
The DAG-Width of Directed Graphs

Dietmar Berwangera, Anuj Dawarb, Paul Hunterc,
Stephan Kreutzerd, Jan Obdřzáleke

aLSV, CNRS & ENS de Cachan, France
bUniversity of Cambridge Computer Laboratory, UK

cDepartment of Computer Science, University of Oxford, UK
dDepartment of Electrical Engineering and Computer Science, Technical University

Berlin, Germany
eFaculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

Tree-width is a well-known metric on undirected graphs thatmeasures how tree-like a graph
is and gives a notion of graph decomposition that proves useful in algorithm design. Tree-
width can be characterised by a graph searching game where a number of cops attempt to
capture a robber. We consider the natural adaptation of thisgame to directed graphs and
show that monotone strategies in the game yield a measure, called DAG-width, that can be
seen to describe how close a directed graph is to a directed acyclic graph (DAG). We also
provide an associated decomposition and show how it is useful for developing algorithms
on directed graphs. In particular, we show that the problem of determining the winner of a
parity game is solvable in polynomial time on graphs of boundedDAG-width. We also con-
sider the relationship betweenDAG-width and other connectivity measures such as directed
tree-width and path-width. A consequence we obtain is that certain NP-complete prob-
lems such as Hamiltonicity and disjoint paths are polynomial-time computable on graphs
of boundedDAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in their graph minor project
has focused much attention on tree decompositions of graphsand associated mea-

Email addresses:dwb@lsv.ens-cachan.fr (Dietmar Berwanger),
anuj.dawar@cl.cam.ac.uk (Anuj Dawar), paul.hunter@cs.ox.ac.uk (Paul Hunter),
stephan.kreutzer@tu-berlin.de (Stephan Kreutzer), obdrzalek@fi.muni.cz (Jan
Obdržálek).

Preprint submitted to Journal of Combinatorial Theory, Series B 25 November 2011

sures of graph connectivity such as tree-width [24]. Apart from their interest in
graph-structure theory, these notions have also proved very useful in algorithm de-
sign. The tree-width of a graph is a measure of how tree-like the graph is, and it
is found that small tree-width allows for graph decompositions along which recur-
sive algorithms can work. Many problems that are intractable in general can be
solved efficiently on graphs of small tree-width. These include such classical NP-
complete problems as finding a Hamiltonian cycle in a graph ordetecting if a graph
is three-colourable. Indeed, a general result of Courcelle[8] shows that any prop-
erty definable in monadic second-order logic is solvable in linear time on graphs of
bounded tree-width.

The idea of designing algorithms that work on tree decompositions has been gen-
eralised from graphs to other structures. Usually the tree-width of a structure is
defined as that of the underlying connectivity (or Gaifman) graph. For instance,
the tree-width of a directed graph is simply that of the undirected graph we get by
forgetting the direction of edges, a process which leads to some loss of informa-
tion. This loss may be significant if the algorithmic problems we are interested in
are inherently directed. A good example is the problem of detecting Hamiltonian
cycles. While we know that this can be solved easily on graphswith small tree-
width, there are also directed graphs with very simple connectivity structure which
have large tree-width. A directed acyclic graph (DAG) is a particularly simple struc-
ture, but we lose sight of this when we erase the direction on the edges and find
the underlying undirected graph to be dense. Several proposals have been made
(see [23,16,5,25,15]) which extend notions of tree decompositions and tree-width
to directed graphs. In particular, Johnson et al. [16] introduce the notion ofdirected
tree-widthwhere directed acyclic graphs have width 0 and they show thatHamil-
tonicity can be solved for graphs of bounded directed tree-width in polynomial
time. However, the definition and characterisations of thismeasure are somewhat
unwieldy and they have not, so far, resulted in many new algorithms.

We are especially interested in one particular problem on directed graphs, that
of determining the winner of aparity game. This is an infinite two-player game
played on a directed graph where the vertices are labelled bypriorities. The players
take turns pushing a token along edges of the graph. The winner is determined by
the parity of the least priority occurring infinitely often in this infinite play. Parity
games have proved useful in the development of model-checking algorithms used
in the verification of concurrent systems. The modalµ-calculus, introduced in [18],
is a widely used logic for the specification of such systems, encompassing a va-
riety of modal and temporal logics. The problem of determining, given a system
A and a formulaϕ of theµ-calculus, whether or notA satisfiesϕ can be turned
into a parity game (see [13]). The exact complexity of solving parity games is an
open problem that has received a large amount of attention. It is known [11] that
the problem is in NP∩ co-NP but no polynomial time algorithm is known. From
the general result of Courcelle [8], it follows that there isa linear time algorithm
that solves parity games with a fixed number of priorities on graphs of bounded

2

tree-width. Obdržálek [21] exhibited a polynomial time algorithm for games with
an arbitrary number of priorities on graphs of bounded tree-width. He points out
that the algorithm would not give good bounds, for instance,on directed acyclic
graphs even though solving the games on such graphs is easy. He asks whether
there is a structural property of directed graphs that wouldallow a fast algorithm
on both bounded tree-width structures and onDAGs. In this article, we give just
such a generalisation.

We introduce a measure of the connectivity of graphs that we call DAG-width. It is
intermediate between tree-width and directed tree-width,in that for any graphG,
the directed tree-width ofG is no greater than itsDAG-width which, in turn, is no
greater than its tree-width. Thus, the class of structures of DAG-width k + 1 or less
includes all structures of tree-widthk and more (in particular,DAGs of arbitrarily
high tree-width all haveDAG-width 1). This measure was introduced independently
in two conference papers [22,4] to which the present paper isa follow-up.

The notion ofDAG-width can be understood as a simple adaptation of thecops
and robber game(which characterises tree-width) to directed graphs. The game is
played by two players, one of whom controls a set ofk cops attempting to catch a
robber controlled by the other player. The cop player can move any set of cops to
any vertices on the graph, while the robber can move along anypath in the graph
as long as there is no cop currently on the path. Such games have been extensively
studied (see [26,9,14,3,5]). It is known [26] that the cop player has a winning strat-
egy on an undirected graphG usingk + 1 cops if, and only if,G has tree-widthk.
We consider the natural adaptation of this game to directed graphs, by constraining
the robber to move along directed paths. We show that the class of directed graphs
where there is a monotone (in a sense we make precise in Section 3.2) strategy fork
cops to win is characterised by its width in a decomposition that is a generalisation
of tree decompositions. We are then able to show that the problem of determining
the winner of a parity game is solvable in polynomial time on the class of graphs
of DAG-width k, for any fixedk.

In Section 2, we introduce some notation. Section 3 introduces the cops and robber
game,DAG-decompositions andDAG-width and shows the equivalence between the
existence of monotone winning strategies andDAG-width. Also in Section 3 we
discuss some algorithmic aspects ofDAG-width. Section 4 proves the existence of a
polynomial time algorithm for solving parity games on such graphs, and Section 5
relatesDAG-width to other measures of graph connectivity.

2 Preliminaries

We first fix some notation used throughout the article. All graphs used are finite and
simple (i.e., no self-loops and no multiple edges) unless otherwise stated. Also we

3

will use the term “digraph” when refering to directed graphs.

We writeω for the set of finite ordinals, i.e., natural numbers (including 0). For
everyn ∈ ω, we write[n] for the set{1, . . . , n}. For a setV and a numberk ∈ ω,
we write[V]≤k for the set of allX ⊆ V with |X| ≤ k. Given setsA,B, we denote
their symmetric difference(A \B) ∪ (B \ A) by A△B.

Let G be a digraph. We writeV (G) for the set of its vertices andE(G) for the set
of its edges. LetV ⊆ V (G) be a set of vertices. We writeG[V] for the subgraph
induced byV , andG \ V for the subgraph induced byV (G) \ V . Further,Gop, the
reverse graphof G, is the digraph with the same set of vertices asG and with a set
of edges that results from reversing the edges inE(G), i.e.,E(Gop) = {(w, v) :
(v, w) ∈ E(G)}.

The following definition is standard (see [10]).

Definition 1. A tree decompositionof a graphG is a pair(T,X), whereT is a tree
andX = (Xt)t∈V (T) is a family of subsets ofV (G) such that

•
⋃

t∈V (T) Xt = V (G),
• for each edge(u, v) ∈ E(G), there is at ∈ V (T) such that{u, v} ⊆ Xt, and
• for each vertexv ∈ V (G), the set{t ∈ V (T) : v ∈ Xt} forms a connected

subtree ofT .

The width of a tree decomposition is one less than the cardinality of the largest
Xt. The tree-widthof G is the smallestk such thatG has a tree decomposition of
width k.

Let D be a directed, acyclic graph (DAG), i.e. a directed graph that contains no
directed cycles. The partial order�D on D is the reflexive, transitive closure of
E(D). A sourceof a setX ⊆ V (D) is a�D-minimal element ofX, that is,r ∈ X
is a root ofX, if there is noy ∈ X such thaty �D r andy 6= x. Analogously, a
sinkof X ⊆ V (D) is a�D-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph-theoretical part of this article. We defineDAG-width
and its relation to graph searching games. As mentioned in the introduction, the
notion of tree-width has a natural characterisation in terms of a cops and robber
game. Directed tree-width has also been characterised in terms of such games [16],
but these games appear to be less intuitive. In this article,we consider the straight-
forward extension of the cops and robber game from undirected graphs to digraphs.
We show that these games give a characterisation of the graphconnectivity measure

4

that we callDAG-width and introduce in Section 3.1. We comment on algorithmic
properties in Section 3.5.

3.1 DAG-decompositions andDAG-width

In this section, we present a decomposition of digraphs thatis somewhat similar
in style to tree decompositions of undirected graphs. This leads to the definition
of DAG-width, which can be seen as a measure of how close a given digraph is to
being acyclic. We also present some properties enjoyed byDAG-width.

The concept of DAG-width we introduce is based on the following concept of
guarding.

Definition 2. Let G := (V,E) be a digraph andW,V ′ ⊆ V . Then,W guardsV ′

if, for all (u, v) ∈ E, if u ∈ V ′ thenv ∈ V ′ ∪W .

The next lemma lists some simple properties of guarding usedthroughout the paper.

Lemma 3. LetG = (V,E) be a digraph andX,X0, X1, Y, Y0, Y1, Z ⊂ V . Then
the following holds:

(1) If X0 guardsY0 andX1 guardsY1, thenX0 ∪X1 guardsY0 ∪ Y1.
(2) If X guardsY andZ ⊇ X, thenZ guardsY .
(3) If X guardsY thenX ∪ Z guardsY \ Z.

Proof. (1) Suppose(v, w) ∈ E(G), v ∈ Y0∪Y1 andw /∈ Y0∪Y1. Letv ∈ Yi, then
w ∈ Xi, asXi guardsYi. Hencew ∈ X0 ∪X1, andX0 ∪X1 guardsY0 ∪ Y1.

(2) Suppose(v, w) ∈ E(G), v ∈ Y andw /∈ Y . As X guardsY , w ∈ X. As
Z ⊇ X, w ∈ Z. Therefore,Z guardsY .

(3) Suppose(v, w) ∈ E(G), v ∈ Y \ Z andw /∈ Y \ Z. Thus,w /∈ Y or w ∈ Z.
For the first case,w ∈ X asX guardsY . Hencew ∈ X ∪ Z.

We are now ready to define the concepts of DAG-width.

Definition 4 (DAG-decomposition). Let G := (V,E) be a digraph. ADAG-decom-
positionof G is a pair(D,X) whereD is aDAG andX = (Xd)d∈V (D) is a family
of subsets ofV such that

(D1)
⋃

d∈V (D) Xd = V .
(D2) For all verticesd �D d′ �D d′′, Xd ∩Xd′′ ⊆ Xd′ .
(D3) For all edges(d, d′) ∈ E(D),Xd∩Xd′ guardsX�d′ \Xd , whereX�d′ stands

for
⋃

d′�Dd′′ Xd′′ . For any sourced, X�d is guarded by∅.

5

The width of aDAG-decomposition(D,X) is defined asmax{|Xd| : d ∈ V (D)}.
The DAG-width of a digraph is defined as the minimal width of any of itsDAG-
decompositions.

Next, we show that the class of digraphs ofDAG-width at mostk is closed under
directed unions, which is considered (see [16]) to be an important property of a
reasonable decomposition of digraphs.

Definition 5. Let G andH be vertex-disjoint digraphs. Apartial directed union
of G andH is a digraph(V (G) ∪ V (H), E(G) ∪ E(H) ∪ E) whereE ⊆ V (G)×
V (H).

Theorem 6. If G andG′ are vertex-disjoint digraphs andH is a partial directed
union ofG andG′, then

DAG-width(H) = max{DAG-width(G),DAG-width(G′)}.

Proof. For DAG-decompositions(DG,XG) and (DG′

,XG′

) of G andG′ respec-
tively, the DAG D obtained by putting an edge from every sink ofDG to every
source ofDG′

together withX := (XG
d)d∈V (DG) ∪̇ (XG′

d)d∈V (DG′)) forms aDAG-
decomposition ofH. Conversely, anyDAG-decomposition(D,X) of H can be re-
stricted toG andG′ yielding DAG-decompositions for these digraphs, according to
Lemma 8.

Finally we present two useful observations aboutDAG-decompositions. The first
one tells us more about guarding subgraphs in the decomposition, and the second
explains how to obtain, for a digraphG and a setW ⊆ V (G), aDAG-decomposition
of G[W] from aDAG-decomposition ofG.

Lemma 7. Let (D,X) be a DAG-decomposition of a digraph. For all(d, d′) ∈
E(D),

X�d′ \Xd = X�d′ \ (Xd ∩Xd′).

Proof. It is clear thatX�d′\Xd ⊆ X�d′\(Xd∩Xd′). Conversely, letx ∈ X�d′∩Xd.
Thenx ∈ Xd′′ for somed′′ s.t. d′ �D d′′. Sinced �D d′ �D d′′, (D2) implies
x ∈ Xd′ and thereforex ∈ (Xd ∩Xd′).

Lemma 8. Let (D,X) be aDAG-decomposition of a digraphG. For W ⊆ V (G),
(D,X |W) withX |W := (Xd ∩W)d∈V (D) is a DAG-decomposition ofG[W].

Proof. Clearly, (D1) and (D2) still hold for(D,X |W). For (D3), we observe that,
if X guardsY in G, thenX ∩ W guardsY ∩ W in G[W]. This is because, if
v ∈ Y ∩ W , w ∈ W \ Y and (v, w) ∈ E(G), thenw ∈ X (asX guardsY),
hencew ∈ X ∩ W . Then, (D3) follows immediately from (D3) for the original
decomposition(D,X).

6

3.2 Cops and robber games

The cops and robber game on a digraph is a game wherek cops try to catch a
robber. While the robber is confined to moving along paths in the graph, the cops
may move to any vertex at any time. A formal definition follows.

Definition 9 (Cops and robber game). Given a digraphG := (V,E), thek-cops and
robber game onG is played between two players, thecop and therobber player.
Positions of this game are pairs(X, r), whereX ∈ [V]≤k are the vertices occupied
by the cops andr ∈ V is the vertex occupied by the robber. The game is played as
follows:

• At the beginning, the cop player choosesX0 ∈ [V]≤k, and the robber player
chooses a vertexr0 ∈ V , giving position(X0, r0).

• From position(Xi, ri), if ri /∈ Xi then the cop player choosesXi+1 ∈ [V]≤k, and
the robber player chooses a vertexri+1 such that there is a directed path fromri
to ri+1 in the digraphG \ (Xi ∩Xi+1).

• A playin the game is a maximal (finite or infinite) sequenceπ := (X0, r0), (X1, r1), . . .
of positions given by the rules above.

• A play π is winning for the cop playerif, and only if, it is finite. (Note that, by
the rules above, this implies thatrm ∈ Xm for the last position(Xm, rm) of this
play.) A playπ is winning for the robber playerif, and only if, it is infinite.

• A (k-cop) strategyfor the cop player is a functionf from [V]≤k × V to [V]≤k.
A play (X0, r0), (X1, r1), . . . is consistentwith a strategyf if Xi+1 = f(Xi, ri)
for all i. The strategyf is called awinning strategy, if every play consistent with
f is winning for the cop player.

• The cop numberof a digraph G is the leastk such that the cop player has a
strategy to win thek-cops and robber game onG.

Variants of the game where the robber moves first, or only one cop can be moved
at a time, or the cops are lifted and placed in separate moves are all easily seen to
be equivalent in that the cop number of a digraph does not depend on the variant.

Before we introduce the technical aspects of these games needed in later sections,
we present a couple of results that illustrate some of their properties.

Lemma 10. The cop number of any non-empty, digraphG, is at least1 and it is
exactly1 if, and only if,G is acyclic.

Proof. Against zero cops, a strategy by the robber player where the robber remains
stationary is winning. IfG is acyclic, then one cop can catch the robber by always
playing to the robber’s current position, chasing the robber towards a sink. Eventu-
ally, the robber will not be able to move and the cop will capture him. Conversely,
if G has a cycle, then the robber can win against one cop by foreverstaying in the

7

• •

• • • •

• • • • • • • •

Fig. 1. The digraphsT 2
3 (cop number2) and(T 2

3)
op (cop number3)

cycle.

Games similar to the one defined above have been used to give game characterisa-
tions of measures such as tree-width [26] and directed tree-width [16]. In Section 5
we investigate this in more detail. One property of these measures is that they are
invariant under edge reversal, that is, they do not change ifthe directions of the
edges of the digraph are reversed. As we see below, this is notthe case for the game
we have defined. One exception is digraphs of cop number1, that is, acyclic graphs.

Proposition 11. The cop number of a digraphG is 1 if, and only if, the cop number
ofGop is 1.

Proof. This follows from Lemma 10 by observing thatG is acyclic if, and only if,
Gop is acyclic.

Proposition 12. For any j, k with 2 ≤ j ≤ k, there exists a digraphT with cop
numberj such that the cop number ofT op is k.

Proof. Let T j
k be a binary branching tree of heightk (i.e., with 2k − 1 vertices)

with edges oriented away from the root. In addition, every vertexv has a “forward-
edge” to each of its descendants, i.e., the forward edges form the transitive closure
of the original tree-edges, and a “back-edge” to itsj−1 nearest ancestors. Figure 1
illustrates the case fork = 3 andj = 2. Here, as with Figure 2, undirected edges
represent a pair of anti-parallel edges (i.e. two edges, onefor each direction).

To show that the cop number ofT j
k is j, we describe a winning strategy forj

cops and a strategy for the robber to defeatj − 1 cops. For simplicity in strategy
descriptions, we refer to features such as the “root”, “subtrees”, “ancestors” and
“descendents” of the underlying binary branching tree (with edges oriented away
from the root). First we see thatj cops have a winning strategy by initially playing
on the root then following the robber down whichever subtreehe plays in. This is
achieved by moving (if there arej cops already in play) the cop on the most distant
ancestor of the robber’s current position to the root of the subtree he has moved to.
To defeatj − 1 cops, the robber chooses any leaf. Whenever a cop moves to that
leaf, a simple counting argument shows that there must be at least one unoccupied
ancestor with at least one clear path to a leaf below. The robber then plays to that
ancestor and along that path to the leaf.

8

For(T j
k)

op, the robber is captured byk cops occupying the root of whichever subtree
he is in. To defeatk − 1 cops, the robber plays the strategy that defeatsj − 1 cops
in T j

k .

As always when dealing with games, we are less interested in asingle play of the
game as in strategies that allow a player to win every play of the game. We first start
by looking at the winning strategies for the robber player. One way of describing a
winning strategy for the robber is given by the following proposition.

Recall that astrongly connected componentin a digraph is a maximal set of vertices
S such that for anyu, v ∈ S there is a directed path fromu to v.

Proposition 13. A robber can defeatk cops on a digraphG if, and only if, there
exists a functionσ mapping eachX ∈ [V (G)]≤k to a non-empty union of strongly
connected components ofG \X such that ifX ⊆ Y ∈ [V (G)]≤k then:

(1) σ(X) ⊇ σ(Y), and
(2) For all x ∈ σ(X), there is ay ∈ σ(Y) such that there is a directed path from

x to y in G \X.

Proof. If such a functionσ exists, the robber can remain uncaptured by occupying
any vertex inσ(X) when the cops occupyX. Conversely, suppose that the robber
has a winning strategy againstk cops. Then for eachX ∈ [V (G)]≤k let σ(X) be
the set of all vertices from which the robber can guarantee a win when the cops
occupyX. Then it is easy to show thatσ satisfies the proposition.

The functionσ above plays the same role as havens for tree-width or directed tree-
width (see [26,16]). The main difference is thatσ(X) need not be connected. In-
deed, as Figure 2 shows, there are examples whereσ(X) is not connected. A robber
can defeat2 cops on this digraph, yet for any appropriate functionσ, σ({b, c}) must
be precisely{a, d}.

•
a

•
b

•
c

•
d

Fig. 2. Digraph showing havens may not be connected

Winning strategies for the cop player, introduced in Definition 9 play a central role
throughout this article. Here we present two definitions formonotonicity and show
that they are, for our purposes, equivalent.

For a digraphG := (V,E) and a set of verticesX ⊆ V and r ∈ V we write
ReachG\X(r) to denote the set of verticesv such that there is a directed path from
r to v in G that does not visit any vertex inX.

Definition 14. LetG := (V,E) be a digraph.

9

(i) A strategy for the cop player iscop-monotoneif, in playing the strategy, no
vertex is visited twice by cops. That is, if(X0, r0), (X1, r1), . . . is a play con-
sistent with the strategy, then for every0 ≤ i < n andv ∈ Xi \Xi+1, we have
v /∈ Xj for all j > i.

(ii) A strategy for the cop player isrobber-monotoneif, in playing the strat-
egy, the set of vertices reachable by the robber is non-increasing. That is, if
(X0, r0), (X1, r1), . . . is a play consistent with the strategy, thenReachG\Xi+1

(ri+1) ⊆
ReachG\Xi

(ri) for all i.

Lemma 15. (1) If the cop player has a robber-monotone strategy then he also
has a cop-monotone strategy.

(2) Any cop-monotone strategy is also robber-monotone.

If the cop player has a cop-monotone or robber-monotone winning strategy then he
also has a winning strategy that is both cop- and robber-monotone.

Proof. (1) Suppose the cop player has a robber-monotone winning strategy, and let
(X0, r0), (X1, r1), . . . be a play consistent with that strategy. From this we construct
a sequence which can be used to define a cop-monotone strategyin the obvious way.
SupposeXi\Xi+1 6= ∅ (otherwise we are just placing extra cops, and therefore the
set of vertices reachable by the robber cannot increase) andlet v ∈ Xi \Xi+1. As
v ∈ Xi, the robber is unable to reachv when the cops are onXi. As the strategy is
robber-monotone, the robber is unable to reachv at any further stage, in particular,
he cannot reachv when the cops are onXi+1 (i.e., not onv). Thus, no cop needs to
revisitv in order to prevent the robber from reachingv. Thus, we can removev from
all Xj, j > i. Proceeding in this way results in a sequence(X0, r0), (X

′
1, r1),

The strategy which takes(X ′
i, ri) toX ′

i+1 is cop-monotone for this play. Repeating
this for all plays (i.e., every choice for robber) results ina cop-monotone strategy.
Hence, whenever the cop player has a robber-monotone winning strategy he also
has a cop-monotone winning strategy.

(2) We show next that any cop-monotone winning strategy for the cop player is
actually robber-monotone also. This proves the lemma. Suppose the cop player
has a cop-monotone winning strategy. Let(X0, r0), (X1, r1), . . . , (Xn, rn) be a play
consistent with the strategy, andR0, R1, . . . , Rn be the corresponding robber space,
i.e., the set of vertices reachable for the robber. By the definition of the game, we
can assume the strategy alternates placing and removing (possibly no) cops. Clearly
we only need to consider the action of removing the cops, i.e., the case where
Xi ⊇ Xi+1, as adding cops can only reduce the robber space. Letv ∈ Xi \Xi+1.
As v /∈ Xj for all j > i, the robber is unable to reachv otherwise he could play tov
and sit there indefinitely, contradicting the assumption that cop player is playing a
winning strategy. Thus, the robber is unable to reach any of the vertices inXi\Xi+1

and is therefore unable to reach any new vertices. HenceRi ⊇ Ri+1, so the strategy
is robber-monotone.

10

It follows that whenever the cop player has either a cop-monotone or a robber-
monotone strategy, he has one that is both cop- and robber-monotone. With this
lemma in mind we define amonotone winning strategyin the obvious way.

3.3 Games and DAG-width equivalence

The main result of this section is an equivalence between monotone strategies for
the cop player andDAG-decompositions.

Theorem 16. For any digraphG, there is aDAG-decomposition ofG of width at
mostk if, and only if, the cop player has a monotone winning strategy in thek-cops
and robber game onG.

Proof. For the “if”-direction, letG = (V,E) be a digraph and suppose the cop
player has a monotone winning strategyf : [V]≤k × V → [V]≤k in the k-cops
and robber game onG. Without loss of generality, we assume that the first move
defined byf is to place no cops. Furthermore, asf is monotone, we assume that
cops are only ever placed on vertices that are reachable by the robber. That is,

f(X, r) ⊆ X ∪ ReachG\X(r). (1)

To define a DAG-decomposition of width at mostk, we will first present the strategy
in a slightly different form, called thestrategy DAG. Let D′ be a digraph with
vertex set[V]≤k × V and an edge from(X, r) to (X ′, r′) if X ′ = f(X, r) and
r′ ∈ ReachG\(X∩X′)(r). That is, nodes(X, r) in D′ correspond to game positions
with the cops being onX and the robber being onr and an edge from(X, r) to
(X ′, r′) corresponds to the round in the game where the cops follow their strategy
f to X ′ = f(X, r) and the robber choosesr′ as next position. In particular, paths
in D′ correspond to plays where the cops follow their winning-strategyf . Recall
that we assume that the cops’ first move is to place no cops, i.e., every game on
G consistent withf starts in a position(∅, r). We therefore define the sub-digraph
D = (V (D), E(D)) of D′ induced by the set of nodes(X, r) in D′ reachable from
a node(∅, r), with r ∈ V . We callD thestrategy DAGfor the strategyf onG.

By construction, for very node(X, r) in D the robber has a strategy in the game
on G against the cops playingf that guarantees that the position(X, r) will be
attained.

Claim. D is acyclic.

Proof. Suppose there was a cycleC := (v1, e1, . . . , vn, en) in D with ei :=
(vi, vi+1), for all i < n, anden := (vn, v1). Let vi := (Xi, ri), for all 1 ≤ i ≤ n.
As explained above, the robber has a strategy againstf to force the game into the

11

positionv1 = (X1, r1). By construction ofD, the cops’ response from this po-
sition is to play toX2 = f(X1, r1) and the robber can then reply by moving to
r2 ∈ ReachG\(X∩X′)(r). More generally, whenever the game is at position(Xi, ri)
the cops, followingf , will move toXi+1 (orX1 if i = n) and the robber can move
to ri+1 (or r1 resp.). Hence, the robber can evade capture forever and winsthe play,
contradicting the assumption thatf is a winning strategy. ⊣

Let X := (Xd)d∈V (D) with Xd := f(X, r), whered = (X, r) ∈ V (D). We claim
that (D,X) is a DAG-decomposition ofG of width at mostk. It is clear from the
construction that the width of(D,X) is at mostk, asmax{|Xd| : d ∈ V (D)} =
max{|f(d)| : d ∈ V (D)} ≤ k. Hence, it remains to show the properties (D1) -
(D3) in Definition 4.

Towards (D1), suppose there was a vertexv ∈ V \
⋃

d∈V (D) Xd. But then the robber
wins the game onG against the strategyf by initially going to the vertexv. As
v 6∈

⋃

d∈V (D) =
⋃

d=(X,r)∈V (D) f(X, r), the cops will never place a cop onv and
hence will fail to capture the robber, contradicting the fact that f is a winning
strategy.

Towards (D2), letd, d′, d′′ ∈ V (D) with d �D d′ �D d′′ and letP be a path fromd
to d′′ containingd′. Recall that such a path corresponds to a play fromd where the
cops followf . Hence, ifXd ∩Xd′′ 6⊆ Xd′ this means that there is a vertexv ∈ Xd

occupied by a cop at positiond but which is released by the cops betweend andd′

in the play following the pathP and later reoccupied betweend′ andd′′. But this
would contradict the assumption thatf is a cop-monotone strategy.

It remains to show (D3), i.e. we have to show thatXd ∩Xd′ guardsX�d′ \Xd , for
all edges(d, d′) ∈ E(D), whereX�d′ stands for

⋃

d′�Dd′′ Xd′′ . Furthermore, for any
sourced, X�d must be guarded by∅.

Towards this aim, we first show the following claim.

Claim. For alld = (X, r) ∈ V (D)

(

⋃

d�Dd′

f(d′)
)

\X = ReachG\(X∩f(X,r))(r). (2)

Proof. Note first thatReachG\(X∩f(X,r))(r) = ReachG\X(r). ThatReachG\X(r) ⊆
ReachG\(X∩f(X,r))(r) is clear (see Lemma 3). Conversely, if there was a vertexv ∈
ReachG\(X∩f(X,r))(r)\ReachG\X(r), that would imply that at position(X, r) in the
game the vertexv was not reachable for the robber but when the cops make their
move tof(X, r), then the robber can reachv. But this would contradict robber-
monotonicity off . Hence,ReachG\(X∩f(X,r))(r) = ReachG\X(r).

Now, asf is robber-monotone, wheneverd := (X, r) �D d′ := (X ′, r′) then
ReachG\X′(r′) ⊆ ReachG\X(r). Furthermore, by (1),f(d′) ⊆ X ′ ∪ ReachG\X′(r′).

12

A simple induction on the distance betweend andd′ in D then shows thatX ′ ⊆

X∪ReachG\X(r) and thereforef(d′) ⊆ X∪ReachG\X(r). Hence,
(

⋃

d�Dd′ f(d
′)
)

\

X ⊆ ReachG\X(r).

Conversely, the same argument as in (D1) shows thatReachG\X(r) ⊆
(

⋃

d�Dd′ f(d
′)
)

\

X as otherwise the robber would win from(X, r).

Taken together, we get
(

⋃

d�Dd′

f(d′)
)

\X = ReachG\X(r) = ReachG\(X∩f(X,r))(r). ⊣

To establish (D3), letd = (X, r) be a source ofD. By assumption onf , X := ∅

and therefore, by (2),X�d =
(

⋃

d�Dd′ f(d
′)
)

= ReachG(r) is guarded by∅.

On the other hand, if(d, d′) ∈ E(D) is any edge inD, whered = (X, r) and
d′ = (X ′, r′) andX ′ = f(X, r), then by (2),

X�d′ \Xd =
(

⋃

d′�Dd′′

f(d′′)
)

\X ′ = ReachG\(X′∩f(X′,r′))(r
′).

Therefore,Xd ∩Xd′ = X ′ ∩ f(X ′, r′) guardsX�d′ \Xd. This concludes the proof
of (D3) and therefore we have shown that(D,X) is a DAG-decomposition ofG of
width at mostk.

Towards the “only if”-direction, let(D,X) be aDAG-decomposition of widthk. A
strategy fork cops can then be defined as:

(1) Let the robber choose a vertexv ∈ V. From (D1), there existsdv ∈ V (D)
such thatv ∈ Xdv . Let d be a source ofD which lies abovedv.

(2) Place cops onXd.
(3) From (D3) and Lemma 3(2),Xd guardsX�d \Xd. Therefore, the robber can

only move to vertices inX�d \ Xd. Suppose the robber moves tov′ ∈ Xd′′ .
Let d′ be a sucessor ofd which lies aboved′′.

(4) Remove cops onXd \Xd′ (leaving cops onXd ∩Xd′)
(5) AsXd ∩Xd′ guardsX�d′ \Xd, the robber can only move to vertices inX�d′

– that is, the robber must remain in the sub-DAG whose source isd′.
(6) Return to step (2) withd′ asd.

As D is a DAG, at some point the robber player will not be able to move (since
X�d \Xd is empty whend is a sink). Hence, this is a winning strategy fork cops.
To show that it is monotone, observe that (D2) ensures that atno point does a cop
return to a vacated vertex. This concludes the proof of Theorem 16.

The above game characterization allows us to easily show some interesting prop-

13

∅

Xd1
Xdm ❀

Xd1
Xdm

Fig. 3. Forming a unique source

erties ofDAG-width. For instance, observe that the winning strategies for the cop
player in Lemma 10 and Proposition 12 are monotone. Then we get the following:

Corollary 17. Let G be a digraph. ThenG hasDAG-width 1 if, and only if, it is
acyclic (indeed, the digraph itself will suffice as a decomposition). Moreover, for
any j, k ∈ ω with 2 ≤ j ≤ k, there exists a digraphG of DAG-width j such that
Gop is of DAG-widthk.

3.4 Nice DAG-decompositions

For algorithmic purposes, it is often useful to have a normalform for decomposi-
tions. The following is similar to one for tree decompositions as presented in [6].

Definition 18. A DAG-decomposition(D, (Xd)d∈V (D)) of a digraphG is nice if

(N1) D has a unique source.
(N2) Everyd ∈ V (D) has at most two successors.
(N3) Ford0, d1, d2 ∈ V (D), if d1, d2 are two successors ofd0, thenXd0 = Xd1 =

Xd2 .
(N4) Ford0, d1 ∈ V (D), if d1 is the unique successor ofd0, then|Xd0△Xd1 | = 1.

We show next that every digraph withDAG-width k has a nice decomposition with
width k. For this, we transform aDAG-decomposition into one which is nice that
has the same width. First we formalise the transformations we use, and show that
executing them (possibly subject to some constraints) doesnot violate any of the
properties of aDAG-decomposition.

Lemma 19 (Unique source). Let (D,X) be aDAG-decomposition of widthk of a
digraphG, and letd1, d2, . . . , dm be the sources ofD. Then, the pair(D′,X ′) with

(i) V (D′) := V (D) ∪̇ {r},
(ii) E(D′) := E(D) ∪ {(r, di) : 1 ≤ i ≤ m},
(iii) X ′

r := ∅, andX ′
d = Xd, for all otherd ∈ V (D′),

14

Xd0
Xd0

❀

Xdl
Xdr

Xd1
Xd2

Xdm

Xd1
Xd2

Xdm

Fig. 4. Splitting atd0

is a DAG-decomposition of widthk.

Proof. As we have only added edges fromr /∈ V (D), the digraphD′ is acyclic.
Condition (D1) is trivially satisfied as we have only added a node. Ifd �D′ d′ �D′

d′′, then eitherd = r in which caseX ′
d ∩X ′

d′′ = ∅ ⊆ X ′
d′ , or d ∈ V (D), in which

caseX ′
d ∩ X ′

d′′ ⊆ X ′
d′ follows from the fact that(D,X) is a DAG-decomposition.

This establishes (D2). For the (unique) sourcer, (D3) is again trivially satisfied,
asX ′

�r = V (G). Further, for(r, di) ∈ E(D′), X ′
r ∩ X ′

di
= ∅ guardsX�di =

X ′
�di
\ X ′

r. Otherwise(d, d′) ∈ E(D) and (D3) follows from the fact that(D,X)
is aDAG-decomposition. Since|X ′

r| = 0, (D′,X ′) has widthk.

Figure 3 gives a visual representation of the construction.

Definition 20 (Splitting). Let (D,X) be aDAG-decomposition, and supposed0 ∈
V (D) hasm > 1 successorsd1, d2, . . . , dm. The decomposition(D′,X ′) obtained
from (D,X) by splittingd0 is defined as follows:

(i) V (D′) = V (D) ∪̇ {dl, dr},

(ii) E(D′) =
(

E(D) \ {(d0, di) : 1 ≤ i ≤ m}
)

∪ {(d0, dl), (d0, dr), (dl, d1)}

∪ {(dr, di) : 2 ≤ i ≤ m}, and
(iii) X ′

d = Xd, for all d ∈ V (D), andX ′
dl
= X ′

dr
= Xd0 .

Figure 4 gives a visual representation of this transformation.

Lemma 21. Let (D,X) be aDAG-decomposition of a digraphG of widthk, and
supposed0 ∈ V (D) hasm > 1 successorsd1, d2, . . . , dm. Then,(D′,X ′) obtained
from (D,X) by splittingd0 is a DAG-decomposition ofG of widthk.

Proof. First we observe that, asd0 is the unique predecessor ofdl anddr, for any
d ∈ V (D) such thatd ≺D′ dl or d ≺D′ dr, it must be the case thatd �D d0. Thus,

15

for all d ∈ V (D),

X ′
�d =

⋃

d�
D′d′

X ′
d′ = X ′

dl
∪X ′

dr
∪

⋃

d�Dd′

Xd′ = X�d,

since ifXdl orXdr is included in the union on the left, then so isXd0 , and so neither
Xdl norXdr contribute to the overall union.

It is easily seen that the edges added do not create any cycles, soD′ is a DAG.
Further,

⋃

d∈V (D′)X
′
d =

⋃

d∈V (D)Xd = V (G). To prove the connectivity condi-
tion (D2), letd, d′, d′′ ∈ V (D′), be such thatd �D′ d′ �D′ d′′. If d′ = d or d′ = d′′

then trivially X ′
d ∩ X ′

d′′ ⊆ X ′
d′ , so supposed ≺D′ d′ ≺D′ d′′. We consider four

cases:

• If none ofd, d′, d′′ is dl or dr, thend, d′, d′′ ∈ V (D), and (D2) follows from the
fact that(D,X) is aDAG-decomposition.

• If d is dl or dr thend′, d′′ ∈ V (D) and, sinced0 ∈ V (D) is the unique prede-
cessor ofd, we obtain the following chain of nodes inD: d0 ≺D d′ ≺D d′′. So
X ′

d ∩X ′
d′′ = Xd0 ∩Xd′′ ⊆ Xd′ = X ′

d′.
• If d′′ is dl or dr then from the comments at the beginning of the proof,d ≺D

d′ �D d0. Thus,X ′
d ∩X ′

d′′ = Xd ∩Xd0 ⊆ Xd′ = X ′
d′ .

• Finally, if d′ is dl or dr then by the same reasoning as the previous two cases,
d �D d0 ≺D d′′. SoX ′

d ∩X ′
d′′ = Xd ∩Xd′′ ⊆ Xd0 = X ′

d′ .

Thus, in all cases,X ′
d ∩X

′
d′′ ⊆ X ′

d′, showing that (D2) holds. To see that condition
(D3) also holds, first note that for alli such that1 ≤ i ≤ m, it is true thatXd0 ∩Xdi

guardsX�di \Xd0 . Therefore, by Lemma 3(2),

Xd0 guardsX�di \Xd0 . (3)

Now every sourcer of D′ is also a source ofD and therefore∅ guardsX�r = X ′
�r.

So let(d, d′) ∈ E(D′). We consider three cases:

• d′ ∈ V (D). If d = dl or d = dr, thenX ′
d = Xd0 . Otherwise(d, d′) ∈ E(D). In

both cases,X ′
d ∩X ′

d′ guardsX ′
�d′ \X

′
d.

• d′ = dl (sod = d0). HereX ′
�d′ = Xd0 ∪ X�d1 , soX ′

�d′ \ X
′
d = X�d1 \ Xd0 .

Hence, by (3),Xd0 = X ′
d ∩X ′

d′ guardsX�d1 \Xd0 = X ′
�d′ \X

′
d.

• d′ = dr (so d = d0). HereX ′
�d′ = Xd0 ∪

⋃

2≤i≤mX�di , and soX ′
�d′ \ X

′
d =

(
⋃

2≤i≤mX�di) \Xd0 =
⋃

2≤i≤m(X�di \Xd0). From Lemma 3(1) and (3),X ′
d ∩

X ′
d′ = Xd0 guards

⋃

2≤i≤m(X�di \Xd0) = X ′
�d′ \X

′
d.

As X ′
dl
= X ′

dr
= Xd0 , we have

max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈ V (D)} = k.

Consequently, the decomposition(D′,X ′) has widthk.

16

Xd0
Xd0

+ X ❀ X

Xd1
Xd1

Fig. 5. AddingX to (d0, d1)

By thedecomposition resulting from splittingd form−2 timeswe mean the decom-
position resulting from splittingd, and then recursively splitting the successor of
d with more than one successor until no such successor exists.A complete splitof
(D,X) is the decomposition(D′,X ′) obtained by recursively splitting every node
with more than two sucessors.

Definition 22 (Adding). Let (D,X) be aDAG-decomposition of a digraphG. If
(d0, d1) ∈ E(D) andX ⊆ V (G) the decomposition resulting from addingX to
(d0, d1) is the pair(D′,X ′) with

(i) V (D′) = V (D) ∪̇ {dX};
(ii) E(D′) = (E(D) \ {(d0, d1)}) ∪ {(d0, dX), (dX , d1)};

(iii) X ′
dX

= X, and for alld ∈ V (D), X ′
d = Xd.

See Figure 5 for a visual interpretation.

Lemma 23. Let (D,X) be aDAG-decomposition of a digraphG of width k and
let (D′,X ′) be the decomposition resulting from addingX ⊆ V (G) to (d0, d1). If
either

(i) Xd0 ∩Xd1 ⊆ X ⊆ Xd0 , or
(ii) Xd0 ∩Xd1 ⊆ X ⊆ Xd1 ,

then(D′,X ′) is a DAG-decomposition ofG of widthk.

Proof. Note that for alld, d′ ∈ V (D) such thatd ≺D′ dX ≺D′ d′ we have that
d �D′ d0 ≺D′ dX ≺D′ d1 �D′ d′. This implies, for alld ∈ V (D)

X ′
�d =

⋃

d�
D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = X�d,

since ifX ′
dX

is included in the union on the left, then bothX ′
d0

andX ′
d1

are, and so
in either case of the lemmaX ′

dX
= X does not contribute to the overall union.

Further,Xd0 ∩Xd1 guardsX�d1 \Xd0 = X�d1 \ (Xd0 ∩Xd1) from Lemma 7.

Clearly, D′ is a DAG. We now show that(D′,X ′) satisfies the properties (D1)
to (D3). It is easily seen that

⋃

d∈V (D′) X
′
d = X ∪

⋃

d∈V (D) Xd = V (G). This

17

shows (D1). Towards establishing condition (D2), supposed �D′ d′ �D′ d′′. If
d′ = d or d′ = d′′ then triviallyX ′

d ∩X ′
d′′ ⊆ X ′

d′, so supposed ≺D′ d′ ≺D′ d′′. We
consider four cases:

• If none ofd, d′, d′′ is dX thend, d′, andd′′ are all inV (D), so (D2) follows from
the fact that(D,X) is aDAG-decomposition.

• Supposed = dX . From the observations made at the beginning of the proof,
we get the following chain of nodes inD: d0 ≺D d1 �D d′ ≺D d′′. So if
X ⊆ Xd0 , i.e., we are in case(i) of the lemma, thenX ′

d ∩ X ′
d′′ = X ∩ Xd′′ ⊆

Xd0 ∩ Xd′′ ⊆ Xd′ = X ′
d′ , by condition (D2) of(D,X). If X ⊆ Xd1 , then

X ′
d ∩X ′

d′′ = X ∩Xd′′ ⊆ Xd1 ∩Xd′′ ⊆ Xd′ = X ′
d′ .

• Now assumed′′ = dX . Thend ≺D d′ �D d0 ≺D d1 and the rest of the proof is
symmetric to the previous case.

• Finally, assumed′ = dX . Thend �D d0 ≺D d1 �D d′′. HenceXd ∩Xd′′ ⊆ Xd0

andXd ∩Xd′′ ⊆ Xd1 . Thus,X ′
d ∩X ′

d′′ = Xd ∩Xd′′ ⊆ Xd0 ∩Xd1 ⊆ X = X ′
d′ .

Finally, we need to show that (D3) holds as well. First, ifd is a source ofD′, thend
is a source ofD. Hence∅ guardsX�d = X�d′ . So let(d, d′) ∈ E(D′). We consider
three cases:

• dX 6∈ {d, d
′}, i.e., (d, d′) ∈ E(D). In this case, (D3) follows from the fact that

(D,X) is aDAG-decomposition.
• Now supposed = dX (sod′ = d1). If Xd0 ∩Xd1 ⊆ X ⊆ Xd0 , i.e., we are in case

(i) of the lemma, then

X�d1 \ (Xd0 ∩Xd1) ⊇ X�d1 \X ⊇ X�d1 \Xd0 .

Further, by Lemma 7,X�d1 \ (Xd0 ∩Xd1) = X�d1 \Xd0 . ThereforeX�d1 \X =
X�d1 \Xd0 . As (D,X) is aDAG-decomposition,Xd0 ∩Xd1 guardsX�d1 \Xd0 ,
and asXd0 ∩ Xd1 ⊆ X ∩ Xd1 , Lemma 3(2) implies thatX ′

d ∩ X ′
d1

= X ∩ Xd1

guardsX�d1 \Xd0 = X ′
�d1
\X ′

d.
Otherwise we are in case(ii) and we haveXd0 ∩ Xd1 ⊆ X ⊆ Xd1 . Let

Z = X \ (Xd0 ∩Xd1). We know(Xd0 ∩ Xd1) guardsX�d1 \ (Xd0 ∩ Xd1), due
to Lemma 7. Hence, by Lemma 3(3),X ′

d ∩X
′
d1

= X = (Xd0 ∩Xd1)∪Z guards

(X�d1 \ (Xd0 ∩Xd1)) \ Z = X�d1 \ ((Xd0 ∩Xd1) ∪ Z)

= X�d1 \X = X ′
�d1
\X ′

d′ .

• Finally, supposed′ = dX (sod = d0). Here we claimX ′
�dX
\X ′

d0
= X�d1 \Xd0 .

If X ⊆ Xd0 , thenX ′
�dX
\X ′

d0
= (X∪X�d1)\Xd0 = (X \Xd0)∪(X�d1 \Xd0) =

X�d1 \ Xd0 . If X ⊆ Xd1 , then sincedX �D′ d1, X ′
�dX

= X ′
�d1

= X�d1 . Now
X ⊇ Xd0 ∩Xd1 , so by Lemma 3(2),X ′

d′ = X guardsX�d1 \Xd0 = X ′
�dX
\X ′

d0
.

Note that sinceX ⊆ Xd0 or Xd1 , max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈

V (D)} = k. So(D′, (X ′
d)d∈V (D′)) has widthk.

18

If X1, X2, . . . , Xn is a sequence of subsets ofV (G), thedecomposition resulting
from addingX1, X2, . . . , Xn to (d0, d1) is the decomposition resulting from adding
X1 to (d0, d1) and then recursively addingXi+1 to (dXi

, d1).

We can now describe how to transform aDAG-decomposition into one which is nice
and has the same width.

Theorem 24. If G has aDAG-decomposition of widthk, it also has a niceDAG-
decomposition of widthk.

Proof. Let (D,X) be aDAG-decomposition of widthk. We carry out each of the
following steps and reset(D,X) to be the resulting decomposition.

(1) We apply Lemma 19 to obtain a decomposition with a unique source, therefore
satisfying (N1).

(2) We apply a complete split on(D,X) to obtain aDAG-decomposition such that
every node has at most two successors, and ifd has two successorsd1 andd2,
thenXd = Xd1 = Xd2 . This establishes (N2) and (N3).

(3) To satisfy (N4), we require two stages. First, for each(d0, d1) ∈ E(D) with
Xd0 6= Xd1 , we addXd0 ∩Xd1 to (d0, d1) to obtain aDAG-decomposition such
that for every(d, d′) ∈ E(D′), Xd is either a subset or a super-set ofXd′ .

(4) In the second step for each edge(d, d′) ∈ E(D) such that|Xd

a
Xd′ | = m ≥

2 we do the following: IfXd ⊃ Xd′ then letX0 = Xd, X1, . . . , Xm = Xd′

be a strictly decreasing sequence of sets. We then addX1, X2, . . . , Xm−1 to
(d, d′). The caseXd ⊂ Xd′ is symmetric.

At this point we have a decomposition which satisfies (N1) to (N4), and is there-
fore nice. Finally, from Lemmas 19, 21, and 23, at each step wehave aDAG-
decomposition of widthk.

3.5 Algorithmic aspects of boundedDAG-width

We now consider algorithmic applications ofDAG-width as well as the complexity
of deciding theDAG-width of a digraph and computing aDAG-decomposition.

3.5.1 ComputingDAG-width and decompositions

In Proposition 34 we will show that theDAG-width of a digraphG is equal to the
tree-width of its underlying undirected graph plus one. Thefollowing is then a
direct consequence of the fact that it is NP-hard to determine the tree-width of a
graph [2].

19

Theorem 25. Given a digraphG and a natural numberk, deciding if theDAG-
width ofG is at mostk is NP-hard.

The question whether this problem is actually in NP is open. However, for any fixed
k, it is possible to decide in polynomial time whether a digraph hasDAG-width at
mostk and to compute aDAG-decomposition of this width if it has. We give an
algorithm for this that is based on computing monotone winning strategies in the
k-cops and robber game.

Theorem 26. LetG be a digraph and letk ∈ ω. There is a polynomial time algo-
rithm for deciding if the cop player has a monotone winning strategy in thek-cops
and robber game onG and for computing such a strategy.

Proof. Given a digraphG with vertex setV and the numberk of available cops
we represent thek-cops and robbers game as a simple, alternating, token-moving
game. The game is played on a finite, bipartite digraph, or arena,H(G) = (V0 ∪̇
V1, E) which is defined as follows. LetW1 := [V]≤k × V andW2 := ([V]≤k ×
[V]≤k × V).

(i) V0 := W1,
(ii) V1 := W2 ∪̇ {v0}, and

(iii) From each node(X, r) ∈ W1 there is an edge to every node(X1, X2, r
′) ∈ W2

such thatr = r′, X = X1, andReachG\(X1∩X2)(r) ⊆ ReachG\X1
(r). Further,

from a node(X1, X2, r) ∈ W2 there is an edge to a node(X, r) ∈ W1, if
X = X2, r 6∈ X andr′ ∈ ReachG\X1∩X2

(r). Finally, there is an edge fromv0
to every node(∅, r) ∈ W1.

Note thatH(G) can be constructed in polynomial time.

The game starts with a token at the nodev0. Player0 moves the token whenever it
is on a node inV0, and Player1 moves the token whenever it is on a node inV1.
The token may only be moved along an out-edge, on a path of length 1. If a player
cannot move he loses. If the game lasts forever, Player1 wins. Computing which
player wins is thus an example of alternating reachability and is therefore decidable
in polynomial time (with respect to the size of the arena) (see [7]).

It is easy to see that Player0 wins this simple game if, and only if, the cop player
wins thek-cops and robber game following a (robber-)monotone strategy. As the
arenaH(G) is polynomial in the size of the input, and we can compute the winner
of the simpler game in polynomial time, the theorem follows.

Note also that the translation of strategies into decompositions is computationally
easy, i.e., can be done in polynomial time. Since winning strategies can be com-
puted in polynomial time in the size of the graph, we get the following.

20

Proposition 27. Given a digraphG of DAG-width at mostk, a DAG-decomposition
ofG of width at mostk can be computed in timeO(|G|O(k)).

3.5.2 Algorithms on digraphs of boundedDAG-width

In Section 5, we will show that the directed tree-width of a digraph is bounded
above by a constant factor of itsDAG-width (see Proposition 35). Therefore any
graph property that can be decided in polynomial time on classes of digraphs of
bounded directed tree-width can also be decided on classes of graphs of bounded
DAG-width. This implies that properties such as Hamiltonicitythat are known to
be polynomial-time solvable on digraphs of bounded directed tree-width can be
solved efficiently on digraphs of boundedDAG-width too. We give a nontrivial ap-
plication ofDAG-width in Section 4 where we show that parity games can be solved
efficiently on digraphs of boundedDAG-width, something which is not known for
directed tree-width.

As for the relation to undirected tree-width, it is clear that not all graph proper-
ties that can be decided in polynomial time on graphs of bounded tree-width can
also be decided efficiently on digraphs of boundedDAG-width. For instance, the
3-colourability problem is known to be decidable in polynomial time on graphs
of bounded tree-width. However, the problem does not dependon the direction of
edges. For any given undirected graph, we can simply direct the edges in such a way
that it becomes acyclic. Thus, arbitrary instances are polynomial-time reducible to
instances ofDAG-width 1. As 3-colourability over arbitrary undirected graphs is
NP-hard, it follows that the problem cannot be solved in polynomial time on di-
graphs of boundedDAG-width, unless P= NP. Furthermore, as 3-colourability is
MSO-definable, this also implies that Courcelle’s theorem [8] does fail for DAG-
width.

The obvious question that arises is whether one can define a suitable notion of
“directed problem” and then show that everyMSO-definable “directed” graph prob-
lem can be decided efficiently on digraphs of boundedDAG-width. This is part of
ongoing work.

4 Parity Games on Digraphs of BoundedDAG-Width

We are interested in the problem of determining, given a parity game and a start-
ing vertexv, which player has a winning strategy fromv. The complexity of this
problem in general remains a major open question, as explained in Section 1. We
demonstrate that parity games are tractable on arenas of boundedDAG-width by
an algorithm similar in spirit to that of Obdržálek [21]. That algorithm relies on
the fact that in a tree decomposition (of the underlying undirected graph), the set

21

of k nodes in any vertex of the decomposition guards all entries and exits to the
part of the graph below this vertex. In the case of aDAG-decomposition, while the
k-element set guards all exits from the subgraph below it, there may be an unlim-
ited number of edges going into this subgraph. This is the main challenge that our
algorithm addresses, and is specifically solved in Lemmas 28, 29 and 30.

A parity gameis a tuple(V, V0, E,Ω) where(V,E) is a digraph,V0 ⊆ V and
Ω : V → ω is a function assigning a priority to each vertex. As we shallsee, there
is no loss of generality in assuming that the range ofΩ is contained in[n] where
n = |V | and we will make this assumption from now on.

Intuitively, two players called Odd and Even play a parity game by pushing a token
along the edges of the digraph with Even playing when the token is on a vertex in
V0 and Odd playing otherwise. Formally, aplayof the game is an infinite sequence
π = (vi | i ∈ ω) such that(vi, vi+1) ∈ E for all i. We sayπ is winning for Even
if lim inf i→∞Ω(vi) is even andπ is winning for Odd otherwise. That is to say,π
is winning for Even if the least value that occurs infinitely often in the sequence
(Ω(vi))i∈ω is even and it is winninf for Odd otherwise.

A strategyis a mapf : V <ω → V such that, for any sequence(v0, . . . , vi) ∈ V <ω,
we have(vi, f(v0, . . . , vi)) ∈ E. A play π = (vi | i ∈ ω) is consistentwith
Even playingf if whenevervi ∈ V0, vi+1 = f(v0, . . . , vi). Similarly, π is con-
sistent with Odd playingf if whenevervi 6∈ V0, vi+1 = f(v0, . . . , vi). A strat-
egy f is winning for Even from a vertexv if every play beginning atv that is
consistent with Even playingf is winning for Even. A strategy ismemorylessif
wheneveru0, . . . , ui andv0, . . . , vj are two sequences inV <ω with ui = vj , then
f(u0, . . . , ui) = f(v0, . . . , vj). It is known that parity games are determined, i.e.
for any game and starting position, either Even or Odd has a winning strategy and
indeed, a memoryless one [12]. However, we do not assume in our construction
that the strategies we consider are memoryless

The following ordering on[n] is useful in evaluating competing strategies. For pri-
oritiesi, j ∈ [n] we sayi ⊑ j if either

(i) i is odd andj is even, or
(ii) i andj are both odd andi ≤ j, or

(iii) i andj are both even andj ≤ i.

Intuitively, i ⊑ j if the priority i is “better” for player Odd thanj, i.e. an odd
priority is always better than an even one; among odd priorities smaller ones are
better; and among even ones larger priorities are better.

For a parity game(V, V0, E,Ω), considerU ⊆ V and a setW that guardsU . Fix a
pair of strategiesf andg. For anyv ∈ U , there is exactly one playπ = (vi : i ∈ ω)
starting atv that is consistent with Even playingf and Odd playingg. Let π′ be
the maximal initial segment ofπ that is contained inU . Theoutcomeof the pair of

22

strategies(f, g) (givenU andv) is defined as follows.

outf,g(U, v) :=















winEven ifπ′ = π andπ is winning for Even;

winOdd if π′ = π andπ is winning for Odd;

(vi+1, p) if π′ = v0, . . . , vi andp = min{Ω(vj) | j ≤ i+ 1}.

That is to say that, if the play that results from Even playingf and Odd playingg
leads to a cycle contained entirely withinU , then the outcome simply records which
player wins the game. However, if the winner is not determined entirely withinU ,
the outcome records the vertexw in W in which the play emerges fromU and the
lowest priority that is seen in the playπ starting inv and ending inw, including the
end points.

By construction, if outf,g(U, v) = (w, p) thenw ∈ W . More generally, for any set
W ⊆ V , define the set of potential outcomes inW , written pot-out(W), to be the
set{winEven,winOdd} ∪ {(w, p) : w ∈ W andp ∈ [n]}. We define a partial order
✂ on pot-out(W) which orders potential outcomes according to how good they are
for player Odd. It is the least partial order satisfying the following conditions:

(i) winOdd✂ o for all outcomeso;
(ii) o✂ winEven for all outcomeso;

(iii) (w, p)✂ (w, p′) if p ⊑ p′ for all w ∈ W .

In particular,(w, p) and(w′, p′) are incomparable ifw 6= w′. The idea is that ifg
andg′ are strategies such that outf,g(U, v)✂ outf,g′(U, v) then player Odd is better
off playing strategyg rather thang′ in response to Even playing according tof .

A single outcome is the result of fixing the strategies playedby both players in
the sub-game induced by a set of verticesU . If we fix the strategy of player Even
to bef but consider all possible strategies that Odd may play, we can order these
strategies according to their outcome. If one strategy achieves outcomeo and an-
other o′ with o ✂ o′, there is no reason for Odd to consider the latter strategy.
Thus, we define resultf (U, v) to be the set of outcomes that are achieved by the
best strategies that Odd may follow, in response to Even playing according tof .
More formally, resultf(U, v) is the set of✂-minimal elements in the set{o : o =
outf,g(U, v) for someg}. Thus, resultf (U, v) is an anti-chain in the partial order
(pot-out(W),✂), whereW is a set of guards forU . We write pot-res(W) for the
set ofpotential resultsinW . To be precise, pot-res(W) is the set of all anti-chains in
the partial order(pot-out(W),✂). By definition of the order✂, if either of winEven
or winOdd is in the set resultf(U, v), then it is the sole element of the set. Also, for
eachw ∈ W , there is at most onep such that(w, p) ∈ resultf(U, v) so the number
of distinct values that resultf (U, v) can take is at most(n + 1)|W | + 2. This is an
upper bound on the cardinality of the set pot-res(W).

We also abuse notation and extend the order✂ to the set pot-res(W) pointwise.

23

That is, forr, s ∈ pot-res(W)we writer✂s if, for eacho ∈ s, there is ano′ ∈ r with
o′✂o. With this definition, the order✂ on pot-res(W) admits greatest lower bounds.
Indeed, the greatest lower boundr ⊓ s of r ands can be obtained by taking the set
of ✂ minimal elements in the set of outcomesr ∪ s. One further piece of notation
we use is that we write result(U, v) for the set{resultf(U, v) : f is a strategy}.

Suppose now that(V, V0, E,Ω) is a parity game and(D,X) is aDAG-decomposition
of (V,E) of width k that isnice in the sense of Definition 18. For eachd ∈ V (D),
we writeVd for the setX�d \Xd. The key to the algorithm is that we construct the
set of results result(Vd, v) for eachv ∈ Vd. SinceVd is guarded byXd and|Xd| ≤ k,
the number of distinct values of resultf (Vd, v) asf ranges over all possible strate-
gies is at most(n + 1)k + 2.

We define the following, which is the key data structure used in our algorithm:

Frontier(d) = {(v, resultf(Vd, v)) : v ∈ Vd andf is a strategy}.

Note that in the definitions of resultf (U, v) and Frontier(d), f andg range over
all strategies and not just memoryless ones. The bound on the number of possible
values of resultf (Vd, v) guarantees that|Frontier(d)| ≤ n((n+1)k +2). We aim to
show how Frontier(d) can be constructed from the set of frontiers of the successors
of d in polynomial time. There are four cases to consider.

Case 1:d is a sink. In this case,Vd is empty and so is Frontier(d).

Case 2:d has two successorse1 ande2. In this case,Xd = Xe1 = Xe2 by the
definition of a nice decomposition. Thus,Vd = Ve1 ∪ Ve2 . Moreover, each of the
three setsVd, Ve1 andVe2 is guarded byXd so, in particular, each path from a vertex
in Ve1 \ Ve2 to a vertex inVe2 \ Ve1 (or vice versa) contains a vertex fromXd. We
claim that Frontier(d) = Frontier(e1) ∪ Frontier(e2).

To see this, suppose first that(v, r) ∈ Frontier(e1) (the case of Frontier(e2) is
symmetrical) and in particularr = resultf(Ve1 , v). Now, if o ∈ r there is ag such
thato = outf,g(Ve1, v). If o is winEven or winOdd it is clear thato = outf,g(U, v)
for anyU ⊃ Ve1 and in particularo = outf,g(Vd, v). If o = (w, p) then the playπ
determined by strategiesf andg starting atv first leaves the setVe1 atw. Sincew ∈
Xe1 = Xd it also leaves the setVd at this point and therefore againo = outf,g(Vd, v).
We conclude that the set of available outcomes is the same andtherefore the set of
✂-minimal outcomes is the same. That is,r = resultf(Vd, v) and therefore(v, r) ∈
Frontier(d).

In the other direction, suppose(v, r) ∈ Frontier(d) and thatv ∈ Ve1 (again the
case whenv ∈ Ve2 is symmetrical). Letf be such thatr = resultf (Vd, v). Suppose
o = outf,g(Vd, v) for some strategyg and letπ be the play starting atv determined
by f andg. We claim thato = outf,g(Ve1 , v). If this is not the case, then the first
occurrence inπ of a node not inVe1 must be contained inVd. However, since any

24

such node must be inXd, which is disjoint fromVd, this is impossible. Thus, once
again outf,g(Vd, v) = outf,g(Ve1, v) and thereforer = resultf(Ve1, v).

Note that the above argument implies in particular that, forv ∈ Ve1 ∪ Ve2 , we have
resultf (Ve1, v) = resultf(Ve2 , v).

Case 3:d has one successore andXd \Xe = {u}. Then, by (D2),u 6∈ Ve. Also, by
definition ofVd, u 6∈ Vd. We conclude thatVd = Ve. Moreover, sinceXe guardsVe

(by Lemma 3(2)), there is no path from any element ofVe to u except throughXe.
Thus, if (w, p) ∈ resultf(Vd, v) for somev andf , it must be the case thatw ∈ Xe.
Hence, Frontier(d) = Frontier(e).

Case 4:d has one successore andXe \ Xd = {u}. This is the critical case. Here
Vd = Ve ∪ {u} and in order to construct Frontier(d) we must determine the results
of all plays beginning atu.

Consider the set of verticesv in X�d such that(u, v) ∈ E(G). These fall into two
categories. Eitherv ∈ Xd or v ∈ Ve. Let x1, . . . , xs enumerate the first category
and letv1, . . . , vm enumerate the second. LetO = {(xi,min{Ω(xi),Ω(u)}) : 1 ≤
i ≤ s}. This is the set of outcomes obtained if a play in the parity game proceeds
directly fromu to an element ofXd. Note that as no two outcomes inO are com-
parable with respect to✂, O ∈ pot-res(Xd). We writeO for {{o} : o ∈ O}.
That isO is the set of singleton results obtained fromO. For eachvi we know,
from Frontier(e), the set result(Ve, vi). For each resultr ∈ result(Ve, vi), we write
mod(r) for the set of outcomes defined by modifyingr as follows. First, ifr con-
tains an outcome(u, p), we replace it by winEven ifmin{p,Ω(u)} is even and
winOdd if it is odd. Secondly, for any pair(w, p) ∈ r wherew 6= u, we replace
it with (w,min{p,Ω(u)}). Finally, we take the set of✂-minimal elements from
the resulting set. This is mod(r). Note that mod(r) ∈ pot-res(Xd). The intuition is
that mod(resultf(Ve, vi)) defines the set of best possible outcomes for player Odd, if
starting atu, the play goes tovi and from that point on, player Even plays according
to strategyf . For each1 ≤ i ≤ m, letMi = {mod(r) : r ∈ result(Ve, vi)}.

We now wish to use the sets of resultsMi,O andO to construct the set result(Vd, u).
We need to distinguish between the cases whenu ∈ V0 (i.e. player Even plays from
u in the parity game) andu ∈ V \ V0 (i.e. player Odd plays).

The simpler case is whenu ∈ V0.

Lemma 28. If u ∈ V0, then result(Vd, u) = M1 ∪ . . . ∪Mm ∪O.

Proof. Let f be a strategy. Iff(u) = xi, then resultf (Vd, u) ∈ O. The other possi-
bility is thatf(u) = vi, in which case, clearly, resultf (Vd, u) = mod(resultf(Ve, vi))
and this result is inMi. For the converse, ifr = {(xi, p)} ∈ O, it is clear that
r = resultf(Vd, u) for any strategyf with f(u) = xi. Now, let r ∈ Mi with

25

r = mod(resultf(Ve, vi)), thenr = resultf ′(Vd, u) wheref ′ is the strategy that
moves fromu to vi and then follows the strategyf from that point on.

The case whenu 6∈ V0 is somewhat trickier. To explain how we can obtain the set
result(Vd, u) in this case, we formulate the following lemma.

Lemma 29. If u ∈ V \ V0, thenr ∈ result(Vd, u) if, and only if, there is a function
c on the set[m] with c(i) ∈ Mi such thatr = O ⊓

d
i∈[m] c(i).

Proof. ⇒ Let r ∈ result(Vd, u), i.e. there is a strategyf such thatr = resultf(Vd, u).
We define the functionc by c(i) = mod(resultf (Ve, vi)). Since player Odd can
move to any of the verticesvi, it is clear thatr ✂ c(i), for eachi. Odd can
also move to any of thexi and thereforer ✂ O. Furthermore, for each outcome
o ∈ r, there is ag such thato = outf,g(Vd, u). Eitherg(u) = vi, in which case
o ∈ c(i) by construction, org(u) = xj ando ∈ O. Together this establishes
O ⊓

d
i∈[m] c(i)✂ r.

⇐ Let c be a choice function withc(i) = mod(resultfi(Ve, vi)) for eachi. Let f be
a strategy that agrees withfi on all paths beginning with the two verticesu, vi.
Then, it is clear that resultf(Vd, u) = O ⊓

d
[m] c(i).

Lemma 29 suggests constructing result(Vd, u) by considering all possible choice
functionsc. However, as each setMi may have as many as(n + 1)k + 2 ele-
ments, there arem(n+1)k+2 possibilities forc and our algorithm would be expo-
nential. We consider an alternative way of constructing result(Vd, u). Recall that
result(Vd, u) ⊆ pot-res(Xd) and the latter set has at most(n + 1)k + 2 elements.
We check, for eachr ∈ pot-res(Xd), in polynomial time, whether there is a choice
functionc as in Lemma 29 that yieldsr. In particular, we take the following alter-
native characterisation of result(Vd, u).

Lemma 30. If u 6∈ V0, thenr ∈ result(Vd, u) if, and only if, there is a setD ⊆ [m]
with |D| ≤ |r| and a functiond onD with d(i) ∈Mi such that

(i) r = O ⊓
d

i∈D d(i); and
(ii) for eachi ∈ [m] \D there is anri ∈Mi with r ✂ ri.

Proof. ⇒ Assumer ∈ result(Vd, u) and letc be the choice function according to
Lemma 29. For eacho ∈ r, if o 6∈ O select onei ∈ [m] such thato ∈ c(i). Let
D be the collection of indicesi selected. By construction,|D| ≤ |r|. Now, we
defined(i) = c(i) for all i ∈ D and letri = c(i) for i 6∈ D.

⇐ GivenD, d and the collection ofri as specified, we define the choice functionc

26

by

c(i) :=







d(i) if i ∈ D;

ri otherwise.

Since by hypothesisr ✂ ri andr = O ⊓
d

i∈D d(i), it is then easily seen that
r = O ⊓

d
i∈[m] c(i).

Now, anyr ∈ pot-res(Xd) has at mostk elements. Thus, to check whether such an
r is in result(Vd, u) we cycle through all setsD ⊆ [m] with k or fewer elements
(and there areO(nk) such sets) and for each one consider all candidate functionsd
(of which there areO(nk2)). Having found ad which givesr = O ⊓

d
D d(i), we

then need to find a suitableri in eachi ∈ [m] \ D. For this we must, at worst, go
through all elements of all the setsMi and compare them tor. This can be done in
timeO(nk+1).

We have now obtained the set result(Vd, u). One barrier remains to completing the
construction of Frontier(d). Elements(v, r) of Frontier(e) may have outcomes inr
of the form(u, p). Sinceu is not inXd, these must be resolved by combining them
with results from result(Vd, u). To be precise, letr ∈ result(Ve, v) for somev ∈ Ve

ands ∈ result(Vd, u). Define the combined resultc(r, s) as follows:

• if r does not contain an outcome of the form(u, p), thenc(r, s) = r;
• otherwise,r contains a pair(u, p). Let s′ be obtained froms by replacing every

pair (w, q) by (w,min{p, q}). c(r, s) = (r \ {(u, p)}) ⊓ s′.

Intuitively, if r = resultf(Ve, v) ands = resultf ′(Vd, u) thenc(r, s) is the set of✂-
minimal outcomes that can be obtained if player Even plays according tof starting
at v until the nodeu is encountered and then switches to strategyf ′.

Lemma 31. For anyv ∈ Ve,

result(Vd, v) = {c(r, s) : r ∈ result(Ve, v) ands ∈ result(Vd, u)}.

Proof. Clearly, for any strategyf , resultf(Vd, v) = c(resultf(Ve, v), resultf(Vd, u)).
Thus, result(Vd, v) is included in the set on the right hand side. For the converse,
suppose first thatr = resultf (Ve, v) is such that no outcome of the form(u, p) is
in r. This means that when player Even plays according tof , there is no strategy
g that Odd can play which will lead to the vertexu. Therefore, resultf (Ve, v) =
resultf (Vd, v) = c(r, s) for all s. Now, let r = resultf1(Ve, v) include an outcome
(u, p) and sets = resultf2(Vd, u). Let f be the strategy which followsf1 for the
path fromv to u and followsf2 onceu has been reached. It is easily checked that
resultf (Vd, v) = c(r, s).

We now obtain Frontier(d) = {(v, r) : r ∈ result(Vd, v)}.

27

Theorem 32.For eachk, there is a polynomialp and an algorithm running in time
O(p(n)) which determines the winner of parity games on all digraphs of n vertices
with DAG-width at mostk.

Proof. By Proposition 27, there is a polynomial-time algorithm that will produce a
DAG-decomposition of the game graph of width at mostk. This can be converted
into a nice decomposition(D′,X ′) in time at most quadratic (in the size of the
decomposition). Leta be the source ofD′ and letXa = {x1, . . . , xl} wherel ≤ k.
Consider theDAG D formed by addingl new verticesa0, . . . , al−1 toD′ in a simple
directed path ending ina. Further, for eachi defineXai to be the set{x1, . . . , xi}.
In particular, the new sourcea0 is labelled by∅. It is easily seen that the new
labelledDAG (D,X) with X = (Xd)d∈V (D) still meets the definition of a nice
decomposition. We then use the above construction to obtainFrontier(d) for each
d in D, starting from the sinks and working our way to the source. Since the size
of D is at mostn2k + k, the total time taken is bounded by a polynomial. Now, for
the sourcea0 of D it is true thatX�a0 = Va0 = V . Thus, if (v, r) ∈ Frontier(a0)
thenr ⊆ {winEven,winOdd}. If winEven ∈ r, this means that player Even has
a strategy to win the parity game beginning at vertexv, and if winEven 6∈ r, for
any strategy played by player Even, Odd has a strategy to defeat it. We have thus
determined the winner of the parity game starting at each vertex.

5 Relation to Other Graph Connectivity Measures

As a structural measure for undirected graphs, the concept of tree-width is of un-
rivalled robustness. On the realm of digraphs, however, itsheritage seems to be
split among several different concepts. In the remainder ofthe article, we com-
pareDAG-width with other connectivity measures for digraphs, particularly with
directed tree-width introduced by Johnson et al. [16] and directed path-width [3].

5.1 Undirected tree-width

First we formalise the relationship betweenDAG-width and undirected tree-width
to which we alluded in previous sections.

The tree-width of a digraphG is defined as the tree-width of the underlying undi-
rected graph, that is, the graph obtained fromG by replacing each directed edge
(u, v) with an undirected edge{u, v} and removing duplicates.

Proposition 33.

(i) If a digraphG has tree-widthk, then itsDAG-width is at mostk + 1.

28

(ii) There exists a family of digraphs with arbitrarily large tree-width andDAG-
width1.

Proof. (i). Suppose(T,W) is a tree decomposition ofG of width k with W =
(Wt)t∈V (T), according to Definition 1. Choose somer ∈ V (T) and orient the edges
of T away fromr. That is, if{s, t} ∈ E(T) ands is on the unique path fromr to
t, then change{s, t} to (s, t). SinceT is a tree, every edge has a unique orientation
in this manner. LetD be the resultingDAG. For alld ∈ V (D), setXd := Wd. We
claim that(D,X) with X = (Xd)d∈V (D) is a DAG-decomposition ofG of width
k+1. The condition (D1) is trivial; (D2) follows from the connectivity condition of
tree decompositions. The orientation ensuresD has one sourcer, soX�r = V (G).
Condition (D3) is hence satisfied at the source. For the othernodes, it follows from
a similar condition for tree decompositions. Let(d, d′) ∈ E(D) and supposev ∈
X�d′ \ Xd. Suppose also that(v, w) ∈ E(G) andw /∈ X�d′ \ Xd. We will show
that w ∈ Xd ∩ Xd′ . Sincev /∈ Xd and v ∈ X�d′ , any d′′ such thatv ∈ Xd′′

must satisfyd′ �D d′′ by the connectivity condition of tree decompositions. As
(v, w) ∈ E(G), there existsd′′ ∈ V (D) such that{v, w} ⊆ Xd′′ . Thus,w ∈ X�d′ .
As w /∈ X�d′ \ Xd, it follows thatw ∈ Xd. By (D2), we also havew ∈ Xd′ , as
w ∈ X�d′ . Accordingly,w ∈ Xd ∩Xd′ and (D3) holds.

(ii). For any numbern, let Kn be the (undirected) complete graph withn vertices
v1, v2, . . . , vn. Orient the edges ofKn such that(vi, vj) is an edge if and only if
i < j. The resulting digraph is acyclic and therefore hasDAG-width 1, but the
underlying undirected graph is a complete graph ofn vertices and therefore has
tree-widthn− 1.

If G is an undirected graph then let
←→
G be the digraph obtained by replacing each

edge{u, v} in E(G) with two edges(u, v) and(v, u).

Proposition 34. An undirected graphG has tree-widthk−1 if, and only if,
←→
G has

DAG-widthk.

Proof. It is easily seen that thek-cops and robber game for undirected graphs onG

is equivalent to thek-cops and robber game for digraphs on
←→
G . The result follows

from the correspondence between the measures and existenceof monotone winning
strategies.

5.2 Directed tree-width

With the aim of recovering the effectiveness of tree decompositions in allowing
divide-and-conquer algorithms, directed tree-width is associated with a tree-shaped
representation of the input digraph. It was proved that thisrepresentation leads to

29

efficient algorithms for solving a particular class of NP-complete problems, includ-
ing, e.g., Hamiltonicity, when directed tree-width is bounded. Unfortunately this
generic method does not cover many interesting problems. Inparticular, the effi-
cient solution of parity games on bounded tree-width has failed so far to generalise
to directed tree-width.

In terms of games, directed tree-width is characterised by arestriction of the cops
and robber games forDAG-width, in which the robber is only permitted to move
to vertices where there exists a directed cop-free path fromhis intended destina-
tion back to the current position. In contrast to the case of undirected tree-width,
for these games cop-monotonicity and robber-monotonicitydiffer and both cop-
and robber-monotone strategies are known to not be sufficient [1]. However, the
difference is within a constant factor.

On basis of the game characterisation, it is clear that undirected tree-width of a
digraph is a lower bound for itsDAG-width. Conversely, theDAG-width of a digraph
cannot be bound in terms of its directed tree-width.

Proposition 35.

(i) If a digraph hasDAG-widthk, then its directed tree-width is at most3k + 1.
(ii) There exists a family of digraphs with arbitrarily largeDAG-width and di-

rected tree-width1.

Proof. (i). The argument is based on the duality theorem for directed tree width
proved in [16], which relates the notions of havens and arboreal decompositions,
i.e., tree decompositions, in our terminology. The idea is as follows. IfG hasDAG-
width k thenk cops can win thek-cops and robber game onG. Thus,k cops can
win the game defined in [16], and soG does not have a (directed) haven of sizek.
By the duality result of [16], this implies thatG has an directed tree decomposition
of width at most3k + 1.

(ii). Consider the family{(T 2
k)

op : k ≥ 2} of digraphs defined in Proposition 12.
Note that(T 2

k)
op is a binary branching tree of heightk with back-edges from every

vertex to each of its ancestors. We have shown that(T 2
k)

op has cop numberk, and
it is clear that the strategy described fork cops is monotone, so(T 2

k)
op hasDAG-

width k. On the other hand, consider the directed treeT obtained from(T 2
k)

op by
removing back-edges. For eacht′ ∈ V (T), let Bt′ := {t, s} wheret is the vertex
corresponding tot′ in (T 2

k)
op ands is the predecessor oft (if t′ is not the root of

T), and letX(s′,t′) := {s} for all (s′, t′) ∈ E(T). Then, it is easy to show that
(T, (B′

t)t′∈V (T), (Xe)e∈E(T)) is a directed tree decomposition of(T 2
k)

op of width 1.
Fork ≥ 2, (T 2

k)
op is not acyclic and therefore has directed tree-width exactly 1.

30

5.3 Directed path-width

Directed path-width was introduced by Reed, Seymour and Thomas as a generalisa-
tion of path-width to digraphs (see [27,3]). Formally, adirected path decomposition
of a digraphG is a sequenceW1,W2, . . . ,Wn such that

(P1)
⋃n

i=1Wi = V (G).
(P2) If i < i′ < i′′ thenWi ∩Wi′′ ⊆Wi′.
(P3) For every edge(u, v) ∈ E(G), there existi ≤ j such thatu ∈ Wi andv ∈ Wj .

The width ofW1,W2, . . . ,Wn is max{|Wi| : 1 ≤ i ≤ n} − 1, and thedirected
path-widthof G is the minimal width of all directed path decompositions.

It is worth noting that for undirected graphs, path-width readily generalises to tree-
width as a path decomposition is also a tree decomposition. We show thatDAG-
width generalise directed path-width in the same way.

Proposition 36.

(i) If a digraphG has directed path-widthk, its DAG-width is at mostk + 1.
(ii) There exists a family of digraphs with arbitrarily large directed path-width

andDAG-width2.

Proof. (i). Let W1,W2, . . . ,Wn be a directed path decomposition ofG of width k.
Let Dn be the directed path withn vertices. That is,V (Dn) = {d1, . . . , dn} and
E(()Dn) = {(d1, d2), . . . , (dn−1, dn)}. SetXdi := Wi, for all di ∈ V (Dn). We
claim that(Dn, (Xd)d∈V (Dn)) is aDAG-decomposition ofG of width k + 1. Condi-
tion (D1) follows from (P1) and (D2) follows from (P2). To show (D3) for 1 ≤ i <
n, supposev ∈ X�di+1

\Xdi and(v, w) ∈ E(G). From (P3) there existi′ ≤ j′ such
thatv ∈ Wi′ andw ∈ Wj′. If i′ ≤ i, then by (P2)v ∈ Xdi, contradicting the choice
of v. Thus,i < i′ ≤ j′ andw ∈ X�di+1

. If w /∈ X�di+1
\ Xdi thenw ∈ Xdi and

thereforew ∈ Xdi+1
by (P2). Thus,Xdi ∩Xdi+1

guardsX�di+1
\Xdi .

(ii). Let Tk be the (undirected) complete ternary tree of heightk ≥ 2. According
from Proposition 34,

←→
Tk hasDAG-width2. On the other hand, it is known from [17]

that Tk has path-width exactlyk, and it is straightforward to show that
←→
Tk must

therefore have directed path-width exactlyk − 1. Thus, the family{Tk : k ≥ 2}
witnesses the statement.

In [3], Barát showed that directed path-width correspondsto the number of cops
required to catch an invisible robber on a digraph. It shouldtherefore not be sur-
prising that our measure generalises directed path-width.

31

We conclude that, despite their conceptual affinity, directed tree-width, directed
path-width, andDAG-width are rather different measures. The following inequali-
ties summarise, up to constant factors, the results of this section.

directed tree-width(G) ≤ DAG-width(G) ≤







tree-width(G)

directed path-width(G).

Furthermore, for any inequality above there exist familiesof digraphs for which the
inequality is strict, up to constant factors.

6 Further Remarks

We conclude with a comment on a few recent and relevant results. In [19], Kreutzer
and Ordyniak show that monotonicity is not sufficient in the cops and robber game
on digraphs. In particular, for anyn ∈ N there exist digraphs which requiren more
cops to capture the robber with a monotone strategy than witha non-monotone
strategy. Their examples do not preclude the possibility ofbounded monotonicity
cost; that is, the existence of a functionf such that ifk cops have a winning strategy
thenf(k) cops have a monotone winning strategy. We believe that thesegames have
linearly bounded monotonicity cost, however the problem remains an active area
of research.

Another measure for the connectivity of directed graphs is entanglement, proposed
by Berwanger and Grädel [5]. Unlike the other measures considered here, entan-
glement is not associated with an efficient tree-shaped graph representation. Never-
theless, it was shown that parity games on graphs of bounded entanglement can be
solved in polynomial time [5]. In fact, just a bound on the minimal entanglement
of a subgraph induced by any winning strategy rather than of the input graph is re-
quired. It is difficult to compare entanglement withDAG-width as the latter measure
requires monotone strategies whereas the former does not.

The class of digraphs for which the winner of a parity game canbe efficiently de-
cided has been extended by Obdržálek [20] to include digraphs of bounded clique-
width. As there areDAGs of arbitrary clique-width and digraphs of fixed clique-
width but arbitraryDAG-width, this result is incomparable with our own. Whether
there exists a measure which generalises both clique-widthandDAG-width, partic-
ularly with regard to efficiently solving parity games, remains an open problem.

Toward investigating other characterisations of tree-width and their extension to
digraphs, Hunter and Kreutzer [15] show that the natural generalisations of par-
tial k-trees and elimination orderings result in a measure different fromDAG-width

32

which they callKelly-width. The measures are similar in that the cop number of
a digraph bounds its Kelly-width and likewise, a non-monotone version of Kelly-
width boundsDAG-width, up to constant factors. As a consequence, the authors
conjecture that Kelly-width lies within a constant factor of DAG-width. Resolving
this and similar questions would provide insight into the structure theory of di-
graphs associated withDAG-width and is part of ongoing work.

Acknowledgements. This work has been partially supported by the ESF Net-
working Programme GAMES and the Czech research grant GAČR 201/09/J021.

References

[1] I. Adler, Directed tree-width examples, J. Comb. TheorySer. B 97 (5).

[2] S. Arnborg, D. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-
tree, SIAM J. Matrix Anal. Appl. 8 (2) (1987) 277–284.

[3] J. Barát, Directed path-width and monotonicity in digraph searching, Graphs and
Combin. 22 (2) (2006) 161–172.

[4] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, DAG-width and parity games, in:
STACS’06, vol. 3884 of LNCS, Springer, 2006, pp. 524–536.

[5] D. Berwanger, E. Grädel, Entanglement – A measure for the complexity of directed
graphs with applications to logic and games, in: LPAR’04, vol. 3452 of LNCS,
Springer, 2005, pp. 209–223.

[6] H. Bodlaender, Treewidth: Algorithmic techniques and results, in: MFCS’97, vol.
1295 of LNCS, Springer, 1997, pp. 19–36.

[7] A. K. Chandra, D. Kozen, L. J. Stockmeyer, Alternation, J. ACM 28 (1981) 114–133.

[8] B. Courcelle, The monadic second order logic of graphs I:Recognizable sets of finite
graphs, Inform. and Comput. 85 (1990) 12–75.

[9] N. Dendris, L. Kirousis, D. Thilikos, Fugitive-search games on graphs and related
parameter, Theoret. Comput. Sci. 172 (1997) 233–254.

[10] R. Diestel, Graph Theory, 3rd ed., Springer, 2005.

[11] E. Emerson, C. Jutla, The complexity of tree automata and logics of programs, in:
FOCS’88, IEEE, 1988, pp. 328–337.

[12] E. Emerson, C. Jutla, Tree automata, mu-calculus and determinacy, in: FOCS’91,
IEEE, 1991, pp. 368–377.

[13] E. Emerson, C. Jutla, A. Sistla, On model checking for the µ-calculus and its
fragments, Theoret. Comput. Sci. 258 (1-2) (2001) 491–522.

33

[14] G. Gottlob, N. Leone, F. Scarcello, Robbers, marshals,and guards: Game theoretic and
logical characterizations of hypertree width, in: PODS’01, ACM, 2001, pp. 195–201.

[15] P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions, games, and
orderings, Theor. Comput. Sci. 399 (3) (2008) 206–219.

[16] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas, Directed tree-width, J. Combin.
Theory Ser. B 82 (1) (2001) 138–154.

[17] L. M. Kirousis, C. H. Papadimitriou, Searching and pebbling, Theor. Comput. Sci.
47 (3) (1986) 205–218.

[18] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983)
333–354.

[19] S. Kreutzer, S. Ordyniak, Digraph decompositions and monotonicity in digraph
searching, in: WG’08, vol. 5344 of LNCS, Springer, 2008, pp.336–347.

[20] J. Obdržálek, Clique-width and parity games, in: CSL’07, vol. 4646 of LNCS,
Springer, 2007, pp. 54–68.

[21] J. Obdržálek, Fast mu-calculus model checking when tree-width is bounded, in: CAV
2003, vol. 2725 of LNCS, Springer, 2003, pp. 80–92.

[22] J. Obdržálek, DAG-width – connectivity measure for directed graphs, in: SODA’06,
ACM-SIAM, 2006, pp. 814–821.

[23] B. Reed, Introducing directed tree width, in: 6th Twente Workshop on Graphs and
Combinatorial Optimization, vol. 3 of Electron. Notes Discrete Math., Elsevier, 1999,
pp. 222–229.

[24] N. Robertson, P. D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory
Ser. B 36 (1) (1984) 49–63.

[25] M. Safari, D-width: A more natural measure for directedtree-width, in: MFCS’05,
vol. 3618 of LNCS, Springer, 2005, pp. 745–756.

[26] P. D. Seymour, R. Thomas, Graph searching and a min-max theorem for tree-width, J.
Combin. Theory Ser. B 58 (1) (1993) 22–33.

[27] R. Thomas, Directed tree-width, slides from a lecture at the Regional NSF-CBMS
Conference on Graph Structure and Decomposition, 2002. Available at http://
www.math.gatech.edu/ ˜ thomas/SLIDE/CBMS/dirtrsl.pdf (2002).

34

