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Abstract

Tree-width is a well-known metric on undirected graphs thaasures how tree-like a graph
is and gives a notion of graph decomposition that provesulseglgorithm design. Tree-
width can be characterised by a graph searching game whenalaen of cops attempt to
capture a robber. We consider the natural adaptation ofgtinise to directed graphs and
show that monotone strategies in the game yield a measuiey) caG-width, that can be
seen to describe how close a directed graph is to a direciati@graph PAG). We also
provide an associated decomposition and show how it is Usefdeveloping algorithms
on directed graphs. In particular, we show that the problédetermining the winner of a
parity game is solvable in polynomial time on graphs of badoiaG-width. We also con-
sider the relationship betwe@nG-width and other connectivity measures such as directed
tree-width and path-width. A consequence we obtain is tediat NP-complete prob-
lems such as Hamiltonicity and disjoint paths are polyndtimiae computable on graphs
of boundedAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in thaiplgminor project
has focused much attention on tree decompositions of graphassociated mea-
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sures of graph connectivity such as tree-width [24]. Apestrf their interest in

graph-structure theory, these notions have also provedugsful in algorithm de-

sign. The tree-width of a graph is a measure of how tree-hleegraph is, and it
is found that small tree-width allows for graph decompaosisi along which recur-
sive algorithms can work. Many problems that are intraetablgeneral can be
solved efficiently on graphs of small tree-width. Theseudel such classical NP-
complete problems as finding a Hamiltonian cycle in a graptetecting if a graph

is three-colourable. Indeed, a general result of Cour¢®]lshows that any prop-
erty definable in monadic second-order logic is solvabléiedr time on graphs of
bounded tree-width.

The idea of designing algorithms that work on tree decontjpos has been gen-
eralised from graphs to other structures. Usually the wigkth of a structure is
defined as that of the underlying connectivity (or Gaifmargpdp. For instance,
the tree-width of a directed graph is simply that of the uectied graph we get by
forgetting the direction of edges, a process which lead®moesloss of informa-
tion. This loss may be significant if the algorithmic probkeme are interested in
are inherently directed. A good example is the problem oédétg Hamiltonian
cycles. While we know that this can be solved easily on gragpitis small tree-
width, there are also directed graphs with very simple cotiwigy structure which
have large tree-width. A directed acyclic grapig) is a particularly simple struc-
ture, but we lose sight of this when we erase the directiorheretiges and find
the underlying undirected graph to be dense. Several patpbsve been made
(see [23,16,5,25,15]) which extend notions of tree decaitipos and tree-width
to directed graphs. In particular, Johnson et al. [16] ishtice the notion oflirected
tree-widthwhere directed acyclic graphs have width 0 and they showHhatil-
tonicity can be solved for graphs of bounded directed tretthnin polynomial
time. However, the definition and characterisations of théasure are somewhat
unwieldy and they have not, so far, resulted in many new dlgyuos.

We are especially interested in one particular problem eoectéd graphs, that
of determining the winner of pgarity game This is an infinite two-player game
played on a directed graph where the vertices are labellgdibsities. The players
take turns pushing a token along edges of the graph. The wisidetermined by
the parity of the least priority occurring infinitely often this infinite play. Parity
games have proved useful in the development of model-chg@gorithms used
in the verification of concurrent systems. The mqadaialculus, introduced in [18],
is a widely used logic for the specification of such systemspmpassing a va-
riety of modal and temporal logics. The problem of determgnigiven a system
A and a formulay of the u-calculus, whether or natl satisfiesp can be turned
into a parity game (see [13]). The exact complexity of sajvparity games is an
open problem that has received a large amount of attentios khown [11] that
the problem is in NP co-NP but no polynomial time algorithm is known. From
the general result of Courcelle [8], it follows that thereaifinear time algorithm
that solves parity games with a fixed number of priorities capgs of bounded



tree-width. Obdrzalek [21] exhibited a polynomial timgarithm for games with
an arbitrary number of priorities on graphs of bounded wédth. He points out
that the algorithm would not give good bounds, for instarmcedirected acyclic
graphs even though solving the games on such graphs is easasks whether
there is a structural property of directed graphs that wallllalv a fast algorithm
on both bounded tree-width structures andoaes. In this article, we give just
such a generalisation.

We introduce a measure of the connectivity of graphs thatalleoaG-width. It is
intermediate between tree-width and directed tree-widtlthat for any graplt,

the directed tree-width aff is no greater than itsAG-width which, in turn, is no
greater than its tree-width. Thus, the class of structuf@a-width & + 1 or less
includes all structures of tree-widthand more (in particulaipAGs of arbitrarily
high tree-width all haveAG-width 1). This measure was introduced independently
in two conference papers [22,4] to which the present papeefoow-up.

The notion ofDAG-width can be understood as a simple adaptation ofctiyes
and robber gaméwhich characterises tree-width) to directed graphs. Tdraais
played by two players, one of whom controls a sek @bps attempting to catch a
robber controlled by the other player. The cop player canerany set of cops to
any vertices on the graph, while the robber can move alongattyin the graph
as long as there is no cop currently on the path. Such gamedjeawn extensively
studied (see [26,9,14,3,5]). It is known [26] that the cagypl has a winning strat-
egy on an undirected graghusingk + 1 cops if, and only if G has tree-widthk.
We consider the natural adaptation of this game to direatapdhg, by constraining
the robber to move along directed paths. We show that the ofadirected graphs
where there is a monotone (in a sense we make precise in 58ipstrategy fok
cops to win is characterised by its width in a decompositiat ts a generalisation
of tree decompositions. We are then able to show that thdgmobf determining
the winner of a parity game is solvable in polynomial time be tlass of graphs
of DAG-width &, for any fixedk.

In Section 2, we introduce some notation. Section 3 intredule cops and robber
game DAG-decompositions anbAG-width and shows the equivalence between the
existence of monotone winning strategies aad-width. Also in Section 3 we
discuss some algorithmic aspect®afs-width. Section 4 proves the existence of a
polynomial time algorithm for solving parity games on suchghs, and Section 5
relatesbAG-width to other measures of graph connectivity.

2 Preliminaries

We first fix some notation used throughout the article. Alpdraused are finite and
simple (i.e., no self-loops and no multiple edges) unleksrtise stated. Also we



will use the term “digraph” when refering to directed graphs

We write w for the set of finite ordinals, i.e., natural numbers (inahgd)). For
everyn € w, we write[n| for the set{1, ..., n}. For a sel/ and a numbek € w,

we write [V]=F for the set of allX C V with | X| < k. Given setsA, B, we denote
their symmetric differencéA \ B) U (B \ A) by AA B.

Let G be a digraph. We writ& (&) for the set of its vertices anl(G) for the set
of its edges. Let/ C V() be a set of vertices. We writ@[V/] for the subgraph
induced byV, andG \ V for the subgraph induced By(G) \ V. Further,G, the
reverse graplof G, is the digraph with the same set of vertices=aand with a set
of edges that results from reversing the edge&'(fy), i.e., E(G?) = {(w,v) :
(v,w) € E(G)}.

The following definition is standard (see [10]).

Definition 1. A tree decompositioof a graphG is a pair(7, X'), whereT' is a tree
andX = (X;)cv(r) is a family of subsets of (G) such that

® Uev(r) Xe = V(G),

o for each edgéu,v) € E(G), thereis & € V(T') such thafu,v} C X;, and

e for each vertexw € V(G), the set{t € V(T') : v € X,} forms a connected
subtree off".

The width of a tree decomposition is one less than the cardinality efléingest
X;. Thetree-widthof GG is the smallesk such thatG has a tree decomposition of
width k.

Let D be a directed, acyclic graplm4G), i.e. a directed graph that contains no
directed cycles. The partial ordef, on D is the reflexive, transitive closure of
E(D). A sourceof a setX C V(D) is a<p-minimal element ofX, thatis,r € X

is a root of X, if there is noy € X such thaty <p r andy # z. Analogously, a
sinkof X C V(D) is a=<p-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph-theoretical part of thislar We definebAG-width
and its relation to graph searching games. As mentionedenntinoduction, the
notion of tree-width has a natural characterisation in geoha cops and robber
game. Directed tree-width has also been characterisedms t&f such games [16],
but these games appear to be less intuitive. In this arti@egonsider the straight-
forward extension of the cops and robber game from undidegaphs to digraphs.
We show that these games give a characterisation of the goaiectivity measure



that we callbAG-width and introduce in Section 3.1. We comment on algorithm
properties in Section 3.5.

3.1 DAG-decompositions andAG-width

In this section, we present a decomposition of digraphsithedbmewhat similar
in style to tree decompositions of undirected graphs. Téesl$ to the definition
of DAG-width, which can be seen as a measure of how close a giveapdigs to

being acyclic. We also present some properties enjoyamhywidth.

The concept of DAG-width we introduce is based on the follgyvconcept of
guarding

Definition 2. Let G := (V, E) be a digraph andi’, V' C V. Then,W guardsV”’
if, for all (u,v) € E, if u € V'thenv € V' UW.

The next lemma lists some simple properties of guarding tisedghout the paper.

Lemma3. LetG = (V,FE)beadigraphandX, Xy, X1,Y,Yy, Y, Z C V. Then
the following holds:

(1) If X, guardsY, and X; guardsY;, thenX, U X; guardsYy U Y;.
(2) If X guardsY andZ DO X, thenZ guardsY'.
(3) If X guardsY thenX U Z guardsY \ Z.

Proof. (1) Supposév,w) € E(G),v € YyUY; andw ¢ Y,UY;. Letv € Y}, then
w € X;, asX; guardsy;. Hencew € X, U X5, and X, U X; guardsY, U Y;.

(2) Supposév,w) € E(G),v € Y andw ¢ Y. As X guardsY, w € X. As
Z O X,w € Z. Therefore,Z guardsy'.

(3) Supposév,w) € E(G),ve Y\ Zandw ¢ Y \ Z. Thus,w ¢ Y orw € Z.
For the first casey € X asX guardsY. Hencew € X U Z. O

We are now ready to define the concepts of DAG-width.

Definition 4 (DAG-decomposition)Let G := (V, E) be a digraph. ADAG-decom-
positionof G is a pair(D, X') whereD is aDAG and X = (Xg)qcv(p) is a family
of subsets o¥” such that

(Dl) UdEV(D) Xd = V

(D2) For all vertices! <p d <p d", XgN Xy C Xy

(D3) Foralledgesd,d’) € E(D), XqN Xy guardsX - \ X4, whereX, , stands
for Uy <,av Xar. FOr any sourcé, X, is guarded by.



The width of abAG-decomposition( D, X') is defined asnax{|X,| : d € V(D)}.
The DAG-width of a digraph is defined as the minimal width of any of misG-
decompositions.

Next, we show that the class of digraphsbeiG-width at mostk is closed under
directed unions, which is considered (see [16]) to be an mapb property of a
reasonable decomposition of digraphs.

Definition 5. Let G and H be vertex-disjoint digraphs. partial directed union
of G andH is adigraphV(G) UV (H), E(G)U E(H)U E) whereE C V(G) x
V(H).

Theorem 6. If G and G’ are vertex-disjoint digraphs anéf is a partial directed
union of G andG’, then

DAG-width( H) = max{DAG-width(G), DAG-width(G")}.

Proof. For DAG-decompositiong D%, X¢) and (D%, X¢") of G and G’ respec-
tively, the DAG D obtained by putting an edge from every sink 0f to every
source of D" together withX' := (X&) sev(pey U (X§) ey (per)) forms aDAG-
decomposition of{. Conversely, anpAG-decompositiof D, X') of H can be re-
stricted toGG andG’ yielding DAG-decompositions for these digraphs, according to
Lemma 8. 0J

Finally we present two useful observations abbatG-decompositions. The first
one tells us more about guarding subgraphs in the decongpusnd the second
explains how to obtain, for a digrajghand a setV’ C V(G), aDAG-decomposition

of G[W] from aDAG-decomposition of5.

Lemma 7. Let (D, X') be aDAG-decomposition of a digraph. For alld, d’) €
E(D),
Xtd’ \Xd = Xtd’ \ (Xd N Xd/).

Proof. Itis clear thatX, »\ X4 C X4\ (XaNXy). Conversely, let € X, ,NX,.
Thenxz € Xy for somed” s.t.d <p d”. Sinced <Xp d' <p d’, (D2) implies
x € Xy and therefore: € (X, N Xy). O

Lemma 8. Let (D, X') be aDAG-decomposition of a digrap&'. For W C V(G),
(D, X|w) with X |y := (Xq N W)aev(p) is aDAG-decomposition of[1V/].

Proof. Clearly, (D1) and (D2) still hold fofD, X|y). For (D3), we observe that,
if X guardsY in G, thenX N W guardsY N W in G[W]. This is because, if
veYnNW,we W\Y and(v,w) € E(G), thenw € X (asX guardsY),
hencew € X N W. Then, (D3) follows immediately from (D3) for the original
decompositiof D, X). O



3.2 Cops and robber games

The cops and robber game on a digraph is a game wheaps try to catch a
robber. While the robber is confined to moving along pathiéendgraph, the cops
may move to any vertex at any time. A formal definition follows

Definition 9 (Cops and robber gamepiven a digraplitz := (V, E), thek-cops and
robbergame onG is played between two players, thep and therobber player.
Positions of this game are paii¥, r), whereX € [V]=F are the vertices occupied
by the cops and € V is the vertex occupied by the robber. The game is played as
follows:

e At the beginning, the cop player choos&s € [V]|=F, and the robber player
chooses a vertex, € V, giving position(Xy, ro).

e From position X;, 7;), if ; ¢ X; then the cop player choos&s,; € [V]|=F, and
the robber player chooses a verigx; such that there is a directed path frem
to r;4 in the digraphG \ (X; N X;41).

e A playinthe game is a maximal (finite or infinite) sequence- (X, ro), (X1,71), - - -
of positions given by the rules above.

e A play « is winning for the cop playeif, and only if, it is finite. (Note that, by
the rules above, this implies that, € X, for the last positior{ X,,,, r,,) of this
play.) A play~ is winning for the robber playeif, and only if, it is infinite.

e A (k-cop) strategyfor the cop player is a functiogi from [V]<* x V to [V]=F.

A play (Xo,70), (X1,71), ... is consistenwith a strategyf if X, = f(X;, ;)
for all i. The strategyf is called awvinning strategyif every play consistent with
f is winning for the cop player.

e The cop numberof a digraph G is the leastt such that the cop player has a

strategy to win thé&-cops and robber game ¢h

Variants of the game where the robber moves first, or only apecan be moved
at a time, or the cops are lifted and placed in separate moeealleeasily seen to
be equivalent in that the cop number of a digraph does notdepe the variant.

Before we introduce the technical aspects of these gameedae later sections,
we present a couple of results that illustrate some of threpgrties.

Lemma 10. The cop number of any non-empty, digraghis at leastl and it is
exactlyl if, and only if,G is acyclic.

Proof. Against zero cops, a strategy by the robber player whereothiger remains
stationary is winning. I{57 is acyclic, then one cop can catch the robber by always
playing to the robber’s current position, chasing the robbeards a sink. Eventu-
ally, the robber will not be able to move and the cop will capthim. Conversely,

if G has a cycle, then the robber can win against one cop by fostaging in the
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Fig. 1. The digraphd’? (cop number) and(7%)°P (cop numbeB)
cycle. O

Games similar to the one defined above have been used to ginedwracterisa-
tions of measures such as tree-width [26] and directedwrdt [16]. In Section 5
we investigate this in more detail. One property of thesesuess is that they are
invariant under edge reversal, that is, they do not changfeeidirections of the
edges of the digraph are reversed. As we see below, thisie@oase for the game
we have defined. One exception is digraphs of cop numfdbat is, acyclic graphs.

Proposition 11. The cop number of a digrapH is 1 if, and only if, the cop number
of GPis 1.

Proof. This follows from Lemma 10 by observing th@étis acyclic if, and only if,
G°"is acyclic. O

Proposition 12. For any j, k with 2 < j < k, there exists a digrapi” with cop
number;j such that the cop number @FP is k.

Proof. Let 7/ be a binary branching tree of height(i.e., with 2 — 1 vertices)
with edges oriented away from the root. In addition, evenyesev has a “forward-
edge” to each of its descendants, i.e., the forward edgestfoe transitive closure
of the original tree-edges, and a “back-edge” tg its1 nearest ancestors. Figure 1
illustrates the case for = 3 and;j = 2. Here, as with Figure 2, undirected edges
represent a pair of anti-parallel edges (i.e. two edgesfareach direction).

To show that the cop number dT,ﬁ is j, we describe a winning strategy fgr
cops and a strategy for the robber to defgat 1 cops. For simplicity in strategy
descriptions, we refer to features such as the “root”, ‘®é#t’, “ancestors” and
“descendents” of the underlying binary branching treet{vaitiges oriented away
from the root). First we see thatcops have a winning strategy by initially playing
on the root then following the robber down whichever subtreglays in. This is
achieved by moving (if there agecops already in play) the cop on the most distant
ancestor of the robber’s current position to the root of thtetree he has moved to.
To defeatj — 1 cops, the robber chooses any leaf. Whenever a cop movestto tha
leaf, a simple counting argument shows that there must leaat bne unoccupied
ancestor with at least one clear path to a leaf below. Theeawtiien plays to that
ancestor and along that path to the leaf.



For (T7)°, the robber is captured lycops occupying the root of whichever subtree
he is in. To defeat — 1 cops, the robber plays the strategy that def¢atsl cops
inTj}. O

As always when dealing with games, we are less interestediimgée play of the
game as in strategies that allow a player to win every plag@fame. We first start
by looking at the winning strategies for the robber playare@ay of describing a
winning strategy for the robber is given by the following position.

Recall that sstrongly connected componenia digraph is a maximal set of vertices
S such that for any:, v € S there is a directed path fromto .

Proposition 13. A robber can defeakt cops on a digraplt- if, and only if, there
exists a functior mapping eachX € [V (G)]=* to a non-empty union of strongly
connected components@f\ X such thatifX C Y € [V(G)|=F then:

(1) o(X) 2 0(Y),and
(2) Forall z € 0(X), thereis ay € o(Y') such that there is a directed path from
rztoyin G\ X.

Proof. If such a functionr exists, the robber can remain uncaptured by occupying
any vertex ino(X) when the cops occup¥ . Conversely, suppose that the robber
has a winning strategy againstcops. Then for eaciX € [V (G)]=F let o(X) be

the set of all vertices from which the robber can guaranteenanvken the cops
occupyX. Then itis easy to show thatsatisfies the proposition. O

The functiono above plays the same role as havens for tree-width or ditécte-
width (see [26,16]). The main difference is thgtX ) need not be connected. In-
deed, as Figure 2 shows, there are examples wi{éf¢ is not connected. A robber
can defea? cops on this digraph, yet for any appropriate function({b, c}) must

be precisely{a, d}.
o

Fig. 2. Digraph showing havens may not be connected

Winning strategies for the cop player, introduced in Defomt9 play a central role
throughout this article. Here we present two definitiongmh@notonicity and show
that they are, for our purposes, equivalent.

For a digraphG := (V| F) and a set of verticeX’ C V andr € V we write
Reach x () to denote the set of verticessuch that there is a directed path from
rtowv in G that does not visit any vertex il .

Definition 14. Let G := (V, ') be a digraph.



(i) A strategy for the cop player isop-monotonéf, in playing the strategy, no
vertex is visited twice by cops. That is,(iKy, o), (X1,71), ... is a play con-
sistent with the strategy, then for evéng i < n andv € X;\ X;,1, we have
v ¢ X;forall j > i.

(i) A strategy for the cop player isobber-monotonef, in playing the strat-
egy, the set of vertices reachable by the robber is nonasang. That is, if
(Xo,70), (X1,71), ... isaplay consistent with the strategy, ttReach x, . , (ri+1) C
Reachy x, (r;) for all 7.

Lemma 15. (1) If the cop player has a robber-monotone strategy then he also
has a cop-monotone strategy.
(2) Any cop-monotone strategy is also robber-monotone.

If the cop player has a cop-monotone or robber-monotone winstrategy then he
also has a winning strategy that is both cop- and robber-nione.

Proof. (1) Suppose the cop player has a robber-monotone winniatggir, and let
(Xo,70), (X1,71), ... be aplay consistent with that strategy. From this we constru
a sequence which can be used to define a cop-monotone stirategybvious way.
SupposeX; \ X1 # @ (otherwise we are just placing extra cops, and therefore the
set of vertices reachable by the robber cannot increasdeand:= X; \ X, ;. As

v € X;, the robber is unable to reachwhen the cops are oH,. As the strategy is
robber-monotone, the robber is unable to reael any further stage, in particular,
he cannot reach when the cops are ok, (i.e., not orw). Thus, no cop needs to
revisitv in order to prevent the robber from reaching hus, we can remowefrom

all X;, j > i. Proceeding in this way results in a seque(&g, o), (X1, 71),. ...
The strategy which takesY;, r;) to X7_ ; is cop-monotone for this play. Repeating
this for all plays (i.e., every choice for robber) resultsinop-monotone strategy.
Hence, whenever the cop player has a robber-monotone wirstiiategy he also
has a cop-monotone winning strategy.

(2) We show next that any cop-monotone winning strategy tierdop player is
actually robber-monotone also. This proves the lemma. Gsgphe cop player
has a cop-monotone winning strategy. &, 7o), (X1,71), . .., (Xn, ) be a play
consistent with the strategy, aiy, R, . . ., R, be the corresponding robber space,
i.e., the set of vertices reachable for the robber. By theniiefin of the game, we
can assume the strategy alternates placing and removiagiliypno) cops. Clearly
we only need to consider the action of removing the cops, the. case where
X; 2 X;,1, as adding cops can only reduce the robber space: kefX; \ X;.;.
Asv ¢ X, forall j > i, the robber is unable to reaclotherwise he could play to
and sit there indefinitely, contradicting the assumptiat ttop player is playing a
winning strategy. Thus, the robber is unable to reach anye¥értices inX; \ X,
and is therefore unable to reach any new vertices. H&ace R, 1, So the strategy
is robber-monotone. O

10



It follows that whenever the cop player has either a cop-rntmm®or a robber-
monotone strategy, he has one that is both cop- and robbeotome. With this
lemma in mind we define monotone winning strategy the obvious way.

3.3 Games and DAG-width equivalence

The main result of this section is an equivalence betweenotooe strategies for
the cop player andAG-decompositions.

Theorem 16. For any digraphG, there is abAG-decomposition ofr of width at
mostk if, and only if, the cop player has a monotone winning straieghek-cops
and robber game ofr.

Proof. For the “if"-direction, letG = (V, E) be a digraph and suppose the cop
player has a monotone winning stratefly [V]=* x V' — [V]=* in the k-cops
and robber game of'. Without loss of generality, we assume that the first move
defined byf is to place no cops. Furthermore, A$s monotone, we assume that
cops are only ever placed on vertices that are reachableshpltiber. That is,

f(X,r) € X UReach x(r). Q)

To define a DAG-decomposition of width at mésive will first present the strategy
in a slightly different form, called thetrategy DAG Let D’ be a digraph with
vertex sef{V]=* x V and an edge froniX,r) to (X’,+) if X' = f(X,r) and
r" € Reach xnx)(r). Thatis, nodeg.X,r) in D’ correspond to game positions
with the cops being ok’ and the robber being onand an edge froni.X, r) to
(X', r") corresponds to the round in the game where the cops followstrategy
fto X’ = f(X,r) and the robber chooseSas next position. In particular, paths
in D" correspond to plays where the cops follow their winningistgy /. Recall
that we assume that the cops’ first move is to place no copsgevery game on
G consistent withf starts in a positioi, r). We therefore define the sub-digraph
D = (V(D), E(D)) of D' induced by the set of nodé¢X, r) in D’ reachable from
anode(@, r), with » € V. We call D thestrategy DAGor the strategyf onG.

By construction, for very nodéX, r) in D the robber has a strategy in the game
on G against the cops playing that guarantees that the positioi, ) will be
attained.

Claim. D is acyclic.
Proof. Suppose there was a cyde := (vi,eq,...,v,,6,) In D with ¢; =

(vi,vi41), for all i < n, ande,, := (v,,v1). Letv; := (X;,r;), forall1 <i < n.
As explained above, the robber has a strategy agditsforce the game into the

11



positionv; = (X3, r;). By construction ofD, the cops’ response from this po-
sition is to play toX, = f(X;,r) and the robber can then reply by moving to
ro € Reachy (xnx(r). More generally, whenever the game is at positian, ;)
the cops, followingf, will move to X, (or X; if < = n) and the robber can move
tor;,1 (orry resp.). Hence, the robber can evade capture forever andhémsay,
contradicting the assumption thais a winning strategy. -

Let X' := (Xg)aev(p) With X == f(X,r), whered = (X,r) € V(D). We claim
that (D, X') is a DAG-decomposition ofr of width at mostk. It is clear from the
construction that the width dfD, ') is at mostk, asmax{|Xy| : d € V(D)} =
max{|f(d)| : d € V(D)} < k. Hence, it remains to show the properties (D1) -
(D3) in Definition 4.

Towards (D1), suppose there was a vertex V' \ Uey (py Xq- But then the robber
wins the game ord; against the strategy by initially going to the vertex,. As
v & Usevp)y = Ua=(x.mev(p) f(X,7), the cops will never place a cop enand
hence will fail to capture the robber, contradicting thet fdmat f is a winning
strategy.

Towards (D2), letl,d’,d” € V(D) withd <p d' <p d” and letP be a path fromi

to d” containingd’. Recall that such a path corresponds to a play fionhere the
cops follow f. Hence, ifX; N X4 € X this means that there is a vertexc X

occupied by a cop at positiahbut which is released by the cops betweemdd’

in the play following the pathP and later reoccupied betweéhandd”. But this
would contradict the assumption thits a cop-monotone strategy.

It remains to show (D3), i.e. we have to show thatn X, guardsX., \ X, , for
alledgeqd, d') € E(D), whereX,  stands fotJ, <, 4 X4. Furthermore, for any
sourced, X, must be guarded by.

Towards this aim, we first show the following claim.
Claim. Foralld = (X,r) € V(D)

(U F@)\X = Reachcxnsxm(r)- 2)

d=<pd’

Proof. Note first thatReach (xns(x,») (r) = Reachy x(r). ThatReach x(r) C
Reachy (xns(x,r) (r) is clear (see Lemma 3). Conversely, if there was a vartex
Reachy (xny(x,r) (1) \ Reachy x (r), that would imply that at positioiX, r) in the
game the vertex was not reachable for the robber but when the cops make their
move to f (X, r), then the robber can reaeh But this would contradict robber-
monotonicity of f. Hence Reacky (xq(x,») (r) = Reachn x (r).

Now, as f is robber-monotone, whenevér:= (X,r) <p d = (X’,7’) then
Reachy x/(r') € Reachy x(r). Furthermore, by (1)f(d') € X’ U Reachy x/(r').
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A simple induction on the distance betweémandd’ in D then shows thak’ C
XUReach x (r) and thereforg (d') € XUReack x (7). Hence,( Ua<pa f(d’))\
X C Reachy x(r).

Conversely, the same argument as in (D1) showsRkath, x (r) C (Uded, f(d’))\
X as otherwise the robber would win fropX, ).

Taken together, we get

(U £(d))\ X =Reachx(r) = Reachy xnsixa(r).

d=pd’

To establish (D3), let = (X, r) be a source oD. By assumption orf, X := &
and therefore, by (2)X., = (Uded/ f(d’)) = Reachy(r) is guarded by.

On the other hand, ifd,d’) € E(D) is any edge inD, whered = (X,r) and
d = (X',r")andX’ = f(X,r), then by (2),

Xtd’ \Xd = ( U f(d”)) \X/ = React@;\(xfmf(xlﬂd))(’l“l).

d/de//

Therefore X, N Xy = X' N f(X',r’) guardsXs 4 \ X,. This concludes the proof
of (D3) and therefore we have shown tlat, X') is a DAG-decomposition afr of
width at mostk.

Towards the “only if"-direction, let D, X') be aDAG-decomposition of widtlt. A
strategy fork cops can then be defined as:

(1) Let the robber choose a vertexc V. From (D1), there existd, € V(D)
such that € X, . Letd be a source oD which lies abovel,.

(2) Place cops oKX ,.

(3) From (D3) and Lemma 3(2){, guardsX;, \ X,. Therefore, the robber can
only move to vertices inX-; \ X,. Suppose the robber movesitboe X, .
Let d’ be a sucessor efwhich lies abovel”.

(4) Remove cops oX,; \ X (leaving cops orX,; N Xy)

(5) As X, N Xy guardsX, . \ X, the robber can only move to verticesif
—that is, the robber must remain in the 9pks whose source ig'.

(6) Return to step (2) with’ asd.

As D is aDAG, at some point the robber player will not be able to move €sinc
Xsaq \ X4 is empty whent is a sink). Hence, this is a winning strategy focops.

To show that it is monotone, observe that (D2) ensures thad @bint does a cop
return to a vacated vertex. This concludes the proof of Téradt6. O

The above game characterization allows us to easily shove sot@resting prop-

13



() o )

Fig. 3. Forming a unique source

erties of DAG-width. For instance, observe that the winning strategiesie cop
player in Lemma 10 and Proposition 12 are monotone. Then wingdollowing:

Corollary 17. Let G be a digraph. Therz hasbDAG-width 1 if, and only if, it is
acyclic (indeed, the digraph itself will suffice as a decosipon). Moreover, for
anyj, k € wwith2 < j < k, there exists a digrapliy of DAG-width 5 such that
G°? is of DAG-width £.

3.4 Nice DAG-decompositions

For algorithmic purposes, it is often useful to have a norfoah for decomposi-
tions. The following is similar to one for tree decomposisas presented in [6].

Definition 18. A DAG-decompositiorf D, (X4)acv(py) Of a digraphG is niceif

(N1) D has a unigue source.

(N2) Everyd € V(D) has at most two successors.

(N3) Fordy, d,dy € V(D), if dy,d, are two successors df, thenX,, = X, =
X4,

(N4) Fordy, d, € V(D), if d; is the unique successor @f, then| X, A X4, | = 1.

We show next that every digraph witihG-width £ has a nice decomposition with
width k. For this, we transform aAG-decomposition into one which is nice that
has the same width. First we formalise the transformatiomsige, and show that
executing them (possibly subject to some constraints) doesiolate any of the
properties of @AG-decomposition.

Lemma 19 (Unique source)Let (D, X') be aDAG-decomposition of widtk of a
digraphG, and letd;, d, . . ., d,, be the sources dD. Then, the paifD’, X”) with

(i) V(D) :=V(D)U{r},
(i) E(D):=ED)U{(r,d;):1<i<m},
(i) X/ := @, and X, = Xy, for all otherd € V(D’),
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Fig. 4. Splitting atdy

is a DAG-decomposition of width.

Proof. As we have only added edges fram¢ V (D), the digraphD’ is acyclic.
Condition (D1) is trivially satisfied as we have only addedde Ifd <, d' <p
d”, then either/ = r in which caseX, N X/, = @ C X, ord € V (D), in which
caseX) N X}, C X/, follows from the fact thatD, X') is aDAG-decomposition.
This establishes (D2). For the (unique) sourc€D3) is again trivially satisfied,
as X{, = V(G). Further, for(r,d;) € E(D'), X; N X; = @ guardsX,, =
XL, \ X/. Otherwise(d,d') € E(D) and (D3) follows from the fact th&tD, X)
is aDAG-decomposition. SincgX’| = 0, (D', X’) has widthk.

Figure 3 gives a visual representation of the construction. O

Definition 20 (Splitting). Let (D, X') be aDAG-decomposition, and suppogg €
V(D) hasm > 1 successorgy, ds, . . ., d,,. The decompositiofD’, X’) obtained
from (D, X') by splitting d; is defined as follows:
() V(D) =V(D)U{d,d,},
(i) E(D') = (B(D)\{(do,d;):1<i<m})
U {(d07 dl)7 (d07 dT)u (dl7 dl)}
u{(d,,d;):2<i<m}, and
(i) X=Xy, foralld e V(D),andX), = X = Xg,.

Figure 4 gives a visual representation of this transforomati

Lemma 21. Let (D, X') be aDAG-decomposition of a digrapty of width &£, and
supposel, € V(D) hasm > 1 successorsd;, ds, ..., d,,. Then,(D’, X') obtained
from (D, X') by splittingd, is a DAG-decomposition of; of width k.

Proof. First we observe that, ak is the unique predecessor @fandd,., for any
d € V(D) such thatl <y d; ord <p d,, it must be the case thdt=<, d,. Thus,
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foralld € V(D),

X,,= U Xp=X,uX; U |J Xo =Xy,

d=prd’ d=pd’

since if X, or X, is included in the union on the left, then sa¥s,, and so neither
X4, nor X, contribute to the overall union.

It is easily seen that the edges added do not create any cgdéds is a DAG.
Further,Usev(py X = Ugev(p) Xa = V(G). To prove the connectivity condi-
tion (D2), letd,d’,d” € V(D’), be such thatl <p d' <p/ d". If d =dord =d"
then trivially X, N X}, € X, so supposed < d <p d". We consider four
cases:

e If none ofd,d’,d" is d, or d,, thend, d’,d" € V (D), and (D2) follows from the
fact that(D, X') is aDAG-decomposition.

e If disd, ord, thend' ,d" € V(D) and, sincel, € V(D) is the unique prede-
cessor ofl, we obtain the following chain of nodes in: dy <p d' <p d”. So
XiNnXh =XgNXe C Xy =X,

e If d" is d; or d, then from the comments at the beginning of the pradofk
d <p dp. ThUS,XC/l N Xc/l” =XzN ng C Xy = Xcll/

e Finally, if d’ is d; or d, then by the same reasoning as the previous two cases,
d=p d(] <D d’. SOXc/l mXc/l” =X,NXg C Xdo = Xcll/

Thus, in all casesX N X, C X}, showing that (D2) holds. To see that condition
(D3) also holds, first note that for a@lsuch thatl < ¢ < m, itis true thatX,, N X,
guardsX, 4, \ Xg,. Therefore, by Lemma 3(2),

X, guardsXy g4, \ Xg,- (3)

Now every source of D' is also a source ab and thereforez guardsX,-, = X_,.
Solet(d,d") € E(D’). We consider three cases:

e d V(D). Ifd=dord=d,thenX) = X,,. Otherwise(d,d") € E(D). In
both casesX/ N X/, guardsX( , \ X}.

o d =d;(sod = dy). Here X_;, = X4y U Xvgy, SOXLp \ X/} = X, \ Xop-
Hence, by (3)Xa, = X N X} guardsX,y, \ X4, = XLy \ Xj.

o d =d, (sod = dy). Here XL, = Xy, U Us<icm Xra;, and soXL, \ X} =
(Uzcicm X=a,) \ Xdo = Uacicim (Xa, \ Xg,). From Lemma 3(1) and (3); N
Xop = Xa, guardss;<n (X, \ Xay) = XLo \ Xy

As X = X = Xg4,, we have
max{|X)|:d € V(D")} = max{|Xy| : d € V(D)} = k.

Consequently, the decompositioR’, X”) has widthk. O
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Fig. 5. AddingX to (do, dy)

By thedecomposition resulting from splittintfor m — 2 timeswe mean the decom-
position resulting from splitting/, and then recursively splitting the successor of
d with more than one successor until no such successor eXistsmplete splibf

(D, X) is the decompositiofD’, X”) obtained by recursively splitting every node
with more than two sucessors.

Definition 22 (Adding). Let (D, X') be aDAG-decomposition of a digrapty. If
(do,dy) € E(D)andX C V(G) thedecomposition resulting from adding to
(do, dy) is the pair(D’, X") with

() V(D) =V(D)U{dx};

(i) E(D") = (E(D)\ {(do,d1)}) U{(do,dx), (dx,d1)};
(i) X;, = X,andforalld € V(D), X} = Xq.
See Figure 5 for a visual interpretation.

Lemma 23. Let (D, X') be abDAG-decomposition of a digrapty of width & and
let (D', ") be the decomposition resulting from addiRgC V (G) to (do, dy). If
either

(l) Xdo N Xdl CXC Xdo, or
(i) Xa N Xa, C X C X,

then(D’, X’) is aDAG-decomposition of7 of widthk.

Proof. Note that for alld,d’ € V(D) such thatd <p dx <p d’ we have that
d <p dy <pr dx <p di <p d'. This implies, for alld € V(D)

Xéd: U X(/l/: U Xd’:Xtcb

d=prd’ d=pd’

since if X is included in the union on the left, then bokl and X are, and so
in either case of the lemmd,; = X does not contribute to the overall union.

Further, X, N X4, guardsXs 4, \ Xg = Xsa, \ (X4, N Xy, ) from Lemma 7.
Clearly, D’ is a DAG. We now show tha{D’, X’) satisfies the properties (D1)
to (D3). It is easily seen thdlycy(py X; = X U Ugev(py Xa = V(G). This
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shows (D1). Towards establishing condition (D2), suppds€p d' <p d”. If
d' = dord = d" then trivially X}, N X}, C X},, SO suppos€ <p d' <p d". We
consider four cases:

e Ifnone ofd, d’,d" is dx thend, d’, andd” are all inV' (D), so (D2) follows from
the fact tha{ D, X') is aDAG-decomposition.

e Supposel = dy. From the observations made at the beginning of the proof,
we get the following chain of nodes ib: dy <p di <p d <p d". So if
X C X, i.e., we are in cas@) of the lemma, therX;, N X}, = X N Xy C
Xgy N Xgw € Xg = Xy, by condition (D2) of(D, X). If X C X, then
XiNnXy =XNXgp C Xy N Xy C Xy =Xy

e Now assumel” = dx. Thend <p d' <p dy <p d; and the rest of the proof is
symmetric to the previous case.

° Finally, assume’ = dx. Thend <p dy <p di <p d". HenceX;N X4 C Xdo
andXd NXg C Xdl- ThUS,XC/l N Xc/l” =X,NXgy C ng N Xd1 CX= Xc/l’

Finally, we need to show that (D3) holds as well. First] i§ a source of)’, thend
is a source oD. Hencez guardsX ., = X . Solet(d,d’) € E(D'). We consider
three cases:

o dx ¢ {d,d'},i.e.,(d,d") € E(D). In this case, (D3) follows from the fact that
(D, X) is aDAG-decomposition.

e Now suppose = dx (sod' = dy). If Xy, N Xy C X C X, i.€., we are in case
(1) of the lemma, then

Xeay \ (XapNXy) 2 Xeg, \ X 2 Xog \ Xgp

Further, by Lemma 7X 4, \ (X4, N X4, ) = X4, \ X4,- ThereforeX,, \ X =
Xsa, \ Xap- As (D, X) is aDAG-decompositionX,, N X, guardsX. 4, \ Xq,,
and asXy, N Xq, € X N Xg,, Lemma 3(2) implies thak; N X = X N Xy,
guardsX, 4, \ Xq, = XL, \ Xy

Otherwise we are in casgi) and we haveX,, N X; C X C X, . Let
Z =X\ (Xg N Xg ). We know (X, N Xy, ) guardsXsq, \ (Xg N Xg,), due
to Lemma 7. Hence, by Lemma 3(3§;, N X} = X = (X4, N X4, ) U Z guards

(Xeay \ (Xag N X))\ Z = Xogy, \ (Xagp N Xy,) U Z)
Xea \ X = X[, \ X}

e Finally, suppos@’ = dx (sod = do). Here we claimX., \ X} = X.q4, \ X4-
If X' C Xg,, thenX{; \XG, = (XUXq,)\ Xay = (X \Xgp)U(Xay \ Xap) =
Xtdl \Xdo- If X - Xdl, then SinCQZX =<pr di, Xédx = Xédl = Xtdl' Now
X 2 Xg,N Xy, 80 by Lemma 3(2)X), = X guardsX, 4, \ Xq, = XL, \ X}, .

Note that sinceX C X, or X, max{|X)| : d € V(D')} = max{|Xy| : d €
V(D)} = k. So(D', (Xg)aev(py) has widthk. O
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If X1,Xs,...,X, is asequence of subsetsiofG), the decomposition resulting
from addingX, Xs, ..., X,, to (dy, dy) is the decomposition resulting from adding
X, to (do, d1) and then recursively adding; . to (dx,, d).

We can now describe how to transforrbaG-decomposition into one which is nice
and has the same width.

Theorem 24. If G has abDAG-decomposition of widtl, it also has a nicebAG-
decomposition of width.

Proof. Let (D, X') be aDAG-decomposition of widthk. We carry out each of the
following steps and reséD, X') to be the resulting decomposition.

(1) We apply Lemma 19 to obtain a decomposition with a uniquece, therefore
satisfying (N1).

(2) We apply a complete split gD, X') to obtain abAG-decomposition such that
every node has at most two successors, ardés two successots andds,,
thenX, = X4, = Xg,. This establishes (N2) and (N3).

(3) To satisfy (N4), we require two stages. First, for e&¢h d,) € E(D) with
X4, # Xa,, We addXy, N Xy, to (dy, dy) to obtain abAG-decomposition such
that for every(d,d’) € E(D'), X, is either a subset or a super-set\of .

(4) Inthe second step for each edged’) € E(D) such thatX,; A Xo| =m >
2 we do the following: If X; D Xy thenletX, = X4, X1,..., X,, = Xy
be a strictly decreasing sequence of sets. We then\gdd, ..., X,,_; to
(d,d"). The caseX, C Xy is symmetric.

At this point we have a decomposition which satisfies (N1)Nd)( and is there-

fore nice. Finally, from Lemmas 19, 21, and 23, at each stefhawe aDAG-
decomposition of widtlt. O

3.5 Algorithmic aspects of boundedG-width

We now consider algorithmic applicationsmiG-width as well as the complexity
of deciding theDAG-width of a digraph and computingtG-decomposition.

3.5.1 Computin@AG-width and decompositions

In Proposition 34 we will show that theaG-width of a digraphG is equal to the
tree-width of its underlying undirected graph plus one. Ttleowing is then a
direct consequence of the fact that it is NP-hard to detegrthie tree-width of a
graph [2].
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Theorem 25. Given a digraphG and a natural numbek;, deciding if theDAG-
width of G is at mostk is NP-hard.

The question whether this problem is actually in NP is opesweéler, for any fixed
k, it is possible to decide in polynomial time whether a didgréyasbAG-width at
mostk and to compute ®AG-decomposition of this width if it has. We give an
algorithm for this that is based on computing monotone wigrstrategies in the
k-cops and robber game.

Theorem 26. Let G be a digraph and lek € w. There is a polynomial time algo-
rithm for deciding if the cop player has a monotone winningtegy in thek-cops
and robber game ot and for computing such a strategy.

Proof. Given a digraph= with vertex setl” and the numbek of available cops
we represent thé-cops and robbers game as a simple, alternating, tokenagovi
game. The game is played on a finite, bipartite digraph, araaé(G) = (1, U
Vi, E) which is defined as follows. Lét/; := [V]=F x V andW, = ([V]=F x
[V]=k x V).

(i) Vo:=Wn,
(||) Vi =W, U {’Uo}, and
(iii) From each nodéX,r) € W thereis an edge to every nodg,, X, ') € W,
such that = ', X = X, andReach x,nx,)(r) € Reachy x, (r). Further,
from a node( Xy, X5,7) € W, there is an edge to a nod«,r) € Wy, if
X = X5, r ¢ X andr’ € Reachy x,nx,(r). Finally, there is an edge from,
to every nodé @, ) € ;.

Note thatH (G) can be constructed in polynomial time.

The game starts with a token at the nagePlayer0 moves the token whenever it
is on a node i, and Playerl moves the token whenever it is on a nodé/in
The token may only be moved along an out-edge, on a path affiénéf a player
cannot move he loses. If the game lasts forever, Playans. Computing which
player wins is thus an example of alternating reachabithityia therefore decidable
in polynomial time (with respect to the size of the arenag (39).

It is easy to see that Play@mwins this simple game if, and only if, the cop player
wins thek-cops and robber game following a (robber-)monotone gjyatés the
arenaH (G) is polynomial in the size of the input, and we can compute thmner
of the simpler game in polynomial time, the theorem follows. 0J

Note also that the translation of strategies into decontiposiis computationally
easy, i.e., can be done in polynomial time. Since winningtsgiies can be com-
puted in polynomial time in the size of the graph, we get tHiedang.
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Proposition 27. Given a digraphz of DAG-width at most, a DAG-decomposition
of G of width at most can be computed in tim@(|G|°™*)).

3.5.2 Algorithms on digraphs of boundedG-width

In Section 5, we will show that the directed tree-width of grdph is bounded
above by a constant factor of itAG-width (see Proposition 35). Therefore any
graph property that can be decided in polynomial time onselsa®f digraphs of
bounded directed tree-width can also be decided on clasggaphs of bounded
DAG-width. This implies that properties such as Hamiltonidlgt are known to
be polynomial-time solvable on digraphs of bounded dikdtee-width can be
solved efficiently on digraphs of boundedG-width too. We give a nontrivial ap-
plication of DAG-width in Section 4 where we show that parity games can besgolv
efficiently on digraphs of boundemhG-width, something which is not known for
directed tree-width.

As for the relation to undirected tree-width, it is cleartthat all graph proper-
ties that can be decided in polynomial time on graphs of bedricee-width can
also be decided efficiently on digraphs of bounded-width. For instance, the
3-colourability problem is known to be decidable in polyriahtime on graphs
of bounded tree-width. However, the problem does not depertie direction of
edges. For any given undirected graph, we can simply dinecdges in such a way
that it becomes acyclic. Thus, arbitrary instances arermotyal-time reducible to
instances obAG-width 1. As 3-colourability over arbitrary undirected ghes is
NP-hard, it follows that the problem cannot be solved in polyial time on di-
graphs of boundedAG-width, unless P= NP. Furthermore, as 3-colourability is
MsoO-definable, this also implies that Courcelle’s theorem [8¢sl fail for DAG-
width.

The obvious question that arises is whether one can defin@&ableunotion of
“directed problem” and then show that evergo-definable “directed” graph prob-
lem can be decided efficiently on digraphs of bounded-width. This is part of
ongoing work.

4 Parity Games on Digraphs of Bounde®AG-Width

We are interested in the problem of determining, given atypgame and a start-
ing vertexv, which player has a winning strategy from The complexity of this
problem in general remains a major open question, as exgglamSection 1. We
demonstrate that parity games are tractable on arenas afilbdoAG-width by
an algorithm similar in spirit to that of Obdrzalek [21]hat algorithm relies on
the fact that in a tree decomposition (of the underlying tewded graph), the set
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of £ nodes in any vertex of the decomposition guards all entmeseits to the
part of the graph below this vertex. In the case olr&-decomposition, while the
k-element set guards all exits from the subgraph below itetheay be an unlim-
ited number of edges going into this subgraph. This is thenrolaallenge that our
algorithm addresses, and is specifically solved in Lemmag28and 30.

A parity gameis a tuple(V,V;, £, Q) where (V, E) is a digraph,}V;, € V and

.V — wis afunction assigning a priority to each vertex. As we sbedl, there
is no loss of generality in assuming that the rangé)a$ contained inn| where

n = |V| and we will make this assumption from now on.

Intuitively, two players called Odd and Even play a parityngeby pushing a token
along the edges of the digraph with Even playing when thertaken a vertex in
Vu and Odd playing otherwise. Formallyp&ay of the game is an infinite sequence
m = (v; | ¢ € w) such that(v;,v;41) € F for all i. We sayr is winning for Even

if liminf; ,., Q(v;) is even andr is winning for Odd otherwise. That is to say,

is winning for Even if the least value that occurs infinitefgem in the sequence
(Q(v;)):ew Is even and it is winninf for Odd otherwise.

A strategyis a mapf : V< — V such that, for any sequen¢e, . .., v;) € V=¥,
we have(v;, f(vo,...,v;)) € E. Aplaym = (v; | i € w) is consistentwith
Even playingf if wheneverv; € Vi, viy1 = f(vo,...,v;). Similarly, 7 is con-
sistent with Odd playing if wheneverv; ¢ Vi, v;1 = f(vo,...,v;). A strat-
egy f is winning for Even from a vertex if every play beginning at that is
consistent with Even playing is winning for Even. A strategy ismemorylessf
wheneveruy, . .., u; anduy, ..., v; are two sequences W<~ with u, = v;, then
fuo,...,u;) = f(vo,...,v;). It is known that parity games are determined, i.e.
for any game and starting position, either Even or Odd hasaing strategy and
indeed, a memoryless one [12]. However, we do not assumericanstruction
that the strategies we consider are memoryless

The following ordering onn| is useful in evaluating competing strategies. For pri-
oritiesi, j € [n| we sayi C j if either

() 7is odd andj is even, or
(i) 7andj are both odd and< j, or
(i) 7 andyj are both even ang < i.

Intuitively, « T j if the priority ¢ is “better” for player Odd thanp, i.e. an odd
priority is always better than an even one; among odd presrgmaller ones are
better; and among even ones larger priorities are better.

For a parity gaméV, V;, E,Q2), considetU C V and a setV that guardd/. Fix a
pair of strategieg andg. For anyv € U, there is exactly one play = (v; : i € w)
starting atv that is consistent with Even playinfyjand Odd playing;. Let 7’ be
the maximal initial segment of that is contained i®/. Theoutcomeof the pair of
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strategies f, g) (givenU andv) is defined as follows.

winEven if7’ = 7 andr is winning for Even;
outy,(U,v) := {winOdd  if 7’ = 7w andn is winning for Odd;
(Vig1,p) i1 =wp,...,v; andp = min{Q(v,) | j < i+ 1}.

That is to say that, if the play that results from Even playingnd Odd playingy
leads to a cycle contained entirely withih then the outcome simply records which
player wins the game. However, if the winner is not determhieetirely withinU,
the outcome records the vertexin 1/ in which the play emerges froii and the
lowest priority that is seen in the playstarting inu and ending inv, including the
end points.

By construction, if out,(U,v) = (w, p) thenw € W. More generally, for any set
W C V, define the set of potential outcomeslin, written pot-ou(i?), to be the
set{winEven winOdd} U {(w, p) : w € W andp € [n]}. We define a partial order
< on pot-outi¥’) which orders potential outcomes according to how good they a
for player Odd. It is the least partial order satisfying tbkkdwing conditions:

(i) winOdd < o for all outcomes;
(i) o < winEven for all outcomes;
(iii) (w,p) < (w,p)if pCp forallw e W.

In particular,(w, p) and(w’, p’) are incomparable ifv # w’. The idea is that ify
andg’ are strategies such that gutU, v) < out; (U, v) then player Odd is better
off playing strategy rather thany’ in response to Even playing accordingfto

A single outcome is the result of fixing the strategies plaggdoth players in
the sub-game induced by a set of vertiCedf we fix the strategy of player Even

to be f but consider all possible strategies that Odd may play, weocder these
strategies according to their outcome. If one strategyeselsi outcome and an-
other o’ with o < ¢, there is no reason for Odd to consider the latter strategy.
Thus, we define resyltU, v) to be the set of outcomes that are achieved by the
best strategies that Odd may follow, in response to Evenimagccording tof.
More formally, result(U, v) is the set of<-minimal elements in the sdb : 0 =

out ,(U, v) for someg}. Thus, result(U, v) is an anti-chain in the partial order
(pot-outiV), <), whereW is a set of guards fol/. We write pot-re§i?’) for the

set ofpotential resultsn 1. To be precise, pot-réd/) is the set of all anti-chains in
the partial ordefpot-ou{ W), <). By definition of the order, if either of winEven

or winOdd is in the set resyltl, v), then it is the sole element of the set. Also, for
eachw € W, there is at most ongsuch tha{w, p) € result;(U, v) so the number

of distinct values that resyltU, v) can take is at mogt + 1)"! + 2. This is an
upper bound on the cardinality of the set pot(i&9.

We also abuse notation and extend the ordeo the set pot-ré$l’) pointwise.
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Thatis, forr, s € pot-regW) we writer <s if, for eacho € s, there isan’ € r with

o’ Jo. With this definition, the order on pot-re$i’) admits greatest lower bounds.
Indeed, the greatest lower boundi s of » ands can be obtained by taking the set
of < minimal elements in the set of outcomes s. One further piece of notation
we use is that we write resylt, v) for the set{result;(U, v) : f is a strategy.

Suppose now thal/, V;, E, 2) is a parity game an@D, X') is aDAG-decomposition
of (V, E) of width k that isnicein the sense of Definition 18. For eadre V (D),

we write V; for the setX,,; \ X,. The key to the algorithm is that we construct the
set of results resulty, v) for eachv € V. SinceV is guarded byX,; and| X,| < &,
the number of distinct values of resg(lV,;, v) as f ranges over all possible strate-
gies is at mostn + 1)* + 2.

We define the following, which is the key data structure useolr algorithm:
Frontied) = {(v, resuly(Vy,v)) : v € V; andf is a strategy.

Note that in the definitions of resuy(i/,v) and Frontiefd), f and g range over

all strategies and not just memoryless ones. The bound on thbernwhpossible
values of resul(V,, v) guarantees thaErontiefd)| < n((n + 1)¥ +2). We aim to
show how Fronti€id) can be constructed from the set of frontiers of the successor
of d in polynomial time. There are four cases to consider.

Case 14 is a sink. In this casé/; is empty and so is Frontigf).

Case 2:d has two successors ande,. In this case X; = X., = X,, by the
definition of a nice decomposition. Thuss; = V., U V,,. Moreover, each of the
three set$/;, V., andV,, is guarded byX so, in particular, each path from a vertex
in Ve, \ V., to a vertex inV,, \ V., (or vice versa) contains a vertex froiy. We
claim that Frontiefd) = Frontiet(e; ) U Frontier(e,).

To see this, suppose first that, ) € Frontiefe;) (the case of Frontiée,) is
symmetrical) and in particular = result;(V;,,v). Now, if o € r there is a such
thato = out; 4(V.,, v). If o is winEven or winOdd it is clear that = out; ,(U, v)
foranyU O V,, and in particulaw = outy ,(Vy, v). If 0 = (w, p) then the playr
determined by strategigsandg starting aw first leaves the sét,, atw. Sincew €
X., = X italso leaves the séf; at this point and therefore agair= out; ,(V4, v).
We conclude that the set of available outcomes is the samtharefore the set of
<-minimal outcomes is the same. Thatiss result;(V;, v) and thereforgv, r) €
Frontier(d).

In the other direction, suppose, ) € Frontie(d) and thatv € V., (again the
case whew € V,, is symmetrical). Letf be such that = result;(V;, v). Suppose
o = out 4(V,, v) for some strategy and letr be the play starting at determined
by f andg. We claim thato = out; ,(V,, v). If this is not the case, then the first
occurrence inr of a node not in/,, must be contained i#;. However, since any
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such node must be iX;, which is disjoint fromV/, this is impossible. Thus, once
again ouf 4(Vy, v) = outs 4(V.,, v) and therefore = result;(V,,, v).

Note that the above argument implies in particular thatyferV,, U V,,, we have
resulty(V,,,v) = result(V,,,v).

Case 3:d has one successeand X, \ X, = {u}. Then, by (D2)u ¢ V.. Also, by
definition of V;, u & V;. We conclude that; = V,. Moreover, sinceX, guardsV,
(by Lemma 3(2)), there is no path from any elemenvtpfo « except through¥..
Thus, if (w, p) € result;(V,, v) for somev and f, it must be the case that € X..
Hence, Frontigid) = Frontier(e).

Case 4:d has one successerand X, \ X, = {u}. This is the critical case. Here
Vy = V. U {u} and in order to construct Frontief) we must determine the results
of all plays beginning at.

Consider the set of verticesin X, such thatu,v) € E(G). These fall into two
categories. Either € X, orv € V,. Letxy,...,x, enumerate the first category
and letvy, . .., v, enumerate the second. L@t= {(z;, min{Q(z;), Qu)}) : 1 <

i < s}. This is the set of outcomes obtained if a play in the paritmgaroceeds
directly fromw to an element ofX,;. Note that as no two outcomesdhare com-
parable with respect tel, O € pot-resX,). We write O for {{o} : 0 € O}.
That isO is the set of singleton results obtained fram For eachv; we know,
from Frontiefe), the set resull., v;). For each result € resul{V,, v;), we write
modr) for the set of outcomes defined by modifyings follows. First, ifr con-
tains an outcoméu, p), we replace it by winEven ifnin{p, Q(u)} is even and
winOdd if it is odd. Secondly, for any paiw, p) € r wherew # u, we replace

it with (w, min{p, Q2(u)}). Finally, we take the set ofi-minimal elements from
the resulting set. This is mod). Note that mo¢i-) € pot-reg.X,;). The intuition is
that modresuly (V. v;)) defines the set of best possible outcomes for player Odd, if
starting atu, the play goes to; and from that point on, player Even plays according
to strategyf. For eachl <i < m, let M; = {modr) : r € resul{V,, v;)}.

We now wish to use the sets of results, O andO to construct the set res(ify, u).
We need to distinguish between the cases whenlj (i.e. player Even plays from
w in the parity game) and € V' \ 1} (i.e. player Odd plays).

The simpler case is whane V4.

Lemma 28. If u € Vj, then resultV,, u) = My U ...UM, UO.

Proof. Let f be a strategy. If (u) = x;, then result(V;, v) € O. The other possi-
bility is that f (u) = v;, in which case, clearly, resyltl/;, ) = modresult:(V., v;))

and this result is inV/;. For the converse, if = {(z;,p)} € O, itis clear that
r = result(Vy, u) for any strategyf with f(u) = z;. Now, letr € M, with
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r = mod(result:(V,,v;)), thenr = resuly (V,, u) where f' is the strategy that
moves fromu to v; and then follows the strategyfrom that point on. O

The case when ¢ 1} is somewhat trickier. To explain how we can obtain the set
resul{V, u) in this case, we formulate the following lemma.

Lemma 29. If u € V' \ V;, thenr € result(V,, u) if, and only if, there is a function
c on the setm] with c(:) € M; such that- = O M ], ().

Proof. = Letr € resul{Vy, u), i.e. there is a strategysuch that- = result;(V;, u).
We define the functior by ¢(i) = modresult:(V,, v;)). Since player Odd can
move to any of the vertices;, it is clear thatr < ¢(i), for eachi. Odd can
also move to any of the; and therefore < O. Furthermore, for each outcome
o € r, there is & such thab = out ,(V,, u). Eitherg(u) = v;, in which case
o € ¢(1) by construction, og(u) = z; ando € O. Together this establishes
O M Nigpm (@) D

< Letcbe a choice function with(i) = modresult, (V., v;)) for eachi. Let f be
a strategy that agrees wiifa on all paths beginning with the two verticesu;.
Then, itis clear that resyltVy, u) = O 1], c(é). O

Lemma 29 suggests constructing regdjt«) by considering all possible choice
functionsc. However, as each sét; may have as many as + 1)* + 2 ele-
ments, there arex("+)*+2 possibilities forc and our algorithm would be expo-
nential. We consider an alternative way of constructingilt€s;, ). Recall that
resul{Vy, u) C pot-regX,) and the latter set has at mdst+ 1)* + 2 elements.
We check, for each € pot-reg.X,), in polynomial time, whether there is a choice
functionc as in Lemma 29 that yields In particular, we take the following alter-
native characterisation of resil, u).

Lemma 30. If u & Vj, thenr € resul(V,, v) if, and only if, there is a seb C [m]
with |D| < |r| and a functiond on D with d(i) € M; such that

(i) r=0n[],pd();and
(i) foreachi € [m]\ D thereis anr; € M; withr <r;.

Proof. = Assumer € result{V;,, u) and letc be the choice function according to
Lemma 29. For each € r, if o ¢ O select one € [m] such thab € c(i). Let
D be the collection of indices selected. By construction)D| < |r|. Now, we
defined(i) = ¢(i) for all i € D and letr; = c(i) fori & D.

< GivenD, d and the collection of; as specified, we define the choice function
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ofi) = {d(z’) if i € D;

T otherwise.

Since by hypothesis < r; andr = O M [1],.,d(i), itis then easily seen that
r = O N[ iy c(d). O

Now, anyr € pot-reg.X,) has at mosk elements. Thus, to check whether such an
r is in resul{V;, u) we cycle through all set® C [m] with k or fewer elements
(and there aré(n*) such sets) and for each one consider all candidate funefions
(of which there are?(n*")). Having found ad which givesr = O N[, d(i), we
then need to find a suitable in each: € [m] \ D. For this we must, at worst, go
through all elements of all the set$; and compare them ta This can be done in
time O(n**1).

We have now obtained the set regult «). One barrier remains to completing the
construction of Fronti€rl). Elementgv, r) of Frontiefe) may have outcomes in

of the form(u, p). Sinceu is not in X4, these must be resolved by combining them
with results from resu(l/;, v). To be precise, let € resul{V,, v) for somev € V,
ands € resul{V;, u). Define the combined resultr, s) as follows:

e if r does not contain an outcome of the fofmp), thenc(r, s) = r;
e otherwisey contains a paiftu, p). Let s’ be obtained frony by replacing every

pair (w, q) by (w, min{p, ¢}). c(r, s) = (r \ {(u,p)}) N 5.

Intuitively, if r = result(V,,v) ands = resuly (V,, u) thenc(r, s) is the set of-
minimal outcomes that can be obtained if player Even plageraing tof starting
atv until the nodeu is encountered and then switches to stratggy

Lemma 31. For anyv € V,

resul({V,,v) = {c(r,s) : r € resulf{V,,v) ands € resultV,, u)}.

Proof. Clearly, for any strategy, resul;(Vy, v) = c(result(V,, v), resulty(Vy, u)).
Thus, resultV;, v) is included in the set on the right hand side. For the conyerse
suppose first that = resuli(V,,v) is such that no outcome of the forfn, p) is

in r. This means that when player Even plays according, tihere is no strategy

g that Odd can play which will lead to the vertex Therefore, resu(V.,v) =
result:(Vy,v) = ¢(r, s) for all s. Now, letr = result, (V¢, v) include an outcome
(u,p) and sets = result, (Vy, u). Let f be the strategy which followg, for the
path fromv to v and follows f; onceu has been reached. It is easily checked that
resulty(Vy, v) = ¢(r, s). O

We now obtain Fronti€rl) = {(v,7) : r € resul{Vy, v)}.
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Theorem 32. For eachk, there is a polynomigb and an algorithm running in time
O(p(n)) which determines the winner of parity games on all digrapghs eertices
with DAG-width at most.

Proof. By Proposition 27, there is a polynomial-time algorithmttvél produce a
DAG-decomposition of the game graph of width at mbsThis can be converted
into a nice decompositiof)’, X”) in time at most quadratic (in the size of the
decomposition). Let be the source oD’ and letX, = {z,...,z;} wherel < k.
Consider theaG D formed by adding new vertices, . .., a;_; to D’ in a simple
directed path ending ia. Further, for each define X, to be the se{x,,...,z;}.

In particular, the new source, is labelled bya. It is easily seen that the new
labelledDAG (D, X) with X = (Xg)sev(p) Still meets the definition of a nice
decomposition. We then use the above construction to obtaintierd) for each

d in D, starting from the sinks and working our way to the sourcac&ithe size
of D is at most?* + k, the total time taken is bounded by a polynomial. Now, for
the sourcey, of D itis true thatX.,, = V,, = V. Thus, if(v,r) € Frontief(a,)
thenr C {winEvenwinOdd}. If winEven € r, this means that player Even has
a strategy to win the parity game beginning at verteand if winEven¢ r, for
any strategy played by player Even, Odd has a strategy tadieféVe have thus
determined the winner of the parity game starting at eadexer 0J

5 Relation to Other Graph Connectivity Measures

As a structural measure for undirected graphs, the condamewidth is of un-
rivalled robustness. On the realm of digraphs, howevehétitage seems to be
split among several different concepts. In the remaindahefarticle, we com-
pareDAG-width with other connectivity measures for digraphs, jsatarly with
directed tree-width introduced by Johnson et al. [16] améladiéd path-width [3].

5.1 Undirected tree-width

First we formalise the relationship betweeaG-width and undirected tree-width
to which we alluded in previous sections.

The tree-width of a digraphy is defined as the tree-width of the underlying undi-
rected graph, that is, the graph obtained frGnioy replacing each directed edge
(u, v) with an undirected edggu, v} and removing duplicates.

Proposition 33.

() If adigraphG has tree-widtht, then itsbAG-width is at mosk + 1.
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(i) There exists a family of digraphs with arbitrarily large ér@vidth andDAG-
width 1.

Proof. (i). Supposeg(T, W) is a tree decomposition af of width £ with W =
(Wi)eev (1), according to Definition 1. Choose some V' (7") and orient the edges
of T"away fromr. That is, if{s,t} € E(T) ands is on the unique path fromto

t, then changés, ¢t} to (s, t). SinceT is a tree, every edge has a unique orientation
in this manner. LeD be the resultin@AG. For alld € V (D), setX, := W,;. We
claim that(D, X') with X = (X;)acv(p) is a DAG-decomposition ofi' of width
k+ 1. The condition (D1) is trivial; (D2) follows from the conn@gdty condition of
tree decompositions. The orientation ensupdsas one source so Xy, = V(G).
Condition (D3) is hence satisfied at the source. For the aibées, it follows from

a similar condition for tree decompositions. L@t d') € E(D) and suppose €
X \ X4. Suppose also thav, w) € E(G) andw ¢ X4 \ Xq4. We will show
thatw € X; N Xy. Sincev ¢ X, andv € X.4, anyd” such thatv € Xy
must satisfyd’ <, d” by the connectivity condition of tree decompositions. As
(v,w) € E(G), there existgl” € V(D) such tha{v, w} C Xy Thus,w € Xy .
Asw ¢ Xsqu \ X, it follows thatw € X,. By (D2), we also havev € X, as

w € X»q. Accordingly,w € X; N Xy and (D3) holds.

(if). For any numben, let K,, be the (undirected) complete graph withvertices
v1,vg, ..., U,. Orient the edges ok, such that(v;, v;) is an edge if and only if
i < 7. The resulting digraph is acyclic and therefore Ipas-width 1, but the
underlying undirected graph is a complete grapmofertices and therefore has
tree-widthn — 1. O

If G is an undirected graph then I@ be the digraph obtained by replacing each
edge{u, v} in E(G) with two edgesu, v) and(v, u).

Proposition 34. An undirected grapld- has tree-widtht — 1 if, and only if,ﬁ has
DAG-width k.

Proof. Itis easily seen that the-cops and robber game for undirected graph&on

is equivalent to thé-cops and robber game for digraphsﬁl The result follows
from the correspondence between the measures and exisfenoaotone winning
strategies. O

5.2 Directed tree-width

With the aim of recovering the effectiveness of tree decasitfoms in allowing
divide-and-conquer algorithms, directed tree-width soagated with a tree-shaped
representation of the input digraph. It was proved thatrdsesentation leads to
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efficient algorithms for solving a particular class of NRygaete problems, includ-
ing, e.g., Hamiltonicity, when directed tree-width is bded. Unfortunately this
generic method does not cover many interesting problemgatticular, the effi-
cient solution of parity games on bounded tree-width hdsdaso far to generalise
to directed tree-width.

In terms of games, directed tree-width is characterised i@gtiction of the cops
and robber games fayAG-width, in which the robber is only permitted to move
to vertices where there exists a directed cop-free path fimnintended destina-
tion back to the current position. In contrast to the casenalirected tree-width,
for these games cop-monotonicity and robber-monotondiifer and both cop-
and robber-monotone strategies are known to not be suffigignHowever, the
difference is within a constant factor.

On basis of the game characterisation, it is clear that enthid tree-width of a
digraph is a lower bound for isAG-width. Conversely, theAG-width of a digraph
cannot be bound in terms of its directed tree-width.

Proposition 35.

(i) If adigraph hasbAaG-width k, then its directed tree-width is at mast + 1.
(i) There exists a family of digraphs with arbitrarily largeaG-width and di-
rected tree-width.

Proof. (i). The argument is based on the duality theorem for dicettee width
proved in [16], which relates the notions of havens and adladecompositions,
i.e., tree decompositions, in our terminology. The ideaifoflows. If G hasDAG-
width k& thenk cops can win thé&-cops and robber game @n Thus,% cops can
win the game defined in [16], and s6does not have a (directed) haven of size
By the duality result of [16], this implies th&t has an directed tree decomposition
of width at mosBk + 1.

(ii). Consider the family{(72)°P : k > 2} of digraphs defined in Proposition 12.
Note that(7}?)°? is a binary branching tree of heightwith back-edges from every
vertex to each of its ancestors. We have shown (fa}° has cop numbek, and

it is clear that the strategy described focops is monotone, s@?)° hasDAG-
width k. On the other hand, consider the directed tfeebtained from(77?)° by
removing back-edges. For eathe V(T), let By := {t, s} wheret is the vertex
corresponding t@’ in (77)° ands is the predecessor of(if ¢’ is not the root of
T), and letX, ) := {s} for all (s',¢') € E(T). Then, it is easy to show that
(T, (B))vev(r), (Xe)eer(r)) is a directed tree decomposition @fZ)°° of width 1.
Fork > 2, (T?)°is not acyclic and therefore has directed tree-width exdctl [
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5.3 Directed path-width

Directed path-width was introduced by Reed, Seymour andriBsas a generalisa-
tion of path-width to digraphs (see [27,3]). Formallgieected path decomposition
of a digraphGi is a sequenc®@/;, W, ..., W, such that

(P1) UL, W; = V(G).
(P2) Ifi <i' <" thenW; " W;» C Wp.
(P3) Foreveryedgg:,v) € E(G), there exist < j suchthau € W, andv € W.

The width of Wy, W5, ..., W, is max{|W;| : 1 < i < n} — 1, and thedirected
path-widthof GG is the minimal width of all directed path decompositions.

It is worth noting that for undirected graphs, path-widtad#y generalises to tree-
width as a path decomposition is also a tree decompositienshNéw thaDAG-
width generalise directed path-width in the same way.

Proposition 36.

(i) If adigraphG has directed path-width, its DAG-width is at mosk + 1.
(i) There exists a family of digraphs with arbitrarily large dated path-width
and DAG-width 2.

Proof. (i). Let Wy, W5, ..., W, be a directed path decomposition@fof width k.
Let D,, be the directed path with vertices. That isy'(D,,) = {d,,...,d,} and
E(O)D,) = {(d1,d2),...,(dy_1,d,)}. SetX, = W, foralld; € V(D,). We
claim that(D,,, (X4)acv(p,)) IS aDAG-decomposition o7 of width k& + 1. Condi-
tion (D1) follows from (P1) and (D2) follows from (P2). To sh¢D3) for1 <i <
n, suppose € X.4, ., \ Xq and(v,w) € E(G). From (P3) there exist < ;' such
thatv € W, andw € Wy If i’ <, then by (P2p € X,,, contradicting the choice
ofv. Thus,: < ¢ < j'andw € Xyq,,,. If w ¢ Xoq,,, \ Xq, thenw € X, and
thereforew € X, , by (P2). Thus Xy, N Xg,,, guardsX,g, , \ Xg,.

(ii). Let T}, be the (undirected) complete ternary tree of height 2. According
from Proposition 34@ hasDAG-width 2. On the other hand, it is known from [17]
that 7), has path-width exactly, and it is straightforward to show thﬁ must
therefore have directed path-width exacdtly- 1. Thus, the family{7} : £ > 2}
witnesses the statement. O

In [3], Barat showed that directed path-width correspotadhe number of cops
required to catch an invisible robber on a digraph. It shah&tefore not be sur-
prising that our measure generalises directed path-width.
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We conclude that, despite their conceptual affinity, deddree-width, directed
path-width, andAG-width are rather different measures. The following indgua
ties summarise, up to constant factors, the results of gusms.

IN

directed tree-widti) < DAG-width(G)

tree-widtH G)
directed path-widt).

Furthermore, for any inequality above there exist famitiedigraphs for which the
inequality is strict, up to constant factors.

6 Further Remarks

We conclude with a comment on a few recent and relevant eesnlf19], Kreutzer
and Ordyniak show that monotonicity is not sufficient in tlps and robber game
on digraphs. In particular, for any € N there exist digraphs which requiremore
cops to capture the robber with a monotone strategy than avitbn-monotone
strategy. Their examples do not preclude the possibilitgaafnded monotonicity
cost; that is, the existence of a functipisuch that ifk cops have a winning strategy
thenf (k) cops have a monotone winning strategy. We believe that tieeses have
linearly bounded monotonicity cost, however the problemams an active area
of research.

Another measure for the connectivity of directed graphsitamglement, proposed
by Berwanger and Gradel [5]. Unlike the other measuresidered here, entan-
glement is not associated with an efficient tree-shapedhgemesentation. Never-
theless, it was shown that parity games on graphs of boundaedgement can be
solved in polynomial time [5]. In fact, just a bound on the mal entanglement

of a subgraph induced by any winning strategy rather thahefrtput graph is re-

quired. Itis difficult to compare entanglement withG-width as the latter measure
requires monotone strategies whereas the former does not.

The class of digraphs for which the winner of a parity gamelmaefficiently de-
cided has been extended by Obdrzalek [20] to include pglgg@f bounded clique-
width. As there areAGs of arbitrary clique-width and digraphs of fixed clique-
width but arbitrarybAG-width, this result is incomparable with our own. Whether
there exists a measure which generalises both clique-arlibAG-width, partic-
ularly with regard to efficiently solving parity games, reémsan open problem.

Toward investigating other characterisations of treetiwiahd their extension to
digraphs, Hunter and Kreutzer [15] show that the naturakggdisations of par-
tial k-trees and elimination orderings result in a measure @iffefrombDAG-width
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which they callKelly-width The measures are similar in that the cop number of
a digraph bounds its Kelly-width and likewise, a non-mometeersion of Kelly-
width boundsDAG-width, up to constant factors. As a consequence, the athor
conjecture that Kelly-width lies within a constant factdromG-width. Resolving
this and similar questions would provide insight into theusture theory of di-
graphs associated withaG-width and is part of ongoing work.
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