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Abstract—We propose fLTL, an extension to linear-time tem-
poral logic (LTL) that allows for expressing relative frequencies
by a generalization of temporal operators. This facilitates the
specification of requirements such as the deadlines in a real-
time system must be met in at least 95% of all cases. For our
novel logic, we establish an undecidability result regarding the
satisfiability problem but identify a decidable fragment which
strictly increases the expressiveness of LTL by allowing, e.g.,
to express non-context-free properties.
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I. INTRODUCTION

Linear-time Temporal Logic (LTL) has been introduced
to the setting of formal verification of computer programs
in 1977 by Pnueli [1]. Meanwhile it has become a well-
established specification formalism that is used in many
different areas and for different purposes, but especially for
verification. It is the basis of PSL (Property Specification
Language, [2]), which is a standardized specification lan-
guage used in the hardware domain. To foster its industrial
application, it has been supported by specification patterns
[3] and by syntactic sugar [4].

Despite its extensive use in many different application
areas it has been noted that LTL has a limited expressiveness.
Wolper [5] showed that LTL is not able to express all ω-
regular properties. More specifically, he showed that LTL is
not able to express that p holds in every other moment. In
essence it means that LTL is not able to count.

Over the past decades LTL has been extended in many
directions to enrich its expressiveness. Starting with Wolper
[5], there is a line of work extending LTL’s expressiveness
to capture the regular ω-languages [6], [7], [8].

Another line of work extends the expressiveness of LTL
towards quantitative measures. Demri considers LTL over
integers rather than atomic propositions [9], giving the
resulting logic the possibility to reason over sequences of
integers and to allow counting modulo constants. In the
context of probabilistic model checking, where a system
description is given as a Markov chain, the set of traces
satisfying an LTL formula is measured allowing one to give
an idea about the probability to which extent the underlying
formula holds [10]. A similar concern of giving a measure
to which extent the formula is satisfied is also pursued in the
setting of runtime verification. Here, however, only a single

trace is given from which several finite behaviours of the
underlying system are derived to estimate the probability to
which extent the formula is satisfied. A notable work in this
area is given by [11].

We also extend LTL to allow for the specification of
quantitative means within our formal logic. In contrast to
the existing work we do not extend the underlying structures
towards integers nor do we rely on profound probability the-
ory arguments. Our extension focuses on the until-operator
present in LTL. The standard meaning of ϕ until ψ (denoted
by ϕUψ) is that there is a future moment in which a
property ψ holds and up to this moment a property ϕ has
to hold in each position. Our main idea is now to relax the
number of positions in which ϕ has to hold by allowing to
say that, e.g., only at 95 % of the positions ϕ has to hold.

A similar concept has been worked out by Hoenicke et
al. in the setting of regular expressions [12]. Their notion
of availability in finite words appears closely related but
while the relationship between LTL-definable languages and
regular ω-languages is well studied, the formal link between
our logic f LTL and the so called availability expressions
remains subject to further investigation.

An extension of LTL towards counters has also been
considered recently by Laroussinie et al. [13]. In contrast
to our approach, this is a syntactic variation in terms of ex-
pressiveness, as they reside in the class of LTL-definable ω-
languages. There is, however, an interesting correspondence,
which we point out in Section IV.
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II. PRELIMINARIES

Words: Let AP be a finite, non-empty set of atomic
propositions. We consider words over the alphabet Σ = 2AP.
Powers of finite words and letters are to be read in the
common way, i.e. w0 = ε and wn+1 = wwn. For an infinite
word w = a0a1a2. . . ∈ Σω (ai ⊆ AP) we denote the finite
prefix of length n by w|n = a0a1. . . an−1 and the n-th true
(infinite) suffix by w|n = anan+1. . . . Thus, w|0 = ε and
w = w|0 = w|nw|n. This notation is analogously used for
linear sequences in general, such as paths. We sometimes
specify alphabets directly when propositions are not needed
explicitly. The reader may assume any set AP that allows for



distinguishing propositionally at least the number of letters
needed and possibly some more, which are not being used.

Formulae: Furthermore, we use letters a ∈ Σ (i.e.
sets of propositions) in formulae to keep them concise
and readable. They abbreviate an exactly characterizing
conjunction (

∧
p∈a p) ∧ (

∧
p 6∈a ¬p). In general, a set Γ of

formulae is considered as
∧
ϕ∈Γ ϕ. Sets of letters indicate

their disjunction. For example, let M be the set of letters
{a, b}. When used in a formula, we interpret M as(

(
∧
q∈a

q) ∧ (
∧
q 6∈a

¬q)
)
∨
(

(
∧
q∈b

q) ∧ (
∧
q 6∈b

¬q)
)
.

III. THE TEMPORAL LOGIC f LTL

The idea of f LTL is to allow for relaxation of the until
operator in terms of an annotated frequency. The usual
intuition for a formula ϕUψ is that ψ must hold at some
point in the future, and before that ϕ has to hold always.
Instead of “always”, we consider the less strict formulation
“sufficiently often” referring to a minimum ratio c ∈ [0, 1]
of positions, the frequency of ϕ.

Definition 1 (Syntax and semantics of f LTL). The syntax
of Frequency Linear-time Temporal Logic (fLTL) formulae
is given by

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ Uc ϕ | p (p ∈ AP)

where each U-operator is annotated by a rational number
c ∈ Q with 0 ≤ c ≤ 1. fLTL formulae are interpreted over
words w ∈ Σω , w = a0a1a2. . . as follows:

w |= >
w |= p if p ∈ a0 (p ∈ AP)
w |= ¬ϕ if w 6|= ϕ
w |= Xϕ if w|1 |= ϕ
w |= ϕ ∧ ψ if w |= ϕ and w |= ψ
w |= ϕUc ψ if ∃n : w|n |= ψ and

#ϕ,w(n) ≥ c · n
In the definition above we write

#ϕ,w(n) := |{i | 0 ≤ i < n, w|i |= ϕ}|

for the number of positions before n satisfying a formula ϕ.
For c = 1, ϕ has to hold at all the positions before ψ

holds, which coincides with the U-operator in LTL and we
thus consider ϕUψ as abbreviation for the special case
ϕU1 ψ. Note, that our definition is less strict as it could
be regarding the eventuality. Consider, for example pU

1
2 q

and the word w = {r}{q}{p}{p}{q}{q}{r}ω . The observed
frequency of p at positions 1 and 5 is #p,w(1)

1 = 0
1 and

#p,w(5)
5 = 2

5 , respectively, which is too low. Yet, at position
4, q is satisfied and the frequency constraint is met. w is
thus a model since the frequency constraint is not necessarily
required to hold at the first position where q holds. In our
conclusion, we discuss a variant of f LTL that considers only
the frequency up to the first satisfaction of ψ.

We use the standard abbreviations ⊥ := ¬> and ϕ∨ψ :=
¬(¬ϕ∧¬ψ). Inspecting the negation ¬(ϕUc ψ) we obtain a
notion of “sufficiently often ¬ϕ releases ¬ψ at that position”
where “sufficiently often” amounts to a least frequency of
1 − c. Hence, the dual operator for Uc can be seen as
ϕRc ψ := ¬(¬ϕU1−c ¬ψ) and we confirm coincidence
with the traditional R-operator for c = 0. Also note, that
our definition is robust considering the operators F (eventu-
ally) and G (always). We can use the common definition
Fϕ := >Uϕ with an implicit frequency c = 1 while
any other frequency would neither formally nor intuitively
change the semantics. Allowing > to hold less frequently
(c < 1) does not change anything as it always holds. Dually,
we let Gϕ := ¬F¬ϕ = ⊥Rc ϕ for c = 0 since ⊥ does not
hold, particularly not “more often” (c > 0).

IV. f LTL IS NOT CONTEXT-FREE

We observe that LTL is not only a syntactic but also a true
semantic fragment of f LTL regarding ω-languages: Consider
alphabets Σn = {a1, . . . , an, b} and the family of languages

Ln = {ak1ak2 . . . aknbω | k ∈ N0},
which are not context-free for n > 2. While the LTL-
definable languages are (strictly) contained in the class of
regular ω-languages, each of the languages Ln is definable
by an f LTL formula

ϕn =

(
n∧
i=1

ai U
1
n G b

)
∧

(
n−1∧
i=1

G(ai+1 → G¬ai)

)
,

providing the following theorem.

Theorem 1. fLTL can express non-context-free languages.

Corollary 1. fLTL can express non-context-free languages
without nesting of frequency-until operators.

At this point it is worth having a closer look at the work
done by Laroussinie et al. in [13]. They consider an exten-
sion to LTL that allows for counting the number of positions
where certain properties hold. They show that there is a
translation from their logic, which they call CLTL, to LTL.
This strictly distinguishes CLTL form f LTL. Interestingly it
turns out that only a subtle change to their formalism effects
the observed gap in terms of expressiveness.

CLTL allows for formulae ϕU[C] ψ where the until oper-
ator is annotated by a constraint of the form

C ::= > | C ∧ C | ¬C |
∑
i αi ·#ηi ∼ k

where ∼∈ {<,≤,=,≥, >}, k, αi are positive integers and
ηi is again a CLTL formula. Semantically, w |= ϕU[C] ψ
for a word w ∈ Σω if ∃n : w|n |= ψ and (w, n) |= C and
∀0≤i<n : w|i |= ϕ. To obtain the semantics of (w, n) |= C,
the terms #η in C are interpreted as the number of positions
before n that satisfy η, i.e. #η,w(n).

For trying to express ϕUc ψ nonetheless in CLTL we
could write ϕU[C] ψ and let C = ( #ϕ

#> ≥ c). Equivalently,



with c = n
m , we could write C = (m ·#ϕ− n ·#> ≥ 0).

Hence, allowing for negative weights αi in constraints
obviously completely changes the character of CLTL.

V. f LTL IS UNDECIDABLE

Considering the expressiveness of f LTL, the question
arises whether it is decidable. One of our main contributions
is the following answer.

Theorem 2. Satisfiability of fLTL formulae is undecidable.

In the remainder of this section we sketch a proof,
which is inspired by [12]. Its main idea is to reduce the
(undecidable) termination problem of two-counter Minsky
machines [14] to the satisfiability problem of f LTL. More
specifically, for a given Minsky machineM, we construct a
formula ϕM that expresses the (deterministic) computation
of M. Then, ϕM ∧ F lfinal is satisfiable, if and only if M
terminates in line lfinal, denoting the halting location of M.

Minsky machines: A Minsky machine uses two instruc-
tions inc(Ki, l) and dect(Ki, l1, l2) where Ki refers to one
of the two counters and l, l1, l2 ∈ L are locations in the
program. inc increases the counter and jumps to location
l, while the dect instruction tests Ki for zero and directly
jumps to l1 in that case, or otherwise decreases Ki and the
next instruction to be executed is the one at location l2.

W.l.o.g. we consider instructions for each counter instead
of using the counter as argument. Also, dect is split into a
pure test for zero and a decrement instruction that has no
effect, if a counter is zero. Thus, our instruction set is

IS := {inc1, inc2, dec1, dec2, testz1, testz2}

A Minsky machine is a tuple M = (π, L, linit, lfinal, n0,m0)
where L is a non-empty, finite set of locations, linit, lfinal ∈ L
are the initial and final location, respectively, n0,m0 ∈ N0

are the initial counter values, the program π : L →
IS× L× L is a mapping of locations to commands (tuples
of instructions and locations). A configuration of M is a
tuple C = (l, n,m) ∈ L×N0×N0 representing the current
location and the values of both counters. The computation of
M is the unique, infinite sequence C0 → C1 → C2 → . . .
of configurations Ci, such that C0 = (linit, n0,m0) is
the initial configuration and for any Ci = (l, n,m), the
subsequent configuration Ci+1 is computed according to the
program π in the expected manner. Note, that the second
location in a command is taken into account only by the
testz instructions.

Encoding the computation: We encode counters unary
into words by letters a or â for counter 1 and b or b̂ for
counter 2. an,bm represent counter values n,m before and
ân
′
, b̂m

′
values n′,m′ after some operation.

We consider instructions always performing an explicit
operation on each of the counters, e.g. inc1 performs an
incrementation on counter 1 and a “skip” operation on
counter 2. These operations are represented in the encoding

by letters from aOP := {ia, da, sa} for the first and from
bOP := {ib, db} for the second counter. ia indicates an
increase of the counter 1 and thus the number of as. sa
indicates a skip operation, namely keeping the number of as
constant in the encoding and similarly for the other letters.

Note that, while using letter sa for not modifying the
number of as, we do not use an explicit letter sb for a skip
on counter 2. This is due to technicalities when counting
letters in the following.

Depending on which instruction is specified by π(l) =
(is, l′, l′′) we represent the computation e.g. as

l aniaâ
n+1 bmb̂m for is = inc1,

l ansaâ
n bmb̂m for is = testz1 or

l ansaâ
n bmibb̂

m+1 for is = inc2.

The computation

(l0, n0,m0)→ (l1, n1,m1)→ (l2, n2,m2)→ . . .

of M is thereby represented as a word of the form

l0 a
n0 opa â

n1 bm0$opb b̂
m1 l1 a

n1 op′a â
n2 bm1$op′b b̂

m2

l2 a
n2 op′′a â

n3 bm2$op′′b b̂
m3 . . .

where l0 = linit is the initial location and opa, op
′
a, op

′′
a ∈

aOP, opb, op
′
b ∈ bOP∪{ε}. For purely technical reasons we

add a separator sign $ between the bs and b̂s. The encoding
yields the alphabet we use:

Σ = {a, â, b, b̂, $, ia, ib, da, db, sa} ∪ L.

Ordering of symbols: In order to ensure the correct or-
dering of the symbols in the encoding of the computation we
use a formula ϕenc that consist of the following conjuncts:
• Labels l ∈ L and the letter a are followed by a or
op ∈ aOP: (L ∨ a)→ X(a ∨ aOP).

• An operation op ∈ aOP on counter 1 and letters â are
followed by â, b or $: (aOP ∨ â)→ X(â ∨ b ∨ $).

• Letter b is followed by another b or $: b→ X(b ∨ $).
• After each $ there is an operation on b, a number of b̂

or the next label: $→ X(bOP ∨ b̂ ∨ L).
• A label must follow directly after symbols b̂, or directly

after an operation on b: (bOP ∨ b̂)→ X(b̂ ∨ L).
Additionally, the computation has to start with the finite
prefix l0 an0 opa ân1 bm0$ according to the initial con-
figuration. It can be described similarly by an LTL formula
ϕI .

Specifying program instructions: Next, for is ∈ IS,
l1, l2 ∈ L, we construct formulae ϕ(is, l1, l2). Assuming the
correct ordering of symbols, i.e. in conjunction with Gϕenc,
these formulae enforce the correct number of âs and b̂s
according to the number of as and bs and also the correct
choice for the next location. E.g., the formula ϕ(inc2, l1, l2)
shall enforce the pattern ansaâ

n bm$ibb̂
m+1 l1. . . and

ϕ(testz1, l1, l2) enforces either an+1saâ
n+1 bm$b̂m l2. . .

(K1 > 0) or sa bm$b̂m l1. . . (K1 = 0). The formula



bU
1
2 l ∧ b̂U

1
2 l enforces the pattern bmb̂m l. . . . Based on

this idea we use

βinc(l) := (b ∨ $) ∧X((b ∨ $ ∨ ib) U
1
2 l ∧ b̂U

1
2 l)

to express the effect of an inc2 operation on counter 2,
namely the pattern bm$ibb̂

m+1 l. . . . The complete formula
must also impose equality between the number of as and âs
which can be done similarly. Therefore we let

ϕ(inc2, l1, l2) :=

(a ∨ sa) ∧X
(

(a ∨ sa) U
1
2 (βinc(l1)) ∧ âU

1
2 βinc(l1)

)
stating that there must be a sequence of letters a, sa followed
by the pattern form βinc(l1) as above. Additionally, between
the first position and the beginning of the βinc(l1) pattern,
half of the positions must carry an â and the other half
and the first position must carry either a or sa. Assuming,
in virtue of ϕenc, that sa occurs exactly once, the overall
number of as and âs must thus be equal.

The other instructions can be reflected similarly and
we compose these instruction formulae according to the
program π to a formula

ϕπ := G
( ∧
l∈L

l→ Xϕ(π(l))
)
.

which enforces that any model must mimic the instructions
of the Minsky machine at every position where an according
label occurs.

Propagation: From each computation step to the next,
we need to ensure that the result of a computation, i.e. the
powers of ân and b̂m, are copied correctly.

l0 a
n0 opa â

n1 bm0$opb b̂
m1 l1 a

n1 op′a â
n2 bm1$. . .

Assuming, again, correct encoding and computation, we
observe an invariant in between the blocks of âs and as,
i.e. the sub-term bm$opbb̂

m′ l. If opb = ib, then the number
of occurrences of letters from the set Aleft := {â, b, $, ib}
is equal to the number of letters from the set Aright :=

{b̂, a, db}∪L since m′ = m+1. This also holds for opb = db,
where m′ + 1 = m, and opb = ε with m′ = m. Thus,
n = n′ in ânbm$opbb̂

m′ lan
′

iff the number of occurring
letters from Aleft equals the number of occurring letters from
Aright. Thus we can ensure the correct propagation of the
value of counter 1 (in terms of as) independently of opb by

ψa := G
(
aOP→ X

(
(Aleft U

1
2 aOP) ∧ (Aright U

1
2 aOP)

))
.

For propagating the value of the second counter we
enforce the pattern . . . b̂m l an opaâ

n′bm$. . . . To the left
of opa we find the symbols Bleft := {b̂, a} ∪ L and to the
right Bright := {â, b}. We distinguish three cases for opa.

Case opa = ia: Counter 1 is increased and we have the
pattern b̂m l aniaâ

n+1bm
′
. We see that m = m′ if and only

if the number of occurrences of symbols from Bright is equal
to the number of of symbols from the set Bleft∪{ia} minus
one which is expressed by the formula

ψinc := X
((

(Bleft ∨ ia) U
1
2 $
)
∧ (Bright U

1
2 $)
)
.

Case opa = da: If the counter is decreased we have
b̂m l an+1daâ

nbm
′

and we enforce exactly one more symbol
from Bleft than from Bright ∪ {da} by

ψdec := X
(

(Bleft U
1
2 $) ∧

(
(Bright ∨ da) U

1
2 $
))
.

Note that in order to represent the offset of one we can
safely remove the first symbol using the X-operator and then
enforce an equal number because we know the pattern starts
with at least one symbol from Bleft.

Case opa = sa: A neutral operation on a yields the pattern
b̂m l ansaâ

nbm
′

and we can guarantee equality of m and m′

by an equal number of symbols from Bleft and Bright∪{sa}:

ψskip :=
(
Bleft U

1
2 $
)
∧
(
(Bright ∨ sa) U

1
2 $
)
.

Combining the cases, we obtain a formula which ex-
presses that in any case, the propagation is done correctly.
The property must always hold right after the position of the
operator symbol for counter 2. Recall, that these symbols
for counter 2 might not be explicitly present since the
skip operation was expressed by ε. We therefore describe
the position that triggers the copy-property for â by either
finding symbol from bOP = {ib, db} explicitly or just the $
symbol without a following operation from bOP:

ψb := G
(

(bOP ∨ ($ ∧ ¬X bOP))

→ X
(
ψinc ∨ ψdec ∨ ψskip

))
.

Combining all the formulae we obtain

ϕM = ϕπ ∧ ψa ∧ ψb ∧ (Gϕenc) ∧ ϕI
describing exactly the computation of M and ϕM ∧ F lfinal
is satisfiable if and only if M eventually reaches the final
location, i.e. terminates. This proves Theorem 2.

VI. A DECIDABLE FRAGMENT OF f LTL
In this section we consider the f LTL fragment of simple

frequentness properties (sf LTL) that is still more expressive
than LTL but has a decidable satisfiability problem. Formu-
lae in that fragment are restricted in terms of nesting and
negation and have the form

ϕ ::= ψLTL | (ψLTL) Uc(ϕ) | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ

where ψLTL denotes a standard LTL formula, which we
assume w.l.o.g. to be in positive normal form, i.e. where
negation occurs only in front of atomic propositions. Hence,
for sf LTL we consider positive boolean combinations of
formulae including frequency-until operators that are not
nested in the first operand. Note, that sf LTL is still more
expressive than LTL since the non-context-free properties



used to show that f LTL is more expressive than LTL (The-
orem 1) do neither rely on nesting nor negating frequency-
until formulae.

In the remainder of this section we show the following.

Theorem 3. The satisfiability problem of sfLTL is decidable.

We outline a decision procedure that reduces satisfiability
of sf LTL formulae to the integer linear programming prob-
lem, i.e. to solving systems of linear inequalities, which can
be solved by using known algorithms, c.f. [15, Part IV]. We
prove that there is a model to the formula if and only if
the constructed inequality systems have a (natural) solution.
The reduction comprises three steps:

1) We first introduce a notion of our logic using counters.
2) Based on that we build a labelled tableau graph from

a given formula and check satisfiability by solving
constrained reachability problems in that graph.

3) We construct integer linear programs in order to find
paths that obey constraints imposed by the edge labels.

A. Counter semantics for fLTL
We rely on a notion of unfolding in order to build a

tableau graph for f LTL formulae. Therefore, we consider
f LTL formulae enriched with a counter value k ∈ Q for
the frequency-until-operators, written ϕUc

k ψ. The annotated
counter value can be seen as bias to such a (sub)-formula
that reflects some history. Intuitively, in the case of k = 0
the history is balanced, i.e. neither additional credit should
be rewarded for satisfying the obligation ϕ more often than
needed, nor was a due recorded by unfulfilling the obligation
too often. A formula ϕUc

0 ψ therefore coincides with the
f LTL formula without annotation.

Formally, we let w |= ϕUc
k ψ if and only if

∃n : w|n |= ψ and k + #ϕ,w(n) ≥ c · n.
If an obligation ϕ is known to hold or known to not hold

at the first position, a formula ϕUc
k ψ can be rewritten – just

as the standard unfolding1 – by an X-formula requiring the
very same formula to hold at the next position, though the
fact of fulfilling or unfulfilling the obligation ϕ, respectively,
should be recorded in terms of the bias. We hence extend
the notion of unfolding to the counter setting.

Definition 2 (Counted unfolding). Let Φ be an fLTL for-
mula. The unfolding of LTL formulae is extended to the
counter semantics as follows.

unf(Φ) :=



ψ ∨ (ϕ ∧X(ϕUc
k+1−c ψ))

∨X(ϕUc
k−c ψ)

if Φ = ϕUc
k ψ

and k ≥ 0

(ϕ ∧X(ϕUc
k+1−c ψ))

∨X(ϕUc
k−c ψ)

if Φ = ϕUc
k ψ

and k < 0

Φ otherwise.

1The definition of LTL implies the equality ϕUψ ≡ ψ ∨ (ϕ ∧
X(ϕUψ)).

Lemma 1 (Counted unfolding equivalence). Let Φ be a
(possibly biased) fLTL formula and w ∈ Σω . Then, w |= Φ
if and only if w |= unf(Φ).

Proof: For Φ 6= ϕUc
k ψ the unfolding does not affect

the formula and the result follows trivially. Therefore, let
w |= Φ = ϕUc

k ψ for some word w ∈ Σω .
Case 1: k ≥ 0. By definition we have w |= ϕUc

k ψ iff
∃n≥0 : (w|n |= ψ and k + #ϕ,w(n) − c · n ≥ 0), where
we can distinguish the cases n = 0 and n + 1 ≥ 0. With
k ≥ 0 we have that w |= ψ or ∃n≥0 : w|n+1 |= ψ and
k+#ϕ,w(n+1)−c ·(n+1) ≥ 0. Note, that w|n+1 = w|1|n.

The value of #ϕ,w(n + 1) is #ϕ,w|1(n) if w 6|= ϕ or
otherwise #ϕ,w|1(n) + 1.

We conclude that w |= ϕUc
k ψ if and only if w |= ψ or

w |= ϕ and ∃n : w|1|n |= ψ and
k + (1− c) + #ϕ,w|1(n)− c · n ≥ 0

or
w 6|= ϕ and ∃n : w|1|n |= ψ and

k + (−c) + #ϕ,w|1(n)− c · n ≥ 0

which reduces by the definition of the U- and X-operator to

w |= ψ or
(
w |= ϕ and w |= X(ϕUc

k+1−c ψ) or
w 6|= ϕ and w |= X(ϕUc

k−c ψ)

)
and further to

w |= ψ ∨ (ϕ ∧X(ϕUc
k+1−c ψ)) ∨X(ϕUc

k−c ψ)

=(k≥0) unf(ϕUc
k ψ).

Case 2: k < 0. The second case is almost identical. For
the last step we obtain

w |= (ϕ ∧XϕUc
k+1−c ψ) ∨X(ϕUc

k−c ψ)

=(k<0) unf(ϕUc
k ψ)

B. Graph representation

Given our notion of unfolding we can pursue a tableau
construction in the style of [16] in order to check satisfia-
bility of a formula. In contrast to the common setting, we
face a potentially infinite number of reachable states in the
tableau graph due to the annotated counter values that can
in- and decrease arbitrarily.

Our variant therefore constructs a symbolic tableau us-
ing the rules shown in Figure 1. Starting from the initial
formula, disjunctions are split up into two child nodes and
conjunctions are written as sets of (sub-)formulae.

As opposed to computing an explicit counter value for
formulae in successor nodes we label the edges with the
according operation that is performed. Recall that the un-
folding of a formula ϕUc

K ψ depends on the actual value of
K and so do the reachable successor nodes. Since we handle
the counters symbolically, we label the edges to such nodes
with constraints. That is, an edge to a successor that is only
reachable if the value of K is greater or equal to zero is
labelled with the constraint “K ≥ 0”.



{ϕUcK
K ψ} ∪ Γ

{ϕ,X(ϕUcK
K ψ)} ∪ Γ

K := K + 1 − cK

{ϕUcK
K ψ} ∪ Γ

{ψ} ∪ Γ
K ≥ 0

{ϕUcK
K ψ} ∪ Γ

{X(ϕUcK
K ψ)} ∪ Γ

K := K − cK

{ϕUψ} ∪ Γ

{ψ ∧ (ϕ ∧X(ϕUψ))} ∪ Γ

(i = 0, 1)
{ϕ0 ∨ ϕ1} ∪ Γ

{ϕi} ∪ Γ

{ψRϕ} ∪ Γ

{ϕ ∧ (ψ ∨X(ψRϕ))} ∪ Γ

{ϕ0 ∧ ϕ1} ∪ Γ

{ϕ0, ϕ1} ∪ Γ

{Xϕ1, . . . ,Xϕr, q1, . . . , qm}
{ϕ1, . . . , ϕr}

{q1, . . . , qm}

Figure 1. Rules for building the symbolic tableau for an sf LTL formula.
The X-rule includes possibly negated propositions qi ∈ {p,¬p | p ∈ AP}.

Definition 3 (Symbolic tableau). Let Φ be an sfLTL formula
and Φ̂ the same formula, except that all frequency-until sub-
formulae ϕUc ψ (c < 1) are uniquely annotated by indices
K1, . . . ,Kn. The symbolic tableau is an edge-labelled graph
G(Φ) = (V,E, λ) where V ⊆ 2sub(Φ̂) is the set of nodes of
which {Φ̂} ∈ V is initial. The set of edges E ⊆ V × V
and the labelling function λ, which associates with every
edge e ∈ E a label λ(e), are defined according to the rules
shown in Figure 1.

A node v ∈ V is called final, if v contains only pure LTL
formulae and the conjunction

∧
ϕ∈v ϕ is satisfiable.

We use sub(Φ) to denote the set of sub-formulae of a
formula Φ, including possible unfoldings, and cK to refer to
the frequency of a particular frequency-until (sub-)formula
with counter index K.

Recall that nestings of frequency-until operators like
(ϕU

cK1

K1
ψ1) U

cK2

K2
ψ2 are not allowed within the sf LTL frag-

ment. Without that restriction we would need to individually
distinguish (i.e. consider a new counter variable Ki for)
each instance of the sub-formula ϕU

cK1

K1
ψ1 which is “re-

produced” through unfolding. The state space of the tableau
would again be possibly infinite. The restriction allows
us to directly identify and uniquely index all occurring
frequency-until operators in the symbolic tableau since they
are already present in the initial formula.

Given a path to a node v in the symbolic tableau, we can
compute the actual value of K for a formula ϕUcK

K ψ ∈ v by
applying all operations on K that occur along the path to the
initial value of K, which is 0. Hence, we can also explicitly
check whether a certain restricted edge can actually be taken
at a specific position on a path.

Definition 4 (Paths). A path in a symbolic tableau graph
G(Φ) is a finite sequence % = v0v1. . . vn of nodes vi ∈ V ,
such that (vi, vi+1) ∈ E for i = 0, . . . , n − 1. We call %
simple, if vi = vj implies i = j. We call % a (simple) loop

if v0 = vn (and v0. . . vn−1 is simple). The values that are
added to a certain counter K along % are denoted by

δK(vi) =


1− cK if λ(vi, vi+1) = “K := K + 1− cK”
−cK if λ(vi, vi+1) = “K := K − cK”
0 otherwise

The functions δK represent the weight of a node with respect
to a specific counter K and are extended to paths by
δK(%) :=

∑n−1
i=0 δK(vi).

The path % is called valid if (1) every label λ(vi, vi+1) =
“{q1, . . . , qm}” is non-contradictory, i.e. qr 6= ¬qs for
r, s = 1, . . . ,m and (2) for every label λ(vi, vi+1) = “K ≥
0” we have δK(%|i+1) ≥ 0.

That is, the weight of the path %|i+1 (ending with vi)
satisfies the corresponding condition and the nodes on % can
actually be traversed in that order.

Theorem 4. An sfLTL formula Φ is satisfiable if and only
if there exists a valid path from the initial to a final node in
the symbolic tableau graph G(Φ).

Proof: (⇐). Assume there is a valid path % = v0. . . vn
to a final node vn in the graph G(Φ). W.l.o.g. Φ can be
assumed to be in positive normal form, i.e. negation occurs
only in front of atomic propositions. The rules used for
constructing the graph refine Φ to an under-approximation
by dismissing one side from disjunctions. Thus, if there is a
model for a node v, i.e. some w ∈ Σω s.t. w |=

∧
ϕ∈v ϕ, then

there is a model w′ for every predecessor of v: The ∧-rule
does not effect any change since the set is interpreted as
conjunction. Also, let Γ be a set of formulae, then every
model for ϕ1 ∧ Γ is also a model for (ϕ1 ∨ ϕ2) ∧ Γ.
Exchanging U- and R-formulae without frequency with their
respective unfoldings is purely syntactical and w remains
a model. The X-rule only applies to nodes of the form
{Xϕ1, . . . ,Xϕr, q1, . . . , qm} and for any w |= ϕ1∧. . . ∧ϕr
we have that aw |= Xϕ1 ∧ . . . ∧ Xϕr ∧ q1 ∧ . . . ∧ qm
if a = {q1, . . . , qm} ∩ AP. We can dismiss all negated
propositions since the path was valid and {q1, . . . , qm} is
thus not contradictory.

The remaining rules unfold frequency-until-formulae. Re-
specting the according constraints ensures the correct bias.
Thus, by Lemma 1, they at most refine the formula, which
means that any model for the child node is in particular a
model of the parent node, given the constraint is satisfied
or the according operation is performed on the counter,
respectively.

We hereby construct a model directly from a valid path
%, starting with a model wvn for the last node vn in the
path (which is final) and backwards prepending the letters
imposed by the propositional constraints of the applied X-
rules (see Figure 2).

(⇒). Assume Φ is satisfiable and a word w0 ∈ Σω is
a model. We can derive a valid path % = v0v1v2. . . vn on



v0 . . . vi1
X−−→
li1

vi1+1 . . . vi2
X−−→
li2

vi2+1 . . .
X−−→
lij

. . . vn

↓ ↓ ↓
wϕ := a1 a2 . . . aj . . . wvn

Figure 2. Following a valid path % directly yields a model if the last
position is satisfiable by some word wvn , which is in particular the case
if vn is final, i.e. represents a pure, satisfiable LTL formula. Negated
propositions in labels lij are included implicitly in the letters aj by the
absence of their positive duals.

G(Φ) to a final node vn.
We construct % by starting with a path %0 = v0 that

only consists of the initial node. Guided by w0 we choose a
successor v1 for v0 and obtain a new path %1 = v0v1. Also,
we obtain a word w1 that shall guide us in the next step.
By structural induction on the construction of the tableau
graph G(Φ) we show that we can always choose a child
node vi+1 of a node vi on the path while maintaining the
invariant that %i+1 = v0. . . vi+1 is valid and there is a word
wi+1 |= vi+1[σ(%i+1)]. Here, we let

σ(%j) := {K1 7→ δK1(%j), . . . ,Kr 7→ δKr (%j)}

be a substitution that maps the variables Ki to the values
they would have after applying all operations on Ki that
occur along a path %j . That substitution is used to substitute
all counter variables by actual values in a particular node in
order to get a semantics regarding a word. In general, for
a formula formula ϕ and a finite substitution σ = {K1 7→
k1, . . . ,Kr 7→ kr} we write ϕ[σ] = ϕ[k1/K1, . . . , kr/Kr]
for a formula that is equal to ϕ but where all occurrences
of variables Ki are replaced by values ki. Note that this is
well defined here, regardless of the order of substitution.

The construction so far may yield an infinite path through
some loop. However, this would mean that some frequency-
until is unfolded infinitely often. The assumption that w0 is a
model for Φ and the existential definition of the Uc-operator
ensures that we can finally dismiss the recurring frequency-
until-formula during the unfolding of all such formulae and
thus reach a node that only contains LTL formulae.

If Φ ∈ LTL, the initial node v0 is already final and we
found a valid path of length one. Now, let %i = v0v1. . . vi
be a valid path and wi |= vi[σ(%i)]. We are done if vi ⊆
LTL. Otherwise we consider the following cases. (1) vi =
{ϕ1 ∧ ϕ2} ∪ Γ, ϕ1 ∧ ϕ2 6∈ LTL. Choosing the successor
vi+1 := {ϕ1, ϕ2} ∪ Γ and wi+1 := wi |= vi+1[σ(%ivi+1)]
maintains the invariant. Otherwise, if (2) vi = {ϕ1 ∨ ϕ2} ∪
Γ, ϕ1 ∨ ϕ2 6∈ LTL we take either vi+1 := {ϕ1} ∪ Γ or
vi+1 := {ϕ2} ∪ Γ. For at least one of them wi+1 := wi |=
vi+1[σ(%ivi+1)] must hold. Similarly, for (3) vi = {ϕUψ}∪
Γ or vi = {ψRϕ} ∪ Γ we can safely choose the successor
node {ψ ∨ (ϕ∧X(ϕUψ))}∪Γ or {ϕ∧ (ψ ∨X(ψRϕ))}∪
Γ, respectively, since this unfolding does not change the
semantics and wi+1 := wi remains a model. If neither of the

previous cases applies, then consider (4) vi = {ϕUc
K ψ} ∪

Γ, c < 1. Among the successor nodes in the graph, we
have x = {ψ} ∪ Γ, y = {ϕ,X(ϕUc

K ψ)} ∪ Γ and z =
{ϕ,X(ϕUc

K ψ)} ∪ Γ. By Lemma 1, δK(%i) ≥ 0 and wi |=
x[σ(%i)] or wi is a model for y or z respecting the according
operations on K, i.e. wi |= y[σ(%iy)] or wi |= z[σ(%iz)]. We
can choose a suitable one as vi+1. In any case %i+1 = %ivi+1

remains a valid path, and wi+1 := wi |= vi+1[σ(%i+1)]. The
case remaining is (5) vi = {Xϕ1, . . . Xϕr, q1, . . . , qm} with
qi ∈ {p,¬p | p ∈ AP}. Since wi |= vi[σ(%i)], we take
wi+1 := wi|1 |= vi+1 = {ϕ1, . . . , ϕr} and the path remains
valid since {q1, . . . , qm} can not be contradictory.

C. Solving reachability with constraints

Theorem 4 reduces the satisfiability problem of sf LTL
formulae to (constrained) reachability in the tableau graph.

In order to check whether there is a valid path to a final
node we examine all simple paths to final nodes. Any valid
path must then be an extension of some simple path by a
number of loops. More precisely, we can assume these loops
to be simple loops that are possibly extended by a number of
such loops themselves. This hierarchy is of bounded depth
since the valid path itself is finite.

Let % = v0. . . vr be a path on a tableau graph G. We
denote loopsG(%) the set of all simple loops l = u0. . . uku0

on G, ui ∈ V , s.t. u0 occurs on %. Further, let loops∗G(%)
be the smallest set s.t. loopsG(%) ⊆ loops∗G(%) and l ∈
loops∗G(%)⇒ loopsG(l) ⊆ loops∗G(%).

We construct equation systems that are imposed by the
constraints on the path. If there were no constraints, simple
paths would be fine already. For a path to be valid, any
constraint edge must be preceded by a prefix-path with a
weight satisfying the respective constraint (c.f. Definition 4).
Hence, for each final node vf we investigate all simple paths
% = v0v1. . . vn that start at the initial node and end in vn =
vf and consider the extending loops lm ∈ loops∗G(%|i+1)
before a node vi+1 on %. These loops can possibly influence
the actual counter value when reaching vi. Therefore we
introduce a variable nm for the number of traversals of a
loop lm. For every edge (vi, vi+1) on the so far simple path
% that is labelled by a constraint λ(vi, vi+1) = ”K ≥ 0“,
we construct an inequality

δK(%|i+1) +
( ∑
lm∈loops∗G(%|i+1)

nm · δK(lm)
)
≥ 0

that represents all those paths that follow % but may addi-
tionally traverse some of the loops.

If % is extended by a subordinate loop lr′ ∈ loopsG(lr)
of some loop lr, % is necessarily extended by lr itself at
least once. Thus, for each such pair, we extend the equation
system by this implication: nr′ = 0 ∨ nr > 0. Note that
equations in a system are considered in conjunction but we
can resolve the disjunction by using a copy of the system for
each disjunct and obtain a set Eqn(%) of equation systems.



There is a natural solution, in terms of the variables nm, for
at least one of them iff % can be extended by loops in order
to satisfy all constraints along it. Furthermore, if we consider
the union Eqn(G(Φ)) =

⋃
% Eqn(%) for all simple paths % to

a final node in G(Φ), there is a system Eqn(%) ∈ Eqn(G(Φ))
that has a natural solution iff there is any path that can be
successfully extended to satisfy every constraint along it and
hence iff Φ is satisfiable.

Theorem 5. An sfLTL formula Φ is satisfiable iff there is
an equation system Eqn(%) ∈ Eqn(G(Φ)) that has a natural
solution.

This completes the reduction and proves Theorem 3.

VII. CONCLUSION

Motivated by our experience of applying LTL in the
setting of verification, we introduced and studied a gener-
alization of LTL’s until operator by relaxing the obligation
ϕ of a formula ϕUψ. In the resulting logic, which we call
frequency LTL (f LTL), it is now possible to write ϕUc ψ to
denote that ϕ has to hold at least at a fraction c of positions
up to a moment in which ψ holds.

We have shown that f LTL is far more expressive than
plain LTL as it allows us to formulate non-context-free
properties. The price to pay for this expressiveness is that
satisfiability of f LTL is undecidable. We show this using an
encoding of the termination problem of Minsky machines.
Expressing a frequentness within a certain scope via the
frequency-until operator allows us to simulate counters by
comparing numbers of letters, similar to [12].

We also identified a decidable fragment of f LTL which
still allows the formulation of context-free properties and
thus extends LTL’s expressiveness. The decidability proof
is given via a tableau construction. However, a typical
approach, as for example introduced for LTL in [16], fails
as f LTL’s counters would result in infinite tableaux. To
overcome this problem we introduced a symbolic tableau
construction. As plain reachability algorithms are not suit-
able anymore to find valid paths in the according tableau
graph we encode the tableau as integer linear programs. In
other words, we reduce the satisfiability problem of f LTL to
ILP, which may then be solved using standard algorithms.

One might change the semantics of f LTL’s until operator,
in a formula ϕUc ψ, by considering the frequency of ϕ only
up to the very first position in which ψ holds. An easy
inspection of the undecidability proof shows, however, that
the satisfiability problem of the resulting logic remains un-
decidable. This indicates a certain robustness of the concepts
developed in this paper.

The work initiated in this paper may be extended in
several directions. First, it would be interesting to reduce
the gap between the decidable fragment sf LTL and f LTL
itself. To this end, it might be worth to study also a variant
of f LTL in which no credit is given in the following sense:

For a formula ϕUc ψ, a position may only violate ϕ if ϕ has
been satisfied often enough in previous positions. Finally, in
[8], LTL’s expressiveness has been extended to capture the
full class of regular ω-languages. It might be worthwhile to
extend also this logic by a concept of frequencies.
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