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1. Introduction

Partially ordered sets (posets) are a traditional tool for modelling concurrent processes, in which the
notions of causal dependence and independence, or concurrency, are clearly represented by the order
relation and its complementary (non-order) relation.

We consider a special class of partially ordered sets: occurrence nets. In occurrence nets, the support
set is split into two distinct sets: conditions and events representing, respectively, local states and (local)
state changes.

The term “occurrence net” is sometimes applied to objects of two kinds: the first one represents a
single history of a system (a run), while the second represents all of the system’s possible histories of
execution. In the first case, the occurrence net cannot have branches while, in the second case, forward-
oriented branches are allowed.

This paper continues the work initiated in [3] on runs, possibly infinite in both directions, and ex-
tends it to a class of occurrence nets allowing for forward branching representing the conflict between
alternative histories of a system. In these nets, seen as partially ordered sets, three relations between
pairs of elements are possible: concurrency, causal dependence and conflict.

Under an assumption of local finiteness, a structure of closed sets obtained from the concurrency
relation is defined and studied. Properties of this structure — an orthocomplemented lattice in which the
partial order is the set inclusion and a special case of modularity holds — are subsequently related to a
notion of density for discrete partially ordered sets. This notion was introduced first for non-branching
occurrence nets by Petri, who called it K-density (see, for example, [4] and [12]). Here, we adapt it to
branching occurrence nets, and rename it B-density.

The characterization of the algebraic structures associated to the closure operator and their relations
to B-density are the main results presented. Besides this, dynamically closed sets are introduced. Dy-
namically closed sets are the operational counterpart of the closed sets mentioned above.

The conditions for the equivalence of closed and dynamically closed sets are presented and discussed.

This work has been influenced by Petri’s ideas on a combinatorial representation of flows of infor-
mation in non-sequential processes, constrained by physical laws, specifically by the theory of relativity
(see [12]). A different source of inspiration came from the study of lattices of closed sets in Minkowski
spacetime ([8, 7]).

The paper is structured as follows. Section 2 collects basic definitions. In Section 3, we turn to a
class of occurrence nets, define closed sets, and analyze some of their properties, showing in particular
that they form an orthomodular lattice. In a first subsection, B-density is characterized on the basis of a
relation between trails and closed sets; in a second subsection the connections between the structure of
closed sets in a single run and the structure of the closed sets in the whole occurrence net are analyzed.
In Section 4 dynamically closed sets are introduced, giving also a constructive characterization. The re-
lations between closed sets and dynamically closed sets are then studied in a subsection showing that, for
B-dense occurrence nets, they coincide and form an algebraic orthomodular lattice. Finally, in Section 5,
we briefly comment on the main results, and suggest further developments.
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Figure 1. The ortholattice O6

2. Preliminary Definitions

In this section we recall the definition of the main objects of interest, namely orthomodular posets [11],
Petri nets [12, 4], occurrence nets [10], and closure operators [5].

2.1. Partially Ordered Sets, Orthocomplements and Orthomodular Lattices

A poset is a structure P composed of a set P and a partial order relation ≤ ⊆ P ×P . From ≤ we derive
— when they exist — the binary operators ∧ and ∨: respectively, the greatest lower bound (meet) and the
least upper bound (join). For x, y ∈ P , x ≤ y, [x, y] denotes the interval between x and y: [x, y] = {z ∈
P |x ≤ z ≤ y}. Given A ⊆ P , future(A) denotes the future of A: future(A) = {x ∈ P \A | a < x for
some a ∈ A}. The past of A, past(A), is defined similarly with x < a. A set A ⊆ P is convex iff for all
x, y ∈ A such that x ≤ y, [x, y] ⊆ A.

Definition 2.1. An orthocomplemented poset P = 〈P,≤, 0, 1, (.)′〉 is a poset 〈P,≤〉, bounded by a
minimum (0) and a maximum (1) element and with a map (.)′ : P → P , such that the following
conditions are satisfied: ∀x, y ∈ P

i. (x′)′ = x

ii. x ≤ y ⇒ y′ ≤ x′

iii. x ∧ x′ = 0 and x ∨ x′ = 1

The map (.)′ : P → P is called an orthocomplementation in P .
A lattice L is a poset in which for any pair of elements meet and join always exist. Furthermore, L

is complete when the meet and the join of any subset of L exist. An orthocomplemented lattice is also
called an ortholattice.

Definition 2.2. An orthomodular lattice is an ortholattice L = (L, 0, 1,≤,∧,∨, ( )′) in which, in ad-
dition to properties i, ii and iii in Definition 2.1 above, the following property, known as orthomodular
law, holds:

x ≤ y ⇒ y = x ∨ (y ∧ x′).

A subalgebra of an ortholattice L is a subset of L, closed under the operations ( )′,∧,∨ and containing
0 and 1.



326 L. Bernardinello et al. / Closed Sets in Occurrence Nets with Conflicts

The following characterization of orthomodular lattices (see, for instance, [11], page 22) will be used
in later proofs.

Theorem 2.3. [11] Let L be an ortholattice. ThenL is orthomodular if, and only if, the latticeO6, shown
in Fig. 1, is not a subalgebra of L.

2.2. Nets

Definition 2.4. A net is a triple N = (B,E, F ) such that B and E are countable sets, B ∩ E = ∅ and
F ⊆ (B ×E) ∪ (E ×B). The preset and postset of x ∈ B ∪E, denoted by •x and x•, respectively, are
defined by •x = {y ∈ B ∪ E | (y, x) ∈ F}, and x• = {y ∈ B ∪ E | (x, y) ∈ F}; the neighbourhood of
x, denoted by •x•, is given by •x ∪ x•.

The elements of B are called local states or conditions, the elements of E local changes of state or
events, and F is called flow relation. We will use the standard graphical notation for nets.

Definition 2.5. Let N = (B,E, F ) be a net, and x, y ∈ B ∪ E. Then x and y are in conflict, denoted
by x # y, if there exist two distinct events ex, ey ∈ E such that exF ∗x, eyF ∗y, and •ex ∩ •ey 6= ∅.

Let x # y, and ex, ey as in the previous definition. Define cfs(x, y) := •ex ∩ •ey.
When ≤:= F ∗ is a partial order, we can define further interesting relations on the elements of N .

Two elements x and y are causally dependent, denoted by x li y, if either xF ∗y or yF ∗x. An immediate
consequence of definition 2.5 is conflict heredity:

x # y

x ≤ z

y ≤ w

 ⇒ w # z.

Nodes x and y are concurrent, written x co y, if neither x # y nor x li y hold. A clique D of the
concurrency relation will be called coset. A coset D such that D ⊆ B will be called B-coset.

Definition 2.6. An occurrence net is a net N = (B,E, F ) such that for all b ∈ B, |•b| ≤ 1, F ∗ is a
partial order, the conflict relation is irreflexive, the minimal elements with respect to F ∗ belong to B,
and for all x ∈ B ∪ E, |{y ∈ B ∪ E : yF+x}| <∞.

In an occurrence net, the minimal nodes with respect to F ∗ form a B-coset; equivalently, there is no event
e ∈ E such that •e = ∅. We obtain a poset (X,≤) by defining X = (B∪E) and≤= F ∗. For any subset
A of elements of an occurrence net N = (B,E, F ), define min(A) = {x ∈ A |•x ∩A = ∅}.

The definition of occurrence net implies that ∀x ∈ B ∪E : |•x| <∞ and ∀x, y ∈ B ∪E : |[x, y]| <
∞. In the following we assume also that all occurrence nets considered are condition bordered: every
event e ∈ E in an occurrence net has at least one output condition, i.e. |e•| ≥ 1. Moreover, we assume
that ∀e ∈ E |e•| <∞.

The following lemma will be used in several proofs.

Lemma 2.7. Let e ∈ E, z ∈ B ∪ E. Then

1. z co e⇔ ∀b ∈ •e : b co z
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2. z co e⇔ ∀b ∈ e• : b co z

Proof:
Suppose first that e co z. Let b ∈ •e. If zF ∗b, then zF ∗e; if bF ∗z, then either eF ∗z or e # z; in all
such cases, we have a contradiction with the hypothesis that e co z.

Let now b ∈ e•. If bF ∗z, then eF ∗z; since (e, b) is the only arc entering b, if zF ∗b then zF ∗e, and if
b # z then e # z, again contradicting e co z.

Suppose b co z for all b ∈ •e. Then z cannot follow e, nor can it precede it, because any path from
z to e should pass through some b ∈ •e. Also z # e must be excluded, because in such case, either there
is a b ∈ •e which is also in •z, or z # b for some b ∈ •e.

Finally, suppose b co z for all b ∈ e•. Then z cannot follow e, nor can precede it, like in the previous
case. Also z # e must be excluded, because conflict is inherited, so z # b for all b ∈ e•. ut

Within an occurrence net, we have the following objects of interest (see [4, 10]):

Definition 2.8. Line, cut, trail, run.

i. A maximal clique λ ⊆ B ∪ E of li is a line.

ii. A maximal clique γ ⊆ B ∪ E of co ∪ id is a cut.

iii. A maximal clique τ ⊆ B ∪ E of (# ∪ li) is a trail.

iv. A maximal clique ρ ⊆ B ∪ E of (li ∪ co) is a run.

As a consequence of the definition of occurrence nets and of the definitions above, the assumption of local
finiteness does not hinder from the creation of forward infinite lines and infinite cuts. The interpretation
for a line is as a, possibly infinite, history of a sequential process while cuts can be interpreted as system
snapshots. Cuts composed exclusively by B elements are a special case; these cuts can be interpreted as
maximal sets of system properties valid in a mutually independent way.

A trail, in which only the relations # and li occur, can be interpreted as the complete history of a
sequential process, including all the possible alternatives consequent to different choices operated in the
represented system. On the contrary, a run can be interpreted as an execution of the system since all of
the choices are effectively solved. Runs induce conflict-free nets. A run ρ is called K-dense iff every line
λ of ρ intersects each of ρ’s cuts. An occurrence net N is called R-dense iff each of its runs is K-dense.

Definition 2.9. An occurrence net N = (B,E, F ) is B-dense iff, for every trail τ and for every cut γ,
τ ∩ γ 6= ∅.

By results in [10], we have:

the intersection of a trail with a run is a line, and

N is R-dense iff it is B-dense.

For posets derived from conflict-free occurrence nets, as it is the case for runs, K-density can be charac-
terized by the absence of the substructures shown in Fig. 2 [4]. In order to formalize this fact we need
to say that a poset (A′,≤′) is embeddable into (A,≤) iff there exists an injection π : A′ → A such that
∀x, y ∈ A′ : x ≤′ y ⇔ π(x) ≤ π(y).
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Figure 2. Posets which are not K-dense.

Proposition 2.10. ([4], prop. 2.3.9) Let (X,≤) be the poset associated to a conflict-free occurrence net
N = (B,E, F ), X = (B ∪ E). If none of the posets shown in Fig. 2 is embeddable into (X,≤), then
(X,≤) is K-dense.

Actually, in our case, the substructure shown in the right side of Fig. 2 will never be embeddable into the
posets considered here since they have no backwards infinite chains.

2.3. Closure Operators

References for this section are [5] and [9].

Definition 2.11. Let X be a set and P(X) the powerset of X . A map C : P(X) → P(X) is a closure
operator on X if, for all A,B ⊆ X ,

i. A ⊆ C(A),

ii. A ⊆ B ⇒ C(A) ⊆ C(B),

iii. C(C(A)) = C(A).

Note that, with this definition, C is not a topological closure operator, since, in general, the union of two
closed sets is not a closed set. A subset A of X is called closed with respect to C if C(A) = A. If C is
a closure operator on a set X , the family LC = {A ⊆ X | C(A) = A} of closed subsets of X forms a
complete lattice, when ordered by inclusion, in which∧

{Ai : i ∈ I} =
⋂
i∈I

Ai,
∨
{Ai : i ∈ I} = C(

⋃
i∈I

Ai).

The proof of this statement can be found in [5].
We now recall a construction from binary relations to closure operators. Let X be a set of elements,

and α ⊆ X ×X be a symmetric relation. Given A ⊆ X we can define an operator (.)⊥ on the powerset
of X

A⊥ = {x ∈ X | ∀y ∈ A : (x, y) ∈ α}.

By applying twice the operator (.)⊥, we get a map on the powerset of X , which is a closure operator on
X . A subset A of X is called closed if A = (A⊥)⊥. The family L(X) of all closed sets of X , ordered
by set inclusion, is then a complete lattice.

When α is also irreflexive, the operator (.)⊥, applied to elements of L(X), is an orthocomplementa-
tion; the structureL(X) = 〈L(X),⊆, ∅, X, (.)⊥〉 then forms an orthocomplemented complete lattice [5].
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Figure 3. Application of the closure operator.

3. Closure Operators on Occurrence Nets

In this section we define closed sets on occurrence nets on the basis of the concurrency relation and
we study some of their properties, showing in particular that they form an orthomodular lattice. In
Subsection 3.1 we study the relations between closed sets and trails, and we give a characterization of
B-density in terms of closed sets; in Subsection 3.2 we show the connections between the structure of
closed sets in a single run and the structure of the closed sets in the whole occurrence net.

Throughout this section, let N = (B,E, F ) be an occurrence net. For any A ⊆ B ∪E, define A⊥ =
{x ∈ B∪E | ∀y ∈ A : x co y}. Since the concurrency relation is symmetric and irreflexive, the operator
(.)⊥⊥ defined by A⊥⊥ = (A⊥)⊥ is a closure operator on B ∪ E, and (.)⊥ is an orthocomplement ([5]).

Example 3.1. In Figure 3 an application of the closure operator on an occurrence net is represented. Let
A = {b1, b2} then A⊥ = {b3} and A⊥⊥ is the set enclosed in the dotted line.

Define
L(N) = {A ⊆ B ∪ E | A = A⊥⊥}

as the set of closed sets of N . By the results recalled in the previous section,

L(N) = 〈L(N),⊆, ∅, B ∪ E, (.)⊥〉

is a complete orthocomplemented lattice, where, in particular, ∅⊥ = B∪E. Note that, for anyA ⊆ B∪E,
A⊥ ∈ L(N).

The following proposition collects some elementary properties of closed sets.

Proposition 3.2. Let A ∈ L(N), and x, y ∈ A.

i. If x ∈ E, then •x• ⊆ A
ii. If z ∈ E and •z ⊆ A then z ∈ A

iii. If z ∈ E and z• ⊆ A then z ∈ A
iv. If xF ∗y, then z ∈ A for all z ∈ [x, y]

v. If x # y, then z ∈ A for all z ∈ cfs(x, y)
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Figure 4. Future is not shared.

Proof:
The first three items follow immediately from Lemma 2.7. In the case of item (iii) note that z• is never
empty because we assume the occurrence net to be condition-bordered.

To prove statement (iv), let xF ∗y. Then, for all v such that v co x and v co y, it holds also v co z
for all z such that xF ∗zF ∗y, namely for all z ∈ [x, y]. Hence z is concurrent with all elements in A⊥,
for each A containing x and y.

To prove (v), let x, y ∈ B ∪ E, and x # y. Take b ∈ cfs(x, y), and v ∈ B ∪ E such that v co x
and v co y. We show that v co b. In fact, if b # v, then v # x, contradicting the assumption v co x; if
bF ∗v, then either x # v or y # v, again a contradiction with the hypothesis. If vF ∗b, then vF ∗x, again
contradicting the hypothesis. Hence b is concurrent with all elements in A⊥, for each A containing x
and y. ut

Define the border ofA ⊆ B∪E as µ(A) = {x ∈ A | ∃y ∈ (B∪E)\A : (x, y) ∈ F ∪F−1}. Prop. 3.2(i)
implies that the border of a closed set is made of B-elements; moreover, Prop. 3.2(iv) implies that closed
sets are convex subsets.

The past of a subset A of a poset has been defined in Section 2.1 as the set of elements which do not
belong to A and precede at least one element in A (the future of A has been defined similarly). A closed
set A and its orthocomplement A⊥ share the past, as shown below.

Lemma 3.3. Let A ∈ L(N). Then past(A) = past(A⊥).

Proof:
It suffices to show that past(A) ⊆ past(A⊥), since the converse follows by the fact thatA⊥ ∈ L(N) and
(A⊥)⊥ = A. Let first x ∈ past(A) such that xF+y for some y ∈ A. If we assume that x ∈ future(A⊥),
there is an F -chain from A⊥ to A, contradicting the definition of A⊥. Hence assume there is no z ∈ A⊥
such that xF+z. Then, if for all z ∈ A⊥ we have x co z, and this contradicts x 6∈ (A⊥)⊥ = A; therefore,
there must be z ∈ A⊥ such that x#z. This implies by conflict heredity that y # z, contradicting the
definition of A⊥; hence x ∈ past(A⊥). ut

A closed set and its orthocomplement do not share their future, in general. Consider for example the
occurrence netN given in Fig. 4. Let A = {b4, b6}. Then A ∈ L(N), and A⊥ = {b5, e4, b7}. The future
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of A is given by future(A) = {e3, b3}, whereas future(A⊥) = ∅. Notice that, if #= ∅, then a closed
set and its orthocomplement do share their future ([3]).

We can now state the main theorem of this section.

Theorem 3.4. L(N) is orthomodular.

Thorem 3.4 is actually an immediate consequence of Theorem 2.3 and of the following Lemma 3.5,
which highlights the orthomodular law, as pointed after the proof.

Lemma 3.5. Let A1 ∈ L(N) and x /∈ A1. Set H = (A1 ∪ {x})⊥⊥. Then H ∩A⊥1 6= ∅.

Proof:
If x co A1, then we are done. Otherwise, we consider three cases.

H

x

e0

A1

y

e1

b
v

A⊥1

Case 1 (see picture above): assume there exists y ∈ A1 such that xF+y. Since H is closed, [x, y] ⊆
H . From Lemma 3.3, it follows that there exists v ∈ A⊥1 with xF+v. Let e1 be the event along a path
from x to v such that e1 6∈ A⊥1 , and a post-condition of e1, let us call it b, is in A⊥1 . Again by Lemma 3.3,
e1 is in the past of A1, so, by convexity of closed sets, e1 ∈ H; hence, by Prop. 3.2, b ∈ H , and b co A1.

Case 2: assume there exists y ∈ A1 such that y # x. Then there is b ∈ cfs(x, y). By Prop. 3.2,
b ∈ H . If b 6∈ A1, then we fall in Case 1 above with x = b, since there is a path from b to y. If instead
b ∈ A1, then a path from b to x must leave A1 at (s, e0) ∈ F for some s ∈ B, e0 ∈ E. Since b, x ∈ H ,
we have e0 ∈ H . From e0 6∈ A1 it follows that there is a precondition b0 of e0 such that b0 6∈ A1. If
b0 co A1, then we are done, since, by Prop. 3.2, b0 ∈ H; otherwise there are three cases:

2.a) b0F+z for some z ∈ A1;

2.b) zF+b0 for some z ∈ A1;

2.c) b0 # z for some z ∈ A1.
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In Case 2.a, since b0 ∈ H , apply Case 1 with x = b0. For Case 2.b and Case 2.c, we show that either we
find an element in H ∩A⊥1 or we find b1 ∈ H such that b1F+b0F

+x. Since the set of predecessors of x
in N is finite by definition of occurrence net, we eventually fall into the first case, or we find a condition
which is concurrent with A1. In Case 2.b (see picture below), there is a path τ from z to b0. Let e1 be
the first point not in A1 along this path; e1 must be an event, and it must have a precondition, b1, which
does not belong to A1.

b ∈ A1

τ

z

b1

e1

b0

e0

b

s

x y

b 6∈ A1

A1

In Case 2.c, we have a configuration analogous to the initial configuration of Case 2, with y replaced by
z and x replaced by b0. By iterating the argument in Case 2, we either can apply Case 1 or find b1 such
that b1F+b0.

Case 3: assume there exists y ∈ A1 such that yF+x. Let π be a path from y to x, and (b, e0) ∈ F
the arc where π leaves A1. Then, by convexity of closed sets, e0 ∈ H . Since e0 6∈ A1, there exists a
precondition b0 of e0 which does not belong to A1; note that b0 ∈ H . If b0 co A1, then we are done;
otherwise there are three cases:

3.a) b0 # z for some z ∈ A1;

3.b) b0F+z for some z ∈ A1;

3.c) zF+b0 for some z ∈ A1.

In Case 3.a, apply Case 2 with x = b0. In Case 3.b, apply Case 1, with x = b0; In Case 3.c, let π1 be a
path from z to b0; by repeating the previous construction, we find an event e1 which is in H , and has at
least one precondition b1 which is not in A1. Apply to b1 the argument used for b0. Either b1 co A1, or
we fall into Case 1 or Case 2, or we find e2, and b2 with the same properties. This last case cannot occur
indefinitely, since any element of N has a finite past. ut

Lemma 3.5 implies that any closed set can be made bigger only by adding at least an element concurrent
to it, in other words: given A1, A2 ∈ L(N), if A1 ⊂ A2, then A2 ∩ A⊥1 6= ∅. Because of Theorem 2.3,
this corresponds to the orthomodularity of the ortholattice L(N).
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a1 a2 a3 a4

b1 b2 b3 b4

Figure 5. Non B-dense net.

3.1. Closed Sets and Trails

In this section we look at the relations between closed sets and trails. Trails represent branching histories
of sequential components of a system. The results in this section generalize similar results holding for
lines in causal nets (see [3]).

Let us start from a simple fact. Let A be a closed set, and τ a trail. Since a trail cannot contain a pair
of concurrent elements, if A ∩ τ 6= ∅, then A⊥ ∩ τ = ∅.

In general, it is possible that a trail crosses neither a closed set, nor its orthocomplement, as shown
in the following example. Define A = {bi | i is even} in the net shown in Figure 5. Then A is closed,
and A⊥ = {bi | i is odd}. The elements in the upper line form a trail, which crosses neither A nor A⊥.

However, if a net is B-dense, the following theorem holds, giving a characterization of B-density in
terms of closed sets: an occurrence net is B-dense if, and only if, for any closed set, any trail crosses
either the given set or its orthocomplement.

Theorem 3.6. N is B-dense if, and only if, for all A ∈ L(N), for any trail τ of N , τ ∩ A 6= ∅ or
τ ∩A⊥ 6= ∅.

Proof:
⇒) Let N B-dense and A ∈ L(N); then min(A) is a B-coset of N , which can be extended to a B-cut γ
of N . Let Y = γ \min(A). We prove that Y ⊆ A⊥ and then, since N is B-dense, we get the thesis.

Let y ∈ Y ; then it cannot be the case that y ∈ past(A), otherwise there would be a path from y to an
element in min(A), in contradiction with y co min(A). If y ∈ future(A), then there is a path leading
from a place b in the border ofA to y. Also in this case we get a contradiction since there would be a path
from an element in min(A) to y through b. If y is in conflict with some element of A then the conflict
can be originated either in the past of A or inside A. In the first case, y must be in conflict with at least
one element in min(A), while in the second case there would be a path from some element in min(A) to
y. In both cases we get a contradiction.
⇐) We show that, if N is not B-dense, then there exists a trail τ and a closed set S such that

τ ∩ (S ∪ S⊥) = ∅. If N is not B-dense, then, by Proposition 2.10, the poset on the left side of Figure 2
embeds into N , or, more precisely, embeds into a run ρ of N . Let λ be a line of N , and then also of
ρ, extending the set formed by all the elements denoted xi in Figure 2; such a line exists, because those
elements form a clique of li. Let YP = {yi|i is even} and YD = {yi|i is odd}. Clearly, YD ⊆ Y ⊥P ,
where Y ⊥P is closed. Since each element of λ is in relation li with at least one element of YP , we also
have λ ∩ Y ⊥P = ∅ and λ ∩ Y ⊥⊥P = ∅.
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We now show that, for each trail τ extending the line λ, we also get τ ∩ Y ⊥P = ∅ and τ ∩ Y ⊥⊥P = ∅.
Assume, by contradiction, that there exists an element z ∈ τ \ λ such that: either z ∈ Y ⊥P or z ∈ Y ⊥⊥P .
Let z ∈ Y ⊥P , since z ∈ τ \ λ and λ is downwards infinite, z should be in conflict with at least an element
belonging to λ, denoted by xj . Consequently, z should also be in conflict with the elements which belong
to YP and are in the future of xj , which is in contradiction with z co YP . The proof in the case z ∈ Y ⊥⊥P

is analogous. ut

The next proposition gives a characterization of the closure of cosets, related to the set of trails of the net.
LetN = (B,E, F ) be a B-dense occurrence net, and T the set of trails ofN . For each x ∈ B∪E, let Tx
be the set of all trails passing through x: Tx = {τ ∈ T | x ∈ τ}; forH ⊆ B∪E, define TH =

⋃
x∈H Tx.

Let A be a coset of N , namely a set of pairwise concurrent elements. The next proposition shows
that a point x belongs to the closure of A if, and only if, every trail which passes through x passes also
through at least one point in A.

Proposition 3.7. Let A be a coset of a B-dense occurrence net N . Then

∀x ∈ B ∪ E : x ∈ A⊥⊥ ⇔ Tx ⊆ TA

Proof:
⇐) Let Tx ⊆ TA for x ∈ B ∪E. Let y ∈ A⊥; then x co y, because, if x li y or x # y, then there would
exist a trail through both x and y, but this is impossible, because that trail would intersect both A⊥ and
A⊥⊥. Since this holds for any y ∈ A⊥, it follows that x ∈ A⊥⊥.
⇒) Let x ∈ A⊥⊥. Let τ ∈ Tx, and γ a cut of N , such that A ∩ γ 6= ∅. Then γ \ A ⊆ A⊥, and

τ ∩ γ 6= ∅, since N is B-dense.
Suppose τ ∩ A = ∅. Then, there is y ∈ γ \ A, with y ∈ τ . This implies (x, y) 6∈ co and y ∈ A⊥,

contradicting the hypothesis that x ∈ A⊥⊥. Hence τ must pass through an element of A, so Tx ⊆ TA.
ut

Building on this proposition, we can describe a more concrete interpretation of the closure operator,
when applied to a B-coset. Suppose that an occurrence net N models a system of interacting sequential
components. Then the net can be decomposed into a set of trails, each one modelling the possible
alternative histories of one sequential component, where the conditions represent local states, and the
events can represent either autonomous changes of state or interactions among more components. This
decomposition of the net into trails is made of a subset of all the trails of N which is a minimal covering
of N .

Definition 3.8. A minimal covering by trails of an occurrence net N = (B,E, F ) is a family of trails of
N , (τi)i∈I , which covers N , i.e.: such that: ∀x ∈ B ∪ E, ∃ τi = (Bi, Ei, Fi) : x ∈ Bi ∪ Ei, and such
that it is minimal, i.e.: ∀k ∈ I , (τi)i∈I \{k} does not cover N .

Let Π = (τi)i∈I be a minimal covering by trails of an occurrence net N , this induces an interpretation of
N as the set of potential histories of a set of interacting sequential components.

On the other hand, given an occurrence net N , there may be different coverings/interpretations.
Suppose that we “observe” a B-coset of N , say β, i.e. a set of independent properties representing

some local states.
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Then, as an immediate consequence of Proposition 3.7, the closure of β, denoted β⊥⊥, can be char-
acterized as follows: an element x ∈ B ∪ E belongs to β⊥⊥ if, and only if, for every minimal covering
Π all the trails passing through x are also passing through one element of β. In terms of interacting
sequential components, an element x ∈ B ∪ E belongs to β⊥⊥ if, and only if, for every interpretation
of N in terms of interacting sequential components, x certainly belongs only to some sequential compo-
nents observed in β, i.e.: x certainly represents either a possible local state belonging to the components
observed in β, or a possible change of states involving only components observed in β.

3.2. Closure on Runs

A run of an occurrence net is an occurrence net itself; hence it defines its own lattice of closed sets. The
connection between this local structure on each run and the global structure on the entire net is given by
the following two propositions.

Let N = (B,E, F ) be an occurrence net, and R be a run of N . In the following, we will use R to
denote either the net underlying a run, or the set of its elements. To simplify notation, we will use (.)⊥

to denote the orthocomplementation in N , and (.)∗ to denote orthocomplementation in R.

Proposition 3.9. Let A ∈ L(N) be a closed set in N , and A1 = A ∩ R. Then A1 is closed in R, i.e.:
A1 ∈ L(R)

Proof:
Let A1 = A ∩ R. Define A3 = A⊥1 ∩ R and A2 = A⊥1 \ R. Then A3 = A∗1, since A3 contains all
the elements of R which are concurrent to all elements of A1. Hence A3 ∈ L(R). Our aim is to show
that A∗3 = A1. We already know that A1 ⊆ A∗3. By way of contradiction, suppose there is x ∈ A∗3 with
x 6∈ A1. Note that x ∈ R. Since x 6∈ A3, there is y ∈ A1 such that x li y. Either x < y or y < x.

From A1 ⊆ A, it follows A⊥⊥1 ⊆ A⊥⊥ = A, hence x 6∈ A⊥⊥1 . Then, there is z in A⊥1 such that x
is not concurrent with z. The element z cannot be in A3, since x ∈ A∗3, implying that x co A3; hence
z ∈ A2. Either z li x or z # x.

If x < y, then z < x cannot hold, because in that case, z li y, while z co y. Similarly, if y < x, then
x < z cannot hold.

Four possible cases remain to be treated:

1. x < y and x # z

2. x < y and x < z

3. y < x and z < x

4. y < x and x # z

Case 1 is actually impossible, since y would inherit the conflict relation with z, while we know that
z co y.

We prove the remaining cases by contradiction, showing that, from the assumptions, it is possible to
build infinite intervals in N .
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Case 2 (see picture above): we can assume that x is an event, since, if it were a condition, then it
would have a post-event satisfying the same relations with respect to z (z is concurrent with y). Consider
a path π from x to z; we will show that this path is infinite, which leads to a contradiction. Let y1 ∈ x•
be the first element on π; since A∗3 is closed in R, y1 ∈ A∗3 (and, also, y1 ∈ R). From y1 6∈ A1, we
deduce that there is w ∈ A1 with y1 < w. Since w co z, the paths from y1 to z and from y1 to w must
pass through x1, chosen as the unique event which belongs both to R and to y•1 . Apply to x1 the same
argument previously applied to x, and find y2 ∈ A∗3 \A1. By iterating, we build an infinite chain, formed
by the yi’s and the xi’s, all lying between x and z; but N satisfies the property of finite intervals, and we
have a contradiction, so there can be no x ∈ A∗3 \A1.

Case 3 (see picture below): like in Case 2, we can assume that x is an event. Let y1 be a pre-condition
of x along a path from z to x. Since A∗3 is closed, y1 ∈ A∗3; from z < y1, it follows that y1 6∈ A1. Let
x1 be the unique event in •y1; this x1 can not be in relation li with any element of A3 (otherwise there
would be a path from A3 to A∗3), hence x1 ∈ A∗3; on the other hand, x1 6∈ A1 (otherwise there would be
a path from A⊥1 to A1).

A⊥1

N NR

A2

z

A3 = A∗1

x1 y1

x

A∗3

y

A1
A

By applying to x1 the same argument applied to x, we find y2 ∈ •x1 such that z < y2 and y2 ∈
A∗3 \ A1. If we iterate the procedure, we build an infinite path between z and x, but this contradicts the
hypothesis of finite intervals in N .
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Case 4: we can assume that x is an event, because, if x is a condition, then the unique pre-event of x
bears the same relations as x with y and z.

By the definition of conflict, there are b ∈ B, e1, e2 ∈ E such that (b, e1), (b, e2) ∈ F , e1 ≤ z,
e2 ≤ x. Let y1 ∈ •x lie along a path from b to x. Since A∗3 is closed, y1 ∈ A∗3 (hence y1 ∈ R and
y1 6∈ A3).

Assume b = y1; then b 6∈ A1 (otherwise there would be a path from A1 to A⊥1 ). But then, being
b 6∈ A3 and A3 = A∗1, there is w ∈ A1 such that b li w (since we are in a run, it cannot be b # w). If
b < w, then z # w, which is impossible, since z co A1. Hence w < b; but this implies w < z, which
again is impossible, for z co A1.

Assume now b < y1 (see picture below).

N NR

b
e1 e2

A⊥1

z

A2
A3 = A∗1

A∗3

x1

y1
x

y

w
A1

A

If b < y1, then y1 ∈ R and y1 # z, so that y1 ∈ A∗3 \ A1; hence as above, since we are in a run, there is
w ∈ A1, with w < y1 (if y1 < w, then also x < w since y1 is an immediate predecessor of x, and there
would be a path from y to w through the element x 6∈ A, contradicting the hypothesis that A is closed,
hence convex). Let x1 be the unique pre-event of y1. Then w < x1 and x1 ∈ A∗3 by convexity of closed
sets. Since z # x1, x1 cannot belong to A1 and we can apply to x1 the same argument applied to x,
and find y2 ∈ •x1, with b ≤ y2, and y2 ∈ A∗3. By iterating, we build an infinite path between b and x,
contradicting the property of finite intervals in N . ut

In the next proposition we show that any set which is closed in a run can be obtained as the intersection
of the run with a closed set of the whole net.

Proposition 3.10. For every A1 ∈ L(R), there is A ∈ L(N) such that A1 = A ∩R.

Proof:
Take a closed set inR: A1 ∈ L(R). We shall prove that there is a closed set inN such that its intersection
with R coincides with A1:

∃S ∈ L(N) : S ∩R = A1

We shall in fact prove that the closure of A1 in N is the required set: A⊥⊥1 ∩R = A1.
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To this end, define A3 = A⊥1 ∩ R, A2 = A⊥1 \ A3. Since A⊥1 contains all the elements of N which
are concurrent with A1, we deduce that A3 = A∗1. Since A1 is closed in R, we have A∗∗1 = A1; hence,
taken an element x ∈ A⊥⊥1 , if x belongs to R, then it must belong to A1. We can then deduce that
A⊥⊥1 ∩R = A1. ut

In Proposition 3.10, one can choose A = A⊥⊥1 , with the closure computed in N .

4. Dynamically Closed Sets

In this section we introduce dynamically closed sets, and show that they form a complete algebraic lattice.
Then, in section 4.1, we prove that, if an occurrence net is B-dense, then the two notions of closed sets
coincide and then also the lattice L(N) and the lattice of dynamically closed sets coincide.

Dynamically closed sets were introduced, for occurrence nets without conflicts, in [3]. Here, we
extend the idea. Informally,A is a dynamically closed set in an occurrence netN ifA is a sub-occurrence
net of N , and it is closed with respect to immediate causes and effects: if A contains an event e, then it
contains also •e•; if it contains •e or e•, then it contains e.

Definition 4.1. Let N = (B,E, F ) be an occurrence net, and A ⊆ B ∪ E. A is dynamically closed if,
for all e ∈ E:

i. min(A) ⊆ B is a B-coset in N ;

ii. e ∈ A⇒ •e• ⊆ A;

iii. •e ⊆ A⇒ e ∈ A;

iv. e• ⊆ A⇒ e ∈ A.

Denote the set of dynamically closed sets of N by D(N). The empty set and B ∪E are easily seen to be
dynamically closed. From the definition and the fact thatN is condition bordered, it follows immediately
that the border of a dynamically closed set does not contain events.

We will show that D(N) is a complete lattice, however first we need a couple of lemmas. The first
lemma states that a dynamically closed set is convex in the partial order associated to N .

Lemma 4.2. Let A ∈ D(N), x, y ∈ A and x ≤ y. Then [x, y] ⊆ A.

Proof:
Let π be a path in N from x to y. Suppose that π is not entirely contained in A. Then, going backwards
from y to x along π, we will find an arc (v, w) ∈ F , with v 6∈ A and w ∈ A. Since the border of A
can only contain conditions of N , w ∈ B. Now, starting from x and going backwards along any path
in N , we eventually reach a node z ∈ B such that z ∈ A, and either •z = ∅ or •z ∩ A = ∅ (z might
coincide with x). Then z ∈ min(A) and w ∈ min(A), but z ≤ w, contradicting the assumption that A
is dynamically closed. ut

The following lemma says that, if a dynamically closed set contains two conflicting elements, then it also
contains their past history, up to the origin of the conflict.
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Lemma 4.3. Let A ∈ D(N), x, y ∈ A, and x # y. Then cfs(x, y) ⊆ A.

Proof:
Since the minimal elements of A form a B-coset, x and y cannot be both minimal. Assume that x is not
minimal; then there must be z along a path from cfs(x, y) to x which is in A. If z ∈ cfs(x, y) the proof is
complete, since A is convex and contains •e• for all events e ∈ A. Otherwise, z # y, so z and y cannot
be both minimal in A, and we can iterate the argument. Since any interval is finite in N , we eventually
reach some element in cfs(x, y). ut

Now we can prove that the intersection of an arbitrary family of dynamically closed sets is dynamically
closed. Together with the remark that the emptyset and B ∪ E are dynamically closed, this allows us to
deduce that D(N) is a complete lattice.

Theorem 4.4. Let Ai be a collection of dynamically closed sets for the occurrence net N . Then,
⋂

iAi

is a dynamically closed set.

Proof:
Property (ii) of Definition 4.1 holds since e ∈

⋂
iAi implies that for all i, e ∈ Ai. Consequently

•e• ⊆ Ai for all i and •e• ⊆
⋂

iAi. A similar reasoning shows that properties (iii) and (iv) of Definition
4.1 hold as well. Concerning property (i) of Definition 4.1, min(

⋂
iAi) is composed of elements ofB by

property (ii). Let us suppose min(
⋂

iAi) is not a clique of co in N . Then there exist two elements b, c in
min(

⋂
iAi), b 6= c, such that either b li c or b # c in N . Let b li c in N . Then b and c should belong to

each one of the Ai (while not necessarily being minimal elements in them). By convexity of the closed
sets, the chain between b and c should belong to all of the Ai and consequently to

⋂
iAi and either b or

c is not minimal. Let b # c in N . Then b and c should belong to each one of the Ai as above. b and c
cannot be immediate conflict events by definition and, by Lemma 4.3, each of the Ai should contain the
past history of b and c until the set P of the immediate conflict places leading to b and c. Consequently,
either b or c is not a minimal element in

⋂
iAi. ut

Now we can define the complete lattice of dynamically closed sets of the occurrence net N = (B,E, F )
as: 〈D(N),⊆, ∅, B ∪ E〉 where the meet operation coincides with intersection, and the join operation
is defined as the dynamic closure of the set union. This lattice is associated to a closure operator: given
H ⊆ B ∪ E, define its closure, denoted ∆(H), as the smallest dynamically closed set containing H:

∆(H) =
⋂

{A∈D(N)|H⊆A}

A.

In general, the union of dynamically closed sets is not dynamically closed. In the next lemma, we show
that for some special families of sets, this is instead the case. A family of sets is said to be directed if,
for any pair of sets in it, it also contains a set larger than their union.

Lemma 4.5. Let {Ai}i∈I be a directed family of subsets of B ∪ E. Then

A =
⋃
i∈I

∆(Ai) ∈ D(N)
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Proof:
Let e ∈ A be an event. Then, there is i ∈ I such that e ∈ ∆(Ai), whence •e• ⊆ ∆(Ai) ⊆ A. Let now
t ∈ E be an event such that •t ⊆ A. Since •t is a finite set, and {Ai} is directed, there is h ∈ I such that
•t ⊆ ∆(Ah), whence t ∈ ∆(Ah) and t ∈ A. The case t• ⊆ A is treated in the same way.

Let x, y ∈ min(A). Then, being {Ai} directed, there is h ∈ I such that x, y ∈ ∆(Ah). The
elements x and y must be minimal in ∆(Ah), otherwise they would not be minimal in A. Since ∆(Ah)
is dynamically closed, they must be concurrent local states: x, y ∈ B, x co y. Hence min(A) is a
B-coset. ut

From this lemma, we deduce that D(N) is an algebraic lattice (see, for instance, [9]).

4.1. Relations between Closed Sets and Dynamically Closed Sets

We now have two different notions of closed set, and two corresponding closure operators on the set of
elements of an occurrence net. In this section, we explore their relationship.

Proposition 4.6. Every closed set is dynamically closed.

Proof:
Let A ∈ L(N). Take two distinct elements x, y ∈ min(A).

If x # y, then, by Prop. 3.2(v), cfs(x, y) ⊆ A, so x and y would not be minimal in A.
If xF ∗y, then, by Prop. 3.2(iv), [x, y] ⊆ A, and y would not be minimal in A (similarly for yF ∗x).
If x co y, then, by Prop. 3.2(i), x cannot be in E since in this case •x ⊆ A and x would not be

minimal in A. The same holds for y, so x, y ∈ B.
Let e ∈ E be an element of A. Then, by Proposition 3.2, •e• ⊆ A.
Finally, let e ∈ E be such that •e ⊆ A. Let z co b for all b ∈ •e; then z cannot be in conflict with e

otherwise z # b for at least one b ∈ •e. Similarly, z cannot be in relation li with e. So z co e and e ∈ A
by definition of L(N). A similar reasoning holds for e• ⊆ A. ut

There are dynamically closed sets which are not closed: take for example the set Γ = {bi | i ≥ 1} in the
net shown in Figure 5. This set is dynamically closed, but it is not closed: it is actually a cut, so Γ⊥ = ∅,
and its closure is the set of all elements of the net.

The dynamical closure of aB-coset can be defined by means of an iterative procedure, which justifies
the view of dynamically closed sets as causally closed subprocesses. Starting from the considered B-
coset, the procedure adds all events whose pre-conditions or post-conditions are already in the set (see
Figure 6).

More formally, let A be a B-coset of N . Starting with A0 = A, define

Ai+1 = Ai ∪
⋃

•e⊆Ai∨e•⊆Ai

(•e ∪ {e} ∪ e•) .

Define now Â =
⋃∞

i=0Ai. The following proposition shows that this construction yields indeed ∆(A).

Proposition 4.7. Let Â be defined as above. Then Â = ∆(A).
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A

Figure 6. The dynamic closure (right) of the B-coset A on the left

Proof:
We will show that Â is dynamically closed, and that it is the smallest dynamically closed set containing
A, hence Â = ∆(A).

We show that min(Â) is a B-coset. The property holds for A0. Assume it holds for Ai. The B-
elements added in Ai+1 belong either to •e or e• for some e. Assume that there are b1, b2 ∈ min(Ai+1)
with b1 # b2. Then there must be b′1, b

′
2 ∈ min(A) such that biF ∗b′i and b′1 # b′2, which is a contradiction.

We show that, for all events e ∈ Â, •e• ⊆ A. If e ∈ A, then e ∈ Ai for some i. Then •e• ⊆ Ai ⊆ Â.
We show that, for all events e ∈ E, if •e ⊆ Â, then e ∈ Â (and similarly for e•). Since •e is a finite

set, from •e ⊆ Â it follows that •e ⊆ Ai for some i; then e ∈ Ai, hence e ∈ Â.
To show that Â is the smallest dynamically closed set containing A, observe first that A0 = A ⊆

∆(A). Assume now that Ai ⊆ ∆(A) for some i. From the definition of Ai+1 it follows immediately that
Ai+1 ⊆ ∆(A). So Â ⊆ ∆(A). The thesis is proved since ∆(A) is by definition the smallest dynamically
closed set containing A. ut

Our aim is to prove that, in B-dense nets, closed sets as defined in Section 3 and dynamically closed
sets coincide. A first step towards that end consists in showing that the closure operators (.)⊥⊥ and ∆
coincide in B-dense nets, when applied to B-cosets.

Proposition 4.8. LetN = (B,E, F ) be a B-dense occurrence net. For everyB-cosetA, ∆(A) = A⊥⊥.

Proof:
We first show that ∆(A) ⊆ A⊥⊥. Put A0 = A and apply the construction defined above. Clearly,
A = A0 co A⊥. By Lemma 2.7, if Ai co A⊥, then Ai+1 co A⊥, hence Â co A⊥, which implies
∆(A) = Â ⊆ A⊥⊥.

To show that ∆(A) ⊇ A⊥⊥, assume, by contradiction, that there is x ∈ A⊥⊥ \ ∆(A). From
x 6∈ ∆(A) it follows x 6∈ A. There are four possible cases.

Case 1: x co A. This is in contradiction with x ∈ A⊥⊥.
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Case 2: there exists y ∈ A such that xF+y. Then there is a path in A⊥⊥ from x to y and along this
path there is an event e0 /∈ ∆(A) with a post-condition which belongs both to the path and to the border
of ∆(A), and with at least another post-condition b0 /∈ ∆(A). Since e0 ∈ A⊥⊥, then necessarily also
b0 ∈ A⊥⊥. Clearly, b0 can not be concurrent with all elements of A, so there must be y0 ∈ A such that
one of the following cases apply.

2.a) b0 # y0; then, by Proposition 3.2(v), there is a condition b ∈ A⊥⊥, b ∈ cfs(b0, y0). Since
bF+e0F

+y, this would imply y # y0, contradicting the hypothesis that A is a B-coset.

2.b) y0F+b0; any path leading from y0 to b0 must contain e0, which would imply y0F+y, whereas,
belonging both to A, y0 and y should be concurrent.

2.c) b0F+y0; then, by repeating the argument at the beginning of Case 2, we find, along a path from b0
to y0, an event e1 /∈ ∆(A), e1 ∈ A⊥⊥ with a post-condition which belongs both to the path and to
the border of ∆(A), and with at least another post-condition b1 /∈ ∆(A). This case can not apply
indefinitely, otherwise we would find a line, passing through the ei and bi, forming, together with
the yi, the pattern shown in Fig. 2, and N would not be B-dense.

Case 3: there exists y ∈ A such that x#y. Then there is b ∈ A⊥⊥, b ∈ cfs(x, y). If b /∈ ∆(A)
then apply Case 2 with x = b. If b ∈ ∆(A) then there is an event e1 in a path bF+x such that
e1 ∈ A⊥⊥ \ ∆(A), a precondition of e1 belongs to ∆(A), and at least an other precondition, say b1,
is such that b1 ∈ A⊥⊥ \∆(A). b1 cannot be concurrent to A because it is in A⊥⊥, then there should be
in A an element y1 such that one of the following three cases is true:

3.a) b1F+y1, then apply Case 2 with x = b1 and y = y1.

3.b) y1F+b1, then in a path from y1 to b1 crossing the border find e2 ∈ A⊥⊥ \ ∆(A) with at least a
precondition b2 ∈ A⊥⊥ \ ∆(A). This argument cannot be iterated indefinitely often backwards
from b2 because otherwise there should be an infinite chain backwards.

3.c) b1 # y1, then again there exists b′ ∈ A⊥⊥, b′ ∈ cfs(b1, y1). If b′ /∈ ∆(A) then apply Case 2 with
x = b′. If b′ ∈ ∆(A) then there is an event e2 in a path b′F+b1 such that: e2 ∈ A⊥⊥ \ ∆(A) a
precondition of e2 is in ∆(A) and at least an other precondition b2 ∈ A⊥⊥ \ ∆(A). Apply to b2
the same arguments as to b1 above.

Case 4: there exists y ∈ A such that yF+x. Then there is a path from y to x crossing the border
of ∆(A) with an event e0 /∈ ∆(A) having a precondition both on the path and in ∆(A) and at least a
precondition b0 ∈ A⊥⊥ \ ∆(A). Being b0 in A⊥⊥ it cannot be concurrent with A; hence there exists
y0 ∈ A such that one of the following cases apply:

4.a) y0F+b0, then in this path there is an event e1 such that e1 ∈ A⊥⊥ \ ∆(A) a precondition of e1
belongs to ∆(A) and at least an other precondition, say b1, is such that b1 ∈ A⊥⊥ \∆(A). Starting
again from b1, we can apply the same argument, but this case can not apply indefinitely, since
otherwise we would build a chain infinitely extending into the past of e0, and this is impossible in
the occurrence nets as we have defined.

4.b) b0F+y0, then apply the same argument as in Case 2 with x = b0 and y = y0.
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4.c) b0 # y0, then apply the same argument as in Case 3 with x = b0 and y = y0.
ut

We will now show that any dynamically closed set can be obtained by applying the closure operator ∆
to the set of its minimal elements. To this end, the following lemma will be useful.

Lemma 4.9. Let A ∈ D(N). Then, for all x ∈ A, for all y ∈ min(A), x and y are not in conflict.

Proof:
Take x ∈ A and y ∈ min(A). If x # y, then there is z ∈ B such that zF+x, zF+y, and z explains the
conflict between x and y. By Lemma 4.3, z ∈ A, which is a contradiction, since y ∈ min(A). ut

Proposition 4.10. Let N be a B-dense occurrence net, and A ∈ D(N). Then A = ∆(min(A)).

Proof:
Let Γ = (min(A))⊥⊥. To prove that Γ ⊆ A, observe that, by Prop. 4.8, Γ = ∆(min(A)), so Γ is the
smallest dynamically closed set containing min(A), and min(A) ⊆ A.

To prove that A ⊆ Γ, proceed by contradiction. Let x ∈ A \ Γ. Since min(A) ⊆ Γ, there is a0 ∈ A
such that a0F+x.

The border of Γ contains only conditions, so, along a path from a0 to x there is an event e0 and an arc
(b, e0), with b ∈ Γ, e0 6∈ Γ. By Prop. 3.2 applied to Γ, e0 has a precondition b0 6∈ Γ. By the definition of
dynamically closed set, e0, b0 ∈ A. By Lemma 4.9, b0 cannot be in conflict with any element in min(A),
so there is a1 ∈ min(A) such that a1F+b0. By applying the same argument as before, we find an event
e1 ∈ A \ Γ, and b1 ∈ •e1 such that b1 ∈ A \ Γ. This leads to a chain extending indefinitely in the past of
e0, but this is impossible in an occurrence net. ut

By Prop. 4.8, ∆(min(A)) = (min(A))⊥⊥, hence A ∈ L(N). And then we can state the following

Corollary 4.11. Let N = (B,E, F ) be a B-dense occurrence net, and A ⊆ B ∪E. Then A ∈ D(N) if,
and only if, A ∈ L(N).

As a consequence of the previous corollary and of Lemma 4.5, we can state that in the case of B-dense
occurrence nets also L(N) is an algebraic lattice.

5. Conclusion

In this paper we studied concurrency-based closure operations in occurrence nets with forward branching.
The algebraic structure associated to the closed sets has been shown to be a complete and orthomodular
lattice.

We have introduced dynamically closed sets, which represent subprocesses closed with respect to the
firing rule of Petri nets. It is established that closed sets are dynamically closed, while the converse does
not hold in general.

The B-density property - which is the natural branching counterpart of K-density - implies the co-
incidence of closed and dynamically closed sets, and coincides with the property that every trail crosses
either a closed set or its orthocomplement. This fact has two main consequences: 1) it gives further
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evidence to the fundamental importance of density properties in net structures, also in relation to ax-
iomatizations of the relativity theory [6]; and 2) it opens the way to a new study of occurrence nets as
logical models [10] by exploiting the properties of negation in orthomodular structures and truth-value
assignments, as consequence of Theorem 3.6. This latter fact is corroborated by the traditional use of
orthomodular structures as algebraic models of quantum logics [1].

Our work will continue by defining closure operators based on other relations (for example the con-
flict relation #), by further exploring points 1) and 2) above and by studying the relations between the
orthomodular structures of occurrence nets and net systems, following in this way a line of research on
structural representation of concurrency initiated with [2].

Among the applications of our results, we envisage the definition of operators of abstraction for
occurrence nets by exploiting the fact that dynamically closed sets are causally closed subprocesses.
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