variable hierarchy of the modal
mu-calculus, in: Proceedings of CSL 2002: Computer Science Logic, vol.
2471 of LNCS, Springer, 352–366, 2002.

[7] D. Berwanger, E. Grädel, G. Lenzi, The variable hierarchy of the µ-calculus
is strict, Theory of Computing Systems 40 (2007) 437–466.

41

[8] H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth,
Theoretical Computer Science 209 (1-2) (1998) 1–45.

[9] A. K. Chandra, D. Kozen, L. J. Stockmeyer, Alternation, J. ACM 28 (1)
(1981) 114–133.

[10] A. Dawar, E. Grädel, The Descriptive Complexity of Parity Games, in:
Proceedings of CSL 2008: Computer Science Logic, vol. 5213 of LNCS,
Springer, 354–368, 2008.

[11] L. C. Eggan, Transition graphs and the star-height of regular events, Michi-
gan Math. J. 10 (1963) 385–397, ISSN 0026-2285.

[12] A. Emerson, C. Jutla, Tree automata, mu-calculus and determinacy, in:
Proceedings of FOCS 1991: Foundations of Computer Science, IEEE, 368–
377, 1991.

[13] E. Grädel, L. Kaiser, R. Rabinovich, Directed Graphs of Entanglement
Two, in: Proceedings of FCT ’09, vol. 5699 of LNCS, Springer, 169–181,
2009.

[14] P. Hunter, Complexity and Infinite Games on Finite Graphs, Ph.D. thesis,
University of Cambridge, 2007.

[15] P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games,
and orderings, in: Proceedings of SODA 2007: Symposium on Discrete
Algorithms, SIAM, 637–644, 2007.

[16] P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games,
and orderings, Theoretical Computer Science 399 (3) (2008) 206–219.

[17] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas, Directed Tree-
Width, Journal of Combinatorial Theory, Series B 82 (1) (2001) 138–154.

[18] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas, Directed tree-width,
Journal of Combinatorial Theory, Series B 82 (1) (2001) 138–154.

[19] N. D. Jones, Space-Bounded Reducibility among Combinatorial Problems,
J. Comput. Syst. Sci. 11 (1) (1975) 68–85.

[20] M. Jurdziński, Small Progress Measures for Solving Parity Games, in: Pro-
ceedings of STACS 2000: Symposium on Theoretical Aspects of Computer
Science, vol. 1770 of LNCS, Springer, 290–301, 2000.

[21] D. Kozen, Results on the propositional µ-calculus, Theoretical Computer
Science 27 (1983) 333–354.

[22] S. Kreutzer, S. Ordyniak, Digraph Decompositions and Monotonicity in Di-
graph Searching, in: Proceedings of WG 2008: Graph-Theoretic Concepts
in Computer Science, revised papers, Springer, 336–347, 2008.

42

[23] J. Obdrzálek, Fast Mu-calculus Model Checking when Tree-width is
Bounded, in: Proceedings of CAV 2003: Computer-Aided Verification, vol.
2725 of LNCS, Springer, 80–92, 2003.

[24] J. Obdrzálek, DAG-width: connectivity measure for directed graphs, in:
Proceedings of SODA 2006: Symposium on Discrete Algorithms, SIAM,
814–821, 2006.

[25] R. Rabinovich, Complexity Measures of Directed Graphs, Diploma thesis,
RWTH Aachen University, 2008.

[26] N. Robertson, P. D. Seymour, Graph minors. I. Excluding a forest, J. Comb.
Theory, Ser. B 35 (1) (1983) 39–61.

[27] N. Robertson, P. D. Seymour, Graph minors. III. Planar tree-width, J.
Combin. Theory Ser. B 36 (1) (1984) 49–63.

[28] M. A. Safari, D-width, metric embedding, and their connections, Ph.D.
thesis, University of British Columbia, Canada, 2007.

[29] P. D. Seymour, R. Thomas, Graph searching and a min-max theorem for
tree-width, Journal of Combinatorial Theory, Series B 58 (1).

[30] C. Stirling, Bisimulation, Modal Logic and Model Checking Games, Logic
Journal of the IGPL 7 (1) (1999) 103–124.

[31] W. Zielonka, Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees, Theoretical Computer Science 200 (1998)
135–183.

43

