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Abstract: Timed automata are a convenient framework for modelling and reasoning
about real-time systems. While these models are now well-understood, they do not
offer a convenient way of taking timing imprecisions into account. Several solutions
(e.g. parametric guard enlargement) have been proposed over the last ten years to
take such imprecisions into account. In this paper, we propose a novel approach
for handling robust reachability, based on permissive strategies. While classical
strategies propose to play an action at an exact point in time, permissive strategies
consider intervals of possible dates when to play the selected action. In other words,
the controller specifies an interval of time delays for actions to be executed in a more
flexible way. With such a permissive strategy, we associate a penalty, which is the
inverse of the length of the proposed interval, and accumulates along the run. We
show that in that setting, optimal strategies can be computed in polynomial time for
one-clock timed automata.

Keywords: timed automata, timed games, permissive strategies, multi-move, timed
penalty games, timed robustness

1 Introduction

Validation of real-time embedded systems has been an active research area for many years now.
Model checking real-time systems was proposed in [ACD90] as a possible approach to verify
properties of such system models. Another approach to construct timed systems correctly is by
synthesizing executions or winning strategies of a controller given a specification or winning
condition.

There is an increasing interest in synthesis based on games within the computer science and
control theory communities, since games are a suitable paradigm for modeling reactive systems
that maintain a continuous interaction with the environments [FLM14]. The synthesis problem is
somehow dual to verification: while in verification, one asks whether some property ϕ is satisfied
in a model M , i.e., M |= ϕ , the synthesis problem considers a property and a plant or game area
as input and asks whether a strategy can be computed that controls the system in order to satisfy
the property. In a game-theoretic context this corresponds to the existence of a strategy for a
player. In this work, we consider timed automata, as defined by Alur and Dill [AD94], and the
reachability winning objective. The main objective is to synthesize winning strategies that are
robust w.r.t. to timing perturbations.
‡ Partly supported by FET project Cassting (FP7-601148) and ERC project EQualIS (FP7-308087).
§ Most of the work presented in the paper has been done while this author was a student at ENS Cachan and RWTH
Aachen.
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Permissive strategies in timed automata and games1

(a) Infinitely many actions can be executed within one time unit.

(b) Under perfect conditions the fire-state is not reachable. However, if the clocks x and y do not evolve
exactly at the same speed, the fire state is reachable after executing the inner loop finitely often.

Fig. 1: Two examples are shown that are valid in the timed automaton model. However, both of
these abstraction do not reflect the reality.

A timed automaton is a finite automaton extended with a finite set of clocks. It is a convenient
paradigm to model systems with real-time constraints and to reason about these algorithmically.
Efficient model-checking tools such as HyTech [HHW97], Kronos [BDM+98] and Uppaal [LPY97]
are available. Still, a drawback of timed-automata is that their semantics are idealistic: these
models are assumed to have arbitrary precision for delays, and immediate transitions. This leads,
among other unrealistic behaviors, to the paradox that infinitely many actions can be executed
within a finite amount of time. Furthermore, timed automata also assume that time can be
measured exactly. This means that a system can enforce a controller to choose punctual delays.
However, these are not realistic assumptions since computers are digital and values can only
be stored in variables of finite size. Figure 1 shows these undesired behaviors on two concrete
instances of timed automata.

Therefore, investigating on robustness issues on timed automata is crucial, and it has been an
active area of research over the last ten years. The quest is to include certain meaningful notions
of robustness or tolerance with respect to timing perturbations into the timed-automata model.
A prominent approach is the so-called guard enlargement, i.e., the transformation of each guard
of the form a≤ x≤ b into a−δ ≤ x≤ b+δ , for some parameter δ > 0. Safety of the resulting
enlarged automaton entails robust safety of the original automaton, i.e., safety even in the presence
of timing perturbations. Several decidability and complexity results have been obtained for this
notion of robustness. Efficient algorithms are being implemented in the tool Shrinktech [San15].
Robust reachability has also been proved to be decidable [BMS12]: there, the aim is to synthesize
a strategy that will be able to counteract the (parametric) timing perturbations and reach a target
location. We discuss these and other related works in more detail in Section 3.

Our contribution. In this paper, we also focus on robust reachability, but using permissive
strategies. As opposed to strategies classically used in most kind of games, permissive strategies
propose several possible moves to be played from a given configuration. In the timed setting,
this is implemented by having strategies proposing an interval of possible dates at which the
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player allows her action to be played or executed. Each interval is assigned a penalty inversely
proportional to the size of the interval. These penalties are summed up along the path until the
target is reached.

In this setting, our aim is to compute the most permissive strategy for reaching a target location.
We prove that the problem can be solved in polynomial time for one-clock timed automata (and
games), and that an almost-optimal memoryless permissive strategy exists.

2 Permissive strategies and penalty games

Timed automata. Let C be a finite set of variables (named clocks in the sequel). A clock
valuation over C is a mapping κ : C→R≥0, assigning to each clock a non-negative real value.
For t ∈ R≥0, we write κ + t for the clock valuation that results from κ by adding t time units,
i.e., (κ + t)(c) = κ(c)+ t for all c ∈ C. For a subset U ⊆ C, let κ[U := 0] be the clock valuation
that results from κ by resetting all clocks in U , i.e., κ[U := 0](c) = κ(c) for all c ∈ C\U , and
κ[U := 0](c) = 0 for all c ∈U . The set Constr(C) of all convex clock constraints over C is
defined as the set of conjunctions of atomic constraints of the form “c∼ n” for c ∈ C, n ∈N, and
∼ ∈ {<,≤,=,≥,>}. We write I for the set of all intervals of R≥0.

Definition 1 A timed automaton is a tuple A = 〈Q,C,Act,E, Inv〉, where Q is a finite set of
locations; C is a finite set of clocks; Act is a finite set of actions; E ⊆Q×Act×Constr(C)×2C×Q
is a transition relation; Inv : Q→ Constr(C) is a mapping that assigns an invariant to each location.
The transition relation is required to be deterministic, which in our setting means that for any
two transitions (q,a,g1,r1,q1) and (q,a,g2,r2,q2) in E with q1 6= q2, the constraint g1 ∧ g2 is
unsatisfiable,

A configuration of A is a pair s = (q,κ) ∈ Q× (R≥0)
C such that κ |= Inv(q). A move is a pair

(d,a) ∈R≥0×Acti. A move (d,a) is enabled in configuration (q,κ) if the following conditions
hold: (1.) the invariant Inv(q) holds for all κ + d′ with d′ ∈ [0,d], and (2.) there is a (unique)
transition e = (q,a,g,r,q′) ∈ E such that κ +d |= g and κ ′ = (κ +d)[r := 0] |= Invi(q′).

When those conditions are met, we write (q,κ)
d,a−→ (q′,κ ′), which gives rise to an infinite-state

transition system. Notice that we can assume that the second condition always holds, even if it
means adding an extra sink location qsink. We make this assumption in the sequel, as it simplifies
the presentation.

A run from the initial configuration s0 is an infinite sequence ρ of pairs ((di,ai),si)i≥1 with

si ∈ Q× (R≥0)
C and si−1

di,ai−−→ si+1 for all i≥ 1. For a finite prefix of a run (which we abusively
call finite run in the sequel) π = (π j)1≤ j≤n, we write last(π) for the configuration sn of the last
element πn of π . We let |π|= n. For a run π and an integer 1≤ j ≤ n, we write π≤ j for the finite
prefix of π up to the j-th transition.

Multi-moves and permissive strategies. In this paper, we consider a modified notion of moves,
which we call multi-moves. In our timed setting, a multi-move is a pair (I,a) where I is a non-empty
interval of R≥0 and a is an action. Intuitively, a multi-move (I,a) corresponds to the set of all
moves (t,a) for all t ∈ I. Non-determinism is then solved by an opponent player, and the semantics
of timed automata in this setting is defined as a game, as we now explain.
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`0 ` f
a;x = 0

(a) No winning strategy for Player 1.

`0

`1

` f

b;x≤ 2

a;x = 0

b;x≤ 2

(b) Player 1 has a winning strategy by choosing
(b, [0,1]) in `0 and `1.

Fig. 2: Two simple examples, where Player 1 has and has no winning strategy, for the sake of
intuition

A multi-move (I,a) is enabled in configuration (q,κ) whenever for all d ∈ I, the move (d,a)

is enabled in (q,κ). Any multi-move (I,a) enabled in (q,κ) gives rise to a transition (q,κ)
I,a−→

(q,κ, I,a); the latter configuration is an intermediary configuration, from which the opponent

can select some d ∈ I and activate the actual transition (q,κ, I,a)
d,a−→ (q′,κ ′) where (q′,κ ′) is

the unique configuration such that (q,κ)
d,a−→ (q′,κ ′). In this setting, a play from s0 is an infinite

sequence π of triples ((Ii,ai),di,si)i≥1 such that si−1
Ii,ai−−→ (si−1, Ii,ai)

di−→ si for all i≥ 1. A finite
play is a finite prefix of a play, in the same way as finite runs. In particular, the last configuration
last(π) is s|π|.

A permissive strategy is a mapping σ that associates with each finite play π from s0 a
multi-move σ(π)= (I,a) enabled in last(π). A finite play π =(π j)1≤ j≤n, with π j =((I j,a j),d j,s j)
for all 1≤ j ≤ n, is compatible with a permissive strategy σ if σ(π≤ j) = (I j,a j) for all 1≤ j ≤ n.
An (infinite) play π from s0 is compatible with σ whenever all its finite prefixes are compatible
with σ . Such a play is then called an outcome of σ from s0. In this paper, we consider reachability
objectives: given a target location g, a permissive strategy σ is said winning from s0 whenever all
its outcomes eventually visit location g.

Penalty of a permissive strategy. In the setting of timed robustness, our aim is to compute
highly permissive strategies. A naive approach for comparing strategies is to compare the sizes of
the intervals proposed by the strategies. This order would obviously not be total, and would not
give rise to a notion of maximally permissive strategies. We prefer a semantic criterion, based on
the quantitative measure of permissiveness.

We define the penalty of a multi-move (I,a) as follows:

penalty(I,a) =

{
1
|I| if I is not punctual, i.e., if |I|> 0,

+∞ otherwise.

With this definition, the larger the interval, the smaller the penalty. Of course, various other
penalty functions could be considered. We elaborate on this point in Section 4.4.

In order to define the penalty of a permissive strategy, we extend the notion of penalty along
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`0

`2

`3

`1

` f

a;x < 2

a;x≥ 2

a;x≤ 1

a;1 < x < 2 a;x := 0

Fig. 3: Example of a timed automaton (transitions to the sink location are omitted for the sake of
readability)

finite plays: given a permissive strategy σ and a finite play π , we define

penaltyπ(σ) =
|π|−1

∑
j=0

penalty
(
σ(π≤ j)

)
.

(Notice that this definition does not need π to be an outcome of σ , even though it will be the case
in the sequel). Again, other ways of accumulating penalties along a play could be considered.

Finally, we define the penalty of a permissive strategy. In order to have only finite paths (and
finite penalty), we only consider winning permissive strategies, and consider the prefixes of the
plays until their first visit to the target location. For a winning permissive strategy σ from initial
configuration s0, we define

penaltys0,g(σ) = sup
π∈Out f (s0,g,σ)

penaltyπ(σ)

where Out f (s0,g,σ) is the set of finite outcomes of σ from s0 and ending at their first visit to g.
The penalty of non-winning strategies is +∞. The problem we tackle in this paper is the following:

Definition 2 (Computing the most permissive strategy - the decision problem) Given a timed
automaton A , a configuration s0 and a target location g, and a threshold p∈Q, the most-permissive
strategy problem asks whether there exists a winning permissive strategy σ in A such that
penaltys0,g(σ)≤ p.

Example 3 Figure 3 displays an example of a timed automaton with target location ` f . Obviously,
the target location ` f is reachable, and can even be reached with a penalty of 4 (starting
from (`0,x 7→ 0)); a corresponding strategy is to propose delay interval [0,1/2] in (`0,x 7→ 0), and
then [0,(1−κ(x))/2] from (`2,κ). One easily sees that the penalty of this strategy is 4 (which is
reached when Player 2 selects delay 1/2 in `0). As we explain after Theorem 9, better strategies
exist for this example.
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3 Related work

Robustness. Several previous works have proposed notions on defining robustness in timed
automata. One of the first attempts was presented in [GHJ97], where a topological definition was
introduced. The idea of this “tube semantics” is to accept a run if, and only if, all “neighbouring
runs” are also accepted. The aim was to find a procedure for deciding language inclusion in this
setting. However, this was shown to be undecidable later in [HR00].

Guard enlargement was then proposed by Puri [Pur98]. This semantics aims at over-approximating
the behaviors of implementations of timed automata over (simplified) hardware [DDR04]. Notice
that makes model-checking algorithms consider more runs, contrary to the tube semantics.
Hence this is mainly aimed at reasoning about robust safety which is proven to be decidable
in [Pur98, DDMR04]. Guard shrinking was then introduced in [SBM11]: the aim of shrinking is
to counteract the enlargement that the model will be subject to when being implemented. Hence,
the shrunk model is a good candidate to implement, provided that it preserves roughly the same
behaviors as the original automaton. This was proven decidable in [SBM11]. Guard enlargement
was also considered for reachability objectives [BMS12]. In this case, the aim is to reach a target
location despite possible timing perturbations. A natural approach is to see this as a game, where
one player tries to reach the target while the opponent introduces timing perturbations. This
approach is also decidable. Based on this approach, a stochastic approach to the robustness of
timed systems was proposed in [ORS14].

Our approach here shares similarities with that of [BMS12]: in both approaches, the aim is
to end up with a strategy to reach a target without choosing the exact date at which transitions
are taken. There are several important differences however: in particular, in our approach we
add up the penalties along the runs, so that we favor shorter runs. We believe that having shorter
strategies is a sensible choice in a setting where the imprecisions may accumulate when the run
becomes longer. Also, guard enlargement considers the same enlargement for all the transitions,
while we allow different lengths for the intervals.

Permissive strategies. While permissive strategies are a key notion in supervisory control [RW89,
ELTV14], they have not been widely considered in reactive synthesis, with the exception
of [BJW02, BKK11]. In those cases however, permissiveness is measured in terms of the
set of behaviours allowed by the strategy. Hence maximally-permissive strategies need not
exist, depending on the type of winning objectives. Our quantitative measure of permissiveness
originates from [BDMR09, BMOU11], where the notion of penalty of multi-strategies is studied
for discrete-time systems. This work was recently extended to Markov Decision Processes [DFK+14].

4 Computing optimal permissive strategies

In this section, we study some properties of the most-permissive-strategy problem, and prove
that it is decidable for one-clock timed autmata: we define a sequence of functions that we prove
converges to the least penalty that can be achieve for reaching g. We then show that for one-clock
timed automata, the computation is effective and that it terminates in a finite number of steps.
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4.1 Least penalty for winning in i steps

Let A be a timed automaton, and g be the goal location. W.l.o.g., we assume that all the
configurations of A , except configurations involving qsink, are winning for the objective of
reaching location g. Given a,b∈R≥0, we write 〈a,b〉, with 〈∈ {[,(} and 〉 ∈ {],)}, for the interval
between a and b which is either (half-)open or (half-)closed. For a clock valuation κ and a convex
clock constraint ϕ , we define

D(κ,ϕ) = {I ∈I \{ /0} | ∀t ∈ I. κ + t |= ϕ}.

Then D(κ, Inv(q)) contains the set of intervals of delays that can be elapsed from (q,κ). We now
define a sequence of functions (Pi)i∈N inductively as follows: for location g, we let Pi(g,κ) = 0
for all i ∈N and all valuation κ . For any location q 6= g, and for any valuation κ , we let

P0(q,κ) = +∞

Pi+1(q,κ) = min
a∈Act

inf
I∈D(κ,Inv(q))

(
penalty(I,a)+ sup

d∈I
Pi(succ(q,κ,d,a))

)

where succ(q,κ,d,a) is the configuration (q′,κ ′) such that (q,κ)
d,a−→ (q′,κ ′). We take the usual

convention that the infimum over the empty set is +∞.
Then, we let P(q,κ) = limi→+∞ Pi(q,κ). Notice that this limit exists, as a consequence of

the following lemma:

Lemma 4 For any n ∈ N, for any configuration (q,κ), the mapping t 7→ Pn(q,κ + t) is
non-decreasing and continuous, while the mapping i 7→Pi(q,κ) is non-increasing.

Proof. We assume q 6= g, as the case of location g is trivial. For the first claim, it suffices to
prove that Pn(q,κ) ≤Pn(q,κ + t) for any t ≥ 0. First notice that D(κ + t,ϕ)+ t ⊆ D(κ,ϕ),
where D(κ + t,ϕ)+ t is the set of intervals of D(κ + t,ϕ) shifted by t. Also, the set of transitions
that will be enabled in the future of (q,κ) is a subset of the transitions that will be enabled
from (q,κ + t). Thus for any multi-move (I,a) enabled in (q,κ + t), the multi-move (I + t,a)
is available in (q,κ). Both multi-moves have the same penalty and give rise to the same sets of
configurations, so that Pn(q,κ)≤Pn(q,κ + t) holds.

We now prove that the function is continuous (when it has finite value). This is clearly the
case of P0. Now, if Pn(q,κ) is finite, then for any ε > 0, there is an action a and a non-singular
interval I = 〈α,β 〉 such that

1
|I|

+ sup
d∈I

Pn−1(succ(q,κ,a,d))− ε ≤Pn(q,κ).

Now, there exists η > 0 such that∣∣∣∣ 1
(β −η)− (α +η)

− 1
β −α

∣∣∣∣≤ ε.

7 / 17 Volume 72 (2015)



Permissive strategies in timed automata and games4

Then the move (〈α +η ,β −η〉,a) can be played from any configuration (q,κ + t) with −η ≤
t ≤ η (provided that such a configuration exists), so that

Pn(q,κ + t)≤ 1
(β −η)− (α +η)

+ sup
d∈〈α+η ,β−η〉

Pn−1(succ(q,κ + t,a,d))

≤ 1
β −α

+ ε + sup
d∈〈α,β 〉

Pn−1(succ(q,κ,a,d))

≤Pn(q,κ)+2ε.

For the second claim, an easy induction proves that Pi(q,κ)≥Pi+1(q,κ).
Next we prove the correspondence between Pi and the optimal penalty of winning permissive

strategies from a given configuration:

Lemma 5 For any integer i and for any ε > 0, there exists a winning permissive strategy σ such
that for any winning configuration s,

penaltys,g(σ)≤Pi(s)+ ε.

Proof. We prove the result by induction on i, the case where i = 0 being trivial. Assume that
the result holds for some i. Pick ε > 0. Applying the induction hypothesis, we pick a winning
permissive strategy σ such that

penaltys,g(σ)≤Pi(s)+
ε

2

from any winning configuration s.
Pick a configuration s= (q,κ). By definition of Pi+1, there exists an action as and an interval Is

such that

Pi+1(q,κ)≤ penalty(Is,as)+ sup
d∈Is

Pi(succ(q,κ,d,as))≤Pi+1(q,κ)+
ε

2
.

We then define a new strategy σ ′ as follows:

σ
′(s) = (Is,as)

σ
′(s ·ρ) = σ(ρ) for any non-empty path ρ

By construction, this permissive strategy satisfies the expected inequality.

Lemma 6 For any winning configuration s, and for any permissive strategy σ that is winning
from s, it holds

P(s)≤ penaltys,g(σ).

Proof. The proof is by induction on the number of steps needed by σ to reach g. More precisely,
we prove that for any integer k, for any winning configuration s, and for any permissive strategy
all of whose outcomes from s reach g within at most k steps, it holds

Pk(s)≤ penaltys,g(σ).

Proc. AVoCS 2015 8 / 17
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The result follows from Lemma 4.
The case k = 0 holds trivially, since either s = (g,κ) for some κ and P(s) = 0, or there is no

permissive strategy that is winning in zero steps. Assume that the result holds for some integer k,
and consider a permissive strategy that is winning from s = (q,κ) in k+1 steps. Let (I,a) = σ(s).
Then from any configuration succ(q,κ,d,a), the strategy σ ′ defined by σ ′(ρ) = σ(s · ρ) is
winning in at most k steps. It follows that Pk(succ(q,κ,d,a))≤ penaltysucc(q,κ,d,a),g(σ

′). Then

penaltys,g(σ) = sup
π∈Out f (s,g,σ)

|π|−1

∑
j=0

penalty
(
σ(π≤ j)

)
= penalty(I,a)+ sup

d∈I
penaltysucc(q,κ,d,a),g(σ

′)

Hence penaltys,g(σ) ≥ penalty(I,a) + supd∈I Pk(succ(q,κ,d,a)) ≥ Pk+1(q,κ), as required.

4.2 Memoryless permissive strategies for one-clock automata

Despite these good properties, the sequence Pk(q,κ) does not provide us with an algorithm
for computing (or even approximating up to some positive ε) the optimal penalty from a
given configuration. This is for two reasons: first, Pk(q,κ) only gives an over-approximation
of P(q,κ), and we have no information about how close this approximation is from the exact
value. But more importantly, computing Pk+1(q,κ) requires computing Pk(succ(q,κ,d,a)) for
infinitely many moves (d,a). Hence the results of the previous section are by no means effective.

In this section, we prove that for one-clock timed automata, the sequence can be computed,
and that the computation terminates in finitely many steps. The proof has several stages: we first
prove that any winning multi-strategy can be made to use any resetting transition at most once,
without increasing its penalty. Then, we prove that any location will be visited at most once
between any two resetting transition. This bounds the number of steps after which the sequence
(Pk)k is constant.

4.2.1 Taking reset transitions at most once.

In this section, we prove that optimal permissive strategies can be made to visit any resetting
transition at most once, along any outcome:

Lemma 7 Let E be the set of resetting transitions of a game on a timed automaton G and let σ

be a winning permissive strategy from some configuration s. We can build a winning permissive
strategy σ ′ such that penaltys,g(σ

′)≤ penaltys,g(σ) and any transition in E appears at most once
along any finite outcome of Outfin(s,g,σ ′).

Proof. The proof is by induction: for a subset E ⊆ E , we define our induction hypothesis as
follows:

∃σE s.t. ∀π ∈ Out f (s,g,σE). any edge e ∈ E is taken at most once along π

and σE is winning, and penaltys,g(σE)≤ penaltys,g(σ). (IHE)

9 / 17 Volume 72 (2015)
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ρ

π

win

 
ρ

win

Fig. 4: Construction of σE ′ for the proof of Lemma 7

Then σ satisfies (IH∅). Now assume that we have a strategy σE satisfying (IHE) for some E.
We pick an edge e ∈ E \E, and, writing E ′ = E ∪{e}, we build a strategy σE ′ satisfying (IHE ′).

For this, we first remark that because σE is winning (for a reachability objective), the edge e
is visited finitely many times along any outcome in Out f (s,g,σE). In other terms, for any finite
outcome ρ ending after an occurrence of edge e, we can select a path π such that ρ ·π is an
outcome of σE , ending after an occurrence of e, and such that there is no occurrence of e in the
subtree generated by σE after ρ ·π . We write fσE (ρ) for the path ρ ·π constructed above.

Now, we build the strategy σE ′ . We arbitrarily pick a finite path ρ . If ρ does not visit edge e,
then we let σE ′(ρ) = σE(ρ). if ρ visits edge e once, we write ρ = ρ1 ·ρ2, where edge e is the last
transition in ρ1, and define σE ′(ρ) = σE( fσE (ρ1) ·ρ2). Finally, the value of σE ′ over paths that
visit e more than once is irrelevant.

It remains to prove that σE ′ satisfies both conditions of (IHE ). First, pick a maximal outcome ρ

in Out f (s,g,σE ′). If ρ does not visit edge e, then it is also an outcome of σE , hence it visits
any edge in E at most once, and the first property follows. If ρ visits e at least once, then one
easily proves that writing ρ = ρ1 ·ρ2 where ρ1 ends after the first visit to edge e, it holds that
fσE (ρ1) · ρ2 is an outcome of σE . By construction, ρ2 never visits edge e, and ρ1 is a prefix
of fσE (ρ1). It follows that the edges in E ′ are visited at most once along ρ .

We use similar arguments for proving that the penalty of σE ′ is less than or equal to that
of σE . In order to prove this, we prove that for any outcome ρ ′ ∈ Out f (s,g,σE ′), there is an
outcome ρ ∈Out f (s,g,σE) such that the penalty of σE ′ along ρ ′ is higher than that of σE along ρ .
In case ρ never visits edge e, then letting ρ ′ = ρ , and noticing that σE ′ plays as σE all along ρ ,
we get the result. If ρ = ρ1 ·ρ2, with ρ1 ending after visiting edge e, then ρ1 is an outcome of
both strategies, and both strategies play the same moves along this outcome, so that they have the
same penalties; similarly, ρ2 is an outcome of σE ′ after ρ1 and an outcome of σE after fσE (ρ1),
and both strategies plays the same moves along those paths. Hence the penalty of σE is higher
than that of σE ′ , which completes the proof.

The inductive step of the constructive proof of Lemma 7 is visualized in Figure 4. The striped
area shows the sub-game-tree after a resetting transition has been taken for the last time in the
play.

4.2.2 No cycles between reset transitions.

We use similar arguments for proving that any location of a timed automaton G is visited at most
once between any two consecutive resets of the clock:
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Lemma 8 Let σ be a winning permissive strategy from some configuration s. We can build
a winning permissive strategy σ ′ such that penaltys,g(σ

′) ≤ penaltys,g(σ) and for any finite
outcome π of Outfin(s,g,σ ′),
• if π involves no resetting transitions, any location of G appears at most once along π;
• otherwise, along π , any location of G appears at most once between any two consecutive

resets, before the first reset, and after the last reset.

Proof. The proof is by induction on a subset L⊆Q of locations. We inductively build strategies σL

with non-increasing penalties, and visiting locations in L at most once between any two consecutive
resets, before the first reset and after the last one.

The induction is trivially initiated with σ /0 = σ . Now, assume that σL has been obtained for
some L, and pick a location ` ∈ Q\L. Assume that there is an outcome ρ ∈ Out f (s,g,σL) along
which ` appears twice along a segment without reset (i.e., there is at least one edge between the
two occurrences, but no reset). Since σL is winning (for the reachability objective), ` can be only
visited finitely often in that segment. Therefore, for any finite outcome h ending with a reset
transition or h to be the empty play, for any finite continuation ρ without any occurrences of reset
transitions such that h ·ρ ∈ Outfin(s,g,σ ′), we can select a path π containing no clock reset such
that h ·ρ ·π ∈ Outfin(s,g,σ ′) ends in ` and there is no further occurrence of `. We write fσL(h ·ρ)
for h ·ρ ·π .

Now, we build the strategy σL′ . Let γ be an arbitrary play in Out(σL). Then γ is of the form
h ·ρ ·m with h,ρ as indicated above and m to be any continuation. We construct the new strategy
as σL′(γ) = σL( fσL(h ·ρ) ·m) whenever ρ contains ` exactly once and σL′(γ) = σL(γ) otherwise.

It remains to prove that σL′ satisfies the two required conditions. The second condition holds
due to the same argument as used in the proof of Lemma 7. In case ρ never visits `, then by not
updating the strategy the property of visiting ` at most once remains. If ` is visited in a segment,
then the strategy at the first occurrence of ` is replaced by the strategy at the last occurrence of `
within that segment. Hence, ` is visited only once in this case. The first condition actually implies
from the second condition for the case when h is the empty play.

Lemma 8 intuitively tells us that at most one location visit for each location is sufficient if
there is no resetting transition along a winning play. In general it might be necessary to visit one
location several times. However, the number of visits can be bounded. Figure 5 shows such an
example: location `1 has to be visited three times before `1 is reachable.

`0 `1

`′1

`1
x≥ 3 x≤ 1

x := 0 x≥ 2

x≤ 2; x := 0

Fig. 5: An automaton where several visits to `1 are needed
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4.2.3 Computation of Pi(q,κ).

The arguments above entail that the sequence Pi converges in finitely many steps. It remains to
explain how we compute these functions. We write C for the set of constants appearing in the
clock constraints of the automaton. Computing P1(q,κ) is easy, as it suffices to find the action a
with the largest time interval I for which succ(q,κ,d,a) = (g,κ ′) for any d ∈ I. One easily notices
that the lower bound of the largest I is either 0 or of the form c−κ(x), for some constant c ∈C.
Similarly, the upper-bound is of the form c′−κ(x) or +∞. It follows that P1(q,κ) is made of
finitely many pieces, on which it is either a constant, or of the form 1

d−κ(x) .

We prove by induction that Pi(q,κ) is always piecewise of the form bn
i +

cn
i

dn
i −κ(x) (or +∞),

with finitely many pieces 〈en
i , f n

i 〉, with rational constants when n≤ 1, and algebraic constants for
larger n.

As we just showed, this is the case of P0 and P1. Suppose this is the case at step n. Then

Pn+1(q,κ) = min
a∈Act

inf
I∈D(κ,Inv(q))

I=〈e, f 〉

(
penalty(〈e, f 〉,a)+ sup

d∈I
Pn(succ(q,κ,d,a))

)
From (q,κ), several transitions may be possible, with guards of the form x ∈ 〈α j,β j〉, leading to
configurations (q j,κ j), with κ j(x) ∈ {0,κ(x)} depending on whether the clock is reset along the
corresponding transition.

Following Lemma 4, we have that supd∈〈e, f 〉Pi(succ(q,κ,d,a)) can only be achieved by
taking the transition as late as possible, hence when d tends to f (the upper bound of I) or when
κ(x)+d tends to some constant in C (which corresponds to taking a transition as late as possible
while it is available). The same argument entails that e (the lower bound of I) can be chosen as a
constant in C: since the worst case is when the opponent plays as late as possible, e can be taken
as low as possible as long as it does not enable a new transition.

In the end, there are only finitely many values to try for the action to play and the lower bound e
of I (satisfying e = 0 or κ(x)+ e ∈ C). For those choices, f 7→ supd∈〈e, f 〉Pn(succ(q,κ,d,a))
is easily computed as a function of f , following the remark above. It is piecewise of the form
bn

i +
cn

i
dn

i −κ(x) (but it need not be continuous at positions where κ(x)+ f ∈C). The function (of f )
to optimize is then of the form

1
f − (c−κ(x))

+bn
i +

cn
i

dn
i − (κ(x)+ f )

This function is to be optimized over an interval with bounds of the form 〈en
i , f n

i 〉. The extremal
values can be obtained at the bounds of the interval, or at the root of a polynomial of degree 2
obtained by computing the derivative of the above function.

Finally we obtain the following:

Theorem 9 The optimal penalty (and a corresponding almost-optimal strategy) for reaching a
target location in a timed automaton can be computed in polynomial time.

Example 10 We come back to our Example 3, and compute the optimal penalty for reaching
the target. We initialize the computation by letting P0(`,κ) = +∞ for all ` 6= ` f ; we also let
Pi(` f ,κ) = 0 for all i.

Proc. AVoCS 2015 12 / 17



ECEASST

Then only configurations (`2,κ) where κ(x)≤ 1 are winning in one step. For those configurations,
P1(`2,κ) =

1
1−κ(x) (hence it is +∞ when κ(x) = 1). The other configurations have value +∞.

At step 2, any configuration (`3,κ) is winning, since the clock is reset when going to `2.
We have P2(`3,κ) = P1(`2,x← 0) = 1. Configuration (`0,κ) with κ(x)≤ 1 are also winning
in two steps. The optimal penalty in two steps is computed as follows:

P2(`0,κ(x)) = inf
0≤e≤ f<2−κ(x)

(
1

f − e
+ sup

e≤d≤ f
P1(`2,κ +d)

)

= inf
0≤ f<2−κ(x)

(
1
f
+P1(`2,κ + f )

)
= inf

0≤ f≤1−κ(x)

(
1
f
+

1
1− (κ(x)+ f )

)
One easily obtains that the infimum is reached when f = 1−κ(x)

2 , with P2(`0,κ) =
4

1−κ(x) .
The only new transition to consider at step 3 is the transition from `2 to `3. The penalty in `2 is

computed as follows:

P3(`2,κ) = inf
0≤e≤ f<2−κ(x)

(
1

f − e
+ sup

e≤d≤ f
P2(succ(`2,κ,d,a))

)

The successor of (`2,κ) may be either ` f (with penalty 0) or `3 (with penalty 1); the latter will be
chosen by the opponent as soon as κ(x)+ f > 1. Hence

P3(`2,κ) = inf
0≤e≤ f<2−κ(x)

(
1

f − e
+1(1−κ(x);+∞)( f )

)
= inf

0≤ f<2−κ(x)

(
1
f
+1(1−κ(x);+∞)( f )

)
(We denote 1I( f ) for some interval I and value f as the function outputting 1 if f ∈ I and 0
otherwise.) We optimize this function by considering two cases: for f ≤ 1−κ(x), the penalty
is 1/ f , which is minimized when f = 1− κ(x) with value 1/(1− κ(x)); for 1− κ(x) < f <
2− κ(x), the penalty is 1/ f + 1, which is optimized when f tends to 2− κ(x) with value
1/(2−κ(x))+1. In the end, when κ(x)≤ x0 =(3−

√
5)/2' 0.38, the optimal multi-strategy is to

play interval [0,1−κ(x)], with penalty 1/(1−κ(x)); when κ(x)≥ x0, the optimal multi-strategy
is to play interval [0,2−κ(x)), with penalty 1+1/(2−κ(x)). Notice that the optimal penalty is
a continuous function of κ(x). Also notice that this gives the optimal penalty for winning from `2.

We now compute P4. Following Lemma 7, there is no hope of improving the penalty from
location `3, so that only `0 has to be considered. We have:

P4(`0,κ(x)) = inf
0≤e≤ f<2−κ(x)

(
1

f − e
+ sup

e≤d≤ f
P1(`2,κ +d)

)

= inf
0≤ f<2−κ(x)

(
1
f
+P3(`2,κ + f )

)

13 / 17 Volume 72 (2015)



Permissive strategies in timed automata and games8

When κ(x)+ f ∈ [0,x0] (assuming κ(x)≤ x0), the function to optimize is 1/ f +1/(1−κ(x)− f ).
This function has no local minimum for κ(x)+ f ∈ [0,x0]. Hence over [0,x0−κ(x)], the infimum
is when f = x0− κ(x), and its value is 1/(x0− κ(x))+ 1/(1− x0). When κ(x)+ f ∈ [x0,2),
the function to optimize is 1/ f + 1+ 1/(2−κ(x)− f ). The local minimum is reached when
f = (2−κ(x))/2, which indeed satisfies κ(x)+ f ∈ [x0,2) when κ(x)< 2. In the end, we obtain
P4(`0,κ) = P(`0,κ) = 1+ 4

2−κ(x) .

4.3 Extension to one-clock timed games

In the computations above, non-determinism is solved by an adversary with very limited capabilities.
We explain below how our approach can be lifted to timed games, where the second player has
more power. In (classical) timed games, at each step, both players propose a delay and an action
(where the set of actions is partitioned between Player-1 actions and Player-2 actions); the player
with the shortest delay (if any) then applies her move, and the game continues. Non-determinism
(when both players propose the same delay) is solved by the second player [AFH+03]. This
framework can be lifted to the setting of permissive strategies: the first player proposes a
multi-move (I,a), while the second player proposes a move7 (δ ,α). In case δ < e for all e ∈ I,
then the move of the second player is applied; in case δ > f for all f ∈ I, the second player selects
a delay d ∈ I, and the move (d,a) is applied; finally, if δ ∈ I, Player 2 may decide to either apply
her move (δ ,α), or to select some d ∈ I with d ≤ δ , and to apply the move (δ ,a).

Our results above for permissive strategies in timed automata can be extended to timed games,
with the following changes: First, we adapt the computation of the sequence Pi+1, in order
to take the extended capabilities of the opponent. More precisely, instead of only maximizing
Pi(succ(q,κ,d,a)) when d ranges over I, she now also has the opportunity to apply another
move (δ ,α) for any δ in or “before” I (i.e., for which there exists t ≥ 0 s.t. δ + t ∈ I):

Qi(g,κ) = 0

Q0(q,κ) = +∞ for all q 6= g

Qi+1(q,κ) = min
a∈Act1

inf
I∈D(κ,Inv(q))

(
penalty(I,a)+

max(sup
d∈I

Qi(succ(q,κ,d,a)),sup
δ≤I

max
α∈Act2

Qi(succ(q,κ,δ ,α)))
)

With this definition, the first statement of Lemma 4 fails: the global penalty of move (I,a)
from (q,κ + t) might be better than the penalty of move (I + t,a) from (q,κ), because the latter
offers more possibilities to Player 2. Still, in the one-clock setting, the result holds in case κ(x)
and κ(x)+ t are not separated by any constant of the automaton. In other terms, for one-clock
games, t 7→ Qn(q,κ + t) is piecewise non-decreasing and piecewise continuous, with pieces
defined by the constants of the automaton.

In the end, we can still look for the optimal choice of Player 2 within a finite set, and all the
other arguments that we used in the one-player setting still apply. Finally, we obtain:

7 We only consider permissive strategies of the first player in this setting, as we only want to minimize the penalty for
the protagonist.
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Theorem 11 The optimal penalty (and a corresponding almost-optimal strategy) for reaching a
target location in a timed automaton game can be computed in polynomial time.

4.4 Discussions on other ways of computing penalties

Our choice of the way we compute penalties is only one among many relevant possibilities: for
instance, we believe that assigning penalty +∞ to punctual intervals is reasonable when dealing
with robustness, but it might be argued that we should compare how much the player reduces the
interval compared to what she is allowed to do. In other terms, if playing punctual is the only
possibility, then it should have bounded penalty. This requires extra definitions and arguments,
which we leave for future work.

Accumulating penalties along a run is also something we could change. It fits well with finitary
objectives such as reachability, and favors short paths. Another solution would be to take the
maximum penalty along the outcomes, which could be handled by a trivial modification of our
algorithm. Averaging would be yet another option, which looks more complex to compute.

5 Conclusion

This paper has introduced a new notion of robustness in timed automata based on permissive
strategies. The contribution on the specification part is twofold: On the one hand, we extended
the notion of permissive strategies to a timed formalism. On the other hand, this notion of
permissiveness, which implies robustness, makes it possible to compare the robustness of two
different system models based on the quantitative measure of the permissiveness. Furthermore,
we have shown that the most permissive strategy with respect to the reachability acceptance
condition on one clock can be efficiently computed. This presented approach can be seen as a
complementary methodology to existing practical approaches such as presented in [BFLM11]
or [CJL+09] for measuring the robust on models of timed systems.

Challenging problems in this approach remain when additional clocks will be included. At this
point, reasoning about the system models might get computationally infeasible.
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[BKK11] Ch. Baier, J. Klein, S. Klüppelholz. A Compositional Framework for Controller Synthesis. In
Katoen and König (eds.), CONCUR’11. LNCS 6901, pp. 512–527. Springer, Sept. 2011.

[BMOU11] P. Bouyer, N. Markey, J. Olschewski, M. Ummels. Measuring Permissiveness in Parity Games:
Mean-Payoff Parity Games Revisited. In Bultan and Hsiung (eds.), ATVA’11. LNCS 6996,
pp. 135–149. Springer, Taipei, Taiwan, Oct. 2011.

[BMS12] P. Bouyer, N. Markey, O. Sankur. Robust reachability in timed automata: a game-based
approach. In Czumaj et al. (eds.), ICALP’12. LNCS 7392, pp. 128–140. Springer, July 2012.

[CJL+09] F. Cassez, J. Jessen, K. Larsen, J.-F. Raskin, P.-A. Reynier. Automatic Synthesis of Robust
and Optimal Controllers An Industrial Case Study. In Majumdar and Tabuada (eds.), Hybrid
Systems: Computation and Control. Lecture Notes in Computer Science 5469, pp. 90–104.
Springer Berlin Heidelberg, 2009.

[DDMR04] M. De Wulf, L. Doyen, N. Markey, J.-F. Raskin. Robustness and Implementability of Timed
Automata. In Lakhnech and Yovine (eds.), FORMATS’04. LNCS 3253, pp. 118–133. Springer,
Sept. 2004.

[DDR04] M. De Wulf, L. Doyen, J.-F. Raskin. Almost ASAP Semantics: From Timed Models to Timed
Implementations. In Alur and Pappas (eds.), HSCC’04. LNCS 2993, pp. 296–310. Springer,
Mar.-Apr. 2004.
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