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Abstract
We study the possibility of extending the Rackoff technique to Affine nets, which are Petri nets

extended with affine functions. The Rackoff technique has been used for establishing Expspace
upper bounds for the coverability and boundedness problems for Petri nets. We show that this
technique can be extended to strongly increasing Affine nets, obtaining better upper bounds
compared to known results. The possible copies between places of a strongly increasing Affine
net make this extension non-trivial. One cannot expect similar results for the entire class of Affine
nets since coverability is Ackermann-hard and boundedness is undecidable. Moreover, it can be
proved that model checking a logic expressing generalized coverability properties is undecidable
for strongly increasing Affine nets, while it is known to be Expspace-complete for Petri nets.
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1 Introduction

Context Petri nets are infinite state models and have been used for modelling and verifying
properties of concurrent systems. Various extensions of Petri nets that increase the power
of transitions have been studied, for example Reset/Transfer (Petri) nets [8], Self-Modifying
nets [21] and Petri nets with inhibitory arcs [17]. In [9], Well Structured nets are defined as
another extension where transitions can be any non-decreasing function. The same paper
also defines Affine Well Structured nets (shortly: Affine nets) that can be seen as the affine
restriction of Well Structured nets, or as a restriction of the Self-Modifying nets of [21] to
matrices with only non-negative integers.

While reachability is decidable for Petri Nets [11, 15, 13], it is undecidable for exten-
sions with at least two extended transitions like Double/Reset/Transfer/Zero-test arcs [8].
However, it remains decidable for Petri Nets with one such extended arc [2] or even with hier-
archical zero-tests [17]. The framework of Well-Structured Transition Systems [10] provides
the decidability of coverability, termination and boundedness for Petri nets and some of its
monotonic extensions [8, 9]. However, boundedness is undecidable for Reset nets (and hence
for Affine nets) [8]. Complexity results on Petri nets extensions are scarce, two notable res-
ults being that coverability is Ackermann-complete for Reset nets [20, 19] (while reachability
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302 Extending the Rackoff technique to Affine nets

and boundedness are undecidable) and boundedness is Expspace-complete for a subclass
of (strongly increasing) Affine nets [7].

Other extensions of Petri nets increase the state space of the transition system. These
are for example branching Vector Addition Systems [6], ν-Petri nets [18], or Data nets [12]
(equivalent to Timed Petri nets [3]). As ν-Petri nets and Data nets subsume Reset nets,
boundedness and reachability are undecidable, and coverability is Ackermann-hard. On the
other hand, while reachability is an (important) open problem for branching Vector Addition
Systems, coverability and boundedness are known to be AltExpspace-complete by a proof
that uses the Rackoff technique [6].

Finally, we note that some recent papers [5, 1] have extended the Rackoff technique to
show Expspace upper bounds for the model-checking of some logics (that generalizes the
notion of coverability and boundedness) for Petri nets.

Our contribution The goal is to exhibit a class of extensions of Petri nets for which
the Rackoff technique can be extended in order to give an Expspace upper bound for
coverability and boundedness. We do not look at extensions that change state spaces, as the
complexity of coverability and boundedness for those is known to be either AltExpspace-
complete (branching Vector Addition Systems) or Ackermann-hard (ν-Petri nets, Data nets).
Moreover, as this technique relies heavily on the monotonicity of Petri Nets, it is natural
to consider only monotonic extensions. The largest classes of such extensions are Affine
nets and Well Structured nets, that both include most of the usually studied Petri net
extensions. As we know that coverability and boundedness are respectively Ackermann-
hard and undecidable for Reset nets, we must forbid resets in order for our generalization
to work. This is done by disallowing any 0 in the diagonal of the matrices associated with
the functions of Affine nets, yielding again the class of strongly increasing Affine nets, as
defined in [9], that are equivalent to the Post-Self-Modifying nets (PSM) defined by Valk
in [21]. This class is interesting because it strictly subsumes Petri nets. For example, PSM
can recognize the language of palindromes, which Petri nets can not. More generally, all
recursively enumerable languages are recognized by PSM [21], while boundedness (and other
properties) is still decidable [21].

While the complexity of the reachability problem for Petri nets is unknown, the com-
plexity of coverability and boundedness has been shown to be Expspace-complete (lower
bound of Space(O(2c

√
n)) by Lipton [14] and Space(O(2cn logn)) upper bound by Rack-

off [16], where n is the size of the net). In [7], the boundedness problem is shown to be
in Space(O(2cn2 logn)) for Post-Self-Modifying nets: the proof associates a standard Petri
net that weakly simulates the original Post-Self-Modifying net and then applies the Rackoff
theorem [16] as a black box (Expspace upper bound for coverability could also be shown
by the same construction).

We give two results: (1) We extend the Rackoff technique to work directly on strongly
increasing Affine nets, improving the upper bounds for coverability and boundedness (from
Space(O(2cn2 logn)) to Space(O(2cn logn))). (2) We state the limit of strongly increasing
Affine nets by proving that model checking a fragment of CTL (which can express general-
izations of boundedness and various other problems) is undecidable for strongly increasing
Affine nets, while it is Expspace-complete for Petri nets [1].

Following are the three main difficulties in extending the Rackoff technique to strongly
increasing Affine nets.
1. Showing upper bounds for the lengths of sequences certifying coverability or unbounded-

ness is not enough — short sequences can give rise to large numbers.
2. We can no longer rely on ignoring places that go above some value. The effect of a
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transition on a place will depend on the exact value at other places.
3. The effect of firing a sequence of transitions can not be determined by its Parikh image.
To overcome the first difficulty, we define transition systems that abstract the real ones,
where markings from short sequences of transitions will have either small numbers or ω.
This also overcomes the second difficulty, since ignored places will have the value ω in the
abstract transition systems. If such a place affects another place, the affected place will also
get the value ω. To overcome the third difficulty, we classify the set of places according to the
way they affect each other. Places that have high values and interfere among themselves will
always be unbounded so that they can be “ignored” (implemented by introducing another
abstraction), leaving behind places that are amenable to analysis by Petri net techniques.
Since this technique depends on the observation that places interfering with one another
are unbounded, it can not be used for problems that require more precise answers than
unboundedness. Model checking the fragment of CTL mentioned above does require such
precise answers and turns out to be undecidable for strongly increasing Affine nets.

The following table summarises the complexity of various problems on Petri nets and
strongly increasing Affine nets, with the contributions of this paper in bold. Abbreviations
used in the table: SIAN for Strongly increasing Affine nets, MC(eiPrCTL) for model checking
eventually increasing Presburger CTL, Sp(2c

√
n : 2cn logn) for Space(2c

√
n) lower bound and

Space(2cn logn) upper bound.

Petri nets SIAN Affine nets

Reachability Decidable [15, 11] Undecidable [8] Undecidable [8]
Coverability Sp(2c

√
n : 2cn log n) [14, 16] Sp(2c

√
n : 2cn log n) Ackermann-hard [20]

Boundedness Sp(2c
√

n : 2cn log n) [14, 16] Sp(2c
√

n : 2cn log n) Undecidable [8]
MC(eiPrCTL) Expspace-complete [1] Undecidable Undecidable [8]

Due to space constraints, proofs have been skipped in the following, as are the details
of model checking eventually increasing Presburger CTL. All missing details and proofs can
be found in the full version of this paper [4].

2 Preliminaries

Let Z be the set of integers, N be the set of non-negative integers and N+ be the set of
positive integers. For any set P , card(P ) is the cardinality of P .

A transition system S = (S,→) is a set S endowed with a transition relation “→”, i.e.,
with a binary relation on the set S. We write s +→ t to mean that there exist r ∈ N+ and a
sequence of states s0 = s, s1, . . . , sr = t such that s0 → s1 → · · · → sr. We write s ∗→ t to
mean that s +→ t or s = t. A state t ∈ S of a transition system S = (S,→) is reachable from
a state s if s ∗→ t. The reachability set of S from the state s0 is denoted by RS(S, s0) and
is defined to be the set of states reachable from s0.

Let P be a finite non-empty set of places with card(P ) = m ∈ N+ and let 〈p1, . . . , pm〉 be
an arbitrary but fixed order on the set of places. A function M : P → N is called a marking.
We denote by 0 the marking such that 0(p) = 0 for all p ∈ P . Given a subset Q ⊆ P

and markings M1,M2, we write M1 =Q M2 (resp. M1 ≥Q M2) if M1(p) = M2(p) (resp.
M1(p) ≥M2(p)) for all p ∈ Q. We writeM1 > M2 ifM1 ≥M2 andM1 6= M2. We denote by
Id the identity matrix, whose dimension will be clear from context. We denote by A1 ≥ A2,
where A1,A2 ∈ Nm×m, the condition that A1(p1, p2) ≥ A2(p1, p2) for all p1, p2 ∈ P . We
consider (positive) affine functions from Nm into Nm defined by f(M) = AM + B, where
A is a (positive) matrix in Nm×m and B is a vector in Zm. It can be verified that for every
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affine function f(M) = AM + B with an upward closed domain (i.e., domf ⊆ NP such
that M1 ∈ domf and M1 ≤ M2 imply M2 ∈ domf), there exists a finite set of vectors
{C1, . . . ,Ck} ⊆ Zm such that domf = ∪1≤i≤k{M ∈ Nm | AM + B ≥ 0 and M + Ci ≥ 0}.
With A ∈ Nm×m and B,C ∈ Zm, we denote by f , (A,B,C) the affine function such that
f(M) = AM + B and domf = {M ∈ Nm | AM + B ≥ 0 and M + C ≥ 0}. In terms of
Petri nets, the vector C restricts the markings to which the transition can be applied. For
example, if the transition should not subtract anything from a place p but should only be
applicable to markings M with M(p) ≥ 1, we can set A(p, p) = 1,B(p) = 0 and C(p) = −1.
In the following, we just write (A,B,C) if the name f is not important.

I Definition 1. An Affine net N (of dimension m) is a tuple N = (m,F ) where m ∈ N+

and F is a finite set of affine functions with upward closed domains in Nm.

The application of the transition function f to M1 resulting in M2 is denoted by M1
f−−→

M2. The associated Affine transition system SN = (S, F−−→) is naturally defined by S = NP

and M1
f−−→ M2 iff M1 ∈ domf and f(M1) = M2. If there is a sequence σ = f1f2 · · · fr of

transition functions such that M f1−−→ M1
f2−−→ · · · · · · fr−−→ Mr, we denote it by M σ−−→ Mr.

The markings M,M1, . . . ,Mr are called intermediate markings arising while firing σ from
M . We say a sequence σ of transition functions is enabled at a marking M if M σ−−→ M ′

for some marking M ′. We denote the length of σ by |σ|. We denote the set of transition
functions of N occurring in σ by alph(σ). A sequence σ′ is called a sub-sequence of σ if σ′
can be obtained from σ by removing some transition functions.

I Definition 2. An affine function (A,B,C) is strongly increasing [9, Section 2.2] if A ≥ Id.
An Affine net N = (m,F ) is strongly increasing if each of its functions is strongly increasing.

Note that if M1
f−−→ M2 and M ′1 > M1, then the fact that f is strongly increasing

implies that M ′1
f−−→ M ′2 for some M ′2 > M2 and for every p ∈ P , M ′1(p) > M1(p) implies

M ′2(p) > M2(p).

I Definition 3. Given an Affine net N with an initial marking Minit and a target marking
Mcov, the coverability problem is to determine if there exists a marking M ∈ RS(SN ,Minit)
such that M ≥ Mcov. The boundedness problem is to determine if there exists a number
B ∈ N such that for all markings M ∈ RS(SN ,Minit), M(p) ≤ B for all p ∈ P .

For an Affine net N , RN will denote the maximum absolute value of any entry in A, B
or C for any transition function (A,B,C) of N . When N is clear from context, we skip the
subscript N and write R. We also write function instead of transition function when it is
clear from context that it is a transition function in an Affine net. The size of N with initial
marking Minit is defined to be (card(F )(m2 +m) logR+m log‖Minit‖∞), where ‖Minit‖∞
is the maximum entry in Minit. If A = Id for each function (A,B,C) of N , then N is a
Petri net.

In Affine nets, markings cannot decrease too much.
I Proposition 4. If M1

σ−−→M2, then M2(p) ≥M1(p)−R|σ| for all p ∈ P .

3 Value Abstracted Semantics

In Affine nets, a short sequence of functions can generate markings with large values. Beyond
some value, it is not necessary to store the exact values of a marking to decide coverability
and boundedness. Let Nω = N ∪ {ω} and Zω = Z ∪ {ω} where addition, multiplication
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and order are as usual with the extra definition of ω × 0 = 0 × ω = 0. To avoid using
excessive memory space to store large values of markings, we introduce extended markings
W : P → Nω. The domains of transitions functions are extended to include extended
markings: for a function f = (A,B,C) and an extended marking W , we have W ∈ domf
iff W + C ≥ 0 and AW + B ≥ 0. The result W ′ of applying f to W ∈ domf is given by
W ′ = AW + B, denoted by W f−−→W ′.

For an extended marking W : P → Nω, let ω(W ) = {p ∈ P | W (p) = ω} and ω(W ) =
P \ ω(W ). For a function t : {0, . . . ,m} → N (which will be used to denote thresholds) and
an extended marking W , we define [W ]t→ω and [W ]ω→t by:

([W ]t→ω)(p) =
{
W (p) if W (p) < t(card(ω(W ))),
ω otherwise.

([W ]ω→t)(p) =
{
W (p) if W (p) ∈ N,
t(card(ω(W )) + 1) otherwise.

The threshold function t gives the threshold beyond which numbers can be abstracted. In
the extended marking [W ]t→ω, values beyond the threshold given by t are abstracted by
ω. In the marking [W ]ω→t, abstraction is reversed by replacing ω with the corresponding
threshold value.

I Definition 5. Let t : {0, . . . ,m} → N be a threshold function and N be a strongly
increasing Affine net. The associated t-transition system SN ,t = (St,

F−−→t) is defined by
St = NPω and W1

(A,B,C)−−−−−−→t W2 iff W1 ≥ C and W2 = [(AW1 + B)]t→ω ∈ NPω . We write
W0

σ−−→t Wr if σ = f1 · · · fr and Wi−1
fi−−→t Wi for each i between 1 and r. The extended

markings W0, . . . ,Wr are called intermediate extended markings in the run W0
σ−−→t Wr.

Note that for any W1
f−−→t W2, ω(W2) ⊇ ω(W1). In the t-transition system, a place

having the value ω will retain it after the application of any function. The following pro-
positions establish some relationships between t-transition systems and natural transition
systems.
I Proposition 6. Let W1

σ−−→t W2, card(ω(W2)) = card(ω(W1)) < m and t(card(ω(W1)) +
1) ≥ R|σ| + x for some x ∈ N. Then [W1]ω→t

σ−−→ M2 such that M2 =
ω(W2) W2 and

M2(p) ≥ x for all p ∈ ω(W2).
A routine induction on |σ| allows to prove the following:

I Proposition 7. If M1
σ−−→M2, then M ′1

σ−−→t W2 ≥M2 for any M ′1 ≥M1.

4 Coverability

In this section, we give a Space(O(2c2n logn)) upper bound for the coverability problem
in strongly increasing Affine nets, for some constant c2. Let R′ = max({Mcov(p) | p ∈
P} ∪ {R}), where Mcov is the marking to be covered. In the rest of this section, we fix a
strongly increasing Affine net N = (m,F ) with an initial marking Minit and the marking
to be covered Mcov. The set of places is P = {p1, . . . , pm}.

We briefly recall the Rackoff technique for the Expspace upper bound for the coverability
problem in Petri nets. The idea is to define a function ` : N→ N and prove that for a Petri
net with m places, coverable markings can be covered with sequences of transitions of length
at most `(m). This is done by induction on the number of places. In a Petri net with i+ 1
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places, suppose Minit
σ−−→ M ′ ≥ Mcov and M is the first intermediate marking where one

of the values is more than R`(i) + R′ − 1 (this is the intuition behind the definition of
the threshold function t1 below). If there is no such marking, all intermediate markings
have small values and it is easy to bound the length of σ by (R`(i) + R′)i+1. Otherwise,
let σ = σ1σ2 such that Minit

σ1−−→ M
σ2−−→ M ′ ≥ Mcov. The length of σ1 is bounded by

(R`(i) +R′)i+1. Temporarily forgetting the existence of place p (where M(p) ≥ R`(i) +R′),
we conclude by induction hypothesis that starting from M , Mcov can be covered (in all
places except p) with a sequence σ′2 of length at most `(i). Since M(p) ≥ R`(i) + R′ and
σ′2 reduces the value in p by at most R`(i), σ′2 in fact covers all places, including p. Hence,
σ1σ

′
2 covers Mcov from Minit and its length is at most (R`(i) + R′)i+1 + `(i) + 1. This

is the intuition behind the definition of the length function `1 below. The counterpart of
“temporarily forgetting p” is assigning it the value ω.

I Definition 8. The functions `1, t1 : N→ N are as follows.

t1(0) = 0 `1(0) = 0
t1(i+ 1) = R`1(i) +R′ `1(i+ 1) = (t1(i+ 1))i+1 + `1(i) + 1

I Definition 9. A covering sequence enabled at M is a sequence σ of functions such that
M

σ−−→M ′ andM ′ ≥Mcov. A t1-covering sequence enabled atW is a sequence σ of functions
such that W σ−−→t1 W

′ and W ′ ≥Mcov.

The following lemma shows that even after abstracting values that are above the ones
given by the threshold function t1, there is still enough information to check coverability.

I Lemma 10. If a t1-covering sequence σ is enabled at W , then Mcov is coverable from
[W ]ω→t1 .

I Lemma 11. If there is a covering sequence σ enabled at Minit, there is a t1-covering
sequence σ′ enabled at Minit such that |σ′| ≤ `1(m) (recall that m = card(P )).

I Lemma 12. For all i ∈ N, `1(i) ≤ (6RR′)(i+1)!.

I Theorem 13. For some constant c1, the coverability problem for strongly increasing Affine
nets is in Nspace(O(2c1m logm(logR′ + log‖Minit‖∞))).

Taking n = (card(F )(m2 + m) logR + m log‖Minit‖∞) + m log‖Mcov‖∞ as the size of the
input to the coverability problem, we can infer from the above theorem an upper bound of
Space(O(2c2n logn)).

5 Boundedness

In this section, we give a Space(O(2c4n logn)) upper bound for the boundedness problem in
strongly increasing Affine nets, for some constant c4. In the rest of this section, we fix a
strongly increasing Affine net N = (m,F ) with an initial marking Minit. The set of places
is P = {p1, . . . , pm}.

I Definition 14. A self-covering pair enabled atM is a pair (σ1, σ2) of sequences of functions
such that M σ1−−→M1

σ2−−→M2 and M2 > M1.

Since all transition functions are strongly increasing and their domains are upward closed,
we can infer from the above definition that Mi

σ2−−→ Mi+1 and Mi+1 > Mi for all i ∈ N+.
Hence, if a self covering pair is enabled at Minit, then N is unbounded. Conversely, if N
is unbounded, infinitely many distinct markings can be reached from Minit. Since there
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are only finitely many transition functions, König’s lemma implies that there is an infinite
sequence of functions enabled at Minit such that all intermediate markings are distinct. We
infer from Dickson’s lemma that there are two markings M1,M2 along this sequence such
that M2 is after M1 and M2 > M1. Let Minit

σ1−−→ M1
σ2−−→ M2. By Definition 14, (σ1, σ2)

is a self-covering pair enabled at Minit.
The Rackoff technique again defines a length function `′ : N → N and shows that if a

Petri net with m places is unbounded, there is a self-covering pair of total length at most
`′(m). As an example, let us consider giving an upper bound for `′(2). Consider the sequence
of markings shown below, produced by a self-covering pair. Let σ2 be the portion occurring

p1 : 1 100
p2 : 2 150
p3 : 1 100
p4 : 3 · · · 200 · · ·
p5 : 0 2
p6 : 1 4



90 190
140 280
100 90
200 · · · 190
1 1
3 3



180
270
100

· · · 200
3
4

after the first marking where p1 has the value 100. Since p5, p6 have low values throught,
we would like to abstract the remaining places and reduce the length of σ2 to get an upper
bound on `′(2). We denote {p5, p6} by Pσ2

<ω. In the block of intermediate markings shown
above enclosed in [ ], the first and last markings are identical when projected to p5 and p6.
Since this block does not change p5 and p6, we can remove this block, provided that after
removal, the abstracted places p1, p2, p3, p4 will still have values at least 100, 150, 100, 200
respectively. To decide whether this is the case, the effect of the block on p1, p2, p3, p4 is
calculated in a Petri net by simply summing up the effect of each transition in the block.
In a strongly increasing Affine net, this is however not possible since the effect of the block
depends not only on the transitions in it, but also on the values in the marking at the
beginning of the block. In addition, affine functions can copy the value of one place to
another one.

If some transition copies the value of some place among p1, p2, p3, p4 into p5 or p6, a large
value will result in p5 or p6, so that they too can be abstracted, letting us use induction
hypothesis to deal with the remaining fewer number of non-abstracted places. To deal with
the other case, we assume that no transition in σ2 does this kind of copying (σ2 isolates
{p5, p6} from {p1, p2, p3, p4}). Next, suppose a function f = (A,B,C) occurs inside the
block, where A and B are as shown in Fig. 1 in the next page. Let the rows and columns
of A correspond to p1, p2, . . . , p6 in that order. The function f doubles the value in p2 and
copies the value of p3 to p1, but isolates {p3, p4} from {p1, p2, p3, p4}. In the following, we will
say f “crosses” Pσ2

× = {p1, p2} and isolates Pσ2
is = {p3, p4} from P \ Pσ2

<ω = {p1, p2, p3, p4}.
Since p1, p2 had large values to begin with, they will have even larger values after crossed
by f . We will see that this will result in crossed places becoming unbounded, and so we can
forget the exact effect of a block on such places, and just remember that they are crossed
by some function. The forgetting part is done in Definition 16 by simplifying the matrix A,
and the remembering part is done by setting the corresponding entry in B to 1. To decide
whether a block can be removed or not, it remains to compute the effect of Pσ2

<ω = {p5, p6}
on Pσ2

is = {p3, p4}. This can be achieved since we know the exact values in p5, p6. This is
formalised in the proof of Lemma 20.

I Definition 15. Let f = (A,B,C) be a function.
f multiplies a place p if A(p, p) ≥ 2.
f copies p′ to p if A(p, p′) ≥ 1 for any two places p 6= p′.
f isolates Q1 from Q2, where Q1, Q2 ⊆ P , if A(p, p′) = 0 for all p ∈ Q1 and p′ ∈ Q2\{p}.
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308 Extending the Rackoff technique to Affine nets

Although the sets Pσ2
<ω, Pσ2

× and Pσ2
is are determined by σ2, we avoid heavy notation in

the following definition and instead use an arbitrary partition of P into P<ω, P× and Pis.

I Definition 16. Let ρ = (P<ω, P×, Pis) be a triple such that the sets P<ω, P× and Pis
partition the set of places P . To each function f = (A,B,C), we associate another function
f [ρ] = (A[ρ],B[ρ],C), where A[ρ] and B[ρ] are as follows.

(B[ρ])(p) =



B(p) if p /∈ P×
1 if f multiplies p ∈ P×
1 if f copies p′ to p ∈ P×,

p′ ∈ (P× ∪ Pis \ {p})
0 otherwise

(A[ρ])(p, p′) =


A(p, p′) if p /∈ P×
1 if p ∈ P×

and p = p′

0 otherwise

Associated with the triple ρ is the ρ-transition system SN ,ρ = (Sρ,−−→ρ), defined by Sρ = NPω
andW1

(A,B,C)−−−−−−→ρ W2 iffW1 +C ≥ 0 andW2 = A[ρ]W1 +B[ρ] ∈ NPω . We writeW0
σ−−→ρ Wr

if σ = f1 · · · fr and Wi−1
fi−−→ρ Wi for each i between 1 and r. We write σ[ρ] to denote the

sequence of functions obtained from σ by replacing each function f of σ by f [ρ].

For any extended marking W , if W (p) ∈ N for all p ∈ P (i.e., if W is a marking), then
applying any function to W in the ρ-transition system will result in another marking (new
ω values are not introduced). In the example given before Definition 15, partition the set of
places into P× = {p1, p2}, Pis = {p3, p4} and P<ω = {p5, p6}. The corresponding matrices
A[ρ] and B[ρ] defining f [ρ] are as shown below.

Figure 1 Examples of transition functions

A =



1 0 1 0 0 0
0 2 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 1 0 2 0
0 0 0 1 0 1


B =



0
0
−1
2
0
−1


A[ρ] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 1 0 2 0
0 0 0 1 0 1


B[ρ] =



1
1
−1
2
0
−1



We obtain A[ρ] from A by replacing the first two rows by the corresponding rows of the
identity matrix. The fact that {p1, p2} is the set of places “crossed” by f is instead indicated
by setting B[ρ](p1) = B[ρ](p2) = 1. The other entries of B[ρ] are not changed. Places with
high values and crossed by some function will always be unbounded and this technique
can not be applied for problems that need more precise answers. For example, eventually
increasing existential Presburger CTL (eiPrECTL≥(U)), introduced in [1], can express the
presence of sequences along which the value of one place grows unboundedly while another
place remains bounded. Model checking eiPrECTL≥(U) is shown to be Expspace-complete
[1] for Petri nets by extending the Rackoff technique. We show in the full version that model
checking eiPrECTL≥(U) is undecidable for strongly increasing Affine nets.

I Definition 17. Let ρ = (P<ω, P×, Pis) be a triple such that the sets P<ω, P× and Pis
partition the set of places P . A sequence of functions σ is a ρ-pumping sequence enabled at
a marking M0 if
1. M0

σ−−→ρ M1 and M1 > M0,



R. Bonnet, A. Finkel, and M. Praveen 309

2. for all places p ∈ P×, some function (A,B,C) in σ has B[ρ](p) = 1,
3. each function in σ isolates Pis ∪ P<ω from P× ∪ Pis and
4. no function in σ multiplies p for any place p ∈ Pis.

Next we develop formalisations needed to show that if there are ρ-pumping sequences,
there are short ones. Suppose W1

σ−−→t W2 and ω(W1) = ω(W2). Then each function in σ
isolates ω(W1) from ω(W1) (otherwise, we could not have ω(W1) = ω(W2)). The following
proposition establishes a relationship between t-transition systems and ρ-transition systems.
I Proposition 18. Let t be a threshold function, W1

σ−−→t W2 and ω(W1) = ω(W2). Let ρ =
(ω(W1), P×, Pis). If [W1]ω→t

σ−−→ρ M2, then M(p) < t(card(ω(W1))) for every intermediate
marking M arising while firing σ[ρ] from [W1]ω→t and every p ∈ ω(W1).

The following definition of loops will be used only in the proof of Lemma 20.

I Definition 19. Suppose W1 is an extended marking such that ω(W1) = P<ω and σ is
a sequence such that all functions in σ[ρ] isolate P<ω from P \ P<ω. Suppose σ can be
decomposed as σ = π1ππ2 and W1

π1−−→ρ L
π−−→ρ L

π2−−→ρ W2. The pair (π, L) is a P<ω-loop
if all extended markings (except the last one) arising while firing π[ρ] from L are distinct
from one another.

I Lemma 20. There exists a constant d such that for any strongly increasing Affine net N
and for every ρ-pumping sequence σ enabled at some marking M0, there exists a ρ-pumping
sequence σ′ enabled at M ′0 such that |σ′| ≤ (2eR)dm3 , where:

ρ = (P<ω, P×, Pis) is a triple such that P<ω, P× and Pis partition the set of places P ,
e = 1 + max{M(p) | p ∈ P<ω and M is an intermediate marking occurring while firing
σ from M0} and
M ′0 is any marking such that M ′0 =P<ω M0 and M ′0(p) ≥ R|σ′| for all p ∈ Pis ∪ P×.

Proof. Let M0
σ−−→ρ Mk. Removing all P<ω-loops from σ may not result in a ρ-pumping

sequence. As in the Rackoff technique, we use the existence of small solutions to linear
Diophantine equations to show that a small number of loops can be retained to get a shorter
ρ-pumping sequence. Some intermediate steps of this proof deal with sub-sequences of σ
that may not be enabled at M ′0. They will however be enabled at the extended marking W0
where W0 =P<ω

M0 and W0(p) = ω for all p ∈ P× ∪ Pis. The proof is organised into the
following steps.

Step 1: We first associate a vector with each sub-sequence of σ to measure the effect of
the sub-sequence on P× ∪ Pis.
Step 2: Next we remove some P<ω-loops from σ to obtain σ′′ such that for every interme-
diate extended marking W arising while firing σ[ρ] from W0, W also arises while firing
σ′′[ρ] from W0.
Step 3: The sequence σ′′ obtained above is not necessarily a ρ-pumping sequence. With
the help of the vectors defined in step 1, we formulate a set of linear Diophantine equa-
tions to encode the fact that the effects of σ′′ and the P<ω-loops that were removed
combine to give the effect of a ρ-pumping sequence. This step uses the fact that in ρ-
transition systems, B[ρ](p) is set to 1 for each place p ∈ P×, indicating that p is “crossed”
by some function.
Step 4: Then we use the result about the existence of small solutions to linear Diophant-
ine equations to infer that only a small number of P<ω-loops need to be retained to
ensure that the essential properties of pumping sequences (as encoded by the Diophant-
ine equations) are satisfied. We use this to construct a sequence σ′ that meets the length
constraint of the lemma.
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Step 5: Finally, we prove that σ′ is a ρ-pumping sequence enabled at M ′0.

Step 1 is where this proof differs substantially from the ideas used by Rackoff in [16]. We
give details of Step 1 here. The missing details are in the full version.

Step 1: Suppose π ∈ alph(σ)∗ is a sequence consisting of functions occurring in σ.
Suppose W1 is an extended marking such that W1(p) ∈ N for all p ∈ P<ω and W1(p′) = ω

for all p′ ∈ P× ∪ Pis. Also suppose that W1
π−−→ρ Wr. We want to measure the effect of

π on places in P× ∪ Pis when we replace ω by large enough values in W1. We define a
vector ∆[π,W1] of integers for this measurement. For a place p ∈ P×, all that a function
(A[ρ],B[ρ],C) can do to p is add 0 or 1 (this is due to the way A[ρ] and B[ρ] are defined in
Definition 16). So we take ∆[π,W1](p) to be the sum of all B[ρ](p) for all functions (A,B,C)
occurring in π. For a place p ∈ Pis, we have to take into account the “interference” from
other places. Since from Definition 17, each function in π isolates Pis from P× ∪ Pis, the
only places that can interfere with p are those in P<ω. Let π = f1f2 · · · fr and W1

f1−−→ρ

W2
f2−−→ρ · · ·

fr−1−−−→ρ Wr. For each i between 1 and r − 1, let fi = (Ai,Bi,Ci). Following is
the formal definition of ∆[π,W1]:

∆[π,W1](p) =
r−1∑
i=1

 ∑
p′∈P<ω

Ai(p, p′)Wi(p′) + Bi(p)

 for all p ∈ Pis

∆[π,W1](p) =
r−1∑
i=1

Bi[ρ](p) for all p ∈ P×

Since all functions in π isolate P<ω from P× ∪ Pis, we infer that ω(Wr) = ω(W1) = P<ω. It
is routine to infer the following two facts from the definition of ∆[π,W1].

If M1 is any marking such that M1 =P<ω
W1 and M1

π−−→ρ M2, then M2(p)−M1(p) =
∆[π,W1](p) for all p ∈ P× ∪ Pis.
Suppose π = π1π2π3, W1

π1−−→ρ W
′ π2−−→ρ W

′ π3−−→ρ Wr and (π2,W
′) is a P<ω-loop. Then

∆[π,W1] = ∆[π1π3,W1] + ∆[π2,W
′].

The above two facts are sufficient to extend the technique used in [16] to ρ-transition systems.
This technique was developed for Petri nets, where the effect of a sequence of functions can
be determined from its Parikh image. This is not true in general for strongly increasing
Affine nets, but the core idea can be lifted to ρ-transition systems.

Details of Steps 2–4 can be found in the full version. J

The following lemma establishes what value is “large enough” at the initial marking to
ensure that crossed places are unbounded.

I Lemma 21. Let ρ = (P<ω, P×, Pis) be a triple such that the sets P<ω, P× and Pis partition
the set of places P . Suppose σ is a ρ-pumping sequence enabled at M0. If M0(p) ≥ 3R|σ|+
R+ 1 for all p ∈ P× ∪ Pis, then M0

σ−−→M1 and M1 > M0.

I Definition 22. Let c = 2d. The functions `2, t2 : N→ N are as follows:

t2(0) = 0 `2(0) = (2R)cm
3

t2(i+ 1) = 4R`2(i) +R+ 1 `2(i+ 1) = (2t2(i+ 1)R)cm
3

Due to the selection of the constant c above, we have (2xR)cm3 ≥ xi + (2Rx)dm3 for all
x ∈ N and all i ∈ {0, . . . ,m}.
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I Definition 23. A t2-pumping pair enabled at W is a pair (σ1, σ2) of sequence of functions
satisfying the following conditions.
1. W

σ1−−→t2 W1
σ2−−→t2 W2,

2. ω(W2) = ω(W1) and
3. for some partition of ω(W1) into P× and Pis, σ2 is a ρ-pumping sequence enabled at

[W1]ω→t2 , where ρ = (ω(W1), P×, Pis).

The following two lemmas prove that unboundedness in strongly increasing Affine nets
is equivalent to the presence of a short t2-pumping pair enabled at Minit. The ideas of these
two lemmas are similar to those of Lemma 10 and Lemma 11 respectively. Lemma 20 is
used in Lemma 25.

I Lemma 24. If (σ1, σ2) is a t2-pumping pair enabled at W , there is a self-covering sequence
(σ′1, σ′2) enabled at [W ]ω→t2 .

I Lemma 25. If a self covering pair is enabled at Minit, there is a t2-pumping pair (σ′1, σ′2)
enabled at Minit such that |σ′1|+ |σ′2| ≤ `2(m).

I Lemma 26. Let k = 8c. Then `2(i) ≤ (2R)ki+1m3(i+1) for all i ∈ N.

I Theorem 27. For some constant c3, the Boundedness problem for strongly increasing
Affine nets is in Nspace(O(2c3m logm(logR+ log‖Minit‖∞))).

With the size of the input n = (card(F )(m2 +m) logR+m log‖Minit‖∞), we can infer from
the above theorem an upper bound of Space(O(2c4n logn)) for the boundedness problem.

6 Conclusions and Perspectives

We proved that coverability and boundedness are in Space(O(2cn logn)) for strongly increas-
ing Affine nets. The main difficulty in adapting Rackoff technique is that one cannot simply
ignore places that have large enough values, as transitions may copy values from one place to
another. From this result, we may immediately deduce the same result for the termination
problem as one can add a new place ptime which is incremented by every transition. Then,
the system terminates iff it is bounded. A natural question is to identify the properties that
could be proved (with Rackoff techniques) to be Expspace-complete for strongly increasing
Affine nets. At least two (recent) classes of properties are candidates: the generalized un-
boundedness properties of Demri [5] and the CTL fragment of Blockelet and Schmitz [1]. As
this last logic is proved undecidable for strongly increasing Affine nets, a natural restriction
of this logic would be defined. We conjecture that replacing the predicates on the effect of a
path by predicates on the Parikh image of the path would put the model checking problem
for the logic in Expspace.

As we have limited our study to Affine nets, another question would be to consider not
only affine functions, but to find classes of recursive functions (that still forbids resets) for
which the Rackoff techniques can still be applied. It is likely that the proof of coverability
could be adapted by altering Prop. 6 to take into account the “maximum reduction” that
functions can perform. For example, if we allow functions to halve the value in a place, it
would suffice to say that the initial value is 2`1(i) times higher (of course, this would change
the final upper bound obtained). However, the proof of boundedness relies heavily on the
fact that a place is either fully copied, or not at all, so how to generalize it is unclear.

Coverability and boundedness for Petri nets with an unique Reset/Transfer/Zero-test
extended arc have been recently proved to be decidable [2]. For the Zero-test case, the
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complexity of coverability is at least as hard as reachability for Petri Nets, so there is not
much hope of applying this technique. We conjecture that it could be applied to the one
Reset or Transfer case, even if it would yield an upper bound greater than Expspace.
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