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Abstract

We characterize the importance of resources (like counters, channels, or alpha-
bets) when measuring the expressiveness of Well-Structured Transition Systems
(WSTS). We establish, for usual classes of well partial orders, the equivalence
between the existence of order reflections (non-monotonic order embeddings)
and the simulations with respect to coverability languages. We show that the
non-existence of order reflections can be proved by the computation of order
types. This allows us to extend the current classification of WSTS, in particu-
lar solving some open problems, and to unify the existing proofs.

Keywords: well-structured transition systems, expressiveness, coverability
languages, well-partial orders, ordinals

1. Introduction

WSTS. Infinite-state systems appear in many models and applications: stack
automata, counter systems, Petri nets or VASSs, reset/transfer Petri nets, fifo
(lossy) channel systems, parameterized systems... Among these infinite-state
systems, some of them, called Well-Structured Transition Systems (WSTS) [1],
enjoy two nice properties: there is a well partial ordering (wpo) on the set of
states and the transition relation is monotone with respect to this wpo.

The theory of WSTS has been successfully applied to the verification of
safety properties of numerous infinite-state models like Lossy Channel Systems
(LCS), extensions of Petri nets like reset/transfer and Affine Well Structured
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Nets (AWN) [2], or broadcast protocols. Most of the positive results are based
on the decidability of the coverability problem (whether an upward closed set of
states is reachable from the initial state) for WSTS, under natural effectiveness
hypotheses. The reachability problem, on the contrary, is undecidable even for
the class of Petri nets extended with reset or transfer transitions.

Expressiveness. Well Structured Languages [3] were introduced as a measure
of the expressiveness of subclasses of WSTS. More precisely, the language of an
instance of a model is defined as the class of finite words accepted by it, with
coverability as accepting condition, that is, generated by traces that reach a state
which is greater than a given final state. Convincing arguments show that the
class of coverability languages is the right one. For instance, though reachability
languages are more precise than coverability languages, the class of reachability
languages is RE, the class of Recursively Enumerable languages, for almost all
Petri nets extensions containing Reset Petri Nets or Transfer Petri Nets. We
would like to answer the two following questions: (1) What are the (proper)
inclusions between different subclasses of WSTS like LCS, AWN, reset/transfer
Petri nets, Data nets [4], identifying some types of languages which are not in
some classes. Knowing that a particular kind of languages is not in a given
class of WSTS may prevent us from looking for a model which does not exist.
(2) Another natural question when confronted to an extension of a model is
whether the additional resources actually yield an increase in expressiveness.
For instance, for counter machines, it is well-known that 1-counter machines,
whose set of states is Q×N, where Q is a finite set, are strictly less powerful than
2-counter machines (i.e., Minsky machines), which operate on Q×N2. Another
example, if we look at Timed Automata, is that clocks are a strict resource:
Timed Automata with k clocks are less expressive that Timed Automata with
k+1 clocks [5]. Surprisingly, no similar results exist for well-known models like
Petri Nets (with respect to the number of places) or Lossy Channel Systems
(with respect to the number of channels, or number of symbols in the alphabet)
except in some particular recent works [6].

Even if we will not study the following problem, let us mention it is connected
to expressiveness: given a case study modeled (for instance) by a Lossy Channel
System with p places, communicating through k lossy fifo channels, is there an
equivalent (in some sense depending on the property we are interested in) Lossy
Channel System with p′ < p places communicating through k′ < k lossy fifo
channels? If we could answer this question, it would be possible to find a
minimal model for the case study. This is not only of theoretical interest, since
minimizing the size of the model (i.e., the number of places and channels in this
example) is crucial when we want to verify it.

Finally, let us remark that the expressive power of WSTS comes from two
natural sources: from the structure of the state space and from the semantics
of the transition relation. These two notions were often extremely intertwined
in the proofs. We propose ourselves to separate them in order to have a formal
and generalizable method for comparing the expressiveness of WSTS.

Ordinal theory for partial orders. Ordinals are a well-known representation
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of well-founded total orders. Thanks to de Jongh, Parikh, Schmidt ([7, 8]) and
others, this representation has been extended to well partial orders. We are
mainly interested in the order type of a wpo, which can be understood as the
“size” of the order. The order types of the union, product, and finite words
have been determined by de Jongh and Parikh. Recently, Weiermann [9] has
completed this view by computing the order type for multisets.

Our contribution. First, we introduce order reflections, a variation of or-
der embeddings that are allowed to be non-monotonic. We define a notion of
witnessing, that reflects the ability of a WSTS to recognize a wpo through a cov-
erability language. We establish the equivalence between the existence of order
reflections and the simulations with respect to coverability languages, modulo
the ability of the WSTS classes to witness their own state space.

Second, we show how to use results from the theory of ordinals, and more
precisely the properties of maximal order types, studied by de Jongh, Parikh
and Schmidt [7, 8], to easily prove the absence of reflections.

Then, we study Lossy Channel Systems and extensions of Petri nets. We
show that all the classes of WSTS considered are self-witnessing. In the first
place, this allows us to unify and simplify the existing proofs regarding the
classification of WSTS. Using our framework, we can easily prove that AWN
are strictly less expressive than LCS and ν-Petri nets [10] (an extension of Petri
nets with unordered data). Moreover, it allows us to solve the open problem [11]
of the relative expressiveness of ν-Petri Nets and Data Nets [4] (an extension of
Petri nets with ordered data). Apart from these qualitative results, we obtain
new quantitative results stating that the number of unbounded places for these
Petri nets extensions, and the size of the alphabet and number of channels for
LCS, are relevant resources when considering their expressiveness.

Finally, we complete our view by putting Timed Petri nets [12] in our pic-
ture. By a close study of the state space of Timed Petri nets, we conclude
that it is isomorphic to the state space of Data nets, even if these two models
are quite different. We prove that both models are actually equivalent, hence
strengthening our guiding principle about the importance of resources for the
expressiveness on WSTS.

Related work. Coverability languages have been used to discriminate the ex-
pressive power of several WSTS, like Lossy Channel Systems or several mono-
tonic extensions of Petri Nets. In [3] several pumping lemmas are proved to
discriminate between extensions of Petri Nets. In [13, 14, 15] the expressive
power of Petri Nets is proved to be strictly below that of Affine Well Nets, and
Affine Well Nets are proved to be strictly less expressive than Lossy Channel
Systems. Similar results are obtained in [11], though some significant problems
are left open, like the distinction between ν-Petri Nets [10] and Data Nets [4]
that we solve here. Recently, the study of the complexity of WSTS with states
spaces equal to Nn or equal to Σ∗ has begun in [16, 6]: it consists in measuring,
with multiple-recursive functions, the length of bad sequences (i.e., sequences of
states that do not contain any increasing subsequence) in the wpos Nn and Σ∗.
These complexity results can be sometimes used for proving strict inclusions
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between subclasses of WSTS.

Outline. The rest of the paper is organized as follows. In Section 2 we introduce
wpos, WSTS and ordinals. Then in Section 3 we develop the study of reflections
and its links to expressiveness of WSTS. Afterwards, in Section 4, we apply our
result to the classical models of Petri Nets and Lossy Channel Systems. Section 5
presents the extension of our results applicable to more recent models of WSTS.
In Section 6 we prove the equivalence between Data Nets and Timed Petri Nets.
Finally we conclude and give perspectives to this work in Section 7.

This work is based on [17] and on the research report [18].

2. Preliminaries and WSTS

Well Orders. (X,≤X) is a quasi-order (qo) if ≤X is a reflexive and transitive
binary relation on X . For a qo we write x <X y iff x ≤X y and y 6≤X x. A
partial order (po) is an antisymmetric quasi-order. Given any qo (X,≤X), the
quotient set X/ ≡≤X

is a po where x ≡≤X
y is defined by x ≤X y ∧ y ≤X x.

Hence, in all the paper, we will suppose that (X,≤X) is a po.
The downward closure of a subset A ⊆ X is defined as ↓A = {x ∈ X | ∃x′ ∈

A, x ≤ x′}. A subset A is downward closed iff ↓A = A. A po (X,≤X) is a well
partial order (wpo) if for every infinite sequence x0, x1, . . . ∈ X there are i and
j with i < j such that xi ≤ xj . Equivalently, a po is a wpo when there are no
strictly decreasing (for inclusion) sequences of downward closed sets.

We will shorten (X,≤X) to X when the underlying order is obvious. Simi-
larly, ≤ will be used instead of ≤X when X can be deduced from the context.

If X and Y are wpos, their Cartesian product, denoted X×Y is well ordered
by (x, y) ≤X×Y (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′. Their disjoint union, denoted
X ⊎ Y is well ordered by:

z ≤X⊎Y z′ ⇐⇒

{

z, z′ ∈ X
z ≤X z′

or

{

z, z′ ∈ Y
z ≤Y z′

A po (X,≤) is total (or linear) if for any x, x′ ∈ X either x ≤ x′ or x′ ≤ x. If
(Xi,≤i) are total po for i ∈ N we can define the (irreflexive) total order <lex in
⋃

k X1 × ...×Xk by (x1, ..., xp) <lex (x′
1, ..., x

′
q) iff there is i ∈ {1, ...,min(p, q)}

such that xj = x′
j for j < i and xi <i x

′
i or (x1, ..., xp) = (x′

1, ..., x
′
p) and q > p.

Then ≤lex given by x ≤lex x′ iff x = x′ or x <lex x′ is a total order.

Functions. Given a partial function (shortly: function) f : X → Y , the
domain of f is defined by dom(f) = {x ∈ X | ∃y ∈ Y, f(x) = y} and its
range by range(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}. A function f is surjective
if range(f) = Y and it is total if dom(f) = X . Total functions are called
mappings. A mapping f is injective if for all x, x′, f(x) = f(x′) =⇒ x = x′.
If X and Y are ordered, a mapping f : X → Y is increasing (resp. strictly
increasing) if x ≤X y =⇒ f(x) ≤Y f(y) (resp. if x <X y =⇒ f(x) <Y

f(y)); f is an order embedding (shortly: embedding) if f(x) ≤Y f(x′) ⇐⇒
x ≤X x′. A bijective order embedding is called an order isomorphism (shortly:
isomorphism).
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Multisets. Given a set X , we denote by X⊕ the set of finite multisets of X ,
that is, the set of mappings m : X → N with a finite support sup(m) = {x ∈ X |
m(x) 6= 0}. We use the set-like notation {|...|} for multisets when convenient,
with {|xn|} describing the multiset containing x n times. We use + and −
for multiset addition and subtraction, respectively defined by (m + m′)(x) =
m(x) + m′(x) and (m − m′)(x) = max(m(x) − m′(x), 0). If X is a wpo then
so is X⊕ ordered by ≤⊕ defined by {|x1, . . . , xn|} ≤⊕ {|x′

1, . . . , x
′
m|} if there

is an injection h : {1, . . . , n} → {1, . . . ,m} such that xi ≤X x′
h(i) for each

i ∈ {1, . . . , n}.

Words. Given a set X , any u = x1 · · ·xn with n ≥ 0 and xi ∈ X , for all
i ∈ {1, ..., n}, is a finite word on X . We denote by X∗ the set of finite words on
X . If n = 0 then u is the empty word, which is denoted by ε. We write Xε =
X ∪ {ε}. A language L on X is a subset of X∗. Given L and L′ two languages
on X∗, we define the language LL′ = {uv | u ∈ L, v ∈ L′}. If X is a wpo then
so is X∗ ordered by ≤X∗ which is defined as follows: x1 . . . xn ≤X∗ x′

1 . . . x
′
m

if there is a strictly increasing mapping h : {1, . . . , n} → {1, . . . ,m} such that
xi ≤X x′

h(i) for each i ∈ {1, . . . , n} (Higman’s lemma).

WSTS. A Labelled Transition System (LTS) is a tuple S = 〈X,Σ,→〉 where
X is the set of states, Σ is the labelling alphabet and →⊆ X × Σε × X is
the transition relation. We write x

a
−→ x′ to say that (x, a, x′) ∈→. This

relation is extended to u ∈ Σ∗ by x
u
−→ x′ ⇐⇒ x

a1−→ x1 · · ·xk−1
ak−→ x′ and

u = a1a2 · · · ak (note that some ai’s can be ε). A Well Structured Transition
System (shortly a WSTS) is a tuple S = (X,Σ,→,≤), where (X,Σ,→) is an
LTS, and ≤ is a wpo on X , satisfying the following monotonicity condition: for
all x1, x2, x

′
1 ∈ X,u ∈ Σ∗, x1 ≤ x′

1, x1
u
−→ x2 implies the existence of x′

2 ∈ X such

that x′
1

u
−→ x′

2 and x2 ≤ x′
2. For a class X of wpos, we will denote by WSTSX

the class of WSTS with state space in X, or just WSTSX for WSTS{X}.

Coverability and Reachability Languages. Trace languages, reachability
languages and coverability languages are natural candidates for measuring the
expressive power of classes of WSTS. Given a WSTS S and two states x0 and
xf , the reachability language is LR(S, x0, xf ) = {u ∈ Σ∗ | x0

u
→ xf} while the

coverability language is L(S, x0, xf ) = {u ∈ Σ∗ | x0
u
→ x, x ≥ xf}. Finally, the

trace language is given by LT (S, x0) = {u ∈ Σ∗ | ∃xf . x0
u
−→ xf}. Let us remark

that all trace languages are coverability languages in taking xf =⊥ where ⊥ is
the least element of X (if there is one). Also, assuming it is possible to have
transitions that test whether the state is greater than some xf , coverability
languages can be obtained from trace languages by intersecting by some regular
language (and WSTS are closed under intersection [3]).

To justify our choice of coverability languages as measure of expressiveness,
we note that the class of reachability languages is the set of recursively enumer-
able languages for all Petri nets extensions containing reset Petri nets or transfer
Petri nets. Thus, such a criterion does not discriminate sufficiently. One could
consider infinite coverability languages. A sensible accepting condition in this
case could be repeated coverability, that is, the capacity of covering a given
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marking infinitely often, in the style of Büchi automata. However, analogously
to what happens with reachability, repeated coverability is generally undecidable
(except for some notable exceptions, like Petri nets), which makes ω-languages a
bad candidate to study the relative expressive power of WSTS. In conclusion, we
will use the class of coverability languages, as in [3, 13, 14, 11]. Because of our
remarks on the relation between coverability languages and trace languages, it
will generally be possible to translate results on coverability languages to results
on trace languages.

For two classes of WSTS S1 and S2, we write S1 � S2 whenever for every
language L(S1, x1, x

′
1) with S1 ∈ S1, and x1, x

′
1 two states of S1, there exists

another system S2 ∈ S2 and two states x2, x
′
2 of S2 such that L(S2, x2, x

′
2) =

L(S1, x1, x
′
1). When S1 � S2 and S2 � S1, one denotes the equivalence of

classes by S1 ≃ S2. We write S1 ≺ S2 for S1 � S2 and S2 � S1. Clearly, � is
reflexive and transitive.

The Lossy Semantics. The lossy semantics Sl of an LTS S with state
space X endowed with a wpo ≤ is the original system S completed by all
ε-transitions x

ε
→ y, for all x, y ∈ X such that y < x. We observe that Sl

satisfies the monotonicity condition, hence Sl is a WSTS. Moreover, due to the
lossy semantics one has: for all x1, x2 ∈ X,u ∈ Σ∗, x1

u
→ x2 implies x1

u
→ x′

2 for
all x′

2 ≤ x2. This implies that L(Sl, x0, xf ) = LR(Sl, x0, xf ) for any x0, xf ∈ X .
Moreover, if S was already a WSTS, we also have: L(S, x0, xf ) = L(Sl, x0, xf ).

3. A method for comparing WSTS

In this section we propose a method to compare the expressiveness of WSTS
mainly based on their state space. We will prove some results that provide us
with tools to establish strict relations between classes of WSTS.

3.1. A new tool: order reflections

Definition 1 (Order reflections). Let (X,≤X) and (Y,≤Y ) be two partially
ordered sets. A mapping ϕ : X → Y is an order reflection (shortly: reflection)
if ϕ(x) ≤Y ϕ(x′) implies x ≤X x′ for all x, x′ ∈ X .

We will write X ⊑ Y if there is an embedding from X to Y and X ⊑refl Y if
there is a reflection from X to Y . We will use 6⊑ and 6⊑refl for their negation and
❁ and ❁refl for their antisymmetric version (i.e. X ❁ Y ⇐⇒ X ⊑ Y ∧Y 6⊑ X).
Here are some basic properties of reflections we will use throughout the paper:
for any set X , any injective mapping to (X,=) is a reflection; every reflection is
injective; the composition of two reflections is a reflection (so ⊑refl is transitive).

Furthermore, if ϕ is an embedding from X to Y then X is isomorphic to
ϕ(X) and hence can be identified to it. Clearly, existence of embeddings is a
stronger requirement than the existence of reflections. In particular, it can be
the case that a wpo X cannot be embedded in another wpo Y , even if there are
reflections from X to Y , as implied by the following result.
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Proposition 1. The following properties hold:

• Nk ⊑refl N⊕, for any k > 0.

• Nk 6⊑ N⊕ for any k ≥ 3 (but N2 ⊑ N⊕).

Proof. The proof of N3 6⊑ N⊕ is technical and of little interest for the remain-
der of the paper. It is available in Appendix A, Proposition 17.

The mapping ϕ : N2 → N⊕ given by ϕ(a, b) = {|a + 2, 1b|} is an order-
embedding, so the only part remaining is to show that there is an order reflection
from Nk to N⊕, for any k > 0.

Let us take a fixed k ∈ N. There are k! possible relative orders of x1, ..., xk.
Let us denote Nk = k! and let ok be a mapping that associates with each
tuple (x1, ..., xk) a number between 0 and Nk − 1 such that ok(x1, ..., xk) =
ok(x

′
1, ..., x

′
k) means that x1, ..., xk and x′

1, ..., x
′
k are in the same relative order.

We define ac : {0, . . . , Nk − 1} → N⊕ by ac(n) = {|2Nk − (n+ 1), n|}. Note
that ac(m) and ac(n) are incomparable with respect to the multiset order if m
and n are different numbers between 0 and Nk − 1.

Now we define ϕ by:

ϕ(x1, ...xk) = {|(2Nk + x1), (2Nk + x2), · · · , (2Nk + xk)|}+ ac(ok(x1, ...xk))

We claim this is an order reflection. Indeed, let us take X = (x1, ..., xk) and
X ′ = (x′

1, ..., x
′
k) and assume that we have ϕ(X) ≤N⊕ ϕ(X ′). Then, there is a

bijective mapping σ : ϕ(X) → ϕ(X ′) with:

ϕ(X) = {|2Nk + x1, ..., 2Nk + xk, 2Nk − (ok(X) + 1), ok(X)|}

ϕ(X ′) = {|2Nk + x′
1, ..., 2Nk + x′

k, 2Nk − (ok(X
′) + 1), ok(X

′)|}

∀x ∈ ϕ(X). x ≤ σ(x)

The cardinalities of ϕ(X) and ϕ(X ′) are the same, and the elements of the
form 2Nk + xi can only be mapped to one of their counterpart, so:

σ(2Nk − (ok(X) + 1)) = 2Nk − (ok(X
′) + 1)

σ(ok(X)) = ok(X
′)

This means that ok(X) = ok(X
′). The components of X and X ′ are thus in

the same relative order. Without loss of generality, we will assume this order is
x1 ≤ x2 ≤ ... ≤ xk. Let us assume by contradiction that X 6≤ X ′, so that there
exists i such that xj ≤ x′

j for all j > i and xi > x′
i. Then, xi is mapped by σ to

some x′
m, so we have xi ≤ x′

m for some m. Two cases may occur:

• m > i : Then by cardinality, we have an element xp in {xi+1, ..., xk} that
is mapped by σ to an element x′

p′ with p′ ≤ i. Thus, we have xi ≤ xp ≤
x′
p′ ≤ x′

i, contradicting our assumption that x′
i < xi.

• m < i : Then, we have xi ≤ x′
m ≤ x′

i, contradicting again our assumption.

Thus, we have xi ≤ x′
i for all i, concluding our demonstration. ✷
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3.2. Expressiveness of WSTS and order reflections

Reflections are more appropriate than embeddings for the comparison of
WSTS. In particular, the existence of a reflection implies the relation between
the corresponding classes of WSTS.

Theorem 1. Let X and Y be two wpo. We have:

X ⊑refl Y =⇒ WSTSX � WSTSY

Proof. Let L = L(S, x0, xf ) for some WSTS S = 〈X,Σ,→∗,≤〉 with state
space X with x0, xf ∈ X , respectively. Because a WSTS has the same cover-
ability languages as its lossy version, we can assume that S is a lossy WSTS.

Let ϕ be a reflection from X to Y . Since ϕ is an injection, we can consider
the following labelled transition system Sϕ, of states ϕ(X) ⊆ Y , with initial
and final states ϕ(x0) and ϕ(xf ), respectively, and whose transitions a ∈ Σ are
defined by:

ϕ(x)
a
→Sϕ ϕ(x′) ⇐⇒ x

a
→S x′

It holds that Sϕ ∈ WSTSY . Indeed, if we take ϕ(x1), ϕ(x
′
1) and ϕ(x2) such

that ϕ(x1)
u
→Sϕ ϕ(x′

1) and ϕ(x2) ≥ ϕ(x1), then we have by definition of Sϕ,

and because ϕ is a reflection, that x1
u
→S x′

1 and x2 ≥ x1, which means, by well-

structure of S, that there exists x′
2 ≥ x′

1 such that x2
u
→S x′

2. By the lossiness

property of S, we have x2
u
→S x′

1, and thus ϕ(x2)
u
→Sϕ ϕ(x′

1). Moreover, S and
Sϕ clearly recognize the same language, so that L = L(Sϕ, ϕ(x0), ϕ(xf )) with
Sϕ ∈ WSTSY , which concludes our proof. ✷

We would like to obtain the converse of the previous result: X 6⊑refl Y =⇒
WSTSX 6� WSTSY . First, we only present this result for “simple” state spaces.
The case of more complex state spaces will be handled in Subsection 3.3. In
both cases, the result makes use of a class of languages, that we call witness
languages.

Given an alphabet Σ = {a1, ..., ak}, we define Σ by Σ = {a1, · · · , ak} where
ai’s are fresh symbols (i.e. Σ ∩ Σ = ∅). This notation is extended to words by
u = a1 · · · ak for u = a1 · · · ak ∈ Σ∗. In the same way, given L ⊆ Σ∗, we have
L = {u | u ∈ L} ⊆ Σ

∗
.

Definition 2 (Witness languages). Let X be a wpo and Σ a finite alphabet.
A Σ-representation of X is any surjective partial function γ : Σ∗ → X . For a
Σ-representation γ of X , we define Lγ = {uv | u, v ∈ dom(γ) and γ(v) ≤
γ(u)}. A language L ∈ (Σ ∪ Σ̄)∗ is a γ-witness (shortly: witness) of X if
L ∩ dom(γ)dom(γ) = Lγ .

Intuitively, given a witness L of X , the fact that a WSTS can recognize
L witnesses that the WSTS can represent the structure of X : it is capable of
accepting all words starting with some u (representing some state γ(u)), followed
by some v that represents γ(v) ≤ γ(u). Witness languages are useful for proving
strict relations between classes of WSTS:
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Theorem 2. Let L be a witness of X. If X 6⊑refl Y then there are no y0, yf ∈ Y
and no S ∈ WSTSY such that L = L(S, y0, yf ).

Proof. Assume by contradiction that L is a γ-witness of X which is the cover-
ability language of a WSTS S whose state space is Y , with y0 and yf as initial
and final states, respectively. For each x ∈ X , let us pick a ux ∈ Σ∗ such that
γ(ux) = x. The word uxux is recognized by S, hence we can find yx and y′x
such that y0

ux−−→ yx
ux−−→ y′x ≥ yf .

We define ϕ(x) = yx. Let us prove that ϕ is an order reflection from X to

Y , thus reaching a contradiction. Assume that ϕ(x) ≤ ϕ(x′). We have y0
ux−−→

yx
ux−−→ y′x ≥ yf and y0

ux′

−−→ yx′
ux′

−−→ y′x′ ≥ yf with ϕ(x) = yx ≤ yx′ = ϕ(x′).
Since S is a WSTS, the sequence ux, which is fireable from yx, is also fireable
from yx′ , and the state reached by this subsequence is greater or equal than y′x.
Hence, the state reached after ux′ux is greater or equal than the one reached
after uxux, which means that ux′ux ∈ L∩dom(γ)dom(γ) = Lγ . By definition of
Lγ , this implies that γ(ux) = x ≤ x′ = γ(ux′), so that ϕ is an order reflection.✷

The simple state spaces we mentioned before are the ones produced by the
following grammar:

Γ ::= Q (finite set with equality)
| N (naturals with the standard order)
| Σ∗ (words on a finite set with the order defined in Section 2)
| Γ× Γ (cartesian product with the order defined in Section 2)

As N is isomorphic to Σ∗ when Σ is a singleton, any set produced by Γ is
isomorphic to a set Q× Σ∗

1 × · · · × Σ∗
k where Q and each Σi are finite sets.

Proposition 2. Let X be a set produced by the grammar Γ. Then, there is a
witness of X that is recognized by a WSTS of state space X.

Proof. We have X = Q × Σ∗
1 × · · · × Σ∗

k, ordered by its canonic order ≤X

(which is the Cartesian product of equality on Q and subword ordering on Σ∗
i

for all i). Without loss of generality, we assume that the Σi’s are disjoint. We
also define ΣT =

⋃

1≤i≤k Σi and ΣQ = {aq | q ∈ Q} (ΣT and ΣQ disjoint).
Finally, we choose arbitrarily a q0 ∈ Q.

We define a WSTS S = 〈X,Σ,→,≤X〉 by:

• Σ = ΣT ∪ΣQ ∪ ΣT ∪ ΣQ

• For a ∈ ΣT , (q, u1, ..., uk)
a
−→ (q′, u′

1, ..., u
′
k) ⇐⇒







q = q′

u′
i = uia if a ∈ Σi

u′
j = uj otherwise

• For a ∈ ΣT , (q, u1, ..., uk)
a
−→ (q′, u′

1, ..., u
′
k) ⇐⇒







q = q′

ui = au′
i if a ∈ Σi

uj = u′
j otherwise

9



• For ap ∈ ΣQ, (q, u1, ..., uk)
ap

−→ (q′, u′
1, ..., u

′
k) ⇐⇒







q = q0
q′ = p
u′
i = ui

• For ap ∈ ΣQ, (q, u1, ..., uk)
ap

−→ (q′, u′
1, ..., u

′
k) ⇐⇒







q = p
q′ = q0
u′
i = ui

• s
ǫ
−→ s′ ⇐⇒ s′ ≤ s

Indeed, S is a WSTS because it is defined by the lossy semantics (last item) of
an LTS. We define γ(x) = (q, u1, ..., uk) iff x ∈ aq‖u1‖ · · · ‖uk, where ‖ denotes
the shuffling operation (i.e. z ∈ u‖v ⇐⇒ z = u1v1u2 · · ·upvp with u =
u1u2 · · ·up and v = v1v2 · · · vp, with ui, vi ∈ Σ∗). γ is a (ΣT ∪ΣQ)-representation
of X .

We define L = L (S, (q0, ǫ, ..., ǫ), (q0, ǫ, ..., ǫ)) and we have:

L ∩ dom(γ)dom(γ) = {uv | u, v ∈ dom(γ) and γ(v) ≤ γ(u)}

This concludes the demonstration. ✷

WSTS that can recognize witnesses of their own state spaces are especially
interesting. Indeed, in this case one can use Theorem 2 to obtain an equiva-
lence between the existence of an order reflection, and inclusion for the sets of
recognized languages. In particular:

Proposition 3. Let X be a wpo produced by Γ and Y any wpo. Then,

X ⊑refl Y ⇐⇒ WSTSX � WSTSY

Proof. The direction from left to right is given by Theorem 1. Conversely, let
us prove that X 6⊑refl Y ⇒ WSTSX � WSTSY . We can find a witness L of X
recognized by a WSTS of state space X (Proposition 2). By Theorem 2, this
language cannot be recognized by a WSTS of state space Y , hence the result.✷

3.3. Self-witnessing WSTS classes

The reason we were able to build our equivalence between the existence of
a reflection from X to Y and WSTSX � WSTSY for any wpo X produced by
Γ was Proposition 2. However, we conjecture that this result is no longer true
for any state space X that embeds N⊕, that is, that there is no WSTS of state
space X that can recognize a witness of X . This prompts us to define a new
notion:

Definition 3 (Self-witnessing). Let X be a class of wpos and S a class of
WSTS whose state spaces are included in X. (X,S) is self-witnessing if, for all
X ∈ X, there exists S ∈ S that recognizes a witness of X .

10



In particular, Proposition 2 states that (WSTSX , {X}) is self-witnessing for
any X produced by the grammar Γ. We will shorten (X,S) as S when the state
space is not explicitly needed. We extend the relation ⊑refl to classes of wpo
by X ⊑refl X

′ if for any X ∈ X, there exists X ′ ∈ X′ such that X ⊑refl X
′.

Next, we prove the result analogous to Proposition 2 for self-witnessing classes.

Proposition 4. Let (X,S) be a self-witnessing WSTS class and S′ a WSTS
class using state spaces inside X′. Then, S � S′ =⇒ X ⊑refl X

′.
Moreover, if S′ = WSTSX′ , S � S′ ⇐⇒ X ⊑refl X

′.

Proof. Let us show the first implication. Let X ∈ X. Since (X,S) is self-
witnessing, there is S ∈ S that recognizes L, a witness of X . Because S � S′,
there is S ′ ∈ S′ recognizing L. S ′ has state space X ′ ∈ X′, and by Theorem 2,
X ⊑refl X

′.
For the second implication, for any X ∈ X, we have X ′ ∈ X′ such that

X ⊑refl X
′. Because of Theorem 1, WSTSX � WSTSX′ . Hence, WSTSX �

WSTSX′ . Since clearly S � WSTSX, we conclude. ✷

We will see in Section 4 and Section 5 that many usual classes of WSTS,
even those outside the algebra Γ, are self-witnessing.

3.4. How to prove the non-existence of reflections?

Because of Proposition 3 and Proposition 4, the non existence of reflections
will be a powerful tool to prove strict relations between WSTS. We will use
some results from set-theoretical ordinals to get a simple way of disproving the
existence of such reflections. First, we recall a few properties of these objects.

Each ordinal α is equal to the set of ordinals {β | β < α} below it, and the
class of ordinals is totally ordered by inclusion. Every total well order (X,≤X)
is isomorphic to a unique ordinal ot(X,≤X), called the order type of X .

In the context of ordinals, we define 0 = ∅, n = {0, ..., n − 1} and ω = N,
ordered by the usual order. Moreover, given α and α′ ordinals, we define α+α′

as the order type of ({0} × α) ∪ ({1} × α′) ordered by ≤lex. In the same way,
α ∗ α′ is defined as the order type of α′ × α ordered by ≤lex. Note that these
operations are not commutative: we have 1+ω = ω 6= ω+1. The definitions of
+ and ∗ coincide with the usual operations on N for ordinals below ω, and we

have α +
k
· · · + α = α ∗ k. We can also define exponentiation by having αβ be

the order type of the set of functions from β to α ordered by ≤lex defined by:

f <lex g ⇐⇒ ∃x ∈ β.

{

f(x) < g(x)
∀y < x. f(y) = g(y)

We will work with ordinals below ε0, that is, those that can be bounded by

a tower ωω··
·ω

. These can be represented by the hierarchy of ordinals in Cantor
Normal Form (CNF), that is recursively given by the following rules:

C0 = {0}.

11



Cn+1 =
{

ωα1 + · · ·+ ωαp | p ∈ N, α1, . . . , αp ∈ Cn and α1 ≥ · · · ≥ αp

}

ordered
by:

ωα1 + · · ·+ ωαp ≤ ωα′
1 + · · ·+ ωα′

q ⇐⇒ (α1, . . . , αp) ≤lex (α′
1, . . . , α

′
q)

Each ordinal below ε0 has a unique CNF. If α = ωβ1 + · · ·+ ωβn , we denote
by Cantor(α) the multiset {|β1, . . . , βn|}.

Let us recall that a linearization of a po ≤X is a total order ≤′
X on X such

that x ≤X y =⇒ x ≤′
X y. A linearization of a wpo is a well total order, hence

isomorphic to an ordinal. We extend the definition of order types to non-total
wpos:

Definition 4. Let (X,≤X) be a wpo. The maximal order type (shortly: order
type) of (X,≤X) is ot(X,≤X) = sup {ot(X,≤′

X) | ≤′
X linearization of ≤X}.

The existence of the sup comes from ordinal theory. Moreover, de Jongh and
Parikh [7] even show that this sup is actually attained. Let Down(X) be the set
of downward closed subsets of X . Then, another well-known characterization
of the maximal order type is the following:

Proposition 5. ot(X)+1 = sup {α | ∃f : α → Down(X), f strictly increasing}

Proof.

We first prove that ot(X)+1 ≤ sup {α | ∃f : α → Down(X), f strictly increasing}

Let ≤′ be a linearization of ≤ of order type ot(X). Let ϕ be an isomorphism
from ot(X) to (X,≤′). We define f : ot(X) + 1 → Down(X) by:

f(β) = {x ∈ X | x <′ ϕ(β)} for β < ot(X)
f(ot(X)) = X

f is strictly increasing, which means that:
ot(X) + 1 ∈ {α | ∃f : α → Down(X), f strictly increasing} and concludes the
first part of the proof.

We now prove that ot(X)+1 ≥ sup {α | ∃f : α → Down(X), f strictly increasing}

Let α be an ordinal and f be a strictly increasing mapping from α to Down(X).
We define the quasi-order ≤f on X by:

x ≤f y iff ∀β < α, y ∈ f(β) =⇒ x ∈ f(β)

≤f is clearly reflexive and transitive. Let ≤tie be a linearization of ≤X . We
define the order ≤′

f by:

x ≤′
f y ⇐⇒

{

x ≤f y ∧ y 6≤f x or,
x ≤f y ∧ y ≤f x ∧ x ≤tie y

≤′
f is clearly reflexive and antisymmetric. Let us show transitivity. Assume

that x ≤′
f y and y ≤′

f z. If they are all three in the same equivalence class
(resp. in different equivalence classes) of ≡≤f

, x ≤′
f z comes from transitivity
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of ≤tie (resp. ≤f ). If x and y are ≤f -equivalent, and y <f z we immediately
get x <′

f z. The last case is similar.

Let us prove that ≤′
f is a linear order. Pick any x and y. If they are equivalent

w.r.t. ≤f , we get the result by linearity of ≤tie. So assume by symmetry that
there exists β, x ∈ f(β) and y /∈ f(β). Then for any β′ such that y ∈ f(β′),
β < β′ since f is strictly increasing and ordinals are totally ordered. Thus
x ∈ f(β′). Since β′ is arbitrary, this shows that x ≤′

f y.

Let us prove that ≤′
f is a linearization of ≤X . Pick any x ≤X y (and thus

x ≤tie y). Because for all β, f(β) is downward closed, we have x ≤f y, which
leads to x ≤′

f y.

Choose some xmax 6∈ X , and X ′ = X ∪ {xmax}. We extend ≤′
f on X ′ by

x ≤′
f xmax for all x ∈ X . We define ϕ : α → (X ′,≤′

f ) by:

ϕ(β) = min
≤′

f

{x ∈ X ′ | x 6∈ f(β)}

The min is defined because X ′ is well-ordered and at least xmax 6∈ f(β) for any
β. Because f is increasing, ϕ is also monotonic.

Let us show that ϕ is an order embedding. Assume β < β′. Then there exists
y such that y ∈ f(β′) and y 6∈ f(β). This means ϕ(β) ≤′

f y. As y ∈ f(β′) and
f(β′) is downward closed, ϕ(β) ∈ f(β′), which implies ϕ(β) < ϕ(β′).

We have an order embedding from α to (X ′,≤′
f ) which means α ≤ ot(X ′) =

ot(X) + 1. ✷

The reason that order types are particularly useful to prove the absence of
order reflections is that these reflections preserve strict inclusions of downward
closed sets (and by Proposition 5, we have seen that order types can be defined
by strictly increasing sequences of downward closed sets).

Lemma 1. Let X and Y be two wpos and ϕ a reflection from X to Y . Let
A ( X with A = ↓A. Then ↓ϕ(A) ( Y

Proof. Let us assume that ↓ϕ(A) = Y . Let us take x ∈ X , x 6∈ A. Since
ϕ(x) ∈ Y and ↓ϕ(A) = Y , there is x′ ∈ A such that ϕ(x) ≤ ϕ(x′). Since ϕ is
a reflection we have x ≤ x′ and since A is downward closed x ∈ A, hence the
contradiction. ✷

This leads us to the proposition that we use to separate many classes of WSTS
(originally found in [9]):

Proposition 6. [9] Let X and Y be two wpos. Then,

X ⊑refl Y =⇒ ot(X) ≤ ot(Y )

Proof. Let ϕ : X → Y be a reflection and let us consider an ordinal α and a
mapping f : α → Down(X), strictly increasing. We define g : α → Down(Y ) by
g(β) = ↓ϕ(f(β)). By Lemma 1, g is strictly increasing. By the characterization
of order types in Proposition 5, we have ot(X) ≤ ot(Y ). ✷
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The order types of the usual state spaces used for WSTS are known. We
will recall some classic results on these order types, but we need the following
definitions of addition and multiplication on ordinals to be able to characterize
the order types of X ⊎ Y and X × Y . Remember (Section 2) that an ordinal
α below ε0 is uniquely determined by Cantor(α), hence the validity of the
following definition.

Definition 5 (Hessenberg 1906, [7]). The natural addition, denoted ⊕, and
the natural multiplication, denoted ⊗, are defined by:

Cantor(α ⊕ α′) = Cantor(α) + Cantor(α′)
Cantor(α ⊗ α′) = {|β ⊕ β′ | β ∈ Cantor(α), β′ ∈ Cantor(α′)|}

We already know that the order type of a finite set (with any order) is its
cardinality and that the order type of N is ω. De Jongh and Parikh [7], and
Schmidt [8] have shown a way to compose order types with the disjoint union,
the Cartesian product, and the Higman ordering. A more recent and difficult
result, by Weiermann [9], provides us with the order type of multisets. These
results are summed up here:

Proposition 7. ([7, 8, 9])

• ot(X ⊎ Y ) = ot(X)⊕ ot(Y )

• ot(X × Y ) = ot(X)⊗ ot(Y )

• ot(X∗) =

{

ωωot(X)−1

if X finite

ωωot(X)

otherwise (for ot(X) < ǫ0)

• ot(X⊕) = ωot(X) for ot(X) < ǫ0

Formulas exist even for ot(X) ≥ ǫ0. We refer the interested reader to [7] and
[9] for the complete formulas. With these general results we can obtain many
strict relations between wpo.

Corollary 1. The following strict relations hold for any k > 0:

(1) Nk
❁refl Nk+1 (4) Nk

❁refl N⊕

(2) (Nk)⊕❁refl (Nk+1)⊕ (5) Nk
❁refl Σ

∗ (for |Σ| > 1)
(3) (Nk)∗❁refl (Nk+1)∗

Proof. The non-strict relations in (1), (2) and (3) are clear, and (4) comes from
Proposition 1. For (5), ϕ(n1, . . . , nk) = an1b . . . bank is a reflection. Strictness
follows from Proposition 6 and the following order types, obtained according to

the previous results: ot(Nk) = ωk, ot((Nk)⊕) = ωωk

, ot((Nk)∗) = ωωωk

, and

ot(Σ∗) = ωω|Σ|−1

. ✷
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4. Petri Nets and Lossy Channel Systems

The state spaces described by Proposition 3 are exactly those of Petri Nets
and Lossy Channel Systems. We will look more closely at these systems to see
the implication of this result regarding their expressiveness.

4.1. Petri Nets

Definition 6 (Petri Nets). A Petri net is a tuple 〈P, T, Pre, Post,Σ, λ〉 where:

• P is a finite set of places,

• T is a finite set of transitions,

• Pre and Post are mappings from P × T to N,

• Σ is a finite alphabet of labels, and

• λ : T → Σε is the labelling function.

A marking of a Petri Net is usually defined as a mapping from P to N. We
assume here that P = {1, . . . , d}, and we see this marking as a vector x ∈ Nd.

A transition t is enabled in the marking x if for all p ∈ {1, . . . , d}, x(p) ≥
Pre(p, t). The transition relation → of the WSTS associated with the Petri Net

is defined by x
a
−→ y if there is a transition t ∈ T with λ(t) = a enabled in x,

such that for all p ∈ {1, . . . , d}, y(p) = x(p)− Pre(p, t) + Post(p, t).
We denote by PN (PN k) the class of transition systems associated to Petri

Nets (with k places). Then we have the following:

Theorem 3. For any k > 0, PN k 6� WSTSNk−1 .

Proof. We remark that the WSTS defined in the proof of Prop. 2 is actually
the lossy semantics of a Petri Net when X = Nk. This induces that we can take
the non-lossy version of this Petri net, which is still a WSTS. Hence, PN k is
self-witnessing. Since Nk 6⊑refl Nk−1, we conclude by Prop. 4. ✷

Moreover, if we consider Affine Well Nets (AWN ) [2] (an extension of Petri
Nets with whole-place operations like transfers or resets), and denote by AWN k

the class of AWN with k unbounded places, we can obtain from the previous
result the following simple consequence:

Corollary 2. PN k ≺ PN k+1 6� AWN k for all k > 0.
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4.2. Lossy Channel Systems

Communicating Finite State Machines [19], FIFO Petri Nets [20] and FIFO
automata [21] are (almost equivalent) models for systems of processes commu-
nicating through (perfect) FIFO (First In First Out) channels; all these models
may simulate Turing machines by using the FIFO channel to simulate the tape
and the transitions of a Turing machine. Given an alphabet (i.e., a finite set) M
of messages, let A be the following (finite) set A = ({!, ?}×M)∪{⊥} of (channel)
elementary actions which can be of three different types: (!,m), shortly written
!m (resp. (?,m), shortly written ?m) is the sending (resp. receiving) action of
message m in (resp. from) a channel c (which will be specified); the action ⊥
is an internal action which does not modify the channels: at each step, a FIFO
automaton is able to make at least one action on each channel. Suppose now
that there are k channels. A (vector) action a ∈ Ak is a vector a = (a1, ..., ak)
of k elementary actions ai, where each ai is the unique action on channel ci.

Definition 7 (FIFO Automata). A FIFO Automaton with k channels is a
tuple (Q,M, T, δ,Σ, λ) where

• Q is a finite (and non-empty) set of states,

• M is a finite set of messages,

• T is a finite set of transitions,

• δ : T → Q×Ak ×Q,

• Σ is a finite alphabet of labels, and

• λ : T → Σε is the labelling function.

The set of configurations of a FIFO Automaton is Q × (M∗)k. Given two
configurations x = (p, u1, . . . , uk) and y = (q, v1, . . . , vk), we may fire the tran-

sition t ∈ T from x and we reach y, written x
λ(t)
−−→ y, iff δ(t) = (p, a, q) and for

every i ∈ {1, . . . , k}, we have: (ai =⊥ =⇒ ui = vi), (ai =?m =⇒ ui = mvi)
and (ai =!m =⇒ uim = vi).

The lossy semantics (as defined in Section 2) of a FIFO automaton is well-
known under the name of Lossy Channel System (LCS) [22]. Completely speci-
fied protocols [23, 24] are a variant of LCS, and are sometimes called front-lossy
Channel System because the messages of M can only be lost when they reach
the front of the fifo channel.

We define LCS(k, p) as the set of transition systems associated to lossy
channel systems with k channels and p messages. A classic result is that one can
encode many channels into one, as long as an additional character (a separator)
becomes available for the channel alphabet.

Proposition 8. Let S ∈ LCS(k, p) and x0, xf states of S. Then there is S ′ ∈
LCS(1, p+ 1) and x′

0, x
′
f states of S ′ such that L(S, x0, xf ) = L(S ′, x′

0, x
′
f ).
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Proof. Let M be the set of messages of S. We order the k channels of S,
C1, . . . , Ck. We recursively define Ck+i = Ci. We keep a notion of “active
channel” through the control states. We pick a message # 6∈ M . Messages of
S ′ are M ∪ {#} and a state of S ′ is (q, i, ui#ui+1# . . .#ui+k−1) where q is the
original control state of S, 1 ≤ i ≤ k is the current active channel and uj is
the content of channel Cj . Reading a character in Ci requires i to be the active
channel; writing a character in Ci requires Ci+1 to be the active channel.

The system can change the active channel from Ci to Cj (j > i) at any time
by iterating j − i times the following sequence of ε-transitions:

• Write #

• Read a word in M∗ and copy it to the end of the channel.

• Read #

As long as exactly k − 1 separators # stay in the channel, the described
system simulate S. However, one can lose these separators. To remove spurious
traces, we add a final checking procedure, starting from the final states of S,
that reads k − 1 symbols # and, if successful, puts the system in its real final
state. ✷

Thanks to our framework, we can sharpen this result by adding strict inclu-
sions:

Theorem 4. LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)

Proof. LCS(k, p) � LCS(k + 1, p) clearly holds. We have already shown
that LCS(k + 1, p) � LCS(1, p+ 1). For the strictness, we remark again that
the WSTS introduced in the proof of Proposition 2 is actually a LCS, that
is, given a state space X = Q × (M∗

p )
k, we can find S in LCS(k, p) and a

witness L of X such that S recognizes L. This implies that LCS(k, p) is self-

witnessing. For all k and p, ot(Q × (M∗
p )

k) = ωωp−1∗k ∗ |Q|. This implies that

(M∗
p )

k+1 6⊑refl Q × (M∗
p )

k and M∗
p+1 6⊑refl Q × (M∗

p )
k for all Q. To conclude

we only need to apply Proposition 4. ✷

Moreover, in [14] the authors prove that AWN ≺ LCS. We can easily get
back the strictness:

Proposition 9. LCS(1, 2) 6� AWN.

Proof. As in the previous result, we remark that LCS(1, 2) is self-witnessing.
Thus, we only need to apply Proposition 4, considering that for any k > 0,
M∗

2 6⊑refl Nk (Corollary 1). ✷

This result is tight: LCS(0, p) ≃ FA (Finite Automata), LCS(k, 1) ≃ PN k.
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5. Petri Net extensions with data

Many extensions of Petri nets with data have been defined in the literature
to gain expressive power for better modeling capabilities. Data Nets (DN ) [4]
are a monotonic extension of Petri nets in which tokens are taken from a linearly
ordered and dense domain, and transitions can perform whole place operations
like transfers, resets or broadcasts. A similar model, in which tokens can only
be compared with equality, is that of ν-Petri Nets (ν-PN ) [10]. The relative
expressive power of DN and ν-PN has been an open problem since [11]. In this
section we prove that ν-PN ≺ DN . We work with the subclass of DN without
whole place operations, called Petri Data Nets (PDN ), since DN ≃ PDN [14].

5.1. Petri Data Nets and ν-Petri Nets

Petri Data Nets.
We denote by 0 the null vector in Nk for any k, and for a word w = x1 · · ·xn

we write |w| = n and w(i) = xi.
A Petri Data Net (PDN ) is a Petri net where each token carries an identity

from a linearly ordered and dense domain D. A marking s of a PDN can be
seen, e.g., as a multiset of pairs in D×P , or as a map s ∈ (NP )D. However, two
key features of PDN s will guide our choice for marking representation:

1. a marking s only has finitely many tokens. Thus, denoting d1 < · · · < dm
the identities that occur in s and gathering all tokens carrying the same
identity di, one obtains a (non-null) place vector vi in N|P |. Therefore, s
can be written (d1, v1) · · · (dm, vm), implicitly associating the null vector
0 with any d ∈ D \ {d1, . . . , dm};

2. the concrete identities di are irrelevant, and only their relative order is
useful w.r.t. the dynamics of the net. Thus, s can be safely abstracted
as the sequence v1 · · · vm in (N|P | \ 0)∗. (Also the choice for set D is
irrelevant.)

Every transition t of a PDN specifies a sequence of n ordered potential iden-
tities and for any such identity specifies the tokens Pre(t) to be consumed and
Post(t) to be produced. Thus, Pre(t) and Post(t) are two sequences of n (possibly
null) place vectors.

Definition 8 (Petri Data Nets). A k-dimensional Petri Data Net (k-PDN )
is a tuple N = (P, T,Pre,Post,Σ, λ), where:

• P is a finite set of k = |P | places,

• T is a finite set of transitions with P ∩ T = ∅,

• for every t in T , Pre(t) and Post(t) are finite sequences in (Nk)∗ with
|Pre(t)| = |Post(t)|,

• Σ is a finite alphabet, and

• λ : T → Σǫ is the labelling function.
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Figure 1: Firing of a Petri data net transition (assuming a < c < b)

Consider now a marking s ∈ (Nk \ 0)∗. In order to fire a transition t with
|Pre(t)| = n, one nondeterministically selects n identities, consumes some of
their tokens as indicated by Pre(t), and produces new tokens with the identities
specified by Post(t). However, some of these n identities might not be present
in s, and we should introduce null vectors wherever necessary: s′ ∈ (Nk)∗ is a

0-extension of s ∈ (Nk \ 0)∗ (or s is the 0-contraction of s′)
def
⇔ s is obtained

by removing all 0’s from s′. Once an extension s′ is built, one selects in it a
subword of n vectors x1, . . . , xn s.t. every vector contains enough tokens, i.e.
with xi ≥ Pre(t)(i). If the condition is fulfilled, the corresponding tokens are
consumed and Post(t)(i) is added to the resulting vector, yielding a new sequence
s′′. This s′′ may contain null vectors, e.g. when all tokens with some identity
have been consumed. Hence, the marking one really reaches is the 0-contraction
of s′′. Note that any way of firing t requires at most n insertions.

Definition 9 (Transition system of a PDN). Let N be a k-PDN. Then
the labelled transition system S(N ) = 〈X,Σ,→〉 is defined by:

• X = (Nk \ 0)∗

• Let s, s′ ∈ X and t ∈ T with n = |Pre(t)|. Then s
λ(t)
−−→ s′ iff:

1. there exists u0x1u1 · · ·un−1xnun a 0-extension of s with ui ∈ (Nk)∗

and xi ∈ Nk for all i;

2. for i ∈ {1, . . . , n}, xi ≥ Pre(t)(i);

3. and defining yi = xi − Pre(t)(i) + Post(t)(i),
s′ is the 0-contraction of u0y1u1 · · ·un−1ynun.

We rely on the standard graphical depiction of high level nets and use (pic-
tures of) Petri nets where arcs connected to a transition t are labelled with bags
of variables that must be instantiated by ordered identities. The number of
these variables is exactly |Pre(t)| and the ordering of the corresponding identi-
ties is carried by the transition. For concision and readability, it is convenient
to allow orderings of the variables that are not total: this stands for all possible
linearizations. For instance, we can simulate a transition t in which two unre-
lated variables x and y appear, by having a non-deterministic choice between
three transitions t1, t2 and t3, the first one assuming x < y, the second one
assuming y < x and the last one with y substituted by x. Analogously, a tran-
sition with variables x and y so that x ≤ y, can be simulated by two transitions
one assuming x < y and the other one with y substituted by x.

Using these graphical conventions, Fig. 1 depicts a PDN with a single tran-
sition t given by:
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Figure 2: Firing in a ν-Petri net (with σ(x) = a, σ(y) = b, σ(ν) = d)

Pre(t) = (1, 0, 0)(0, 0, 0)(0, 1, 0) and Post(t) = (0, 0, 0)(0, 0, 1)(0, 0, 0)
(with places of P ordered by their index).

ν-Petri Nets.
ν-Petri Nets can be seen as a restriction of PDN s where the domain of

identities D still infinite is now unordered. In this restricted framework, we need
variables to establish a correspondence between the identities of the tokens in
the different places. We introduce a countable set Var of variables including a
subset of special variables Υ ⊂ Var with |Υ| = |Var \Υ| = ∞. The role of Υ is
to select identities that are not present in the current marking.

Definition 10 (ν-Petri Net). A ν-Petri net is a tupleN = 〈P, T,Pre,Post,Σ, λ〉,
where:

• P is a finite set of places,

• T is a finite set of transitions with P ∩ T = ∅,

• for every p ∈ P and every t ∈ T , Pre(p, t) ∈ (Var \ Υ)⊕ and Post(p, t) ∈
Var⊕,

• Σ is a finite alphabet, and

• λ : T → Σǫ is the labelling function.

Var(t) denotes the set of variables x for which there is a place p such that
(Pre(p, t) + Post(p, t))(x) is not empty. A marking is a mapping M : P → D⊕.

Definition 11 (Transition System of a ν-Petri Net). Let N be a ν-Petri
net. Then, the labelled transition system S(N ) = 〈X,Σ,→〉 is defined by:

• X = (D⊕)P

• Let s, s′ ∈ X and t ∈ T . Then s
λ(t)
−−→ s′ iff there exists an injection

σ : Var(t) → D such that for every p ∈ P :

1. for every x ∈ Var(t) \Υ, s(p)(σ(x)) ≥ Pre(p, t)(x)
and s′(p)(σ(x)) = s(p)(σ(x)) − Pre(p, t)(x) + Post(p, t)(x),

2. for every ν ∈ Υ∩Var(t), s(p)(σ(ν)) = 0 and s′(p)(σ(ν)) = Post(p, t)(ν),

3. for every d ∈ D \ σ(Var (t)), s′(p)(d) = s(p)(d).
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Figure 3: Net in ν-PN 1 recognizing a witness of (Q × N)⊕ with |Q| = 2

The graphical representation of a ν-Petri net is similar to that of a Petri net
with expressions in (Var)⊕ defining the incidence matrices labelling the arcs of
the net. Figure 2 illustrates the firing of a transition in such nets. Observe that
σ(ν) cannot belong to {a, b, c}.

In ν-Petri nets, markings can be identified up to renaming of identities.
Thus, markings of a ν-PN with k places can be represented as elements in
(Nk)⊕, each tuple representing the occurrences in each place of one identity [25].
For instance, if P = {p1, p2} and marking s is such that s(p1) = {|a, a, b|} and
s(p2) = {|b|}, then its abstract representation is {|(2, 0), (1, 1)|}.

Classes of nets.
Given a net N with identities and an initial marking, a place p of N is

bounded if there exists some positive integer b such that for every reachable
marking and identity, the number of tokens in p carrying this identity is at most
b. Therefore, a bounded place may contain arbitrarily many identities, provided
each of them appears an a priori bounded number of times. If a PDN (resp. a
ν-Petri net) has k unbounded places and m places bounded by some b, then we
can use as state space (Q× Nk)∗ (resp. (Q × Nk)⊕) with Q = {0, ..., b}m.

We denote the class of initialized PDN with k unbounded places by PDN k

and their state space by X∗
k = {(Q × Nk)∗ | Q finite}. We denote the class of

initialized ν-PN with k unbounded places by ν-PN k and their state space by
X⊕

k = {(Q × Nk)⊕ | Q finite}. Moreover, we take X∗ = {(Nk)∗ | k > 0} and
X⊕ = {(Nk)⊕ | k > 0}.

5.2. Self-witnesses and consequences

Proposition 10. For every k ≥ 0, ν-PN k and PDN k are self-witnessing.

Proof. We start with ν-PNk. Let (Q×Nk)⊕ ∈ X⊕
k . We consider an alphabet

Σ = {aq | q ∈ Q} ∪ {a1, ..., ak} and we define γ : Σ∗ → (Q× Nk)⊕ by:

γ(aq1a
n1
1

1 ...a
nk
1

k ....aqla
n1
l

1 ...a
nk
l

k ) = {|(q1, n
1
1, ..., n

k
1), ..., (ql, n

1
l , ..., n

k
l )|}

Let us build N in ν-PNk such that L(N) ∩ dom(γ)dom(γ) = Lγ . Assume
Q = {q1, ..., qr}. Figure 3 shows the case with k = 1 and r = 2.
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Figure 4: PDN recognizing a witness of N∗

The only unbounded places of N are p1, ..., pk (hence N ∈ ν-PN k). We
consider q1, ..., qr as places, a place st that stores all the names that have been
used (once each name, hence bounded), and places c0, c1, ..., ck containing one
name in mutual exclusion. When the name is in c0 it is non-deterministically
copied in some q (action labelled by aq), and moved to c1. For every, 1 ≤ i ≤ k,
when the name is in ci it can be copied arbitrarily often to pi (action labelled by
ai). At any time, this name can be transferred to ci+1 when i < k or to st for
i = k (action labelled by ǫ). In the last case a fresh name is put in c0 (thanks
to ν ∈ Υ).

The second phase is analogous, with control places d0, d1, ..., dk+1, marked
in mutual exclusion with names taken from st. At any point, the name in dk+1

can be removed, and one name moved from st to d0 (action labelled by ǫ).
That name must appear in some q. Thus, for each q we have a transition that
removes the name from d0 and q and puts it in d1 (action labelled by āq). For
each 1 ≤ i ≤ k, the name in di can be removed zero or more times from pi
(action labelled by āi). At any point, the name is transferred from di to di+1

(actions labelled by ǫ).
The initial and final marking is that with a name in c0 and another name in

dk+1 (and empty elsewhere). It holds that L(N) ∩ dom(γ)dom(γ) = Lγ , so we
conclude.

The case of PDN k is analogous to that of ν-PN k. Let (Q×Nk)∗ ∈ X∗
k. We

define Σ = {aq | q ∈ Q} ∪ {a1, ..., ak} and γ : Σ∗ → (Q × Nk)∗ by:

γ(aq1a
n1
1

1 ...a
nk
1

k ....aqla
n1
l

1 ...a
nk
l

k ) = (q1, n
1
1, ..., n

k
1)...(ql, n

1
l , ..., n

k
l )

The net N in PDN k that we build is similar to the ν-PN we built in the case
of ν-PN k, except for two differences: On the one hand, whenever a fresh name
was put in c0, now we put a greater name (that is, we replace ν by a variable y
such that x < y). On the other hand, whenever we took from st another name,
now we take a greater name (that is, we assume x < y). Finally, the initial and
final marking is that with one name in c0 and a smaller name in dk+1. Again,
it holds that L(N) ∩ dom(γ)dom(γ) = Lγ , and we conclude. ✷

Figure 4 shows a PDN recognizing a witness of N∗. Notice that since ν-PN k

and PDN k are self-witnessing for every k ≥ 0, so are ν-PN and PDN .
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Proposition 11. X∗
1 6⊑refl X

⊕, X⊕
k+1 6⊑refl X

⊕
k and X∗

k+1 6⊑refl X
∗
k for all k.

Proof. X∗
1 6⊑refl X

⊕ holds because ot(N∗) = ωωω

6≤ ωωk

= ot((Nk)⊕), so that
N∗ 6⊑refl (Nk)⊕ for all k. The others are obtained similarly, considering that

ot((Q × Nk)⊕) = ωωk∗|Q| and ot((Q× Nk)∗) = ωωωk∗|Q|

. ✷

Corollary 3. ν-PN ≺ PDN . Moreover, PDN 1 6� ν-PN .

Proof. ν-PN � PDN is from [11]. PDN 1 6� ν-PN is a consequence of Prop. 4,
considering that both classes are self-witnessing, and that X∗

1 6⊑refl X
⊕. ✷

We can even be more precise in the hierarchy of Petri Nets extensions.

Proposition 12. For any k ≥ 0, ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1.

Proof. Clearly ν-PN k � ν-PN k+1 and PDN k � PDN k+1 for any k ≥ 0.
For the converses, again we can apply Prop. 4, considering that all the classes
considered are self-witnessing and that X⊕

k+1 6⊑refl X⊕
k and X∗

k+1 6⊑refl X∗
k

hold. ✷

Finally, we can strengthen the result AWN ≺ ν-PN proved in [11] in a very
straightforward way.

Proposition 13. ν-PN 1 6� AWN

Proof. ν-PN 1 is self-witnessing, and X⊕
1 6⊑refl {Nk | k > 0} because N⊕ 6⊑refl

Nk for all k (indeed, ot(N⊕) = ωω 6≤ ωk = ot(Nk)). By Prop. 4 we conclude. ✷

Again, the previous result is tight. Indeed, a ν-PN with no unbounded
places can be simulated by a Petri net, so that ν-PN 0 ≃ PN .

6. Timed Petri Nets

A timed Petri net [12] is a Petri net whose tokens have an age that evolves
synchronously with time elapsing. The transition system of such a net has two
kinds of transitions. Either time elapses (with no restriction) and all the token
ages are updated accordingly; or a net transition is fired, consuming and pro-
ducing tokens as in ordinary nets. However the ages of tokens to be consumed
can be required to belong to time intervals while the ages of tokens to be pro-
duced can be selected non deterministically in time intervals. Consequently, the
arcs of a timed Petri net are labelled by multisets of intervals. In this section,
I is the set of intervals with bounds in N ∪ {∞}.

Definition 12 (Timed Petri nets). A timed Petri net (TdPN ) N is a tuple
(P, T,Pre,Post, λ) where:

• P is a finite set of places,
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• T is a finite set of transitions with P ∩ T = ∅,

• Pre, the backward incidence mapping, is a mapping from T to (I⊕)P ,

• Post, the forward incidence mapping, is a mapping from T to (I⊕)P ,

• λ : T → Σε is a labelling function.

Since (I⊕)P is isomorphic to (P × I)⊕, Pre(t) and Post(t) may also be
considered as multisets. Given a place p and a transition t, if the multiset
Pre(t)(p) (resp. Post(t)(p)) is non null then it defines a pre-arc (resp. post-arc)
of t connected to p.

A configuration µ of a TdPN is an item of (R⊕
≥0)

P (or equivalently (P ×

R≥0)
⊕). Intuitively, a configuration is a marking extended with age information

for the tokens. We will write (p, τ) for a token which is in place p and whose
age is τ . A configuration is then a finite sum of such pairs. A token (p, τ)
then belongs to the configuration µ whenever (p, τ) ≤ µ (in terms of multisets).
For a configuration µ and d ∈ R≥0 we write µ + d to denote the configuration
obtained from µ by increasing the age of all tokens by d. Given a configuration
µ ∈ (P × R≥0)

⊕ and a multiset f ∈ (P × I)⊕, we say that µ satisfies f , and
write µ |= f , if and only if there exists a multiset x ∈ (P ×R≥0 ×I)⊕ verifying
the following conditions:







π1,2(x) = µ,
π1,3(x) = f,
∀(p, τ, I) ∈ sup(x), τ ∈ I.

Here πi,j is the mapping that, given a multiset of tuples x, outputs the multiset
of pairs corresponding to the projection of the tuples over their ith and jth
components. The intuition underlying the satisfaction relation is that a multiset
of aged tokens exactly corresponds to a multiset of timed requirements specified
by intervals.

We now describe the semantics of a TdPN as a transition system. As dis-
cussed above, this system consists of timed and discrete transitions. The timed
transitions are silent transitions (i.e. labelled by ε).

Definition 13 (Transition system of a TdPN ). Let N be a TdPN . The
labelled transition system S(N ) = 〈X,Σ,→〉 is defined by:

• X = (P × R≥0)
⊕

• The transitions are defined as follows:

1. For each d ∈ R≥0, there is a delay transition µ
ε
−→ µ+ d.

2. Given a transition t ∈ T and two configurations µ, µ′ ∈ (P ×R≥0)
⊕,

we write µ
λ(t)
−−→ µ′, if and only if there exist two multisets •µ, µ• ∈
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(P × R≥0)
⊕ such that:















•µ |= Pre(t),
µ• |= Post(t),
•µ ≤ µ,
µ′ = µ− •µ+ µ•.

The intuition of the previous definition is as follows: •µ is the set3 of tokens
which is removed from the configuration µ when firing transition t, whereas
µ• is the set of tokens that are created by the transition firing. Moreover, the
ages of all these tokens need to satisfy the constraints specified by the various
arcs (conditions written using the |= operator defined above). Finally, the new
configuration is given by µ′ computed as µ′ = µ− •µ+ µ•.

A path in the TdPNN is a sequence µ0
ε
−→ µ0 + d1

λ(t1)
−−−→ µ1

ε
−→ µ1 +

d2
λ(t2)
−−−→ µ2 . . . in the above transition system, which alternates between delay

and discrete transitions. A timed transition sequence is a finite timed word
over the alphabet T , the set of transitions of N . A firing sequence is a timed

transition sequence (t1, τ1)(t2, τ2) . . . such that µ0
ε
−→ µ0 + τ1

λ(t1)
−−−→ µ1

ε
−→ µ1 +

(τ2 − τ1)
λ(t2)
−−−→ µ2 . . . is a path. If (p, τ) ≤ µ is a token of a configuration µ, it is

a dead token whenever for every interval I labelling a pre-arc of p, τ is strictly
greater than the upper bound of I. This means that this token cannot be used
anymore by a pre-arc to fire a transition. The untimed word which is read along

a path µ0
ε
−→ µ0 + d1

λ(t1)
−−−→ µ1

ε
−→ µ1 + d2

λ(t2)
−−−→ µ2 . . . is the projection over Σ

of the timed word, i.e., λ(t1)λ(t2) . . ..

Definition 14 (Untimed Language of a TdPN ). Let N be a TdPN and
µ0, µf be two configurations with integer ages. Then L(N , µ0, µf) is the un-
timed coverability language associated with S(N ), µ0 the initial configuration
and µf the configuration to be covered.

We have required that the ages of tokens in the two configurations are inte-
ger. Indeed, in order to represent these configurations, we could simply require
that the ages are rational. However with a standard change of scale time, ratio-
nals can be transformed to integers (both in the configurations and in the net)
without modifying the language.

Now the key observation is that w.r.t. the untimed language of a TdPN (as
in timed automata), it is sufficient to look at an abstraction of the configurations,
called regions. By max we denote the maximal integer appearing in the bounds
of intervals of the net and in the age of tokens in µ0 and µf . In the following,
we denote by 0 the empty multiset {| |}.

3This is a language misuse, the right term should be “multiset”, as there can be several
tokens with the same age.
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Definition 15 (Regions of TdPN s). A region R for a TdPN N is a sequence
a0a1 . . . ana∞ where n ∈ N and:

• a0 ∈ (P × Fmax)
⊕ with Fmax = {0, 1, . . . ,max};

• for all 0 < i ≤ n, ai ∈ (P × Fmax−1)
⊕ with Fmax−1 = {0, 1, . . . ,max−1}

and ai 6= 0;

• a∞ ∈ (P × F∞)⊕ with F∞ = {∞}.

We informally explain the semantics of a region. Given the multiset of tokens
defining a configuration, we obtain its associated region as follows. We put in
a∞ all the tokens whose ages are strictly greater than max and forget their ages.
We then put in a0 the tokens with integral ages and add the information about
their ages. Finally, we order the remaining tokens depending on the fractional
part of their ages in a1, . . . , an, forget their fractional part, and only store the
integral part of their ages. Hence n is the number of different positive fractional
values for ages of the remaining tokens. For instance, consider the multiset of
tokens (p, 1)+(p, 2.8)+(q, 0.8)+(q, 5.1)+(r, 1.5). Then, if the maximal constant
is 4, its region encoding will be a0a1a2a∞ where a0 = (p, 1) (because there is a
single token with integral age), a∞ = (q,∞) (because the age of token (q, 5.1) is
5.1, hence above the maximal constant), a1 = (r, 1) (among all fractional parts,
0.5 is the smallest one), and a2 = (p, 2) + (q, 0) (all tokens with fractional part
0.8).

Furthermore we can define an (infinite but countable) transition system over
regions that generate the untimed words of the net. Rather than giving a formal
cumbersome definition, we informally present it:

• We associate silent transitions with time elapsing. Since we can split the
time elapsing, we consider two kinds of such transitions.

1. Given a region a0a1 . . . ana∞, when a0 6= 0 we first partition a0 =
b0 + c0 where b0 (resp. c0) is the multiset of tokens with age strictly
less than max (resp. equal to max). The new region is now the
word 0b0a1 . . . an(a∞ + c′0) where c′0 is the bag of tokens of c0 with
max substituted by ∞. This transition corresponds to a small time
elapsing that does not let the ages of tokens of an to reach or overcome
an integral value.

2. Given a region 0a1 . . . ana∞ when n > 0, the new region is now the
word b0a1 . . . an−1a∞ where b0 is the bag of tokens of an with their
integral component increased by one. This transition corresponds to
the time elapsing that lets the ages of tokens of an reach an integral
value.

• The information associated with the age of tokens in a region is sufficient
to know whether they belong to an interval labelling a pre-arc. So given
a region a0a1 . . . ana∞, in order to fire t:
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1. We must constitute a word b0b1 . . . bnb∞ with bi ≤ ai for every i ∈
{0, . . . , n}∪∞ such that for every place p there is a bijective mapping
from the intervals of the multiset Pre(t)(p) to the tokens labelled by p
in b0, b1, . . . bn, b∞. The first step of the firing consists then in deleting
these tokens, leading to an intermediate region c0c1 . . . cnc∞ = (a0 −
b0)(a1 − b1) . . . (an − bn)(a∞ − b∞) where the ci’s for 1 ≤ i ≤ n such
that ci = 0 are then deleted.

2. Then for every place p and every interval of the multiset Post(t)(p),
we choose a token whose fractional part may be either null, either a
non null existing one or a new non null one, in this last case increasing
n and choosing any position in the fractional order. The choice must
lead to an age belonging to the interval. These new tokens “added”
to c0c1 . . . cnc∞ lead to the region reached by this firing of t (as there
are non deterministic choices, several but finitely many firings of t
are possible).

Given R0 (resp. Rf ) the abstraction of µ0 (resp. µf ), it is routine to check that
the corresponding coverability language is exactly L(N , µ0, µf ). Furthermore,
the state space of this abstract transition system is a wpo and this system is
a WSTS. Since the abstract transition rule is effective, the family of untimed
languages of TdPN fulfills the same standard decidability properties as the ones
already presented. We refer to [12, 26] for more information.

Looking more carefully at this state space it appears to be isomorphic to
the one of a Petri Data net. This suggests that these models could be equally
expressive w.r.t. their coverability languages and this is what we prove in the
next theorems.

Theorem 5. Let N be a Petri Data net and m0,mf be two markings of N .
There exists N ′ a TdPN and two configurations µ0, µf such that L(N ′, µ0, µf ) =
L(N ,m0,mf ).

Proof. Let us first describe the principles of the simulation. Places of N ′

will contain two kinds of tokens: the tokens of age belonging to [0, 1] will be
relevant while the older tokens will be irrelevant. We define the relevant part of
a marking of N ′ as the marking where the irrelevant tokens have been deleted.

The simulation of a transition firing will last 1 time unit (t.u.), so the markings
of N ′ at instants 0, 1, 2, . . . are the basis of the simulation.

Our simulation is lossy in the following sense. If there is a firing sequence
m0

σ
−→ m in N , then there is at least one perfect simulation µ0

σ
−→ µ in N ′

with the same associated word. Furthermore all firing sequences of N ′ will be
perfect or lossy simulations. A lossy simulation is a sequence that leads to
markings at integer instants whose relevant parts are covered by the relevant
part of markings reached by a perfect simulation with the same associated word.

For technical reasons, a place p of N will be simulated by two places p0, p1 ofN ′.
Let m0

σ
−→ m be a firing sequence in N , with n current identities x1 < . . . < xn

in m and denote m by the word (
∑

p∈P λ1
p · p) . . . (

∑

p∈P λn
p · p).
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Figure 5: Simulation of a transition at even instants

Let µ0
σ
−→ µ be some perfect simulation of σ in N ′. There will be exactly

n fractional parts of ages of relevant tokens in µ. Assume that the length of
the firing sequence σ is even (resp. odd). Let us denote a0a1 . . . ana∞ be the
region associated with µ. Then the word ai fulfills ai =

∑

p∈P λi
p · (p0, 0) (resp.

ai =
∑

p∈P λi
p · (p1, 0)). a0 will contain tokens of control places to be detailed

later) and a∞ will be equal to 0.

Let us describe the control places:

• time0, time1 are the places that schedule the operations. At an even (resp.
odd) instant, place time0 (resp. time1) has a token with age 0. Then after
one t.u., a transition tt0 (resp. tt1) ending the simulation process is fired
getting this token and producing a token with age 0 in time1 (resp. time0).

• Place idle0 (resp. idle1) has a token only present at even (resp. odd)
instants. The consumption of this token by transition t0 (resp. t1) starts
the simulation process of transition t. When a simulation is started, a
token (whose time is irrelevant) is produced in place trans0 (resp. trans1).
This token enables to transfer relevant tokens that will not be used in the
transition firing. When such a token (say in place q0) has age 1 it is
consumed by tr.q0 and a token is produced in q1. At the end of the
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Figure 6: Test of covering p(q + r) at even instants

simulation the token has the same age as the original one at the beginning
of the simulation. Observe that some tokens may be forgotten (case of
a lossy simulation). These forgotten tokens cannot be used in the sequel
since their ages become greater than 1.

• Let us recall that all variables occurring in a transition t of N are totally
ordered. Thus the transition simulation consumes and produces the tokens
required by variables, beginning by the greatest variable. Let us illustrate
this simulation in the example of Figure 5. The token “with identity Z”
in place q which must be consumed will be the first one to reach age 1, so
it is deleted by transition simZ.t0. Then transition simY.t0 produces the
token “with identity Y ” in place s1. Finally, transition simX.t0 consumes
the token “with identity X” in place p0 and simultaneously produces the
token in place r1. Observe that these transitions must let time elapse due
to the interval constraints. This avoids to use the same identity for X , Y
and Z.

Let us now explain by an example (see Figure 6) how to check coverability of
marking p(q + r) in N . At even (resp. odd) instants one consumes the token
in idle0 (resp. idle1) and proceeds to test the coverability. First one lets time
elapse until we obtain a token in q and r with age 1. Then after some time
elapsing we must obtain a token in p with age 1 and we conclude positively by
covering marking (success, 0). The generalization is straightforward.

The specification of the initial marking of N ′ is immediate and left to the reader.
✷

In order to prove the reverse implication, we recall that for any TdPN N
there is a TdPN N ′ with the same language and such that the only interval
occurring in post-arcs is [0, 0] (Theorem 4 of [27]).

Theorem 6. Let N be a TdPN and two configurations µ0, µf (with integer
ages) of N . Then there exists N ′ a Petri Data net and m0,mf two markings
of N ′ such that L(N ′,m0,mf ) = L(N , µ0, µf ).
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Figure 7: Simulation of time elapsing

Proof. As in the previous proof, our simulation is a lossy simulation allowing
to “lose” tokens of N in the simulating net N ′, as it does not change the
coverability language. We first describe the principle of the simulation.

After some initialization stage, places low, high and int always contain a single
token. In the sequel of the proof we denote the identity contained in such a
place by the name of the place. Every non null fractional part of the current
configuration of N is represented by an identity x such that: low ≤ x ≤ high.
The order of such identities is the reverse order of the fractional part: for two
identities of fractional parts x < y the fractional part of x is greater than the
fractional part of y. For every simulation, low is just a lower bound of the
identity with the highest fractional part but if there is at least a token in N
whose age has a non null fractional part then there is always a simulation for
which low is equal to this identity. Furthermore, identity int corresponds to
tokens whose ages (less or equal than max) have a null fractional part.

During the simulation, int only decreases while low only increases, and as in
the initialization step we ensure that int < low, this inequation will always be
fulfilled. At any instant of the simulation, the identities that label tokens are
between int and high and only tokens which have identities between low and
high or equal to int are still relevant for the simulation.

Let max be the maximal constant occurring in N , µ0 and µf . For every place
p of N , N ′ has the following places: p0, p1, . . . , pmax, p∞. Place pk contains
the tokens of N in p with age less or equal than max and integral part equal
to k. Place p∞ contains the tokens of N in p with age greater than max; this
place contains black tokens as the fractional part of the age is irrelevant for such
tokens in N .

During the simulation, place disc is either empty or contains a black token that
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Figure 8: Simulation of a transition

allows the simulation of discrete transitions of N . Let us first describe the
simulation of time elapsing as illustrated in Figure 7. Transition el0 begins to
perform the simulation of a small elapse of time whose only effect (see above the
definition of the transition system over regions) is that there is no more tokens
(with age less or equal than max) with integral ages. It increases high in order
to assign this value to the tokens with integral ages. While time0 is marked,
transition tfp,k with k < max “updates” tokens with integer age in pk changing
their identity to high. Transition tfp,max transfers tokens with age max from pk
to p∞. As said before, some tokens can be forgotten but they will not perturb the
simulation since at the end of the transfer int is decreased (transition el1). Then
either we stop the time elapsing simulation (transition el2) or proceed (transition
el3) to let an additional amount of time that corresponds to letting the tokens
with greatest fractional part reach their next integral value by changing their
identity from low to int and moving tokens from pk to pk+1. When low is
different from the identity of tokens with greatest fractional part, no transfer
occurs. At the end of a simulation, a new value is chosen for low greater than
the former value and less or equal than high (transition el4). When this choice
corresponds to the identity of the new greatest fractional part the simulation is
exact. Otherwise, the tokens whose fractional parts have associated identities
less than low are “lost”.

The simulation of a transition of N is straightforward. In order to simplify
its presentation, we can assume w.l.o.g. that pre-arcs are labelled by multisets
of intervals [0], ]0, 1[, [1], . . . , [max], ] max,∞[. This can be easily obtained by
duplicating transitions (see for instance [27]). As said before, post-arcs are
labelled by a multiset over interval [0]. Rather than defining it formally we
illustrate the translation on Figure 8. For instance, since the arc from p to t is
labelled by ]2, 3[, we are looking for a token in place p2 with identity between low
and high. The other cases are similar. Observe that since post-arcs are labelled
by 0, there is no new fractional part. This avoids to handle the undesirable case
where a new fractional part would be the greatest one, as it would require to
decrease low, which is forbidden by our simulation.

Checking the coverability condition is performed by stopping the simulation
and then consuming tokens in places pk with identity int corresponding to the
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Quantitative results. (All results are new.)
For every k ∈ N VASSk ≺ VASSk+1 6� AWN k

For every k, p ∈ N LCS(k, p) ≺ LCS(k + 1, p) ≺ LCS(1, p+ 1)
For every k ∈ N ν-PN k ≺ ν-PN k+1 and PDN k ≺ PDN k+1

Qualitative results. (New results are ν-PN ≺ DN and PDN ≃ TdPN )
VASS ≺ M ≺ DN ≃ PDN ≃ TdPN
where M is either ν-PN or LCS

Table 1: Summary of results

(integral-age valued) tokens of µf . ✷

7. Conclusion and Perspectives

To show a strict hierarchy of WSTS classes, we have proposed a generic
method based on two principles: the ability of WSTS to recognize some specific
witness languages linked to their state space, and the use of order theory to show
the absence of order reflections from one wpo to another. This allowed us to
unify some existing results, while also solving open problems. We summarize the
current picture on expressiveness of WSTS in Table 1 w.r.t number of resources
and type of resources. On the other hand, showing equivalence between WSTS
classes is a problem deeply linked to the semantics of the models, and hence
that remains to be solved on a case-by-case basis.

An interesting case that remains open is the relative expressiveness of LCS
and ν-PN . Their state space are quite distinct but their order type are the same
for some values of their parameters. We conjecture that there is no reflection
from one to the other, but such a proof would require more than order type
analysis.

All the models that we have studied in this paper use a state space whose
order type is bounded by ǫ0. However, the theory that we have developed
can equally address state spaces with a greater state space. For instance, it is
known that the Kruskal ordering has an order type greater than ǫ0 [8], even for
unlabeled binary trees. Thus, it is tempting to look at WSTS based on trees
[28, 29, 30]. We believe some interesting problems might lie in this direction.
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J. Karhumäki, G. Mauri, C.-H. L. Ong (Eds.), IFIP TCS, volume 273 of
IFIP, Springer, 2008, pp. 477–489.

35



Appendix A. Complements to the proof of Proposition 1

We first introduce a few additional notations that we need for the proof of
this section.4

Let A be a well-ordered set. X ⊆ A is a directed subset of A if ∀x, y ∈
X, ∃z ∈ X, x ≤ z ∧ y ≤ z. A downward closed directed subset of A is called an
irreducible ideal 5 of A. We denote by Idl(A) the set of irreducible ideals of A.

Proposition 14. Let A be a well-ordered set. Then any downward closed subset
of A is a finite union of irreducible ideals.

Note that νI : A → Idl(A) given by νI(x) = ↓x is an order-embedding.
Because of this, we will identify x with ↓x.

Proposition 15. Let I ∈ Idl(Nk). I can be written as (x1, ..., xk) with xi ∈
N ∪ {ω}, and:

(y1, ..., yk) ∈ (x1, ..., xk) ⇐⇒ (∀i, xi ∈ N =⇒ yi ≤ xi)

For example, (ω, 4) denotes the subset of N2 whose elements are those with
4 or lower as their second coordinate. This can be seen as an extension of the
classic ordinal representation, where ω = N.

Proposition 16. Let I ∈ Idl(A⊕). I can be written as {Iω1 , · · · , I
ω
p , J1, · · · , Jq}

where I1, ..., Ip, J1, ..., Jq are irreducible ideals of A, and with

x ∈[[{Iω1 , · · · , I
ω
p , J1, · · · , Jq}]] ⇐⇒







x = x1 ∪ ... ∪ xp ∪ y1 ∪ ... ∪ yq
∀1 ≤ k ≤ p, a ∈ xk =⇒ a ∈ Ik
∀1 ≤ k ≤ q, yk = ∅ ∨ (yk = {a} ∧ a ∈ Jk)

For example {1ω, 3} describes the subset of N⊕ whose elements are those
that contain any number of 0 or 1, and at most one element equal to 2 or 3.
Note that an irreducible ideal has more than one possible representation. We
have for example {2ω, 1} = {2ω}.

Proposition 17. N3 6⊑ N⊕

Proof. Assume ϕ is an order-embedding from N3 to N⊕.
We consider the following sets:

• Ax = {(n, 0, 0) | n ∈ N}

4Although the notations vary slightly from ”Forward Analysis for WSTS : Part I : Com-
pletions” by A. Finkel and J. Goubault-Larrecq (STACS ’09), the beginning of this section is
a straight rewriting of results from this paper.

5Some authors have been using the term “ideal” as a shortcut for either a downward closed
subset, or for a directed one. To avoid any confusion, we will only speak of irreducible ideals
and of downward closed subsets.
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• Ay = {(0, n, 0) | n ∈ N}

• Az = {(0, 0, n) | n ∈ N}

For any α ∈ {x, y, z}, ϕ(Aα) is an infinite chain of N⊕ with least upper
bound an element of Idl(N⊕). If this element is the entire set, for any element
x of N3, we can find an element x′ of Aα such that ϕ(x) ≤ ϕ(x′), contradicting
the order embedding.

Thus, let {ωkα , k′α
ω} ∪Bα be this element.

We remark that for any three pairs of integers, we can choose one of these
pairs that is less or equal than the least upper bound of the two others.

This means, that we can find α, β and γ, such that:

(kα, k
′
α) ≤ (max{kβ , kγ},max{k′β, k

′
γ})

Without loss of generality, we will assume α = x, β = y and γ = z. Then,
we define Ay,z[a] = {(a, n, n)|n ∈ N}.

In the same way as before, we have the image of Ay,z[a] an infinite chain
of N⊕, with least upper bound {ωky,z [a], (k′y,z[a])

ω} ∪ By,z[a]. Because ϕ is an
order embedding, for any a ∈ N, this least upper bound is greater than both
{ωky , k′y

ω} ∪By and {ωkz , k′z
ω} ∪Bz, implying that:

∀a ∈ N, kx ≤ ky,z[a] and k′x ≤ k′y,z[a]

As we have ϕ(n, 0, 0) → ωkx .k′x
ω
.Bx, we can find an a0 such that ϕ(a0, 0, 0) =

{p1, · · · , pkx
, q1, · · · , qr} ∪Bx with:

• r ∈ N

• ∀1 ≤ i ≤ kx, pi ≥ max(k′x,M), where M is the greatest value in Bx

• ∀1 ≤ i ≤ r, qi ≤ k′x

We define P = {p1, · · · , pkx
} and Q = {q1, · · · , qr}. We have:

P ∪Q ∪Bx ≤ {ωky,z [a0], k′y,z[a0]
ω
} ∪By,z[a0]

Elements of P are greater than all elements in Q and B0, thus:

Q ∪Bx ≤ {ωky,z[a0]−kx , k′y,z[a0]
ω
} ∪By,z[a0]

Because k′x ≤ k′y,z[a0], we have:

{k′x
ω
} ∪Bx ≤ {ωky,z [a0]−kx , k′y,z[a0]

ω
} ∪By,z[a0]

⇒ {ωkx , k′x
ω
} ∪Bx ≤ {ωky,z [a0], k′y,z[a0]

ω
} ∪By,z[a0]

and because that means that each image of an element of Ax can be compared to
an element of Ay,z[a0], we get a contradiction that concludes the demonstration.
✷
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