
Computing
DOI 10.1007/s00607-011-0182-8

A generalization of p-boxes to affine arithmetic

Olivier Bouissou · Eric Goubault ·
Jean Goubault-Larrecq · Sylvie Putot

Received: 18 March 2011 / Accepted: 2 December 2011
© Springer-Verlag 2011

Abstract We often need to deal with information that contains both interval and
probabilistic uncertainties. P-boxes and Dempster–Shafer structures are models that
unify both kind of information, but they suffer from the main defect of intervals,
the wrapping effect. We present here a new arithmetic that mixes, in a guaranteed
manner, interval uncertainty with probabilities, while using some information about
variable dependencies, hence limiting the loss from not accounting for correlations.
This increases the precision of the result and decreases the computation time compared
to standard p-box arithmetic.

Keywords Affine arithmetic · P-boxes · Dempster–Shafer structures

Mathematics Subject Classification (2010) 60A86 · 65G30 · 65G50 · 65C50

The authors have presented the results of this paper during the SCAN 2010 conference in Lyon,
September 2010. This work is partially funded by the ANR project ANR09BLAN034502.

O. Bouissou (B) · E. Goubault · S. Putot
CEA Saclay Nano-INNOV, Point Courrier 174, 91191 Gif-sur-Yvette Cedex, France
e-mail: olivier.bouissou@cea.fr

E. Goubault
e-mail: eric.goubault@cea.fr

S. Putot
e-mail: sylvie.putot@cea.fr

J. Goubault-Larrecq
LSV, ENS Cachan, 61 avenue du président Wilson, 94230 Cachan, France
e-mail: goubault@lsv.ens-cachan.fr

123

O. Bouissou et al.

1 Introduction

In program analysis, a difficulty is to properly handle the inputs of the program. They
are often not exactly known, but should rather be considered as being in a set of possi-
ble values: this introduces interval uncertainty as all values within this set are possible
inputs. However, it is often the case that we have more information on the inputs than
the mere fact that they belong to some set. In particular, we often know, in addition
to the bounds on the inputs, partial information about the probabilities of different
values within this set. P-boxes [5,6] and Dempster–Shafer structures [16] are widely
used to propagate both probabilistic information and interval uncertainty. However,
arithmetic rules on these structures are mostly used between structures representing
either independent random variables, or variables with unknown dependency.

This makes the usual p-box arithmetic not well adapted when many numerical
computations occur between quantities (values of the program variables for instance)
that cannot be considered independent, but whose dependency cannot be determined
easily. We emphasize this statement below.
Running example We consider the classical, order 2 Butterworth filter:

yn+2 = (2(c2 − 1)yn+1 − (c2 − √
2c + 1)yn + c2xn+2 − 2c2xn+1 + c2xn)

c2 + √
2c + 1

.

We set y0 = y1 = 0, with inputs xn ∈ [−1, 1] and c = 10. The output yn is bounded
for any number n of iterations.

Suppose now that we know that each input is given as an independent random
variable, uniform on [−1, 1]. The nth output of this linear recursive filter has the
probability law of a sum of n independent, uniform random variables, hence con-
verging by the central limit theorem to a Gaussian distribution. A Matlab simula-
tion allows bounding the output for 15 iterations by [−3.25, 3.25], and shows that
it is with high probability between −2 and 2. We can wonder how to determine
guaranteed knowledge on the distribution of yn , that a simulation cannot give. We
tried this example using p-boxes or Dempster–Shafer structures (DS in short), with
for each input a discretization of a uniform law between −1 and 1. We used inde-
pendent arithmetic between the variables xn, xn−1 and xn−2, and arithmetic with
unknown dependency for yn−1 and yn−2. After 15 filter iterations, we could only
bound yn between −233.103 and 233.103, and the over-approximation of the
density function we obtain is very coarse: the correlations between variables
are not used.

In this article, we define a new arithmetic that combines affine arithmetic to prop-
agate the linear relations between random variables and p-box arithmetic to over-
approximate the probability distribution resulting from a given operation. To sum
up, we express a random variable as a linear combination of independent DS (the
inputs) and not-necessarily-independent DS (created by non-linear operations), and
we use DS arithmetic to combine them. We show that this arithmetic largely increases
precision and reduces computation time for the propagation of p-boxes through linear
and non-linear computations.

123

A generalization of p-boxes to affine arithmetic

Contents Section 2 recalls basic notions about affine arithmetic and p-boxes. In Sect. 3,
we present our new arithmetic on probabilistic affine forms, in Sect. 4, we explain how
it can be used to the analysis of rounding errors. Section 5 presents experimental results,
and we conclude by some perspectives.

2 Basics

The set of all closed intervals over R is denoted I = {[a, b] | a ≤ b}. Intervals are
denoted by bold symbols, e.g. x. For x ∈ I, we denote x its upper bound and x its
lower bound.

2.1 Perturbed affine forms

Affine arithmetic [3] is an extension of interval arithmetic in which sets of values are
parametrized by their dependence on some inputs. Each quantity is represented as an
affine combination of so-called noise symbols εi whose values are uncertain between

−1 and 1: x̂
de f= αx

0 + ∑n
i=1 αx

i εi , with αx
i ∈ R for all i . The same noise symbol can

be shared by several forms, indicating correlations.
The set of values that some quantity x defined by an affine form x̂ can take is in the

interval [αx
0 − ∑n

i=1 |αx
i |, αx

0 + ∑n
i=1 |αx

i |], and the set of values that the quantities
x, y, z, . . . can take is a zonotope, that is a center-symmetric polytope, whose faces
are all center-symmetric.

In the context of abstract-interpretation based static analysis and validation of pro-
grams, we introduced perturbed affine forms [8,9]. In these perturbed affine forms,
we made the difference between two kinds of noise symbols: the εi , directly related to
an (uncertain) input value or parameter, and those, the η j , that express an uncertainty
in the analysis (loss of relation due to nonlinear computations for instance), writing
x̂ = αx

0 +∑n
i=1 αx

i εi +∑m
j=1 βx

j η j . This allowed us to define a functional abstraction,
i.e. we directly represent a set of functions f : R

n → R
p as an (affine) input-output

relation. In Sect. 3, in a similar way we will also use two kind of symbols, which will
be random variables: the εi that are considered independent from one another, and the
η j that have unknown dependency to the others.

Affine forms are closed under affine transformations: for λ ∈ R,

x̂ + λŷ = αx
0 + λα

y
0 +

n∑

i=1

(αx
i + λα

y
i)εi +

m∑

j=1

(βx
j + λβ

y
j)η j .

Multiplication creates a new symbol ηm+1 associated to the non-linear part:

x̂ × ŷ = αx
0 α

y
0 + R

2
+

n∑

i=1

(αx
0 α

y
i + αx

i α
y
0)εi +

m∑

j=1

(αx
0 β

y
j + βx

j α
y
0)η j + T ηm+1

123

O. Bouissou et al.

Fig. 1 A p-box (thick lines) and a CDF (thin line) included in this p-box

with R = ∑n
i=1 |αx

i α
y
i | + ∑m

j=1 |βx
j β

y
j | and

T =
n∑

i=1

m∑

j=1

| αx
i β

y
j + βx

j α
y
i | +

n∑

i=1

n∑

j>i

| αx
i α

y
j + αx

j α
y
i |

+
m∑

i=1

m∑

j>1

| βx
i β

y
j + βx

j β
y
i | +1

2
R .

2.2 Arithmetic operations on Dempster–Shafer structures and p-boxes

An interval based Dempster–Shafer structure [16] (DS in short) is a finite set of closed
intervals (named focal elements) associated with a probability. DS structures thus rep-
resent real variables whose values can be obtained by first probabilistically picking
an interval (given an associated random variable over the real number intervals), and
then picking a value within this interval. In this article, we write a DS structure d as
d = {〈x1, w1〉, 〈x2, w2〉, . . . , 〈xn, wn〉}, where xi ∈ I is a closed non-empty interval
and wi ∈]0, 1] is the associated probability, with

∑n
k=1 wk = 1.

A set of cumulative distribution functions can be represented by two non-decreas-
ing functions P and P such that P is left-continuous, P is right-continuous and
∀x, P(x) ≤ P(x). Such a pair [P, P] is called a p-box [5] and encloses all CDFs P
that satisfy ∀x, P(x) ≤ P(x) ≤ P(x). We will only consider here discrete p-boxes,
where P and P are step-functions.

We refer the reader to [5] for the correspondence between discrete p-boxes and DS
structures; we denote ζ the function that converts a DS to a p-box, and δ its right-
inverse, that converts a discrete p-box to a DS, i.e. for all p-box P = [P, P], we have
P = ζ ◦ δ(P).

Example 1 Let d1 = {〈[−1, 0.25], 0.1〉; 〈[−0.5, 0.5], 0.2〉; 〈[0.25, 1], 0.3〉;
〈[0.5, 1], 0.1〉; 〈[0.5, 2], 0.1〉; 〈[1, 2], 0.2〉}. Then [P2, P2] = ζ(d1) is plotted in Fig. 1.

Many techniques have been proposed for p-boxes or DS arithmetic [1,4,7,20]. Most
of them produce the same result [14]. Here, we briefly explain the method of Berleant et
al. [1] which we used in our implementation. Let two random variables X and Y repre-
sented by DS structures dX = {〈xi , wi 〉, i ∈ [1, n]} and dY = {〈 y j , w

′
j 〉, j ∈ [1, m]},

and Z be the random variable such that Z = X + Y . We want to compute a DS that
contains Z (the algorithms for other arithmetic operations are similar). We distinguish

123

A generalization of p-boxes to affine arithmetic

Fig. 2 Results of the sum of d1 and d2 from Example 2 in case of independence (left) and unknown
dependency (right)

the case when X and Y are independent (in which case we denote the operation ⊕)
and when they are not (in which case we denote the operation +).
Independent variables If X and Y are independent random variables, then the DS for
Z = X ⊕ Y is dZ = {〈zi, j , ri, j 〉, i ∈ [1, n], j ∈ [1, m]} such that:

∀i ∈ [1, n], j ∈ [1, m], zi, j = xi + y j and ri, j = wi × w′
j . (1)

The number of focal elements within the DS structures clearly grows exponen-
tially with the number of such operations. In order to keep the computation tracta-
ble, we bound the number of focal elements: of course, this introduces some over-
approximation.

Example 2 Let X be described by the DS structure d1 of Example 1 and Y by d2 =
{〈[2, 3], 0.2〉; 〈[4, 6], 0.6〉; 〈[4, 10], 0.2〉}. Then, Z = X ⊕ Y is described by a DS
structure with 18 focal elements. The associated p-box and a reduction of it with at
most 4 focal elements are presented on Fig. 2 left, in dotted and thick lines, respectively.

Variables with unknown dependency If the random variables X and Y are not inde-
pendent, the lower bound FZ of the p-box [FZ , FZ] for Z is obtained by solving the
linear programming problem defined by Eq. (2).

FZ (z) = maximize
∑

bi, j ≤z
ri, j

such that ∀i ∈ [1, n],
∑m

j=1
ri, j = wi

∀ j ∈ [1, m],
∑n

i=1
ri, j = w′

j (2)

The formula for FZ is similar. We then define dZ = δ([FZ , FZ]), where δ is the
conversion function from p-boxes to DS.

Example 3 We consider the DS d1 and d2 (describing X and Y) of Example 2. The
p-box for Z = X + Y is given Fig. 2 right (in dotted lines, the p-box obtained for
independent variables).

123

O. Bouissou et al.

3 Mixing it up: affine arithmetic with probabilistic noise symbols

In this section, we consider a set of uncertain quantities that we want to propagate
through a system. We express the linearized dependencies between these quantities
using affine arithmetic, while we express the uncertainty in each variable by associ-
ating a DS to each noise symbol of the affine forms. In this way, we add structure to
DS arithmetic. As in Sect. 2.1, we will define two kinds of noise symbols: the εi that
are considered independent, and the ηk that cannot be considered as independent from
other noise symbols.

Definition 1 (Probabilistic affine form) We define a probabilistic affine form for vari-
able x , on n independent noise symbols (ε1, . . . , εn) and m noise symbols (η1, . . . , ηm)

with unknown dependency to the others, by a form

x̂ = αx
0 +

n∑

i=1

αx
i εi +

m∑

j=1

βx
j η j

together with n DS (dε1 , . . . , dεn) and m DS (dη1 , . . . , dηm) describing the possible
random variables (of support [−1, 1]) for the noise symbols.

A probabilistic affine form x̂ represents the set of all random variables X contained
in the DS γ (x̂), called concretization of x̂ , defined in Definition 2.

Definition 2 (Concretisation of affine forms as a DS) Let x̂ be a probabilistic affine
form, its concretization as a DS is:

γ (x̂) = αx
0 +

n⊕

j=1

αx
j dε j +

m∑

k=1

βx
k dηk ,

where
∑

is the sum of DS with unknown dependency,
⊕

is the sum of independent DS,
and we denote αd (resp. α + d) where α ∈ R and d is a DS {〈xi , pi 〉 | i = 1, . . . , q},
the result of the multiplication (resp. addition) of a constant by a DS: {〈αxi , pi 〉 | i = 1,

. . . , q} (resp. {〈α + xi , pi 〉 | i = 1, . . . , q}).
The interest of affine forms is to be able to represent affine relations that hold

between uncertain quantities. We still have this representation, except only imprecise
affine relations hold, as can be shown in the example below.

Example 4 Let x̂1 = 1+ε1 −η1, x̂2 = − 1
2ε1 + 1

4η1, dε1 = {〈[−1, 0], 1
2 〉, 〈[0, 1], 1

2 〉},
dη1 = {〈[− 1

10 , 0], 1
2 〉, 〈[0, 1

10], 1
2 〉}, Then x̂1 + 2x̂2 = 1 − 1

2η1, with d = dx1+2x2 =
{〈[19

20 , 1], 1
2 〉, 〈[1, 21

20], 1
2 〉}. Thus the lower probability that x1 +2x2 ≤ 21

20 is 1; and the
upper probability that x1 + 2x2 < 19

20 is 0. But for instance, x2 + 2x2 ≤ 1 has upper
probability 1

2 and lower probability 0 and is thus an imprecise relation.

For affine arithmetic operations, there is nothing new - the operation is exactly the
same on the perturbed affine form part as in Sect. 2.1, and DS structures attached to
symbols are not modified.

123

A generalization of p-boxes to affine arithmetic

For non-linear operations, we can rely on the affine form calculus, but instead of
only bounding the non-linear part of the multiplication of the affine forms, we use
the available calculus on DS to form a correct DS representing this non-linear part.
In this computation, some noise symbols are independent to others, and we use care-
fully, alternatively, independent or unknown dependency versions of the operations
on DS.

We will need in the sequel to compute the square of a DS x = {〈xi , wi 〉 | i =
1, . . . , p}: it can be checked that it is the DS x2 = {〈x2

i , wi 〉 | i = 1, . . . , p}.

Definition 3 Let x̂ and ŷ be two probabilistic affine forms on nεi and mη j noise sym-
bols. The probabilistic affine form ẑ = x̂ × ŷ is composed of an affine form defined as
in Sect. 2.1. The DS structures for the existing noise symbols are unchanged; the new
symbol ηm+1 is considered with unknown dependency to the other symbols (charac-
terization of this dependency is left for future work), and has an associated DS dηm+1
defined by:

dηm+1 = 1
T

⎛

⎝
n∑

i=1

m∑

j=1

(αx
i β

y
j + βx

j α
y
i)dεi × dη j

+
n∑

i=1

n∑

j>i

(αx
i α

y
j + αx

j α
y
i)dεi ⊗ dε j

+
m∑

i=1

m∑

j>i

(βx
i β

y
j + βx

j β
y
i)dηi × dη j

+ 1

2

⎛

⎝
n⊕

i=1

αx
i α

y
i dεi

2 +
m∑

j=1

βx
j β

y
j dη j

2

⎞

⎠

⎞

⎠

with T and R as defined in Sect. 2.1.

The correctness of the operations on probabilistic affine forms stems directly from
the correctness of affine forms arithmetic and DS arithmetic.

Let us remark that, although affine arithmetic usually increases the computation
time compared to interval arithmetic, in our case we decrease the complexity of arith-
metic operations by using affine forms. Actually, we delay most of the DS arithmetic to
the concretization function, and we can use the arithmetic of independent DS structures
instead of arithmetic with unknown dependency, which is very costly.

4 Modeling rounding errors

Suppose we have a real uncertain quantity x given by a probabilistic affine form, i.e.
an affine form x̂ together with a DS structure for each noise symbol. We also want to
model the error due to rounding to floating-point numbers, still with affine arithmetic,
as in [10]. A quantity x is now modeled by a triplet (f x , r x , ex) of its floating-point
value, its real value and its rounding error. We defined in [10] transfer functions for
the propagation error through computations with this model. It is out of scope here to

123

O. Bouissou et al.

detail them in the context of p-boxes, and most of these functions will be transposed
directly, so we only discuss the creation of a new rounding error term.

We denote f (r x) the nearest floating-point value to real value r x , and e(r x) the asso-
ciated rounding error e(r x) = f (r x) − r x . With normalized floating-point numbers
and rounding mode to the nearest, we can bound the error committed when rounding
the real value r x to f (r x) by

| f (r x) − r x | ≤ δ.2i with i, |r x | ∈]2i , 2i+1], (3)

where δ is a constant that depends on the floating-point format.
The sum of the DS structures defining r̂ x is a DS structure dr x . A first approach to

compute the error when rounding this real number is thus to compute the image by
the error function of each focal element, and of course add the weights when theses
images appear several times:

Definition 4 Suppose that the real value of x is given by the DS structure dr x =
{〈xr

k, wr
k〉, k = 1, . . . , n}. Then for all k ∈ [1, n], we define ik such that max(|xr

k |,
|xr

k |) ∈]2ik , 2ik+1]. The rounding error of x is defined by the DS

dex = ρ({〈xe
k, w

e
k〉, k = 1, . . . , n}),

where ρ is a reduction operator that bounds the number of focal elements, and

xe
k =

{[−δ2ik , δ2ik] if f (xr
k) = f (xr

k)

[e(xr
k), e(xr

k)] otherwise

This definition for the error can be explained by the fact that if all real values in the focal
element are rounded to the same floating-point number, the error will be monotone in
the interval, so the error can be bounded by [e(xr

k), e(xr
k)]. When that is not the case,

we can only use Eq. (3), which will result in embedded focal elements [−δ2ik , δ2ik]
for the errors. Of course, a less accurate computation would be to consider only the
[−δ2ik , δ2ik] focal elements.

Example 5 Consider r x given in range [200000000, 200000032] (for instance r̂ x =
2000000016 + 16ε1). The real values 200000000, 200000016 and 200000032 are
exactly represented as simple floating-point numbers, the other values in this range
must be rounded. Let’s say the DS structure defining r x is dr x = {〈[200000000,

200000007], 1/8〉,〈[200000009, 200000016], 2/8〉, 〈[2000000016, 200000023], 2/8〉,
〈[200000025, 200000032], 3/8〉} We have here a case where the images of the focal
elements by the rounding error function (see Fig. 3) can be computed exactly: they
are [−7, 0], [0, 7], [−7, 0], [0, 7], which, after reduction, gives for the error dex =
{〈[−7, 0], 3/8〉, 〈[0, 7], 5/8〉}.

Example 6 Consider a given integer n and the sum yp of p independent variables
xi , i = 1, . . . , p, each of them defined in [−1, 1] by the DS with 2n non-overlapping

123

A generalization of p-boxes to affine arithmetic

Fig. 3 Rounding error of r x ∈ [2.108, 2.108 + 32] to a simple float (Example 5)

Fig. 4 Envelop on the rounding error of r xi ∈ [−1, 1] to a simple float (Example 6)

Fig. 5 P-box for yp

elements of width 1
n and same weight. These variables are first rounded as floating-

point values before being added. The envelope of the rounding error on a variable xi

is given in Fig. 4. Consider for instance n = 5. The focal elements on the real value
are materialized on this Figure by the grid. The image by the rounding error function
of the focal elements of rxi give as DS for the error

dexi =
{〈[

− δ

2
,
δ

2

]

3/5

〉

,

〈[

− δ

4
,
δ

4

]

1/5

〉

,

〈[

− δ

8
,
δ

8

]

1/5

〉}

.

We compute the partial results yk = ∑
0≤i<k xi for k from 1 to p, and a new round-

ing error e(r yk) is associated with each of these partial results. Finally, the rounding
result on yp is thus ey

p = ∑
0≤i<p e(r xi)+∑

1≤i≤p e(r yk), where the DS for e(r xi) are
all independent between one another, and e(r yk) has unknown dependency to e(r x j)

and e(r y j) for all j ≤ k.
So it is interesting to consider not only independence or dependency, but a gener-

alized notion of a dependency matrix between variables or noise symbols.
We present in Figs. 5 and 6 the cumulative distribution functions of the DS obtained

for n = 10 and p = 10.
We see in Fig. 5 that we bound indeed a quasi-Gaussian distribution (sum of inde-

pendent uniform laws). Figure 6 is compatible with the stochastic modeling of errors
as popularized in the CESTAC method [19]. The advantage here is that we have
guaranteed lower and upper probabilities for rounding errors, whereas the CESTAC

123

O. Bouissou et al.

Fig. 6 P-box for the total error
on yp

Table 1 Execution time (t) and dispersion (d) of the Butterworth filter when fixing the discretization
parameters (K and p)

n: 10 20 40 50 75 100

t (s) 0.016 0.16 0.023 0.032 0.053 0.084

t + γ (s) 0.511 1.127 2.295 2.907 4.322 5.712

t (s) 29.840 56.091 161.054 183.089 187.868 204.558

d 1.21809 0.503958 0.493573 0.490891 0.487261 0.487556

d 11,185 1.82×107 ≥1013 ≥1017 ≥1024 ≥1032

Values in italics show results using DS arithmetic

method only gives qualitative information about the computation. Here we can read
from Fig. 6 that the probability that the error is within [−1.2.10−6, 1.2.10−6] is 1

2
while the probability that the error is in absolute value greater than 2.10−6 (which
is about the maximal deterministic error one can get) is almost zero. An experiment
with CADNA free allows us to estimate that the first 5 to 7 digits are correct in the
calculation of the sum, and that the error is less, in absolute value, than 10−6 with a
probability of a bit more than 1

3 , which is compatible with the results we get here.

5 Experimental results

We developed a C++ library that implements this new arithmetic. We present here
some experiments conducted on a laptop with 4 Gb of RAM and two 2 GHz proces-
sors. As in [11], we measure the accuracy of a DS by the sum of all areas (width times
weight) of its focal elements. We call this measure the dispersion.

We start with the Butterworth filter of Sect. 1, with uniform law for the inputs. In
all our experiments, variable n represents the number of filter iterations, variable K
the input discretization, and variable p the output discretization for each operation,
i.e. the maximal number of focal elements allowed in DS structures.
Influence of the number of iterations. We set the input discretization to K = 10, the
output discretization to p = 400 and increased n. Results are given in Table 1: the
line labeled by t is the time to compute the resulting affine form, and the line labeled
by t + γ is the time to compute the affine form and convert it into a DS structure
(Definition 2). We see that computing the affine form is almost immediate. What takes
most of the time is the addition of DS structures by the concretization function.

The dispersion of the output DS structure with affine arithmetic (line labeled by d)
decreases as n increases, which is a nice result: the output converges towards a normal

123

A generalization of p-boxes to affine arithmetic

(a) (b)

Fig. 7 P-boxes and density functions for the filter output using probabilistic affine forms

Table 2 Execution time (t) and dispersion (d) of the Butterworth filter when fixing the number of iterations
(n = 30)

K : 20 30 50 75 100 125

t + γ (s) 0.182 0.525 3.998 19.849 74.950 149.885

t(s) 5.448 71.800 T.O. T.O. T.O. T.O.

d 1.01035 0.673648 0.404913 0.268924 0.201146 0.160113

d 2.79×1010 2.58×1010 T.O. T.O. T.O. T.O.

Values in italics represent the results using DS arithmetic

distribution. On Fig. 7, we show the p-boxes and the corresponding upper bounds on
the density functions computed for various numbers of iterations: we clearly see the
shape of a normal distribution, as was expected from the Matlab simulation. Table 1
also shows the results obtained using DS arithmetic only (rows shaded in gray). We
see that DS arithmetic is very time consuming and that the dispersion is extremely
large.

Influence of the input discretization Next, we set the number of iterations (n = 30),
increase the input discretization K and set p = 2 × K . Results are given in Table 2.
As expected, the accuracy of the output DS strongly depends on the discretization of
the input DS. We conducted the same tests using DS arithmetic only (rows shaded in
gray). This time, we were not able to obtain results in less than 5 min for K ≥ 50,
this is what we denote as time-out (T.O.). Using probabilistic affine forms reduces
the computation time while keeping the p-box tight. We here fully benefit from the
fact that a probabilistic affine form keeps tracks of the linear dependencies between
variables.

Finally, we evaluate the function f (x, y) = x ∗ y − x where x is a uniform random
variable of support [2, 3] and y is uniform in [0.5, 1.5], x and y being independent.
We set the output discretization to p = 100 and give in Table 3 the results for different
input discretization steps K . Execution times using affine arithmetic and DS arith-
metic are more or less equivalent (affine arithmetic being slightly more efficient), as
we perform in both cases the same number of operations between DS structures. The
precision, however, is much better for the affine arithmetic: the dispersion is divided

123

O. Bouissou et al.

Table 3 Execution time (t) and dispersion (d) of x ∗ y − x (in italics: with DS arithmetic)

K : 10 20 30 50 75 100

t + γ (s) 0.237 1.170 3.693 25.442 95.128 154.059

t(s) 0.341 1.671 7.496 32.481 91.013 183.365

d 0.6532 0.572462 0.53449 0.509894 0.502003 0.49782

d 1.3879 1.24479 1.18648 1.146771 1.12277 1.10637

by 2. Note that the execution time strongly increases with the number of input focal
elements, because we need to perform arithmetic with unknown dependency, which
is very costly.

Note that all experiments presented are with our C++ library. More experiments
using existing DS tools were conducted, but these proved less efficient: some results,
along with the matlab script files used, are available at http://www.lix.polytechnique.
fr/~bouissou/codes_computing/.

6 Conclusion and future work

In this article, we introduced a new model that mixes interval and probabilistic uncer-
tainties. Other extensions of p-box or DS structures were proposed [2,17,18]: these
works are orthogonal to ours as they only differentiate between independent vari-
ables and variables with unknown dependency. We believe that an aproach like ours
could be used to improve these methods, as well as the method used in RiskCalc for
example [4,20].

We aim at generalizing this work in different directions. First of all, we wish to
apply this to the static analysis of programs. This means we have to define set-theoretic
operations such as union and intersection. They have been introduced in particular in
[9] for the underlying affine sets, but have to be generalized to our framework.

Another direction is to maintain a better abstraction of the dependencies between
variables, during computation. In the current work, we decomposed the dependency
relationships between variables on a basis of independent noise symbols (εi) and noise
symbols with unknown dependency (η j). This is a particular abstraction of some form
of a correlation matrix between the noise symbols. We propose, in future work, to
extend our affine arithmetic based calculus using more precise information about the
dependencies, or the copula [13], between each pair of noise symbols. Other possi-
bilities would be to use known contraints on probability distributions, such as in [21].
Note that the probabilistic affine forms we have introduced should be linked with
particular Dempster–Shafer structures on R

p, whose focal elements are zonotopes
(particular central symmetric polytopes), parametrized by affine forms. These might
generalize to higher-order Taylor models [12] instead of order one models such as
zonotopes.

Acknowledgments We thank the anonymous reviewers for their helpful comments and improvement
suggestions. We also want to thank them for pointing interesting references, especially about PERT dia-

123

http://www.lix.polytechnique.fr/~bouissou/codes_computing/
http://www.lix.polytechnique.fr/~bouissou/codes_computing/

A generalization of p-boxes to affine arithmetic

grams [15] which seems to be a promising application of our framework. We also want to thank Scott
Ferson for his valuable help on the comparison with the RiskCalc tool.

References

1. Berleant D, Goodman-Strauss C (1998) Bounding the results of arithmetic operations on random vari-
ables of unknown dependency using intervals. Reliab Comput 4(2):147–165

2. Busaba J, Suwan S, Kosheleva O (2010) A faster algorithm for computing the sum of p-boxes.
J Uncertain Syst 4(4):244–249

3. Comba JLD, Stolfi J (1993) Affine arithmetic and its applications to computer graphics. SEBGRAPI’93
4. Ferson S (2002) RAMAS Risk Calc 4.0 Software: risk assessment with uncertain numbers. Lewis

Publishers, Boca Raton
5. Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K (2003) Constructing probability boxes and

Dempster–Shafer structures. Tech. Rep. SAND2002-4015
6. Ferson S, Nelsen R, Hajagos J, Berleant D, Zhang J, Tucker W, Ginzburg L, Oberkampf W (2004)

Dependence in probabilistic modelling, Dempster–Shafer theory and probability bounds analysis. Tech.
rep., Sandia National Laboratories

7. Frank MJ, Nelsen RB, Schweizer B (1987) Best-possible bounds for the distribution of a sum, a prob-
lem of Kolmogorov. Prob Theory Rel Fields 74:199–211. doi:10.1007/BF00569989

8. Ghorbal K, Goubault E, Putot S (2010) A logical product approach to zonotope intersection. In: CAV,
LNCS, vol 6174

9. Goubault E, Putot S (2009) A zonotopic framework for functional abstractions. In: CoRR.
abs/0910.1763

10. Goubault E, Putot S (2011) Static analysis of finite precision computations. In: VMCAI, LNCS,
vol 6538, pp 232–247

11. Limbourg P, Savi R, Petersen J, Kochs HD (2007) Fault tree analysis in an early design stage using the
Dempster–Shafer theory of evidence. In: ESREL 2007, pp 713–722

12. Makino K, Berz M (2003) Taylor models and other validated functional inclusion methods. Int J Pure
Appl Math 4(4):379–456

13. Nelsen R (1999) An introduction to copulas. In: Lecture notes in statistics. Springer, Berlin
14. Regan HM, Ferson S, Berleant D (2004) Equivalence of methods for uncertainty propagation of real-

valued random variables. Int J Approx Reason 36(1):1–30
15. Sanders WH, Meyer JF (2000) Stochastic activity networks: Formal definitions and concepts. In:

European Educational Forum, pp 315–343
16. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
17. Sun J, Huang Y, Li J, Wang JM (2008) Chebyshev affine arithmetic based parametric yield predic-

tion under limited descriptions of uncertainty. In: ASP-DAC ’08. IEEE Computer Society Press, Los
Angeles, pp 531–536

18. Terejanu G, Singla P, Singh T, Scott PD (2010) Approximate interval method for epistemic uncertainty
propagation using polynomial chaos and evidence theory. In: American Control Conference

19. Vignes J (1993) A stochastic arithmetic for reliable scientific computation. Math Comput Simul
35(3):233–261

20. Williamson RC, Downs T (1990) Probabilistic arithmetic I: numerical methods for calculating convo-
lutions and dependency bounds. J Approx Reason 4(2):89–158

21. Zhang J, Berleant D (2005) Arithmetic on random variables: squeezing the envelopes with new joint
distribution constraints. In: ISIPTA, pp 416–422

123

http://dx.doi.org/10.1007/BF00569989

	A generalization of p-boxes to affine arithmetic
	Abstract
	1 Introduction
	2 Basics
	2.1 Perturbed affine forms
	2.2 Arithmetic operations on Dempster--Shafer structures and p-boxes

	3 Mixing it up: affine arithmetic with probabilistic noise symbols
	4 Modeling rounding errors
	5 Experimental results
	6 Conclusion and future work
	Acknowledgments
	References

