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The problems of time-dependent behavior
in general, and dynamic resource allocation
in particular, pervade many aspects of mod-
ern life. Prominent examples range from re-
liability and efficient use of communication
resources in a telecommunication network to
the allocation of tracks in a continental rail-
way network, from scheduling the usage of
computational resources on a chip for dura-
tions of nano-seconds to the weekly, monthly
or longer-range reactive planning in a factory
or a supply chain.

These problems have been subject to sub-
stantial research for decades by different com-
munities such as operational research, com-
puter systems performance evaluation as well
as planning and scheduling, witnessed by
large ACM communities such as SIGMET-
RICS and PERFORMANCE. In this paper we
argue that the formalism of timed automata
together with recent extensions provides an al-
ternative framework with complementary, yet
competitive, results in terms of modeling ca-
pabilities and efficiency of analysis.
Timing: Twenty years ago, R. Alur and D. Dill
introduced the notion of timed automata. As
a witness for the importance of the formalism
one may consider the 2008 Computer-Aided
Verification Award given to Alur and Dill for
their seminal 1990 article Automata for mod-

eling real-time systems,5 which provided the
theoretical foundation for the computer-aided
verification of real-time systems.

Real-time systems and resource allocation
problems have manifested themselves under
different names in application domains such
as manufacturing, transport, communication
networks, embedded systems, and digital cir-
cuits, and have been treated using theories and
methods in several disciplines. Most of these
applications involve distributed, reactive sys-
tems of considerable complexity, and with a
number of real-time constraints in the sense
that correctness not only depends on the logi-
cal ordering of events of the systems, but also
on the relative timing between these.

State-based models have been the basis of a
wide range of successful computer-supported
verification methodologies allowing the ef-
ficient prediction of functional properties,
e.g. absence of deadlock or memory over-
flow. However, many of the models used in
this methodology are purely discrete and their
treatment of time is purely qualitative, that is,
behaviors are just sequences of events appear-
ing one after the other but without any quanti-
tative timing information about the duration
of actions and the time between events. Timed
automata allow such timing constraints to be
expressed, while being amenable to computer-

aided analysis methods such as simulation,
verification, optimization and controller syn-
thesis.
Performance: In all of the above applications,
an explicit constraint on timing is only one
of a number of quantitative aspects of im-
portance. Within embedded systems addi-
tional key quantities include energy and mem-
ory consumption, in communication networks
required band-width is a key quantity, and
within the factory and supply chain applica-
tions need for storage and overall cost for a
given production are crucial quantities. The
extended notion of priced or weighted timed
automata has been put forward as a formal-
ism allowing for such additional and time-
dependent quantities to be modeled, without
hampering efficient analysis and even permit-
ting optimization.
Uncertainty: Classical models for scheduling
in manufacturing, such as job-shop problems,
are somewhat detached from industrial prac-
tice and reality. They assume that the dura-
tion of every step as well as the arrival times
are fixed and known with certainty; in prac-
tice however, it is rarely the case that a sched-
ule is executed as planned.

For solving problems related to expected
time and performance properties, stochastic
process models have been very successful.
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Figure 1: Several refinements of a model (a) of the working mathematician according to Erdős: After insertion of a coin into the coffee
dispenser, coffee can be collected, and the scientist can go back to work. In the timed-automaton model (b), precisely five time units pass
between coin insertion and coffee collection, and the time which passes between coin insertion and going back to work is less than ten time
units. In the priced timed automaton (c), cost rates (modeling e.g. energy consumption) are associated with the three states. In the timed
game (d), uncertainty as to precisely when coffee is delivered is modeled as an uncontrolled edge.



When aiming at guaranteed time and perfor-
mance properties under uncertainty, so-called
timed games may be used instead. They pro-
vide efficient off-line algorithms for synthe-
sizing reactive schedulers with performance
guarantees. Such algorithms can plan for the
best or worst case, but the scheduling strate-
gies they produce are adaptive and can take
advantage, for example, of the fact that a task
has terminated before it was expected to.

In this paper we present the formalism of
timed automata and its priced and game exten-
sion as a unifying mathematical framework
for the modeling, analysis, optimization and
synthesis of real-time related phenomena. Fig-
ure 1 shows some simple examples of these
formalisms; later we provide more elaborate
and realistic examples and case studies.

1. TIMED AUTOMATA

1.1 A model for time
Timed automata5 are a powerful model

for representing and reasoning about sys-
tems where the notion of time is essential.
They are an extension of classical finite-state
automata with real-valued variables called
clocks. These clocks all increase at the same
rate, and their values can be used to restrict
availability of transitions and how long one
can stay in a location (or state). Also, clocks
can be reset to zero when a transition is taken.
To this end, each transition has associated
with it a guard (which must be satisfied for the
transition to be enabled) and a set of clocks to
be reset, and each location carries an invariant
which must be continuously satisfied when
the system is in the location. Below we show
an example of a timed automaton with two
clocks x and y, and label set {a, b, c, d, e}.
Note that no time can elapse in location ℓ1
due to the invariant (y = 0); locations with
this property are called urgent.

ℓ0 ℓ1

(y=0)

ℓ2

ℓ3

,x≤2,a,y:=0
b

c

x=2,d

x=
2,e

Guards and invariants are given as compar-
isons x ≤ � or x < �, or the reverse rela-
tions, of a clock value with an integer con-
stant, or as conjunctions of these. Sometimes
also so-called diagonal constraints x− y ≤
� (or < or other) are allowed, but other ex-
tensions quickly lead to undecidability issues,
see below.

A configuration of the system is made of
a location and a clock valuation (in our case,
values for both clocks x and y). A possible
execution in our example is:24ℓ00

0

35delay−→
1.3

24 ℓ01.3
1.3

35action−→
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24 ℓ11.3
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35
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24 ℓ31.3
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35delay−→
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24 ℓ32
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35action−→
e

24,
2
0.7

35
where the first component of a configuration
is the location and the second and third com-
ponents give the values of clocks x and y, re-
spectively. This execution corresponds to a
delay of 1.3 time units in ℓ0, the firing of tran-
sition a (which is enabled because the value
of clock x is less than 2; clock y is then set
to 0), the firing of transition c (which occurs
without delay as ℓ1 is urgent), etc.

In the context of verification, several prob-
lems are of interest, like the model-checking
of safety properties (“Can a distinguished set
of states be avoided?”), reachability/liveness
properties (“Can/will a distinguished goal
state be reached?”), or more involved prop-
erties such as response properties (“Is any
request eventually granted?”). As a model
for real-time systems, these properties can
include quantitative constraints, for instance
time-bounded reachability, or time-bounded
response properties (“Is any request granted
within two minutes?”). It is also relevant to
compute optimal time bounds for these prop-
erties, e.g. optimal-time reachability (“What
is the minimum time required for reaching a
distinguished set of states?”).

1.2 The region abstraction
A timed automaton is a syntactical repre-

sentation of an infinite transition system, since
clocks take (nonnegative) real values. How-
ever, there is a way to deal with this infin-
ity of configurations by reasoning symboli-
cally: the main theoretical ingredient for solv-
ing problems on timed automata is the notion
of regions,5 which provide a finite partition-
ing of the state space such that states within
a given region are bisimilar, i.e. behaviorally
indistinguishable.

The precise definition of regions is such
that inside a region, integral parts of clock
values do not change, and also the ordering
of clocks according to their values’ fractional
parts stays the same. Special consideration
has to be given to the cases where one or more

clock values are integers, and finiteness of the
region partitioning is ensured by considering
as equivalent all clock values which exceed
the maximal constant appearing in guards and
invariants of the timed automaton in question.
In the left part of Figure 2 we show the forty-
four regions for two clocks x and y with max-
imal constant equal to 2. In this two-clock
case, regions can be points (both clocks have
integer values), open line segments (one clock
has integer value, or their fractional parts are
equal), open triangles, or open unbounded
rectangles.

From two equivalent configurations (same
location, region equivalent valuations), by de-
laying or by taking a transition, similar re-
gions will be visited and similar behaviors
will be possible. Regions are thus a way to
finitely abstract the behaviors of a timed au-
tomaton. There are finitely many regions, and
by considering as abstract configurations pairs
of locations and regions, we get a finite au-
tomaton, called the region automaton, which
preserves many properties including reacha-
bility, liveness and safety. Hence verification
of those properties on the original timed au-
tomaton can be transferred to the finite region
automaton and then checked using standard
algorithms.

1.3 The limits of the region
abstraction

Not all properties can be decided on timed
automata using the region abstraction, and
problems such as checking inclusion (“Are all
real-time behaviors of a timed automaton also
behaviors of another timed automaton?”) and
universality (“Can all real-time behaviors be
realized in a given timed automaton?”) are
undecidable.

Also, the set of real-time behaviors ex-
hibited by timed automata is not closed un-
der complement, and not all timed automata
are determinizable. As a counterexample for
these properties, one can use the following
timed automaton:

ℓ0 ℓ1 ,

a a a

a,x:=0 x=1,a

It accepts all behaviors with at least two a’s
separated by one time unit. It can be shown
that no deterministic timed automaton exists
with exactly the same behaviors, and also that
no timed automaton can implement precisely
all complementary behaviors.
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Figure 2: The region abstraction is a finite representation of all possible behaviors of the timed automaton. Consider the timed automaton
on top of the picture, and assume we enter location ℓ1 with clock values (x0, y0) for which 0 < y0 < x0 < 1 (a point in the red triangle, see
the picture on the left); as clock y has value strictly less than 1, we have the option to switch to location ℓ2, which would reset clock x and
end up in the purple region. We also have the option to delay in ℓ1; in that case, we exit the red triangle and reach the orange line. Here again
we have two options: switching to ℓ2, or delaying to the yellow clock region. In case we still decide to wait in that region, we reach the green
line. From that region on, the transition to ℓ2 is not enabled anymore. This description of the possible behaviors starting from the red region,
which has been represented on the picture to the right, does not depend on the precise values of the clocks: region equivalence preserves
enough information to encode exactly the behaviors of the underlying timed automaton.

1.4 Timed automata in prac-
tice

The region abstraction is a powerful tool
for showing decidability of a number of in-
teresting properties, but unfortunately, the
region-based verification algorithms intro-
duced above are infeasible in practice. The
number of regions grows exponentially with
the number of clocks, hence these algorithms
have exponential time complexity. Using on-
the-fly techniques, one can reduce the com-
plexity to polynomial-space, and indeed it can
be shown4 that e.g. the reachability problem
is PSPACE-complete.

Algorithms which have shown to be feasi-
ble, even efficient, in practice are based on the
so-called zone graph abstraction:30 A zone is
a set of clock valuations defined by a clock
constraint and can hence be represented by
such; the zone graph has as vertices pairs of
locations and zones which satisfy the loca-
tion’s invariant, and its edges are derived from
the transitions of the given timed automaton.
The number of zones is unbounded, so unlike
the region graph, the zone graph is infinite.
Finiteness can be enforced using a technique
known as normalization;12 however the num-
ber of zones is still much larger than the num-
ber of regions, and moreover the same zone
can be represented using many different clock
constraints.

The reason for zone-based algorithms to be
efficient in practice is two-fold: First, the algo-
rithms used have no need to explore all of the
zone graph (they work on-the-fly), and zones
are commonly bigger than regions, hence
the part of the zone graph to be explored is
smaller. Second, operations on zones can be
implemented very efficiently (in time cubic in
the number of clocks): Zones are usually rep-

resented using difference-bound matrices, or
DBMs. The DBM representation of a zone on
a set of k clocks has (k+1)× (k+1) entries,
where an entry ci,j represents a clock con-
straint xi−xj ≤ ci,j and an extra clock x0 is
added to represent absolute clock constraints
xi ≤ ci0. DBMs in turn can be represented
as directed weighted graphs; see below for an
example of a zone and its DBM (graph) repre-
sentation. Canonical representations of zones
can be obtained using shortest-path closure or
shortest-path reduction of their DBM graphs,
and delay and reset operations on zones can
be efficiently implemented on the DBM rep-
resentations.
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1.5 Task graph scheduling:
time optimality

A task graph problem involves a number
of tasks T1, ..., Tm, a number of machines
or processors P1, ..., Pn, and a (partial) map-
ping d giving, for each task Ti and proces-
sor Pj , the time d(i, j) for computing Ti

on Pj . In addition there is a partial order on
the tasks used for describing dependencies.
Figure 3 is an example of a task graph prob-
lem.

We want to determine a schedule of when
to start the execution of tasks, and on which
processors, that minimizes the total execution
time while being feasible in respecting the fol-
lowing conditions: (a) a task can be executed

only if all its predecessors have completed;
(b) each machine can process at most one task
at a time; (c) tasks cannot be pre-empted.

Task graph scheduling problems may be
easily modeled as networks of timed automata
so that every run corresponds to a feasible
schedule and the fastest run gives the time-
optimal schedule: For each processor we
construct a small timed automaton able —
when idle— to handle within the appropriate
amount of time the requests from the tasks.
For the processors of Figure 3, these are as
follows:

P1:

idle+

(x≤2)

×
(x≤3)

x:=0

add1
x:=0

mult1

x=2

done1

x=3

done1

P2:

idle+

(y≤5)

×
(y≤7)

x:=0

add2
x:=0

mult2

y=5

done2

y=7

done2

Each task is modeled as a timed automaton
waiting to be served by either of the proces-
sors, conditioned by the completion of its pre-
decessors (indicated by Boolean variables t1
through t5). Tasks T4 and T5 of our example
can be represented as follows:

T4:
t1∧t2

addi

t4:=1

donei
T5:

t3

addi

t5:=1

donei

Extensive experiments on benchmarks
have demonstrated that the above timed
automata approach to task graph schedul-
ing is competitive compared with more



Compute D×(C×(A+B))+(A+B)+(C×D) using two processors:
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Figure 3: Task graph problem with 6 tasks, where each task corresponds to the computation of a given sub-expression of the term
(D× (C × (A+B)) + ((A+B) + (C ×D)). Given the execution platform with two processors, P1 and P2, and corresponding computa-
tion times for addition and multiplication, as well as their energy consumption, Sch1 to Sch3 provide three feasible schedules, where Sch2 is
in fact time-optimal, and Sch3 is energy-optimal.

traditional approaches from operations re-
search (e.g. mixed-integer linear program-
ming) as well as specialized, heuristic algo-
rithms from planning and scheduling.1 Fur-
thermore the generic approach of timed au-
tomata admits easy incorporation of more spe-
cialized features (e.g. release times, deadlines)
to the models and scheduling.

1.6 Extensions of timed au-
tomata

As we shall see in Section 4, timed au-
tomata are a rich extension of classical au-
tomata with efficient tool support and several
successful industrial applications. As such,
they are often cited as the model of choice for
representing and reasoning about embedded
and real-time systems.

This success has led to several extensions
of the model, for instance with more gen-
eral guards or resets being allowed (e.g. ad-
ditive guards11 or non-deterministic updates
of clocks12), or with more involved dynam-
ics measuring other quantities than time. Un-
fortunately, these extensions quickly lead to
undecidability; e.g. for timed automata in
which clocks can be stopped (so-called stop-
watch automata), even basic properties such
as safety or liveness are undecidable.29

On the other hand, the model of hybrid

automata,29 though suffering from the same
undecidability problems as mentioned for
other classes above, has emerged as a popu-
lar formalism for which semi-decision and ap-
proximation procedures have been developed.
The model of priced timed automata, which
we shall discuss in the next section, form an
intermediate class between timed and hybrid
automata for which some of the good decid-
ability properties of timed automata are re-
tained. Other intermediate classes of mod-
els have been investigated, including linear
hybrid automata29 and integration graphs,33

providing semi-decidability in general and de-
cidability under certain restrictions.

2. PRICED TIMED AU-
TOMATA

2.1 A model for resources
Time is not the only quantitative notion of

interest when designing embedded systems;
other quantities such as energy or memory
consumption, required bandwidth, or accumu-
lated cost can be important to measure in such
systems.

These notions are intimately connected to
time, because the longer the device is oper-
ating, the more resources it consumes. This

makes timed automata the model of choice
to reason about those quantities, and has led
to the definition of priced timed automata,6, 10

extending timed automata with cost (which is
the general name we will use in the sequel to
refer to the various quantities which can be
modeled within this formalism; in some other
literature, this is referred to as reward).

A priced timed automaton is hence a timed
automaton with extra information indicating
how the cost is evolving in locations and dur-
ing transitions. To avoid the undecidabil-
ity problems of hybrid automata, cost infor-
mation cannot be used to guard transitions;
the cost is only an observer variable, and
whether a transition is enabled only depends
on timing information, not cost value. An ex-
ample of a priced timed automaton, extending
the timed automaton of the previous section,
is depicted below (labels omitted):

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1
,x≤2,y:=0

x=2 +1

x=
2

+7

A decoration +10 on a location indicates
that cost increases by 10 units per time unit in
the location; a decoration +7 on a transition
indicates that taking the transition increases
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Figure 4: The corner-point abstraction refines the region abstraction by also keeping track of the corner point close to which an execution
runs. This is needed to measure costs: for instance, if we are in location ℓ1 and in the red region where 0 < y < x < 1, the price of de-
laying depends on the value of the clocks. From (a), where both x and y are arbitrarily close to 0, we can let almost one time-unit elapse
and reach (b). The resulting cost is arbitrarily close to +3. On the other hand, from (c), where x and y are arbitrarily close to 1 and 0, re-
spectively, letting time elapse takes us to the subsequent region, so that the cost is arbitrarily close to 0. (Notice that for readability, some
resetting transitions have been omitted.)

overall cost by 7 units (locations and transi-
tions without cost indication have cost 0). The
executions of such an automaton are those
of the underlying timed automaton. The to-
tal cost of the example execution given in
Section 1.1 (delaying 1.3 time units in ℓ0,
0.7 time units in ℓ3, and ending in the right-
most location) can be computed as

1.3× (+5) + 0.7× (+1) + 7 = 14.2

2.2 Optimizing the resources
Natural optimization questions can be

posed on that model, e.g. the optimal reacha-
bility problem (minimum cost for reaching a
given goal), the mean-cost optimization prob-
lem (mean cost used in the long run), or the
discounted-cost optimization problem (where
costs are discounted exponentially as time
elapses).

As an example, we compute the minimum
cost that is required for reaching location ,
in the previous example. There are two fam-
ilies of executions: those that go through ℓ2
and those that go through ℓ3. Furthermore, in
each family, there is a single parameter t: the
time elapsed in location ℓ0; everything else
is determined by the guards in the automaton.
Hence the minimum cost is:

inf
0≤t≤2

min

„
5t+10(2−t)+1

5t+(2−t)+7

«
= 9 (1)

where the expressions 5t+ 10(2− t) + 1
and 5t+ (2− t) + 7 give the cost of execu-
tions going through ℓ2 respectively ℓ3 after
delaying t time units in location ℓ0.

The standard region construction is not
accurate enough to properly keep track of
cost information, and a refinement of the re-
gion abstraction, the corner-point abstrac-
tion,13 has to be used to solve the optimiza-

tion problems mentioned above. For this ab-
straction, regions are refined by distinguish-
ing their corner points. As an example, the
two-dimensional region depicted below is re-
fined into three region-corner pairs; the mean-
ing of a region-corner pair is that the current
clock valuation is arbitrarily close to the dis-
tinguished corner:

;

(a) (b) (c)

Similar to the refinement of regions, the
transitions in the region automaton have to be
refined to keep track of the corners. In the ex-
ample above, there is a (delay) transition from
region-corner pair (a) to (b), whereas (c) can-
not be reached neither from (a) nor from (b).
Figure 4 illustrates the corner-point abstrac-
tion of an example priced timed automaton.
This graph has two types of delay edges: ei-
ther within a region, from one corner to an-
other one, or from a corner of a region to
the corresponding corner in the subsequent
region. The first case corresponds to a delay
of “almost” one time unit, while the second
case corresponds to a delay of “almost” zero
time units. In addition, there are edges rep-
resenting transitions of the timed automaton
(which reset clock x in our example of Fig-
ure 4). In that case as well, there is a natural
mapping between corners.

The edges of the corner-point abstraction
are labeled with discrete cost information:
if the cost rate in the current location is +3,
all one time-unit edges have label +3, and all
zero time-unit edges get label 0. Edges com-
ing from discrete transitions are labeled with
the cost of the transition (+5 in the example).

The corner-point abstraction can be used to

solve many optimization problems, as it can
be shown that in these cases, optimal total cost
is obtained for runs which always take transi-
tions close to integer clock values. Hence the
optimization problem reduces to a problem on
a finite graph which can be solved using differ-
ent standard techniques. This is the case for
the mean-cost optimization problem13 and the
discounted-cost problem.25 For optimal reach-
ability, another technique (priced regions) has
been used10 which also extends to a setting of
more than one cost variable.35

As for algorithm and tool support, the zone-
based approach has been successfully ex-
tended to solve the optimal reachability prob-
lem,34 by introducing priced zones, and tool
support is available in UPPAAL CORA. For
mean-cost and discounted-cost optimization,
active research is being conducted in develop-
ing efficient zone-based algorithms, or alterna-
tively showing that no such algorithms exist.

2.3 Task graph scheduling:
energy optimality

Reconsidering our running task graph
scheduling problem of Section 1.5, cost-
optimal reachability for priced timed au-
tomata may be used to provide energy-
optimal schedules. The energy needed for per-
forming computation steps is modeled as cost
in the priced timed automaton model, and op-
timal reachability techniques can be used for
finding an energy-optimal schedule.

For the task graph scheduling instance of
Figure 3, energy consumption of the two pro-
cessors is reflected in the respective timed au-
tomata by suitable cost-rates in the locations
corresponding to the processor being idle or in
use. The processors can then be represented
by the following two priced timed automata:
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Figure 5: The resource management problem asks whether it is possible to maintain the cost level within fixed bounds. There can be a
lower bound only (a), a lower and an upper bound (b, c), or a lower bound and a soft upper bound above which cost level cannot increase.
Figures (a), (b) and (d) represent solutions to the respective problems for the priced timed automaton depicted on the left: there is an infinite
run that satisfies the global constraint. In case (a) for instance, we have depicted a possible schedule for the first cycle, and this run can be
repeated because at the start of the second cycle, the cost level is larger than at the start of the first cycle. In figure (c), the proposed schedule
violates the lower bound, and it can be shown that there exists no infinite run which maintains cost level within the specified bounds.

P1:

idle
+10

+

(x≤2)

+90

×
(x≤3)

+90

x:=0

add1
x:=0

mult1

x=2

done1

x=3

done1

P2:

idle
+20

+

(y≤5)

+30

×
(y≤7)

+30

x:=0

add2
x:=0

mult2

y=5

done2

y=7

done2

2.4 Managing the resources
Up to this point we have only employed

priced timed automata as a formalism for
modeling time-dependent consumption of re-
sources. However, in several situations re-
sources may not just be consumed but also oc-
casionally regained, e.g. in autonomous robots
with rechargeable batteries, or in tanks which
may not only be emptied but also filled. Ex-
tending priced timed automata to allow for
both positive (regaining) and negative (con-
sumption) rates provides a natural modeling
formalism.21

However, a new question now emerges re-
lated to the appropriate management of re-
sources: “Is it possible to maintain the level
of resources within fixed bounds?” Such
resource-bound problems are highly relevant
to the analysis of several embedded systems,
e.g. it is natural to plan the usage of a device
with rechargeable batteries so that one never
runs out of energy, nor exceeds the maximum
capacity for energy storage. Figure 5 shows
a priced timed automaton together with some
resource management problems.

Few results have been obtained on this
problem so far: only the case of one-
clock priced timed automata has been inves-
tigated.14 This restriction has two important
consequences: Cycle detection can be done
statically, as each resetting transition leads to
a configuration with clock value 0, and the
region automaton can be coarsened so that
the partition consists of intervals with end-
points given by the constants in the automa-
ton’s guards. As a consequence, there are only
polynomially many regions.

Under the additional assumption that the
cost cannot be updated during transitions
(hence cost evolves only in locations), it can
be shown14 that for finding runs which satisfy
a global lower-bound constraint, with or with-
out soft upper bound, one can restrict oneself
to look for runs with integral delays. Hence
the corner-point abstraction can be used for
this, and the problems are solvable in polyno-
mial time.

For priced timed automata with more than
one clock, no results are known, but even for
one-clock automata with cost updates during
transitions, there are some difficulties which
mean that abstractions like the above are in-
sufficient. As an example, consider the fol-
lowing priced timed automaton:

ℓ0

+2

ℓ1

+2

ℓ2

+4

x=1,x:=0

−3

x=1,x:=0

Assuming that we start with initial cost 0,
this automaton has exactly one feasible exe-
cution in which the cost level remains non-
negative: after spending 1 time unit in loca-
tion ℓ0, we alternately spend half a time unit
in ℓ1 and half a time unit in ℓ2. Any other ex-
ecution eventually violates the lower bound.
Hence in this case, runs satisfying the lower
bound cannot be found using the corner-point
abstraction.

3. PRICED TIMED GAMES

3.1 A model for uncertainties
The systems we have considered so far are

closed in the sense that we have a complete
description of the system. This is not suffi-
cient to model embedded systems where in-
teraction with the environment is crucial, or
systems with some imprecision. These can be
modeled using (two-player) timed games,8 in
which some actions are triggered by the envi-
ronment (we can think of signals received by
sensors, or of unexpected events). The aim is
to control, or guide, the system so that it will

be safe or correct regardless of the way the en-
vironment interferes. An example of a timed
game is depicted below:

ℓ0 ℓ1

(y=0)

ℓ2

ℓ3

,x≤2,y:=0

x=2

x=
2

Dashed edges belong to the environment (they
are uncontrollable): when they are fireable,
the system cannot prevent (nor force) them
to be fired. Here, the system cannot decide
whether it goes through ℓ2 or through ℓ3.

For simple correctness criteria, e.g. reach-
ability or safety, the set of winning states
(i.e., states from which the system can be con-
trolled under the safety constraint) and also
winning strategies (i.e., policies for how to
control the system) can be computed using
the region abstraction.8 Also computability of
time-optimal strategies,7 as well as strategies
under partial observability, has been demon-
strated. For the latter, decisions are based on
discrete observations giving only partial infor-
mation of the system state, depending on the
availability and precision of sensors.19 For
efficient algorithms, a zone-based approach
for solving timed games with reachability and
safety objectives has been developed,18, 38 and
tool support is available in UPPAAL-TIGA.

3.2 Task graph scheduling:
timing uncertainty

Returning to our running task graph
scheduling example, we can use the formal-
ism of timed games to model uncertainty in
precisely how much time a certain compu-
tation on a given processor takes. In Sec-
tion 1.5 we modeled computation times by
precise numbers, whereas we now can make
the model more realistic by only providing
interval bounds within which computation
times are prescribed to lie. The timed game
models below provide version of the proces-
sors P1 and P2 from Figure 3 in which com-
putation times are prescribed to lie in the in-
tervals [1, 2] for addition and [1, 3] for multi-



plication on P1, and similarly for P2.

P1:

idle+

(x≤2)

×
(x≤3)

x:=0

add1
x:=0

mult1

x≥1

done1

x≥1

done1

P2:

idle+

(x≤2)

×
(x≤3)

x:=0

add2
x:=0

mult2

y≥3

done2

y≥2

done2

Using these models, a computed time-
optimal schedule will no longer be a simple
fixed assignment of tasks and time slots to pro-
cessors, but rather a flexible dynamic assign-
ment, where task scheduling can be adapted
on-line according to actual completion times
of previous tasks. (Hence we cannot display
the solution here.)

3.3 Cost-optimal strategies
It is natural to extend the timed game frame-

work with cost information, hence making it
possible to model uncertainty as well as re-
source use, and to ask for controllability un-
der resource constraints, or for optimal con-
trollability. The model of priced timed games
is a synthesis of priced timed automata and
timed games; we show an example below:

ℓ0

+5

ℓ1

(y=0)

ℓ2

+10

ℓ3

+1
,x≤2,y:=0

x=2 +1

x=
2

+7

In this example we may e.g. want to com-
pute the minimum cost for reaching loca-
tion , regardless of the moves of the envi-
ronment (which is in charge of the edges out
of ℓ1 as before). As the system cannot control
whether execution goes through ℓ2 or ℓ3, the
minimum cost is given by the term

inf
0≤t≤2

max

„
5t+10(2−t)+1

5t+(2−t)+7

«
= 14 +

1

3

where t is the delay spent in location ℓ0. Solv-
ing this, one arrives at a minimum cost of 14 1

3

which is attained for t = 4
3

. As this is not
an integer, one sees that techniques based on
the corner-point abstraction are not sufficient
for computing optimal-reachability strategies,
even in case of one-clock priced timed games.

Generally, priced timed games are much
more difficult to analyze than priced timed au-
tomata. Using reductions from the Halting
problem for two-counter machines, one can
show that cost-optimal strategies are undecid-
able,17 even when restricted to priced timed
games with only three clocks.

Decidability has been shown for classes of
priced timed games with strong conditions on
the cost evolution3 and for one-clock priced
timed games.15 The reason for the latter is the
same as for one-clock priced timed automata

above: resetting the clock leads to a configu-
ration with a known clock valuation.

4. APPLICATIONS & TOOLS
Timed automata and their extensions have

been applied to the modeling, analysis and op-
timization of numerous real-time applications.
In this section we give a few examples, not
aiming at being exhaustive but rather to illus-
trate the wide range of application domains.

A variety of mature tools are available
which provide important computer-aided sup-
port for applications. Well-known tools in-
clude UPPAAL, KRONOS, and HYTECH, but
there is a large number of other tools avail-
able. The electronic version of this article con-
tains an extra section which aims to give an
overview together with references to the indi-
vidual tools.

The timed automata formalism is now rou-
tinely applied to the modeling and analysis
of real-time control programs, including a
wide class of Programmable Logic Controller
(PLC) control programs23, 36 and timing analy-
sis and code generation of vehicle control soft-
ware,39 and the timed automaton approach has
also demonstrated its viability to the timing
analysis of certain classes of asynchronous
circuits.16

Similarly, numerous real-time communica-
tion protocols have been analyzed using timed
automata technology, often with inconsisten-
cies being revealed: e.g. using real-time model
checking, the cause of a 10 year old bug in
the IR-link protocol used by Bang&Olufsen
was identified and corrected.27 Most recently,
real-time model checking has been applied
to the clock synchronization algorithm cur-
rently used in a wireless sensor network that
has been developed by the Dutch company
CHESS.37 Here it is shown that in certain
cases a static, fully synchronized network may
eventually become unsynchronized if the cur-
rent algorithm is used, even in a setting with
infinitesimal clock drifts.

During the last years, timed automata mod-
eling of multitasking applications running un-
der real-time operating systems has received
substantial research effort. Here the goals are
multiple: to obtain less pessimistic worst-case
response time analysis compared with classi-
cal methods for single-processor systems;40

to relax the constraints of period task arrival
times of classical scheduling theory to task
arrival patterns that can be described using
timed automata;26 to allow for schedulabil-
ity analysis of tasks in terms of concurrent
objects executing on multiprocessor or dis-
tributed platforms (e.g. MPSoC).22

Just as symbolic reachability checking of
finite-state models has lead to very efficient
planning and scheduling algorithms, reacha-
bility checking for (priced) timed automata

has demonstrated competitive and comple-
mentary performance with respect to clas-
sical approaches such as MIPL on optimal
scheduling problems involving real-time con-
straints, e.g. job-shop and task-graph schedul-
ing1, 9 and aircraft landing problems.34 In fact
a translation of the variant PDDL3 of PDDL
(Planning Domain Definition Language) into
priced timed automata has been made24 al-
lowing optimal planning questions to be an-
swered by cost-optimal reachability check-
ing. Industrial applications include planning a
wafer scanner from semiconductor industry28

and computation of optimal paper paths for
printers.31

Most recently, computation of winning
strategies for timed games has been applied
to controller synthesis for embedded sys-
tems, including synthesis of most general non-
preemptive online schedulers for real-time
systems with sporadic tasks,2 synthesis of cli-
mate control for pig stables provided by the
company Skov A/S,32 and automatic synthe-
sis of robust and near-optimal controllers for
industrial hydraulic pumps.20

5. CONCLUSIONS
Timed automata and their priced and game

extensions provide a uniform and expres-
sive formalism for dynamic resource alloca-
tion problems with hard real-time constraints,
i.e. timing constraints that must be satisfied
under all circumstances. This is in contrast
to soft real-time constraints, which only need
to be met with a certain probability, .999 say,
and which require stochastic modeling for-
malisms such as discrete-time or continuous-
time Markov chains, queueing models, etc.
While hard real-time focuses on worst-case
analysis, soft real-time addresses more refined
properties such as average-case performance.

However within the setting of hard real-
time, timed automata and their extensions al-
low for analysis of a wide collection of per-
formance and optimization problems, with re-
sults competitive with respect to more tradi-
tional approaches such as mixed-integer lin-
ear programming or others.

Particularly challenging problems remain-
ing to be settled include decidability of syn-
thesis for priced timed games under partial
observability, as well as a range of resource
management problems in the setting of priced
timed automata and games with both con-
sumption and regaining of resources.
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