Flat acceleration in symbolic model checking*

Sébastien Bardin!, Alain Finkel', Jérome Leroux?, and Philippe Schnoebelen®
L 1L.SV: ENS de Cachan & CNRS UMR 8643,
61, av. Pdt. Wilson, 94235 Cachan Cedex, France.
{bardin|finkel|phs}@lsv.ens-cachan.fr
2 IRISA, Vertecs project, INRIA,
Campus de Beaulieu, 35042 Rennes Cedex, France.
jleroux@irisa.fr

Abstract. Symbolic model checking provides partially effective verification pro-
cedures that can handle systems with an infinite state space. So-called “accelera-
tion techniques” enhance the convergence of fixpoint computations by computing
the transitive closure of some transitions. In this paper we develop a new frame-
work for symbolic model checking with accelerations. We also propose and ana-
lyze new symbolic algorithms using accelerations to compute reachability sets.

Key words: verification of infinite-state systems, symbolic model checking, ac-
celeration.

1 Introduction

Context. The development of model checking techniques [19] for infinite-state sys-
tems is now an active field of research. These techniques allow considering models like
pushdown systems [13], channel systems [1, 14], counter systems [8, 31, 38], and many
other versatile families of models. Such models are very expressive and often lead to
undecidable verification problems. This did not deter several research teams from de-
veloping powerful innovative model checkers for infinite-state systems. For example,
tools for checking reachability properties of counter systems are ALV [6], BRAIN [37],
LAsH [33], TREX [3], and our own FAST [8]. For infinite-state systems, model check-
ing must be “symbolic” since one manipulates (symbolic representations of) potentially
infinite sets of configurations. The most popular symbolic representations are based on
regular languages: these are quite expressive and automata-theoretical data structures
provide efficient algorithms performing set-theoretical operations as well as pre- and
post-image computations. With these ingredients, it becomes possible to launch a fix-
point computation for forward or backward reachability sets, as exemplified in [32].

The problem of convergence. When dealing with infinite-state systems, a naive fix-
point computation procedure for reachability sets, in the style of Procedure 1 (sec-
tion 3.2), has very little chance to terminate: convergence in a finite number of steps
can only occur if the system under study is uniformly bounded (see section 3.2). To

* This work was supported by the ACI Sécurité & Informatique (project Persée) funded by the
French Ministry of Research.

2 Sébastien Bardin, Alain Finkel, Jérome Leroux, and Philippe Schnoebelen

make fixpoint computations converge more frequently, so-called “acceleration tech-
niques” have been developed. These techniques can compute subsets of the reachabil-
ity set that are not uniformly bounded. This can be done, for example, by replacing a
control loop “x:=x+1; y:=y-1" by its transitive closure “k :=random_int () ;
x:=x+k; y:=y-k”. Currently, many different acceleration techniques for different
families of systems exist [1,2, 12, 14, 26, 38]. Some of them have been implemented [3,
8,33] and promising case-studies have been reported [1-3, 8,9]. Acceleration shares
some similarities with the widening techniques used in abstract interpretation [22] but
also exhibits some clear differences: acceleration aims at exact computation for some
given control structures, while widening mostly ignores control structures and usually
trades exactness for termination.

A field in need of foundations. The existing acceleration results usually amount to a
(sometimes difficult) theorem stating that the transitive closure of an action, or of a se-
quence of actions, can be effectively computed. The difficulty of these results usually
lies in finding the precise conditions on the action and on the set of initial states that
yield effectiveness. How to use acceleration results is not really known: the theorems
and algorithms for computing reachability sets with acceleration methods do not exist
in general! With some tools, e.g., LASH, the user has to choose which loops to accel-
erate and how to mix the outcomes with more standard symbolic computation; in other
cases, e.g., with TREX, some default strategy is implemented outside of any theoretical
framework and without discussions about its efficiency or completeness.

Our contributions. (1) We propose the first theoretical framework for symbolic model
checking with acceleration. We distinguish three natural levels for accelerations (“loop”,
“flat”, and “global”), depending on which sequences of transitions can be computed:
transitive closure of cycles (resp. of length 1) for flat (resp. loop) acceleration; or any
regular set of sequences for global acceleration. These levels can account for most ac-
celeration results on specific systems (pushdown systems, channel systems, counter
systems, . ..). For each level we give a symbolic algorithm with acceleration computing
reachability sets and we characterize the conditions necessary for its termination.

Flat acceleration is the most interesting level. As a matter of fact, loop acceleration
is not sufficient for many of the example systems we have analyzed with our tool FAST.
Furthermore, the majority of existing acceleration results stated at the loop acceleration
level may be extended to the level of flat acceleration. At the other end of the spectrum,
global acceleration is always sufficient but it occurs very rarely in practice and is es-
sentially restricted to particular subclasses (e.g., pushdown systems, reversal-bounded
counter systems [31] or particular subclasses of Petri nets).

(2) We develop new concepts for the algorithmic study of flat acceleration. The
notions of flattenings and of flattable systems provide the required bridge between flat
acceleration and the effective computation of the reachability set.

We propose new symbolic procedures and analyze them rigorously. We show Pro-
cedure REACH?2 terminates iff it is applied to a flattable (rather than flat) system, which
is the first completeness result on symbolic model checking with acceleration. We re-
mark that most of the case studies we analyzed in earlier works with FAST are flattable
but not flat, underlining the relevance of this concept.

Flat acceleration in symbolic model checking 3

(3) Procedure REACH?2 is schematic and it can be specialized in several ways. We
propose one such specialization, REACH3, geared towards the efficient search of all
flattenings of a nonflat system, without compromising completeness.

It appears that a key issue with REACH3 is the reduction of the number of circuits
the procedure has to consider. FAST implements specific algorithms for counter sys-
tems that reduce exponentially the number of considered circuits and we show how
to generalize these ideas to other families of systems. It is these algorithms that make
FAST succeed in verifying several examples (see section 6) for which tools like LASH
and ALV, based on similar technology but restricted heuristics, do not terminate. More
generally, the comparisons in section 6 suggest that flat acceleration greatly enhances
termination of symbolic reachability set computation, and is fully justified in practice.

QOutline. We define the systems under study in section 2, and the symbolic frameworks
in section 3. Section 4 introduces the three levels of accelerations and defines flattable
systems. Section 5 provides our procedure for flattable systems, and gives several algo-
rithmic and/or heuristic refinements. Section 6 compares several existing tools through
the new framework. All omitted proofs can be found in the full version of this paper.

2 Systems and interpretations

Notations. A (binary) relation r on some set X is any subset of X x X. We write
xrx’ when (x,2') € r and denote by r(z) the set {’ € X | xra’}. Fr Y C X,
r(Y)is U,cy 7(z). Given 71,79 € X x X, the compound relation 1 3 contains
all pairs (z, z) s.t. 7 y and y ro z for some y € X. Note that, in r; e 7o, relation rq
is applied first. For i € N, 7% is defined inductively by r* = Idx and r*t! = r e r?,
where Idx is the identity on X. 17" = J, oy r? is the reflexive and transitive closure of .

Here, a system is a finite state control graph extended with a finite number of vari-
ables that range over arbitrary domains and are modified by actions when a transition is
fired. Specific families of systems have been widely studied (see section 2.1). Formally:

Definition 2.1 (Uninterpreted system). An uninterpreted system S is a tuple S =
(Q, X, T), where Q is a finite set of locations, X is a (possibly infinite) set of formulae
called actions, T' C) x X' X Q) is a finite set of transitions.

Given a uninterpreted system S = (Q, X, T), the source, target and action mappings
a:T —Q,8:T — Qandl : T — X are defined as follows: for any transition

t=(q,0,¢) €T, a(t) =q,B(t) = ¢,1) = o.

Definition 2.2 (Interpretation). Given a (possibly infinite) set of formulae 3 and a set
D, an interpretation I of X, shortly an interpretation, is a tuple I = (X, D, [-]) such
that [] : X — 2P*P maps formulae to relations on D.

Definition 2.3 (System). An interpreted system S (shortly a system) is a pair (S, I) of
an uninterpreted system S = (Q, X, T) and an interpretation I = (X, D, []) of X,
shortly written S = (Q, X, T, D, []).

Fig. 1 displays Sg, a simple uninterpreted system, in graphical notation.

4 Sébastien Bardin, Alain Finkel, Jérome Leroux, and Philippe Schnoebelen

In this example the actions may
be assignments that can be guarded w= 41 /* a1 %/ =y + 2:
by Boolean expressions, but we will @- @‘ Z;Z i 1,
not specify it more precisely. A pos- J+ az */
sible mFerpretatlon.for.al ,ao and asg x £yl yi=y +x [* azx/
(the actions appearing in Sp) assumes
that the domain D is Z{'W/}, or equiv-
alently 72, i.e., we decide that z and
y range over integers. We then interpret the actions in the obvious way. For example
[ae] = {((z,y),(z",y)) | # y Ay = y+axAa’ = z}. This turns Sy into an
interpreted system Sy.

Fig. 1. Sy, a simple uninterpreted system

Behaviour. The set of configurations Cs of S is Q x D, and each transition ¢t € T is
interpreted as a relation N Cs x Cg defined by: (g,x) SR (¢, X)if g = a(t),q =
B(t) and (x,x’) € [i(¢)]. This definition extends to sequences m € T* of transitions.
Let ¢ denote the empty word. Then == I dc and “T_ 1, o I, We also define = for

any language L C T* by LN Urer Z.. Similarly [-] is extended to any language
L C X*. In the following we omit the S subscript whenever this causes no ambiguities.

Reachability problems. We are interested in checking safety properties, which can be
expressed in terms of reachability using standard techniques. For any X C Cg and
any L C T*, we define postg(L, X) = {2’ € Cs| Iz € X; (z,2') € i>} The set
post(T, X) of all configurations reachable in one step from X is denoted by post(X).
The set post(7T*, X) of all configurations reachable from X is the reachability set of
X, denoted by post*(X).

In practice, we usually ask whether post*(Xy) C P, for X, a set of initial con-
figurations, and P a set of “safe” configurations. We focus here on the reachability set
computation which is the key issue. Since post*(X)) is not recursive in general, the best
we can hope for are partially correct procedures, with no guarantees of termination, but
that are efficient on interesting subclasses of systems, and in practical case-studies.

Backward computation. One may also rely on backward reachability and check if, for
aset P of “bad” configurations, pre* (P)N X is empty (with obvious definition for pre).
Since, for our level of abstraction, adaptation to backward computation is straightfor-
ward, we consider only forward computation. However it is worth remembering that,
depending on the case at hand, one of the approaches may be more adapted than the
other. Along the paper specific results for backward computation are pointed out.

Transition relation computation. A third approach is to compute the reachability re-

lation = once and for all (e.g., [21,25]). Then post™*(Xy) =5 (Xo). Our framework
extends smoothly in this direction but, since it requires additional notations, we post-
pone this until the full version of this work.

Flat acceleration in symbolic model checking 5

2.1 Families of systems

Definition 2.4 (Family of systems). Given an interpretation I = (X, D, []), the fam-
ily of systems built on I (shortly the family of systems) denoted by F(I) is the class of
all systems S = (Q, X, T, D, []) using I to interpret actions.

Well known models can be obtained by instantiating Definition 2.4:

Minsky machines: are obtained by defining D = NV where Var = {x,2,...} is
a set of variables, and X' as the set of increments “x; : =x; + 17, guarded decrements
“x; > 0? x;:=x; — 17 and O-tests “x; = 0?7 with the obvious interpretation.
Counter systems [18, 34]: are obtained by considering the same domain, or a variant
D = 7Y% and all actions definable in Presburger arithmetic. Many restrictions exist,
e.g., linear systems where actions are linear transformations with guards expressed in
Presburger [26, 38], reversal-counter systems [31], many extensions of VASS (or Petri
nets) and so on.

Pushdown systems: the domain is D = I'*, the set of all words on some stack alphabet
I'. Actions add or remove letters on or from the top of the stack.

Channel systems [17]: consider the domain is D = (I'*)¢ where C is a set of fifo
channels, and I is some alphabet of messages. Actions add messages at one end of the
channels and consume them at the other end.

Timed automata [5]: consider the domain D =]RX‘”. Here some actions are guarded
by simple linear (in)equalities and they can only reset clocks. Other actions, left implicit
in the standard presentation, account for time elapsing.

Hybrid systems [4]: extend timed automata in that the real-valued variables do not
increase uniformly when time elapses. Rather they each increase according to their
own rate (as given by the current location).

3 A symbolic framework for symbolic model checking

In practice model checking procedures use symbolic representations (called here re-
gions) to manipulate sets of configurations. The definition below follows directly from
ideas expressed for example in [15, 32, 22].3

Definition 3.1 (Symbolic framework). A symbolic framework is a tuple SF = (X, D,
[-1,, L, [-]5) where I = (X, D, [-],) is an interpretation, L is a set of formulae called
regions, [-], : L — 2P is a region concretization, and such that there exists a decidable
relation T and recursive functions U, POST satisfying:

1. there exists an element 1€ L such that [L], = 0,

2. C C L x Lis such that for all x1,%9 € L, x1 T x9 iff [x1]5, C [x2],,
3.U:LxL— LissuchthatVx1,x2 € L, [x1 Uxa]y = [x1]5, U [x2],,

4.POST : X' x L — Lis such thatVa € X,Vx € L, [POST(a,x)], = [a], ([x],).

3 Some weakened versions of the symbolic framework are sometimes considered. A weak
inclusion ensures only that x1 C xo implies [x1] C [x2] while a weak union satisfies
[x1] U [x2] C [x1 U x2] (typical widening in abstract interpretation [22]). In the following,
we do not consider weakened framework.

6 Sébastien Bardin, Alain Finkel, Jérdme Leroux, and Philippe Schnoebelen

Notation. Usually given an interpretation I = (X, D, [-],) and a set of regions L, -],
is understood. Thus in the following, we write [-] for both [-], and [-],, and we denote
symbolic frameworks as SF' = (I, L). In the rest of the paper, we fix an arbitrary sym-
bolic framework SF' = (I, L). When referring to a system S, if nothing is specified we
assume that S € F(I).

Well-known symbolic frameworks for some of the families listed in section 2.1 are:
Regular languages: have been used for representing sets of configurations of push-
down systems [13], distributed protocols over rings of arbitrary size [32], and chan-
nel systems [36]. Restricted sets of regular languages are sometimes used for better
algorithmic efficiency: languages closed by the subword relation [1] or closed by semi-
commutations [16].

(finite union of) Convex polyhedra [4]: are conjunctions of linear inequalities defining
subsets of RK‘", relevant in the analysis of hybrid systems.

Number Decision Diagrams [18,26]: are automata recognizing subsets of Z "*" and
have been used in the analysis of counter systems.

Real Vector Automata [11]: are Biichi automata recognizing subsets of RX” and have
been used in the analysis of linear hybrid systems.

Difference Bounds Matrices [5]: are a canonical representations for convex subsets
of R_‘:‘” defined by simple diagonal and orthogonal constraints that appear in timed
automata.

Covering Sharing Trees [24]: are a compact representation for upward-closed sub-
sets of NV These sets appear naturally in the backward analysis of broadcast proto-
cols [26] and several monotonic extensions of Petri nets.

Given a system .S with a set of locations), and X C Cg, post*(X) is of the form
Ugela} x Dy where the D, are subsets of D. Assuming an implicit ordering on

locations g1, . . ., qq|, we work on tuples of regions in LIQI We extend [-] to Ll by
[(x1,-- - x10)] = U2 {ai} x [xi]. Extensions of C and U are component-based.
POST is extended into POST : T x L — L by: POST((gi,a,q), (x1,-..,%|q|)) is
equal to (x}, ... 7x@) such that x}, = L if p # j, POST(a, x;) otherwise. POST is then

extended to sequence of transition in the obvious way. We define PosT : LIQl — L@l
by POST(x) = | |, POST(t, x).

3.1 Limits of the symbolic approach

A subset of configurations X C Cg is L-definable if there exists x € L@l such that
[x] = X. Obviously, computing post*(X) using regions is feasible only if post™(X)
is L-definable and the question “is post*([x]) L-definable?” is undecidable in general.

Furthermore, L-definability of post*(X) is not a sufficient condition for its com-
putability. We say below that post® (or any other function) is effectively L-definable if
there exists a recursive function g : LI?l — LI@l such that vx € LI®!, post*([x]) =
[9(x)]. (We often abuse terminology and write that “post*([x])”, instead of post*, “is
effectively L-definable”). It can well be the case that post*([x]) is L-definable but not

Flat acceleration in symbolic model checking 7

effectively so (e.g., the family of lossy channel systems and the framework defined by
simple regular expressions).

3.2 Standard symbolic model checking procedure

REACH1 (Procedure 1) is the standard symbolic procedure for reachability sets. It is
only guaranteed to terminate on L-uniformly bounded systems.

procedure REACH1(xo)
parameter: S
input: xg € L'el
1: x %o
2: while POST(x) IZ x do
3: x < POST(x)Ux
4: end while
S: return x

Procedure 1: Standard symbolic model checking algorithm (forward version)

Definition 3.2 (L-uniformly bounded). A system S is L-uniformly bounded if for all
x € L9l there exists ny € N such that, for all c; € Q x [x] and c2 € Q x D, if
ca € post™({c1}) then ¢z € U, <, post'({c1}).

Theorem 3.3. Given a symbolic framework SF = (I, L) and a system S € F(I)

1. when REACH1 terminates, [REACH1(xq)] = post*([xo]) (partial correctness);
2. REACH] terminates on any input iff S is L-uniformly bounded (termination).

Remark 3.4. Termination for L-uniformly bounded systems does not hold if C or LI are
weak.

In practice systems are rarely L-uniformly bounded and Procedure 1 seldom ter-
minates. A notable exception are the well-structured transition systems with upward-
closed sets as regions [28, 27]. They are L-backward uniformly bounded so that a back-
ward version of Procedure 1 always terminates.

4 Flat acceleration for flattable systems

4.1 Acceleration techniques

In order to improve the convergence of the previous procedure, acceleration techniques
consist in computing the transitive closure of some transitions.

Definition 4.1 (Acceleration). A symbolic framework SF = (I, L) supports

1. loop acceleration if there exists a recursive function POST_STAR : X' x L — L s.t.
Va € X, Vx € L, [POST_STAR(a, x)] = [a*] ([x]);

8 Sébastien Bardin, Alain Finkel, Jérdme Leroux, and Philippe Schnoebelen

2. flat acceleration if there exists a recursive function POST_STAR : X* x L. — L s.t.
V€ X*, Vx € L, [POST_STAR(m, x)] = [7*] ([x]);

3. global acceleration if there exists a recursive function POST_STAR : RegExp(X) X
L — L s.t. for any regular expression € over X, for any x € L, [POST_STAR(€, x)

= el ([xD):

We often write that “S”, rather than (I, L), “supports loop acceleration, or flat, ...”

Consider Sy from Fig. 1 and let A C D. Loop acceleration only concerns action ag,
and comes down to computing [a3] (A) = {(2',y) € Z*|3(z,y) € A;Tk € N;z! =
x—k ANy = y+2-k}. Flat acceleration requires computability of [(a; - a2)*] (A),
[[(Cll - as - ag)*]] (A), [[(a1 -asz - as- CLQ)*]] (A), [[(ag -ag - al)*]] (A) and so on. Global
acceleration requires the computation of more complex interleaving of actions, like
[(a1- a3 - az)*] (A).

Definition 4.1 applies to symbolic frameworks and hence uses sequences of actions.
However, in practice, POST_STAR is used with sequences of transitions. Let us illustrate
this in the case of flat acceleration: Consider a sequence m = (q1, a1, q2) - (g3, a2,q4) -
(g5, as, go) of transitions. There are two cases. If the sequence is invalid (i.e., g2 # g3
or ¢4 # ¢s) then the associated relation is empty and POST_STAR(, (¢,%)) is (g,%).
If the sequence is valid, then the sequence is equivalent to (g1, a1 - as - as, gg). If the
sequence is not a cycle (q1 # gg) it can be fired at most once and POST_STAR(T, (¢1, %))
is (gs, POST(aq - ag - as,x)) + (q1,x). If the sequence is a cycle (i.e., ¢1 = gg) then
POST_STAR(T, (¢,%)) is (g1, POST_STAR(a; - ag - a3, x)) if ¢ = ¢1, and (g, x) oth-
erwise. Finally POST_STAR is extended to L%l in the obvious way. The extension for
global acceleration considers the intersections of the regular language e with the regular
languages of transitions from a location ¢ to another location ¢’.

Example 4.2. Loop acceleration. Minsky machines support loop acceleration in frame-
works where formulae in L define upward-closed sets or semi-linear sets. But upward-
closed sets (for example) are not expressive enough to support flat acceleration.

Flat acceleration. Counter systems (with finite monoid) equipped with Presburger for-
mulae supports flat acceleration [26, theorem 2]. Other examples are channel systems
with cqdd [14, theorem 5.1], non-counting channel systems with slre [27, theorem 5.2]
or qdd[12, theorem 6], lossy channel systems with sre [1, corollary 6.5]. Restricted
counter systems used by TREX equipped with arithmetics almost supports flat acceler-
ation [2, lemma 5.1]: their POST_STAR is not recursive.

Global acceleration. Reversal-counter systems [31], 2-dim VASS [34], lossy VASS
and other subclasses of VASS with Presburger formulae [35], pushdown systems with
regular languages or semi-commutative rewriting systems with APC languages [16],
support global acceleration.

Obviously “global = flat = loop”. Loop acceleration is often easy to obtain, but rarely
sufficient in fixpoint computations. Flat acceleration is more flexible, but often requires
good compositional properties of X' and more complex methods for POST_STAR. Global
acceleration is a very strong property that ensures post® is effectively L-definable.
Clearly most interesting families of systems do not support global acceleration since
they are Turing powerful. Then for our purpose, flat acceleration is likely to be the best
compromise. The rest of the paper will focus on flat acceleration.

Flat acceleration in symbolic model checking 9

4.2 Restricted linear regular expressions

Flat acceleration allows to compute the effect of more general expressions than itera-
tions of sequences of actions. Given an alphabet A, a restricted linear regular expression
(rlre) over A is a regular expression p of the form uj ... w} where, for all 7, u; € A*.
This is closely related to semi-linear regular expressions [27, 30].

Proposition 4.3. Let S support flat acceleration. Then for any rire p over T' and for
any xo € LI9!, post(p, [xo]) is effectively L-definable.

4.3 Flat systems and flattenings

. . t t
In general, flat acceleration does not ensure computabil- ! 2
ity of the reachability set. However it does in some cases, . .
for example with “flat” systems, that have no nested @ ts @

loops. Consider the system on the right: its reachability
set can be computed by iterating first ¢1, then firing ¢3, and finally iterating to.

Definition 4.4 (Flat system [20,27,30]). An uninterpreted system S = (X,Q,T) is
flat if for any location q, there exists at most one elementary cycle containing q. A

system S = (X,Q,T, D, [-]) is flatif S = (X, Q, T) is flat.
In Fig. 1, S is not flat because its two elementary cycles both visit ¢o.

Proposition 4.5. If S is a flat system supporting flat acceleration, then post’([x]) is
effectively L-definable.

Not all systems of interest are flat, and a possible method for dealing with a non-flat
system S is to find an equivalent flat system, called a flattening of S.

Definition 4.6 (Flattening). A system S’ = (Q', X, T', D, []) is a flattening of a sys-
tem S = (Q, X, T,D,[]) if (1) S is flat, and (2) there exists a mapping z : Q' — @,
called folding, such that¥(qi,w,qb) € T', (z(¢}), w, z(¢})) € T.

Flattening is a form of partial unfolding. The following figure shows a system (left) and
one of its flattenings (right).

t1 to

() u ()

ta

Assume S’ is a flattening of some S. The z folding extends to configurations of S’ by
2((¢’,x)) = (2(¢), x). Extension of z to X C Cg is defined by:

(U tarxne) = Ut < (U Do)
7eQ’ a€Q q'€z"(q)

This gives an effective extension of z to L-definable subsets of Cs/. Given X’ C Cg,
Definition 4.6 ensures that z(post¥, (X')) C post§(z(X’)) and that for any language
L CT* z(postg (L, [x'])) = postg(2(L), z([x']))-

10 Sébastien Bardin, Alain Finkel, Jérome Leroux, and Philippe Schnoebelen

Definition 4.7 (L-flattable). A system S = (Q, X, T, D, []) is L-flattable iff for any
x € LI9l, there exists a flattening S’ = (Q', X, T', D, [-]) of S and a x' € LI?'| such
that =([']) = [x] and =(post; (['])) = posts (=([%'])).

Prop. 4.5 extends to flattable systems:

Theorem 4.8. If S is a L-flattable system supporting flat acceleration, then post([x])
is effectively L-definable.

A natural question is whether L-flattable systems are common or rare. It appears
that many systems with L-definable reachability sets are flattable. For example 2-dim
VASS [34], timed automata [21], k-reversal counter machines, lossy VASS and other
subclasses of VASS [35] and all L-uniformly bounded systems (see section 3) are L-
flattable. Clearly, there is no equivalence in general: lossy channel systems have L-
definable reachability sets but are not flattable. Interesting open questions are whether
well-known subclasses with L-definable reachability sets (like Presburger definable
VASS) are L-flattable or not.

We conclude by noting that L-flattability is undecidable in general, even when re-
stricting to 2-counter systems:

Theorem 4.9. Assuming the symbolic framework of 2-counter systems and Presburger
formulae, the question of whether a 2-counter system S is L-flattable is undecidable.

5 Computing reachability set using flat acceleration

The previous characterization leads to a complete procedure for flattable systems: (1)
enumerate all flattenings S’ of S; (2) for each S’, compute its reachability set X; (3)
check whether z(X) is closed by post in S.

However flattenings are not easy to handle and this motivates the following alterna-
tive characterization based on rlre’s.

Theorem 5.1. A system S = (Q, X, T, D, [-]) is L-flattable iff for all x € L', there
exists a rlre p over T such that post*([x]) = post(p, [x]).

Hence reachability set computation for flattable systems reduces to exploring the set of
rlre over T', which can be achieved by increasing a sequence of rlre: see Procedure 2.
Observe that REACH2 must choose “fairly”. Here this means that, in a nonterminating
execution of the procedure, each w € T is selected infinitely often. Many simple
schemes ensuring such a fair choice are possible.

Theorem 5.2. Given a symbolic framework SF = (I, L) and a system S € F(I)
1. when REACH2 terminates, [REACH2(xg)] = post*([x¢]) (partial correctness);
2. REACH2 terminates on any input iff S is L-flattable (termination).

Remark 5.3. Termination for L-flattable systems does not hold if the symbolic frame-
work provides only a weak inclusion (or if POST_STAR returns an over-approximation).

Flat acceleration in symbolic model checking 11

procedure REACH2(x¢)
parameter: S
input: xg € L'el
1: x «— %o
2: while POST(x) IZ x do
3: Choose fairly w € T*
4: x < POST_STAR(w, x)
5: end while
6: return x

Procedure 2: Computing reachability sets with flat acceleration.

5.1 Faster enumeration of flattenings

A major practical issue with REACH2 is to implement Choose so that we converge
quickly to the fixpoint. For this purpose the following heuristic proved very efficient in
FAST: one picks a bound k£ € N and restricts Choose to sequences w € T<F, i.e., of
length at most k. This method, called k-flattable, is eventually stopped by a Watchdog
if it does not terminate. Then k is incremented and k-flattable is launched again.

This leads to Procedure REACH3 below. For “fairness” we require that Watchdog
fires infinitely often, but only after Choose picked each w € T'<F at least once.

procedure REACH3(xo)
parameter: S
input: xg € Lel

I: x—x0;k— 0

20 k+— k+1

3: start

4: while POST(x) £ x do /* k-flattable */
5: Choose fairly w € T<*

6: X < POST_STAR(w, x)

7: end while /* end k-flattable */
8: with

9: when Watchdog stops goto 2

10: return x

Procedure 3: Flat acceleration and circuit length increasing

Theorem 5.4. Given a symbolic framework SF = (I, L) and a system S € F(I)
1. when REACH3 terminates, [REACH3(x¢)] = post*([xo]) (partial correctness);
2. REACH3 terminates for any input iff S is L-flattable (termination).

Technical issues. When implementing REACH3 one faces (at least) two practical prob-
lems. First the size * of the region x computed so far may be explosive. Then Watchdog

* Each set of regions has its own natural measure for size, depending on data structures and
implementation.

12 Sébastien Bardin, Alain Finkel, Jérome Leroux, and Philippe Schnoebelen

needs some criterion. Below we describe the implementation choices made in FAST on
these two issues, believing that these solutions may adapt to other domains. Let us point
out that these choices do not respect exactly the specification for REACH3 since fairness
is not ensured, and FAST should be improved in this way.

Choose: In general there is no direct relationship between the size of a region x and the
“size” of its concretization [x]. Intermediate regions may be much larger than the final
region for post*([xo]). To avoid such large regions, Choose selects a next w € T<F
such that [POST_STAR(w, x)| < |x|. If there is no such w then the size of the current x
is allowed to increase and the next w is picked. In practice, this enumeration works well
(while a cyclic enumeration of 7'<* almost always runs out of memory).

Watchdog: FAST’s criterion is simply a fixed (but user-modifiable) limit on the number
of iterations in k-flattable for any given value of k. This cannot be fair but it works well
in practice since, once a k large enough is considered, the fixpoint is usually found
within a few iterations.

5.2 Reduction of the number of cycles

A remaining issue in REACHS is that the cardinal of T<F grows exponentially with k.
We introduce the notion of reduction to compact the number of relevant transitions.

Definition 5.5 (k-Reduction). Given an interpretation I = (X, D, [']), a k-reduction
r maps each system S = (Q, X, T, D, [-]) € F(I) toasystem S = (Q, X, T, D,[]) €

F(I) such that: (1) V' € T, 5, (2) vw € T<F,3p € rre(T"). “>C2, (3)
T < |T=F].

Hence a k-reduction replaces 7 by a new set 7" that can stand for T<F but is smaller. In
particular, if S is L-flattable, then r(.5) is too, and they both have the same reachability
set. Obvious (and naive) k-reductions are the removals of identity loops. More useful
generic reductions are conjugation reduction: only keep one sequence of transitions
among each conjugacy class (e.g., keep t1 - to - t3 but remove to - t3 - t1 and t3 - t1 - t2)

. . . Ltits tat
and commuting reduction: if t; and ¢, commute, i.e., if —=2", then remove both

(t1-t2)" tit5

Proposition 5.6. Conjugation reduction and commuting reduction are k-reductions.

t1 - to and t5 - 1 (Works since

k
Conjugation reduction satisfies |T'| = O(%)

Beyond these generic reductions, it is worth developing reductions dedicated to a
specific interpretation. For linear counter systems with a finite monoid, [26] presents a
reduction where |7”| remains polynomial in & (while |T'<F| is exponential). This ap-
pears to be a key reason for FAST’s performances.

Here are reduction results for the swimming pool protocol (a

k| Vi [IT]]]T"]
VASS with 7 transitions and 6 variables studied in [29]). Comput- 77 7 [7 | 7
ing the reachability set requires considering cycles of length k = 4. |2] 36 | 21| 16
In the table Vi, C T'=F is the set of valid sequences in T<k.T' |3|156]| 56| 28
(resp. T") is from the system after the reduction of [26] (resp. fur- |4| 578 |126| 47
ther combined with commuting reduction). 5|1890|252| 86

Flat acceleration in symbolic model checking 13
6 Conclusion: flat acceleration in practice

6.1 Tools comparison

Our framework is useful when compar-
ing ALV, FAST, LASH and TREX, four ALV|FAST| LAasH | TREX
symbolic model checkers that can per- [SYStem full | linear restricted

form reachability analysis on counter |'¢8!0"S Presburger formula th.z
systems (see section 2.1). We restrict . undee. =
acceleration| no | flat | loop ~ flat

this comparison to the exact forward
computation of post*([xg]). ALV [6]
handles full counter systems. Regions are Presburger formulae. The heuristic used is
similar to REACH1. Both FAST [8] and LASH [33] handle linear counter systems with
Presburger formulae: flat acceleration is supported for functions whose monoid is finite,
but while FAST really takes advantage of full flat acceleration (Procedure REACH3), the
heuristics in LASH are restricted to loop acceleration (Procedure REACH2 where w is
chosen in T'<" instead of 7). TREX [3] handles restricted counter systems. Regions
are arithmetic formulae (hence C is not recursive). A partially recursive flat accelera-
tion procedure is available. The heuristic is REACH2 restricted to 7'<* for a user-defined
k. See [23] for an in-depth comparison of FAST and TREX. UB, F and kF stands for
L-uniformly bounded, L-flattable and L-flattable with length & (UB C 1F C kF C F).

termination | UB | F 1F |KF (oracle C)

Procedure comparison on case studies. The follow-

K System ALV |LASH|FAST |k
ing table compares how ALV, FAST and LASH behave [TTP no | yes | yes |1
in practice. “Yes” means termination within 1200 sec- prod/cons (2) | no | yes | yes |I
K K | prod/cons (N) | no | no | yes |2

onds on a Pentium IIT 933 MHz with 512 Mb. k is the |liftcontro, N | no | no | yes |2
length of cycles FAST considered in Procedure REACH3. | no | no | yes |2
K . . consistency no | no | yes |3

All case studies are infinite-state systems, taken from |csm, N no | no | yes |2
’ : : swimming pool| no | no | yes |4
FAST s W?b 31.te [8]. Experlm'ental results show strong PNCSA S IO TR
relationship with the acceleration framework: flat accel- |incDec no | no | no [?
eration (FAST) has the better termination results, loop — [BiZAVA no | mo | no |?

acceleration (k = 1) is not always sufficient, while simple iteration (ALV) is not suffi-
cient on these complex examples (results are consistent with [10]). These experiments
clearly suggest that flat acceleration greatly enhances termination and is fully justi-
fied in practice, at least for counter systems.

6.2 Tool design

The flat acceleration framework provides guidelines for designing new techniques and
tools. FAST supports completely this framework. Complex case studies have been con-
ducted [8, 9]. The following table shows performances of FAST on a significant pool of
counter systems collected on the web sites of tools like ALV, BABYLON [7], BRAIN,
LAsH and TREX, and ranging from tricky academic puzzles (swimming pool) to com-
plex industrial protocols (TTP). (More examples are given in the full version of this
paper.) They all are infinite-state and are thus beyond the scope of traditional model
checking techniques and tools. Furthermore, most of these systems also go beyond

14 Sébastien Bardin, Alain Finkel, Jérome Leroux, and Philippe Schnoebelen

System [var“TH sec. [Mb [k‘ |System [varHTH sec. [Mb [k:‘
CSM 13113]45.57|6.31 |2 Synapse 313] 030 [2.23]1
FMS 22(201(157.48| 8.02 |2 Illinois 416 097 [(2.64]1
Multipoll 17120(22.96 | 5.13 |1 Berkeley |4 |3 | 049 |2.75]1
Kanban 16116]10.43 | 6.54 |1 Firefly 418 086 |259 |1
swimming pool| 9 | 6 | 111 [29.06|4 Dragon 518 142 (2721
last i.-first s. 17(10] 1.89 |2.74 |1 Futurebus+| 9 [10| 2.19 [3.38 |1
PC Java(2) 18114 13.27 | 3.81 |1 lift - N 4|15] 456 2903
PC Java(N) 18(14723.27(12.46|2 barberm4 | 8 12| 1.92 [2.68 |1
Central server |13| 8 |[20.82 | 6.83 |2 ticket 2i 66| 088 [2.54]1
Consistency 121 8 | 275 |7.35|3 ticket 3i 819 | 377 |3.08|1
M.ES.L. 4141042 |2.44]1 TTP 10(17|1186.24|73.24|1
M.O.ES.L 4151056 (2491

VASS or Petri nets, so that methods like covering trees or backward computation do not
apply. The results are for forward computation of the reachability set, on an Intel Pen-
tium 933 Mhz with 512 Mb. Comparing them with other complex case studies analyzed
with ALV, LASH, and TREX [3, 6, 10, 33] confirms that flat acceleration is a powerful
technique for handling infinite-state systems.

References

1. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems. FMSD, 25(1):39-65, 2004.

2. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric reasoning
about counter and clock systems. In Proc. CAV’00, LNCS 1855, pages 419-434, 2000.

3. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability analysis of
complex systems. In Proc. CAV’01, LNCS 2102, pages 368-372, 2001.

4. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, Pei-Hsin Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. TCS, 138(1):3-34,
199s.

. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183-235, 1994.

ALV. www.cs.ucsb.edu/~bultan/composite/.

. BABYLON. www.ulb.ac.be/di/ssd/lvbegin/CST/.

. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Symbolic
Transition systems. In Proc. CAV’03, LNCS 2725, pages 118-121, 2003

9. S. Bardin, A. Finkel and J. Leroux. FASTer acceleration of counter automata. In Proc.

TACAS’04, LNCS 2988, pages 576-590, 2004.

10. C. Bartzis and T. Bultan. Widening arithmetic automata. In Proc. CAV’04, LNCS 3114, pages
321-333,2004.

11. B. Boigelot, L. Bronne, and S. Rassart. Improved reachability analysis method for strongly
linear hybrid systems. In Proc. CAV’97, LNCS 1254, pages 167-178, 1997.

12. B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In Proc. SAS’97,
LNCS 1302, pages 172-186, 1997.

13. A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and P. Wolper. An
efficient automata approach to some problems on context-free grammars. /PL, 74(5-6):221—
227, 2000.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

Flat acceleration in symbolic model checking 15

A Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel systems
with nonregular sets of configurations. 7CS, 221(1-2):211-250, 1999.

A. Bouajjani, B. Jonsson, M. Nilsson and T. Touili. Regular Model Checking. Proc. CAV’00,
LNCS 1855, pages 403-418, 2000.

A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algorithmic verification.
In Proc. LICS 01, pages 399408, 2001.

D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323-342,
1983.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model-checking of infinite state systems using
Presburger arithmetic. In Proc. CAV’97, LNCS 1254, pages 400411, 1997.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

H. Comon and Y. Jurski. Multiple counters automata, safety analysis, and Presburger arith-
metic. In Proc. CAV’98, LNCS 1427, pages 268-279, 1998.

H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Proc. CON-
CUR’99, LNCS 1664, pages 242-257, 1999.

P. Cousot. Abstract interpretation. ACM Comp. Surv., 28(2):324-328, 1996.

Ch. Darlot, A. Finkel, and L. Van Begin. About Fast and TReX accelerations. In Proc.
AVoCS’04, ENTCS 128(6), pages 87-103, 2005.

G. Delzanno, J.-F. Raskin, and L. Van Begin. Covering sharing trees: a compact data structure
for parameterized verification. JSTTT, 5(2-3):268-297, 2004.

J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fund. Informaticae, 31(1):13-25, 1997.

A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broad-
cast protocols. In Proc. FSTTCS 02, LNCS 2556, pages 145-156, 2002.

A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition systems: Appli-
cation to FIFO automata. Inf. & Comp., 181(1):1-31, 2003.

A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! TCS, 256(1—
2):63-92, 2001.

L. Fribourg and H. Olsén. Proving Safety Properties of Infinite State Systems by Compilation
into Presburger Arithmetic, In Proc. CONCUR’97, LNCS 1243, pages 213-227, 1997.

L. Fribourg. Petri nets, flat languages and linear arithmetic. In M. Alpuente, editor, Proc.
WFLP’00, pages 344-365, 2000.

O. H. Ibarra, Jianwen Su, Zhe Dang, T. Bultan, and R. A. Kemmerer. Counter machines and
verification problems. 7CS, 289(1):165-189, 2002.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with
rich assertional languages. TCS, 256(1-2):93-112, 2001.

LASH. www.montefiore.ulg.ac.be/~boigelot/research/lash/.

J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems with states.
In Proc. CONCUR’04, LNCS 3170, pages 402-416, 2004.

J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc. ATVA’05, this
volume.

J. K. Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In Proc. PSTV '87, pages 207-219, 1987.

T. Rybina and A. Voronkov. Brain: Backward reachability analysis with integers. In Proc.
AMAST’02, LNCS 2422, pages 489-494, 2002.

P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc.
CAV’98, LNCS 1427, pages 88-97, 1998.

Appendix i
A Proofs missing in the main text

Notations. Given a set X, for any index i € [1...n], we denote by x[i] the i*" compo-
nent of a n-tuple x € X™.

Theorem A.1. Given the symbolic framework of 2-counter systems and Presburger for-
mulae, a 2-counter system S, and xo € LI%!, then whether post*([xo]) is L-definable
or not is undecidable.

Proof. We reduce the reachability problem, undecidable for 4-counter systems. It is not
a restriction since 2-counter systems can encode any fixed number of counters. We con-
sider a weaker variant, location reachability, still undecidable. The location reachability
problem is the following. We consider a 4-counter system Sy equipped with 4 variables
x, y,yo and z ranging over N and a finite set () of locations, an initial configuration
(qo, co) where qo € Q and ¢y € N4, and a location ¢ € Q. Then we want to decide if
there is a run of the counter system on input (go, ¢o) such that g is reached.

Suppose that for any (S’,¢’,c’) we can decide if post¥, ((¢’,c’)) is definable by
a Presburger formula. Let us remind that Presburger formulae cannot expressed mul-
tiplication among variables (typically z = x X y). We proceed as follows. We trans-
form Sy into S; by: adding a finite number of new locations ()7 and new transitions
over (01, starting at g1 € (1, coding a multiplication of counter x by counter y,
and the result is assigned to z in location ¢, € ()7 (counter yg is used to remember
the value of y during the operation). Then we had some more transitions. A tran-
sition (go, “z := 0,y := 0,z := 0% ¢1), the transitions (¢1, “z = = + 1% q1),
(g1, “y = y + 1% q1), the transitions (¢, “z := x + 1%,q), (¢, “x = = — 1% q),
(¢, %y =y +1%q), (¢ "y ==y —1%q) (¢, “2 = 2+ 1%.q), (¢, “z :== 2 — 1%,q)
and for all ¢" € Qo U @1 a transition (g, “x := z,y := y, 2z := z“,¢"). Then it is easy
to verify that post% ((qgo,co)) is L-definable (and equals to (Qo U Q1) x N*) iff ¢ is
reachable (otherwise the reachability set projected on g, is {(z,y,2)|z =z x y}). O

A.1 Proof of Theorem 3.3

Theorem 3.3. Given a symbolic framework SF = (I, L) and a system S € F(I)
1. when REACH] ferminates, [REACH1(xq)] = post*([x¢]) (partial correctness);
2. REACHI terminates on any input iff S is L-uniformly bounded (termination).

Proof. Partial correctness: when the procedure terminates, REACH1(xo) is a fixpoint
of POST, then [REACH1(x()] is a fixpoint of post. Moreover at each iteration of the
procedure, [x] C post*([xo]). This ensures that [REACH1(x)] is equal to the least
fixpoint of post, i.e., post*([x0]).

Termination: We suppose S is L-uniformly bounded. Given xo € LI¥!, there exists
Ny, such that post*([xo]) = U, <nag post®([xo]). It is straightforward that after n,,
iterations, REACH1 terminates. We suppose now that REACH1 terminates on any input.
Then for any xg € L9l the fixpoint is reached after ny, iterations. ny, is the constant
in the definition of L-uniformly bounded. O

ii Appendix

A.2 Proof of Proposition 4.3

Proposition 4.3. Let S support flat acceleration. Then for any rlre p over T' and for any
xo € LI9l, post(p, [x0]) is effectively L-definable. Furthermore, computing x € L%
such that [x] = post(p, [x0]) can be done uniformly from p and x.

Proof. We reason by induction on p. If p = ¢ then [x] = post(e, [x]) and the property
is true. Otherwise if p = u™ - p; where u € T, then we apply the induction hypothesis
to post(p1, [POST_STAR (u, x)]). O

A.3 Proof of Proposition 4.5

Proposition 4.5. If S is a flat system supporting flat acceleration, then post’([x]) is
effectively L-definable.

Proof. In [34] it is proved that for a flat system S, there exists a semi-linear regular
expression (slre) p’ over T such that for all x € LI®I, post*([x]) = post(p’, [x]).
Moreover it is proved that p’ is effectively computable. Recall that a slre over T is a
regular linear expression of the form Eiui71w;‘71 ... ulnw;*n, where u; j,w; ; € T™.

Let us define the rlre p over T'by p = Il;u; ywy ;... uj ,w; . Itis easy to verify that

wnint

post(p, [x]) = post(p’, [x]) = post*([x]). Using proposition 4.2, we are done. O

A.4 Proof of Theorem 4.8

Theorem 4.8. If S is a L-flattable system supporting flat acceleration, then post%([x])
is effectively L-definable.

Proof. First notice that since regions are closed by finite union (U operator), z is easily
extended into z : LIQ'l — LIl This construction is effective. Consider a system .S
and x € LIl we enumerate all (S’, z, x’) such that S’ is a flattening of S with folding
z,and ¥ € LI9'l such that [z(x)] = [x] (using). For each (S, z,x’), since S is
flat we can compute x” such that [x”] = post, ([x']) (Prop. 4.5). Then we compute
y = z(x”) € L@l and check whether POST5(y) C y or not. When it is the case
then [y] is an invariant of postg. By definition of flattenings and construction of y,
[¥] is included in post*([x]). Hence [y] = post*([x]). Since S is L-flattable, such a
(57, z, ') exists and will eventually be found (even if there are finitely many (S’, z, x’),
they can be enumerated). g

A.5 Proof of Theorem 4.9

Theorem 4.9. Assuming the symbolic framework of 2-counter systems and Presburger
formulae, the question of whether a 2-counter system S is L-flattable is undecidable.

Proof. This proof is essentially as for Theorem A.1. The location reachability problem
is reduced in the same way. Notice that ¢ is reachable iff S; is L-flattable (If ¢ is
reachable, compute N? on ¢ then use each new transition once to propagate N3 on
every location ¢” € Q U Q1 ; otherwise post (c) is not L-definable for any c, then .S
cannot be L-flattable). O

Appendix iii
A.6 Proof of Theorem 5.1

Theorem 5.1. A system S = (Q, X, T, D, []) is L-flattable iff for all x € LI®|, there
exists a rlre p over T such that post* ([x]) = post(p, [x]).

Proof. Given x € LIQl if there exists a rlre p, such that post ([x]) = postg(px, [X])s
we deduce naturally a flattening S% of S (intuitively the uninterpreted system of S’ is
the automata recognizing the language px C T%).

Let us prove the converse. Let us assume that S is L-flattable. By definition there ex-
ists a flat system S’, a flattening 2z and x’ such that z([x']) = [x] and z(post¥, [x']) =
post§ ([x]). Moreover we can build effectively (S’, z,x") by enumeration (see proof of
Theorem 4.8). Since S’ is flat, using the proof of Prop. 4.5 we deduce that there ex-
ists p a rlre over T” verifying post¥, ([x']) = postg (o', [x']). We denote p = z(p’).
By definition of flattening, p is a rlre over T' (each transition of a flattening corre-
sponds to a transition in the original system, the property extends to sequences and
languages). By reasoning on sequences of transitions and then languages, we can prove
that for any L C T™*, z(postg (L, [x'])) = postg(2(L), 2([x'])). We then deduce that
z(postg: (o', [x'])) = posts(z(p"), 2([x])) = posts(p, z([x]))-

Hence there exists x’ such that z([x]) = [x] and post§([x]) = z(post%, ([x]))
z(postg (¢, [x'])) = posts(p, [x]).

ol

A.7 Proof of Theorem 5.2

Theorem 5.2. Given a symbolic framework SF = (I, L) and a system S € F(I)
1. when REACH2 ferminates, [REACH2(xg)] = post*([x¢]) (partial correctness);
2. REACH2 terminates on any input iff S is L-flattable (termination).

Proof. Partial correctness: straightforward from the definition of POST_STAR and L.
Termination: first remark that if REACH2 terminates it returns the fixpoint, since com-
putations in our procedure are always under-approximations of the reachability set. The
finite sequence of selected w € T™* during the successful computation provides a rlre
p over T* such that post*([x]) = post(p,[x]). Thus if REACH2 terminates for all
input, then S is L-flattable (Theorem 5.1). Assume now that S is L-flattable, and con-
sider xg € LI@!. There exists a rlre p over T* such that post*([xo]) = post(p, [x0])
(Theorem 5.1). Let us denote p = uj...u’. Since Choose is fair, the sequence p’
of w selected by choose will eventually be of the form p/ = wi ... w¥, where there
exists ¢1,...,%, such that w;;, = uj,...,w;, = uy,. It will eventually be the case
because all w € T™ are repeated infinitely often thanks to fairness condition. More-
over the identity relation being contained in each step of acceleration, each step of
computation contains entirely the previous step. Then we get that post(p, [x¢]) C
post(p’, [x0]) € post*([xo]) (remember we can only compute under-approximation).
Since post*([xo]) = post(p, [x0]), we get that post*([xo]) = post(p’, [x0]) and the
computation will stop at that stage (returning the fixpoint). a

iv Appendix

A.8 Proof of Theorem 5.4

Theorem 5.4. Given a symbolic framework SF = (I, L) and a system S € F(I)
1. when REACHS terminates, [REACH3(xq)] = post™([xo]) (partial correctness);
2. REACH3 terminates for any input iff S is L-flattable (termination).

Proof. Partial correctness: straightforward from the definition of POST_STAR and L.
Termination: fairness of Choose on 7<% and Watchdog, and re-using computations
of each previous task k-flattable ensure fairness of Choose on T*. Then we use the
same arguments than for theorem 6.2. O

A.9 Proof of Proposition 5.6

Proposition 5.6. Conjugation reduction and commuting reduction are k-reductions.
. . . . "o [T
Conjugation reduction satisfies |T'| = O(+5).

Proof. Conjugation reduction. Given three transitions ¢1, t2 and ¢3, we do not need to
(t2-ts-t1)” and (t3-ta-t1)”

consider to - t3 - t1 and t3 - t5 - t1 since can be computed easily

t1-ta-t3)* to-tz-t1)* t1-ta-t3)™ .
from (12—3)> For example (artsta)” IdU 2 ¢ 2 o atats) 4, Commuting

. . tity tot t1-t2)" . 3 ts
reduction. If t; and t, satisfies —3=="% then (brt2)" 4o equal to = e -2, therefore
we can remove safely both ¢1 - t5 and to - 1. O

B Practical use of flat acceleration: FAST

The following table extends the table from section 6.2. All examples are infinite-state,
except those in the Bounded Petri Nets category.

The results are taken from forward computation of the reachability set, using an
Intel Pentium 933 Mhz with 512 Mb. In the following table, |T| is the number of tran-
sitions, |A| is the size of the binary automaton that represents the reachability set (in
FAST, the regions are binary automata). |w| is the length of the rlre computed so far, k is
the maximal length of cycle (T'<F), the number of cycles is given after reductions (com-
muting transitions and specific reduction of section 5.2). We aborted all computations
after 1800 seconds.

In principle there can be several reasons why FAST does not terminate: (1) the reach-
ability set is not Presburger definable, (2) the system (with given x) is not L-flattable,
(3) the monoid of the system is not finite and our techniques on counter systems do not
apply, (4) time and space consumption are too high. Even if it is always difficult to pick
one of these explanations when experiment fails, it seems that, on these examples, the
main reason for failure is (4). We can rule out (3) in most cases since they are variants
of VASS (with zero test or reset) for which finiteness of the monoid is guaranteed [9].

Appendix

] 5
5 S = ES
= Q g I Q
Case study =lIS g Qé S |2t
Bounded Petri Nets
Producer/Consumer 513| 041 [237] 7 (3|1
Lamport ME 119 270 |2.88| 5 |11|1
Dekker ME 22(22| 21.72 |5.48 | 5 |36(1
RTP 9112| 224 |276| 5 |8]1
Peterson ME 14{12| 497 |3.78| 5 |12|1
Reader/Writer 1319 9.68 |23.14| 9 |23|1
Unbounded Petri Nets
CSM 13/13| 45.57 | 631 | 6 |32(2
FMS 22(20| 157.48 | 8.02 | 21 |23|2
Multipoll 17|20 22.96 |5.13 | 35 |13]|1
Kanban 16{16| 1043 | 654 | 4 |21
Mesh2x2 32(32|> 1800 - - -
Mesh3x2 52|54|> 1800| - - --
Manufacturing system 716|> 1800| - - -
Manufacturing system (check deadlock freedom){13| 6 |> 1800| - - - -
PNCSA 31|38|> 1800| - - |- -
extended ReaderWriter 24(22(> 1800 - - - -
SWIMMING POOL 916| 111 |29.06| 30 |9 |4
Unbounded Counter Systems
Last-in First-served 17|10] 1.89 [2.74| 9 |12]|1
Esparza-Finkel-Mayr 615 079 [255] 5 [2]1
Inc/Dec 32(28|> 1800| - - |- -
Producer/Consumer with Java threads - 2 18(14| 13.27 |3.81 | 13 |53|1
Producer/Consumer with Java threads - N 18|14| 723.27 [12.46| 58 |86|2
2-Producer/2-Consumer with Java threads 44(38|> 1800| - - --
Central Server system 13/8| 2082 [6.83| 5 [11(2
Consistency Protocol 12/8| 275 |735| 7 |93
M.E.S.I. Cache Coherence Protocol 414 042 |244| 6 |3(|1|4
M.O.E.S.I. Cache Coherence Protocol 415 056 (249 7 |3]1|5
Synapse Cache Coherence Protocol 313 030 (223 6 [2]1]3
Illinois Cache Coherence Protocol 416 097 (264 6 [4]1|6
Berkeley Cache Coherence Protocol 413 049 (275 7 [2]1]|3
Firefly Cache Coherence Protocol 48| 086 [259| 7 [3(1]8
Dragon Cache Coherence Protocol 5(8| 142 |272| 6 |5]1]8
Futurebus+ Cache Coherence Protocol 9 (10| 2.19 |3.38| 12 |8 (1|10
lift controller - N 415 456 (290 14 [4]3|20
bakery 8 |20/> 1800 - - - -
barber m4 8112 192 [2.68| 5 |8(1]12
ticket 2i 66| 088 |254|22 |5]1|6
ticket 3i 89| 3.77 |3.08| 77 |10|1|9
TTP 10(17(1186.24|73.24(1140|31|1 (17

Fig. 2: Running FAST (on Pentium 933 Mhz with 512 Mbytes)

