
Logical Methods in Computer Science
Vol. 13(2:8)2017, pp. 1–48
https://lmcs.episciences.org/

Submitted Jul. 28, 2016
Published Jun. 08, 2017

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE

DAVID BAELDE a, STÉPHANIE DELAUNE b, AND LUCCA HIRSCHI c

a,c LSV, ENS Cachan & CNRS, Université Paris-Saclay, France
e-mail address: {baelde,hirschi}@lsv.ens-cachan.fr

b CNRS & IRISA, France
e-mail address: stephanie.delaune@irisa.fr

Abstract. Many privacy-type properties of security protocols can be modelled using trace
equivalence properties in suitable process algebras. It has been shown that such properties
can be decided for interesting classes of finite processes (i.e. without replication) by means
of symbolic execution and constraint solving. However, this does not suffice to obtain
practical tools. Current prototypes suffer from a classical combinatorial explosion problem
caused by the exploration of many interleavings in the behaviour of processes. Mödersheim
et al. [40] have tackled this problem for reachability properties using partial order reduction
techniques. We revisit their work, generalize it and adapt it for equivalence checking.
We obtain an optimisation in the form of a reduced symbolic semantics that eliminates
redundant interleavings on the fly. The obtained partial order reduction technique has been
integrated in a tool called Apte. We conducted complete benchmarks showing dramatic
improvements.

1. Introduction

Security protocols are widely used today to secure transactions that rely on public channels
like the Internet, where malicious agents may listen to communications and interfere with
them. Security has a different meaning depending on the underlying application. It ranges
from the confidentiality of data (medical files, secret keys, etc.) to, e.g. verifiability in
electronic voting systems. Another example is the notion of privacy that appears in many
contexts such as vote-privacy in electronic voting or untraceability in RFID technologies.

To achieve their security goals, security protocols rely on various cryptographic primitives
such as symmetric and asymmetric encryptions, signatures, and hashes. Protocols also
involve a high level of concurrency and are difficult to analyse by hand. Actually, many
protocols have been shown to be flawed several years after their publication (and deployment).
For example, a flaw has been discovered in the Single-Sign-On protocol used, e.g. by Google
Apps. It has been shown that a malicious application could very easily get access to any

This work has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No 714955-POPSTAR), as well as the ANR
projects JCJC VIP ANR-11-JS02-006 and Sequoia ANR-14-CE28-0030-01.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(2:8)2017
c© D. Baelde, S. Delaune, and L. Hirschi
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

other application (e.g. Gmail or Google Calendar) of their users [6]. This flaw has been found
when analysing the protocol using formal methods, abstracting messages by a term algebra
and using the Avantssar validation platform [8]. Another example is a flaw on vote-privacy
discovered during the formal and manual analysis of an electronic voting protocol [27].

Formal symbolic methods have proved their usefulness for precisely analysing the security
of protocols. Moreover, it allows one to benefit from machine support through the use
of various existing techniques, ranging from model-checking to resolution and rewriting
techniques. Nowdays, several verification tools are available, e.g. [13, 28, 7, 38, 43]. A
synthesis of decidability and undecidability results for equivalence-based security properties,
and an overview of existing verification tools that may be used to verify equivalence-based
security properties can be found in [36].

In order to design decision procedures, a reasonable assumption is to bound the number
of protocol sessions, thereby limiting the length of execution traces. Under such an hypothesis,
a wide variety of model-checking approaches have been developed (e.g. [39, 47]), and several
tools are now available to automatically verify cryptographic protocols, e.g. [46, 7]. A major
challenge faced here is that one has to account for infinitely many behaviours of the attacker,
who can generate arbitrary messages. In order to cope with this prolific attacker problem
and obtain decision procedures, approaches based on symbolic semantics and constraint
resolution have been proposed [39, 42]. This has lead to tools for verifying reachability-based
security properties such as confidentiality [39] or, more recently, equivalence-based properties
such as privacy [47, 20, 15]. Unfortunately, the resulting tools, especially those for checking
equivalence (e.g. Apte [19], Spec [47], Akiss [16]) have a very limited practical impact because
they scale badly. This is not surprising since they treat concurrency in a very naive way,
exploring all possible symbolic interleavings of concurrent actions.

Related work. In standard model-checking approaches for concurrent systems, the in-
terleaving problem is handled using partial order reduction (POR) techniques [41]. In a
nutshell, these techniques aim to effectively exploit the fact that the order of execution
of two independent (parallel) actions is irrelevant when checking reachability. The theory
of partial order reduction is well developed in the context of reactive systems verification
(e.g. [41, 11, 34]). However, as pointed out by Clarke et al. in [26], POR techniques from
traditional model-checking cannot be directly applied in the context of security protocol
verification. Indeed, the application to security requires one to keep track of the knowledge of
the attacker, and to refer to this knowledge in a meaningful way (in particular to know which
messages can be forged at some point to feed some input). Furthermore, security protocol
analysis does not rely on the internal reduction of a protocol, but has to consider arbitrary
execution contexts (representing interactions with arbitrary, active attackers). Thus, any
input may depend on any output, since the attacker has the liberty of constructing arbitrary
messages from past outputs. This results in a dependency relation which is a priori very
large, rendering traditional POR arguments suboptimal, and calling for domain-specific
techniques.

In order to improve existing verification tools for security protocols, one has to design
POR techniques that integrate nicely with symbolic execution. This is necessary to precisely
deal with infinite, structured data. In this task, we get some inspiration from Mödersheim
et al. [40], who design a partial order reduction technique that blends well with symbolic
execution in the context of security protocols verification. However, we shall see that their
key insight is not fully exploited, and yields only a quite limited partial order reduction.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 3

Moreover, they only consider reachability properties (like all previous work on POR for
security protocol verification) while we seek an approach that is adequate for model-checking
equivalence properties.

Contributions. In this paper, we revisit the work of [40] to obtain a partial order reduction
technique for the verification of equivalence properties. Among the several definitions
of equivalence that have been proposed, we consider trace equivalence in this paper: two
processes are trace equivalent when they have the same sets of observable traces and, for each
such trace, sequences of messages outputted by the two processes are statically equivalent,
i.e. indistinguishable for the attacker. This notion is well-studied and several algorithms
and tools support it [14, 24, 47, 20, 15]. Contrary to what happens for reachability-based
properties, trace equivalence cannot be decided relying only on the reachable states. The
sequence of actions that leads to this state plays a role. Hence, extra precautions have to be
taken before discarding a particular interleaving: we have to ensure that this is done in both
sides of the equivalence in a similar fashion. Our main contribution is an optimised form of
equivalence that discards a lot of interleavings, and a proof that this reduced equivalence
coincides with trace equivalence. Furthermore, our study brings an improvement of the
original technique [40] that would apply equally well for reachability checking. On the
practical side, we explain how we integrated our partial order reduction into the state-of-the
art tool Apte [20], prove the correctness of this integration, and provide experimental results
showing dramatic improvements. We believe that our presentation is generic enough to
be easily adapted for other tools (provided that they are based on a forward symbolic
exploration of traces combined with a constraint solving procedure). A big picture of the
whole approach along with the new results is given in Figure 1. Vertically, it goes from
the regular semantics, to symbolic semantics and Apte’s semantics. Those semantics have
variants when our optimisations are applied or not: no optimisation, only compression or
compression plus reduction.

This paper essentially subsumes the conference paper that has been published in 2014 [9].
However, we consider here a generalization of the semantics used in [9]. This generalization
notably allows us to capture the semantics used in Apte, which allows us to formally prove
the integration of our optimisations in that tool. In addition, this paper incorporates proofs
of all the results, additional examples, and an extensive related work section. Finally, it
comes with a solid implementation in the tool Apte [19].

Outline. In Section 2, we introduce our model for security processes. We then consider the
class of simple processes introduced in [22], with else branches and no replication. Then
we present two successive optimisations in the form of refined semantics and associated
trace equivalences. Section 3 presents a compressed semantics that limits interleavings by
executing blocks of actions. Then, by adapting well-known argument, this is lifted to a
symbolic semantics in Section 4. Section 5 presents the reduced semantics which makes use
of dependency constraints to remove more interleavings. In Section 6, we explain how this
reduced semantics has been integrated in the tool Apte, prove its correcteness, and give
some benchmarks obtained on several case studies. Finally, Section 7 is devoted to related
work, and concluding remarks are given in Section 8. An overview of the different semantics
we will define and the results relating them is depicted in Figure 1. A table of symbols can
be found in Appendix A.

4 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

7−→c

−→c−→

7−→ 7−→r

7−→A
c7−→A 7−→A

r

No Optimization Compression Reduction

Concrete

Symbolic

Apte

≈=≈c
Theorem 3.11

Theorem 2 ≈c=≈sc

Theorem 6.18 ≈sc=≈A
c

≈
c=≈ s

r

Theorem
5.12

Theorem 6.22 ≈sr=≈A
r

[12, 22] ≈=≈s

[22] ≈s=≈A

Figure 1: Overview of the paper

2. Model for security protocols

In this section, we introduce the cryptographic process calculus that we will use to describe
security protocols. This calculus is close to the applied pi calculus [1]. We consider a
semantics in the spirit of the one used in [9] but we also allow to block some actions
depending on a validity predicate. This predicate can be chosen in such a way that no action
is blocked, making the semantics as in [9]. It can also be chosen as in Apte as we eventually
do in order to prove the integration of our optimisations into this tool.

2.1. Syntax. A protocol consists of some agents communicating on a network. Messages
sent by agents are modeled using a term algebra. We assume two infinite and disjoint sets
of variables, X and W. Members of X are denoted x, y, z, whereas members of W are
denoted w and used as handles for previously output terms. We also assume a set N of
names, which are used for representing keys or nonces1, and a signature Σ consisting of a
finite set of function symbols. Terms are generated inductively from names, variables, and
function symbols applied to other terms. For S ⊆ X ∪W ∪N , the set of terms built from S
by applying function symbols in Σ is denoted by T (Σ, S). We write st(t) for the set of
syntactic subterms of a term t. Terms in T (Σ,N ∪X) are denoted by u, v, etc. while terms
in T (Σ,W) represent recipes (describing how the attacker built a term from the available
outputs) and are written M , N , R. We write fv(t) for the set of variables (from X or W)
occurring in a term t. A term is ground if it does not contain any variable, i.e. it belongs to
T (Σ,N). One may rely on a sort system for terms, but its details are unimportant for this
paper.

1 Note that we do not have an explicit set of restricted (private) names. Actually, all names are restricted
and public ones will be explicitly given to the attacker.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 5

To model algebraic properties of cryptographic primitives, we consider an equational
theory E. The theory will usually be generated from a finite set of axioms enjoying nice
properties (e.g. convergence) but these aspects are irrelevant for the present work.

Example 2.1. In order to model asymmetric encryption and pairing, we consider:

Σ = {aenc(·, ·), adec(·, ·), pk(·), 〈·, ·〉, π1(·), π2(·)}.
To take into account the properties of these operators, we consider the equational theory Eaenc

generated by the three following equations:

adec(aenc(x, pk(y)), y) = x, π1(〈x1, x2〉) = x1, and π2(〈x1, x2〉) = x2.

For instance, we have π2(adec(aenc(〈n, pk(ska)〉, pk(skb)), skb)) =Eaenc pk(ska).

Our model is parameterized by a notion of message, intuitively meant to represent terms
that can actually be communicated by processes. Formally, we assume a special subset of
ground terms M, only requiring that it contains at least one public constant. Then, we
say that a ground term u is valid, denoted validM(u), whenever for any v ∈ st(u), we have
that there exists v′ ∈ M such that v =E v

′. This notion of validity will be imposed on
communicated terms. As we shall see, M can be chosen in such a way that the validity
constraint allows us to discard some terms for which the computation of some parts fail.
Note that M can also be chosen to be the set of all ground terms, yielding a trivial validity
predicate that holds for all ground terms. The following developments are parametrized
by M.

Example 2.2. The signature used in Apte is Σ = Σc ∪ Σd where:

Σc = Σ0 ∪ {aenc(·, ·), pk(·), enc(·, ·), hash(·), sign(·, ·), vk(·), 〈·, ·〉}
Σd = {adec(·, ·), dec(·, ·), check(·, ·), π1(·), π2(·)}

where Σ0 may contain some additional user-defined function symbols. The equational theory
EApte of Apte is an extension of the theory Eaenc generated by adding the following equations:

dec(enc(x, y), y) = x check(sign(x, y), vk(y)) = x

The validity predicate used in the semantics of Apte is obtained by taking M = T (Σc,N), i.e.
the ground terms built using constructor symbols. This choice allows us to discard terms for
which a failure will happen during the computation and which therefore do not correspond to
a message: e.g. π1(〈ok, dec(enc(a, k), k′)〉) is not valid since dec(enc(a, k), k′) is not equal
modulo EApte to a term in T (Σc,N).

We do not need the full applied pi calculus [1] to represent security protocols. Here, we
only consider public channels and we assume that each process communicates on a dedicated
channel. Formally, we assume a set C of channels and we consider the fragment of simple
processes without replication built on basic processes as defined in [22]. A basic process
represents a party in a protocol, which may sequentially perform actions such as waiting for
a message, checking that a message has a certain form, or outputting a message. Then, a
simple process is a parallel composition of such basic processes playing on distinct channels.

6 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Definition 2.3 (basic/simple process). The set of basic processes on c ∈ C is defined using
the following grammar (where u, v ∈ T (Σ,N ∪ X) and x ∈ X):

P,Q := 0 null
| if u = v then P else Q conditional
| in(c, x).P input
| out(c, u).P output

A simple process P = {P1, . . . , Pn} is a multiset of basic processes Pi on pairwise distinct
channels ci. We assume that null processes are removed.

Intuitively, a multiset of basic processes denotes a parallel composition. For conciseness,
we often omit brackets, null processes, and even “else 0”. Basic processes are denoted by
the letters P and Q, whereas simple processes are denoted using P and Q.

During an execution, the attacker learns the messages that have been sent on the
different public channels. Those messages are organized into a frame.

Definition 2.4 (frame). A frame Φ is a substitution whose domain is included in W and
image is included in T (Σ,N ∪ X). It is written {w . u, . . .}. A frame is ground when its
image only contains ground terms.

In the remainder of this paper, we will actually only consider ground frames that are
made of valid terms.

An extended simple process (denoted A or B) is a pair made of a simple process and a
frame. Similarly, we define extended basic processes. When the context makes it clear, we
may omit “extended” and simply call them simple processes and basic processes.

Example 2.5. We consider the protocol given in [2] designed for authenticating an agent
with another one without revealing their identities to other participants. In this protocol, A
is willing to engage in communication with B and wants to be sure that she is indeed talking
to B and not to an attacker who is trying to impersonate B. However, A does not want to
compromise her privacy by revealing her identity or the identity of B more broadly. The
participants A and B proceed as follows:

A→ B : {Na, pubA}pubB
B → A : {Na, Nb, pubB}pubA

First A sends to B a nonce Na and her public key encrypted with the public key of B. If
the message is of the expected form then B sends to A the nonce Na, a freshly generated
nonce Nb and his public key, all of this being encrypted with the public key of A. Moreover,
if the message received by B is not of the expected form then B sends out a “decoy” message:
{Nb}pubB . This message should basically look like B’s other message from the point of view
of an outsider.

Relying on the signature and equational theory introduced in Example 2.1, a session of
role A played by agent a (with private key ska) with b (with public key pkb) can be modeled
as follows:

P (ska, pkb)
def
= out(cA, aenc(〈na, pk(ska)〉, pkb)).

in(cA, x).
if 〈π1(adec(x, ska)), π2(π2(adec(x, ska)))〉 = 〈na, pkb〉 then 0

Here, we are only considering the authentication protocol. A more comprehensive model
should include the access to an application in case of a success. Similarly, a session of role B

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 7

played by agent b with a can be modeled by the following basic process, where N = adec(y, skb).

Q(skb, pka)
def
= in(cB, y).

if π2(N) = pka then out(cB, aenc(〈π1(N), 〈nb, pk(skb)〉〉, pka))
else out(cB, aenc(nb, pk(skb)))

To model a scenario with one session of each role (played by the agents a and b), we
may consider the extended process (P; Φ0) where:

• P def
= {P (ska, pk(skb)), Q(skb, pk(ska))}, and

• Φ0
def
= {w0 . pk(ska′), w1 . pk(ska), w2 . pk(skb)}.

The purpose of pk(ska ′) will be clear later on. It allows us to consider the existence of
another agent a′ whose public key pk(ska′) is known by the attacker.

2.2. Semantics. We first define a standard concrete semantics using a relation over ground
extended simple processes, i.e. extended simple processes (P; Φ) such that fv(P) = ∅ (as
said above, we also assume that Φ contains only valid ground terms). The semantics of a
ground extended simple process (P; Φ) is induced by the relation a−→ over ground extended
simple processes as defined in Figure 2.

In ({in(c, x).Q}] P; Φ) in(c,M)−−−−−→ ({Q{x 7→ u}}] P; Φ)
if M ∈ T (Σ, dom(Φ)), valid(MΦ), valid(u) and MΦ =E u

Out ({out(c, u).Q}] P; Φ) out(c, w)−−−−−→ ({Q}] P; Φ ∪ {w . u})
if w is a fresh variable, and valid(u)

Then ({if u = v then Q1 else Q2}] P; Φ) τ−→ ({Q1}] P; Φ)
if u =E v, valid(u), and valid(v)

Else ({if u = v then Q1 else Q2}] P; Φ) τ−→ ({Q2}] P; Φ)
if u 6=E v or ¬valid(u) or ¬valid(v)

where c ∈ C, w ∈ W and x ∈ X .

Figure 2: Concrete semantics

A process may input any valid term that an attacker can build (rule In): {x 7→ u} is a
substitution that replaces any occurrence of x with u. Once a recipe M is fixed, we may
note that there are still different instances of the rule, but only in the sense that u is chosen
modulo the equational theory E. In practice, of course, not all such u are enumerated. How
this is achieved in practice is orthogonal to the theoretical development carried out here.
In the Out rule, we enrich the attacker’s knowledge by adding the newly output term u,
with a fresh handle w, to the frame. The two remaining rules are unobservable (τ action)
from the point of view of the attacker. When M contains all the ground terms, valid(u) is
true for any term u and this semantics coincides with the one defined in [9]. However, this
parameter gives us enough flexibility to obtain a semantics similar to the one used in Apte,
and therefore formally prove in Section 6 how to integrate our techniques in Apte.

The relation A a1 · . . . · ak−−−−−−→ B between extended simple processes, where k ≥ 0 and each ai
is an observable or a τ action, is defined in the usual way. We also consider the relation

tr
==⇒

8 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

defined as follows: A
tr

==⇒ B if, and only if, there exists a1 · . . . · ak such that A a1 · . . . · ak−−−−−−→ B,
and tr is obtained from a1 · . . . · ak by erasing all occurrences of τ .

Example 2.6. Consider the simple process (P; Φ0) introduced in Example 2.5 (with M
equal to T (Σc,N) as in Apte). We have:

(P; Φ0) out(cA, w3) · in(cB, w3) · τ · out(cB, w4) · in(cA, w4) · τ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (∅; Φ).

This trace corresponds to the normal execution of one instance of the protocol. The two
silent actions have been triggered using the Then rule. The resulting frame Φ is as follows:

Φ0] {w3 . aenc(〈na, pk(ska)〉, pk(skb)), w4 . aenc(〈na, 〈nb, pk(skb)〉〉, pk(ska))}.

2.3. Trace equivalence. Many interesting security properties, such as privacy-type proper-
ties studied, e.g. in [5], are formalized using the notion of trace equivalence. Before defining
trace equivalence, we first introduce the notion of static equivalence that compares sequences
of messages.

Definition 2.7 (static equivalence). Two frames Φ and Φ′ are in static equivalence, Φ ∼ Φ′,
when we have that dom(Φ) = dom(Φ′), and:

• valid(MΦ) ⇔ valid(MΦ′) for any term M ∈ T (Σ,dom(Φ)); and
• MΦ =E NΦ ⇔ MΦ′ =E NΦ′ for any terms M,N ∈ T (Σ, dom(Φ)) such that valid(MΦ)

and valid(NΦ).

Intuitively, two frames are equivalent if an attacker cannot see the difference between
the two situations they represent, i.e. they satisfy the same equalities and failures.

Example 2.8. Consider the frame Φ given in Example 2.6 and the frame Φ′ below:

Φ′
def
= Φ0] { w3 . aenc(〈na, pk(ska′)〉, pk(skb)), w4 . aenc(nb, pk(skb)) }.

We have that Φ ∼ Φ′. This is a non-trivial equivalence. Intuitively, it holds since the attacker
is not able to decrypt any of the ciphertexts, and each ciphertext contains a nonce that
prevents him to build it from its components.

Now, if we decide to give access to na to the attacker, i.e. considering Φ+ = Φ]{w5.na}
and Φ′+ = Φ′] {w5 . na}, then the two frames Φ+ and Φ′+ are not in static equivalence
anymore as witnessed by M = aenc(〈w5, w1〉, w2) and N = w3. Indeed, we have that
MΦ+ =Eaenc NΦ+ whereas MΦ′+ 6=Eaenc NΦ′+, and all these witnesses are valid.

Definition 2.9 (trace equivalence). Let A and B be two extended simple processes. We

have that A v B if, for every sequence of actions tr such that A
tr

==⇒ (P; Φ), there exists

(P ′; Φ′) such that B
tr

==⇒ (P ′; Φ′) and Φ ∼ Φ′. The processes A and B are trace equivalent,
denoted by A ≈ B, if A v B and B v A.

Example 2.10. Intuitively, the private authentication protocol presented in Example 2.5
preserves anonymity if an attacker cannot distinguish whether b is willing to talk to a
(represented by the process Q(skb, pk(ska))) or willing to talk to a′ (represented by the process
Q(skb, pk(ska ′))), provided a, a′ and b are honest participants. This can be expressed relying
on the following equivalence:

(Q(skb, pk(ska)); Φ0)
?
≈ (Q(skb, pk(ska ′)); Φ0).

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 9

For illustration purposes, we also consider a variant of the process Q, denoted Q0, where
its else branch has been replaced by 0 (i.e. the null process). We will see that the “decoy”
message plays a crucial role to ensure privacy. We have that:

(Q0(skb, pk(ska)); Φ0) in(cB, aenc(〈w1, w1〉, w2)) · τ · out(cB, w3)−−−−−−−−−−−−−−−−−−−−−−−→ (∅; Φ)

where Φ = Φ0] {w3 . aenc(〈pk(ska), 〈nb, pk(skb)〉〉, pk(ska))}. We may note that this trace
does not correspond to a normal execution of the protocol. Still, the first input is fed with the
message aenc(〈pk(ska), pk(ska)〉, pk(skb)) which is a message of the expected format from
the point of view of the process Q0(skb, pk(ska)). Therefore, once conditionals are positively
evaluated, the output out(cB, w3) can be triggered.

This trace has no counterpart in (Q0(skb, pk(ska ′)); Φ0). Indeed, we have that:

(Q0(skb, pk(ska ′)); Φ0) in(cB, aenc(〈w1, w1〉, w2)) · τ−−−−−−−−−−−−−−−→ (∅; Φ0).

Hence, we have that (Q0(skb, pk(ska)); Φ0) 6≈ (Q0(skb, pk(ska ′)); Φ0).
However, it is the case that (Q(skb, pk(ska)); Φ0) ≈ (Q(skb, pk(ska ′)); Φ0). This equiva-

lence can be checked using the tool Apte [17] within few seconds for a simple scenario as the
one considered here, and that takes few minutes/days as soon as we want to consider 2/3
sessions of each role.

3. Compression based on grouping actions

Our first refinement of the semantics, which we call compression, is closely related to focusing
from proof theory [4]: we will assign a polarity to processes and constrain the shape of
executed traces based on those polarities. This will provide a first significant reduction
of the number of traces to consider when checking equivalence-based properties between
simple processes. Moreover, compression can easily be used as a replacement for the usual
semantics in verification algorithms.

The key idea is to force processes to perform all enabled output actions as soon as
possible. In our setting, we can even safely force them to perform a complete block of input
actions followed by ouput actions.

Example 3.1. Consider the process (P ; Φ) with P = {in(c1, x).P1, out(c2, b).P2}. In order
to reach ({P1{x 7→ u}, P2}; Φ ∪ {w . b}), we have to execute the action in(c1, x) (using a
recipe M that allows one to deduce u) and the action out(c2, b) (giving us a label of the
form out(c2, w)). In case of reachability properties, the execution order of these actions only
matters if M uses w. Thus we can safely perform the outputs in priority.

The situation is more complex when considering trace equivalence. In that case, we
are concerned not only with reachable states, but also with how those states are reached.
Quite simply, traces matter. Thus, if we want to discard the trace in(c1,M).out(c2, w) when
studying process P and consider only its permutation out(c2, w).in(c1,M), we have to make
sure that the same permutation is available on the other process. The key to ensure that
identical permutations will be available on both sides of the equivalence is our restriction to
the class of simple processes.

10 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

3.1. Compressed semantics. We now introduce the compressed semantics. Compression
is an optimisation, since it removes some interleavings. But it also gives rise to convenient
“macro-actions”, called blocks, that combine a sequence of inputs followed by some outputs,
potentially hiding silent actions. Manipulating those blocks rather than indiviual actions
makes it easier to define our second optimisation.

For sake of simplicity, we consider initial simple processes. A simple process A = (P ; Φ)
is initial if for any P ∈ P , we have that P = 0, P = in(c, x).P ′ or P = out(c, u).P ′ for some
term u such that ¬valid(u). In other words, each basic process composing A starts with an
input unless it is blocked due to an unfeasible output.

Example 3.2. Continuing Example 2.5, ({P (ska, pk(skb)), Q(skb, pk(ska))}; Φ0) is not
initial. Instead, we may consider ({Pinit, Q(skb, pk(ska))}; Φ0) where

Pinit
def
= in(cA, z).if z = start then P (ska, pk(skb))

assuming that start is a (public) constant in our signature.

In

(P ; Φ) in(c,M)−−−−−→ (P ′; Φ′) (P ′; Φ′)
tr−−→→i∗ (P ′′; Φ′′)

(P ; Φ)
in(c,M)·tr−−−−−−−→→` (P ′′; Φ′′)

with ` ∈ {i∗; i+}

Out

(P ; Φ) out(c, w)−−−−−→ (P ′; Φ′) (P ′; Φ′)
tr−−→→o∗ (P ′′; Φ′′)

(P ; Φ)
out(c,w)·tr−−−−−−−→→` (P ′′; Φ′′)

with ` ∈ {i∗; o∗}

Tau

(P ; Φ) τ−−→ (P ′; Φ′) (P ′; Φ′)
tr−−→→` (P ′′; Φ′′)

(P ; Φ)
tr−−→→` (P ′′; Φ′′)

with ` ∈ {o∗; i+; i∗}

Proper (0; Φ)
ε−−→→o∗ (0; Φ) (in(c, x).P ; Φ)

ε−−→→o∗ (in(c, x).P ; Φ)

¬valid(u)

(out(c, u).P ; Φ)
ε−−→→o∗ (out(c, u).P ; Φ)

Improper (0; Φ)
ε−−→→i∗ (⊥; Φ)

¬valid(u)

(out(c, u).P ; Φ)
ε−−→→i∗ (⊥; Φ)

Figure 3: Focused semantics on extended basic processes

The main idea of the compressed semantics is to ensure that when a basic process starts
executing some actions, it actually executes a maximal block of actions. In analogy with
focusing in sequent calculus, we say that the basic process takes the focus, and can only
release it under particular conditions. We define in Figure 3 how blocks can be executed by
extended basic processes. In that semantics, the label ` denotes the stage of the execution,
starting with i+, then i∗ after the first input and o∗ after the first output.

Example 3.3. Going back to Example 2.10, we have that:

(Q0(skb, pk(ska)); Φ0)
in(cB ,aenc(〈w1,w1〉,w2))·out(cB ,w3)−−−−−−−−−−−−−−−−−−−−−−−−→→i+ (0; Φ)

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 11

where Φ is as given in Example 2.10. As illustrated by the proof tree below, we also have

(Q0(skb, pk(ska ′)); Φ0)
tr−→→i+ (⊥; Φ0) with tr = in(cB, aenc(〈w1, w1〉, w2)).

(Q0(skb, pk(ska ′)); Φ0) tr−→ (Q′; Φ0)

(Q′; Φ0) τ−→ (0; Φ0)
Improper

(0; Φ0)
ε−→→i∗ (⊥; Φ0)

Tau
(Q′; Φ0)

ε−→→i∗ (⊥; Φ0)
In

(Q0(skb, pk(ska ′)); Φ0)
tr−→→i+ (⊥; Φ0)

where Q′
def
= if pk(ska) = pk(ska ′) then out(cB, u) for some message u.

Then we define the relation −→c between extended simple processes as the least reflexive
transitive relation satisfying the rules given in Figure 4.

Block

(Q; Φ)
tr−−→→i+ (Q′; Φ′) Q′ 6= ⊥

({Q}] P; Φ) tr−−→c ({Q′}] P; Φ′) Failure

(Q; Φ)
tr−−→→i+ (Q′; Φ′) Q′ = ⊥

({Q}] P; Φ) tr−−→c (∅; Φ′)

Figure 4: Compressed semantics on extended simple processes

A basic process is allowed to properly end a block execution when it has performed
outputs and it cannot perform any more output or unobservable action (τ). Accordingly,
we call proper block a non-empty sequence of inputs followed by a non-empty sequence of
outputs, all on the same channel. For completeness, we also allow blocks to be terminated
improperly, when the process that is executing has performed inputs but no output, and
has reached the null process 0 or an output which is blocked. Accordingly, we call improper
block a non-empty sequence of inputs on the same channel.

Example 3.4. Continuing Example 3.3, using the rule block, we can derive

({Pinit, Q0(skb, pk(ska))}; Φ0) in(cB, aenc(〈w1, w1〉, w2)) · out(cB, w3)−−−−−−−−−−−−−−−−−−−−−−−→c (Pinit; Φ)

where Pinit is defined in Example 3.2. We can also derive

({Pinit, Q0(skb, pk(ska ′))}; Φ0) in(cB, aenc(〈w1, w1〉, w2))−−−−−−−−−−−−−−−→c (∅; Φ0)

using the rule Failure. Note that the resulting simple process is reduced to ∅ even though
Pinit has never been executed.

At first sight, killing the whole process when applying the rule Failure may seem too
strong. However, even if this kind of scenario is observable by the attacker, it does not bring
him any new knowledge, hence it plays only a limited role in trace equivalence: it is in fact
sufficient to consider such improper blocks only at the end of traces.

Example 3.5. Consider P = { in(c, x).in(c, y), in(c′, x′) }. Its compressed traces are of
the form in(c,M).in(c,N) and in(c′,M ′). The concatenation of those two improper traces
cannot be executed in the compressed semantics. Intuitively, we do not loose anything for
trace equivalence, because if a process can exhibit those two improper blocks they must be in
parallel and hence considering their combination is redundant.

We now define the notions of compressed trace equivalence (denoted ≈c) and compressed
trace inclusion (denoted vc), similarly to ≈ and v but relying on −→c instead of =⇒.

12 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Definition 3.6 (compressed trace equivalence). Let A and B be two extended simple
processes. We have that A vc B if, for every sequence of actions tr such that A tr−→c (P; Φ),
there exists (P ′; Φ′) such that B tr−→c (P ′; Φ′) and Φ ∼ Φ′. The processes A and B are
compressed trace equivalent, denoted by A ≈c B, if A vc B and B vc A.

Example 3.7. We have that ({Pinit, Q0(skb, pk(ska))}; Φ0) 6≈c ({Pinit, Q0(skb, pk(ska ′))}; Φ0).
The trace in(cB, aenc(〈w1, w1〉, w2)) ·out(cB, w3) exhibited in Example 3.4 is executable from
({Pinit, Q0(skb, pk(ska))}; Φ0). However, this trace has no counterpart when starting with
({Pinit, Q0(skb, pk(ska ′))}; Φ0).

3.2. Soundness and completeness. We shall now establish soundness and completeness
of the compressed semantics. More precisely, we show that the two relations ≈ and ≈c
coincide on initial simple processes (Theorem 3.11). All the proofs of this section are given
in Appendix B.

Intuitively, we can always permute output (resp. input) actions occurring on distinct
channels, and we can also permute an output with an input if the outputted message is not
used to build the inputted term. More formally, we define an independence relation Ia over
actions as the least symmetric relation satisfying:

• out(ci, wi) Ia out(cj , wj) and in(ci,Mi) Ia in(cj ,Mj) as soon as ci 6= cj ,
• out(ci, wi) Ia in(cj ,Mj) when in addition wi 6∈ fv(Mj).

Then, we consider =Ia to be the least congruence (w.r.t. concatenation) satisfying:

act · act′ =Ia act′ · act for all act and act′ with act Ia act′,
and we show that processes are equally able to execute equivalent (w.r.t. =Ia) traces.

Lemma 3.8. Let A, A′ be two extended simple processes and tr, tr′ be such that tr =Ia tr′.

We have that A
tr

==⇒ A′ if, and only if, A
tr′

==⇒ A′.

Now, considering traces that are only made of proper blocks, a strong relationship can
be established between the two semantics.

Proposition 3.9. Let A, A′ be two simple extended processes, and tr be a trace made of

proper blocks such that A tr−→c A
′. Then we have that A

tr
==⇒ A′.

Actually, the result stated in Proposition 3.9 immediately follows from the observation
that −→c is included in =⇒ for traces made of proper blocks since for them Failure cannot
arise.

Proposition 3.10. Let A, A′ be two initial simple processes, and tr be a trace made of

proper blocks such that A
tr

==⇒ A′. Then, we have that A tr−→c A
′.

This result is more involved and relies on the additional hypothesis that A and A′ have
to be initial to ensure that no Failure will arise.

Theorem 3.11. Let A and B be two initial simple processes. We have that

A ≈ B ⇐⇒ A ≈c B.

Proof sketch, details in Appendix B. The main difficulty is that Proposition 3.10 only con-
siders traces composed of proper blocks whereas we have to consider all traces. To prove
the ⇒ implication, we have to pay attention to the last block of the compressed trace that

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 13

can be an improper one (composed of several inputs on a channel c). The ⇐ implication is
more difficult since we have to consider a trace tr of a process A that is an interleaving of
some prefix of proper and improper blocks. We will first complete it with tr+ to obtain an
interleaving of proper and improper blocks. We then reorder the actions to obtain a trace tr′

such that tr · tr+ =Ia tr′ and tr′ = trio · trin where trio is made of proper blocks while trin is
made of improper blocks. For each improper block b of trin, we show by applying Lemma 3.8
and Proposition 3.10 that A is able to perform trio in the compressed semantics and the
resulting extended process can execute the improper block b. We thus have that A is able
to perform trio · b in the compressed semantics and thus B as well. Finally, we show that
the executions of all those (concurrent) blocks b can be put together, obtaining that B can
perform tr′, and thus tr as well.

Note that, as illustrated by the following example, the two underlying notions of trace
inclusion do not coincide.

Example 3.12. Let P = {in(c, x)} and Q = {in(c, x).out(c, n)} accompanied with an
arbitrary frame Φ. We have (P; Φ) v (Q; Φ) but (P; Φ) 6vc (Q; Φ) since in the compressed
semantics (Q; Φ) is not allowed to stop its execution after its first input.

4. Deciding trace equivalence via constraint solving

In this section, we propose a symbolic semantics for our compressed semantics following, e.g.
[39, 12]. Such a semantics avoids potentially infinite branching of our compressed semantics
due to inputs from the environment. Correctness is maintained by associating with each
process a set of constraints on terms.

4.1. Constraint systems. Following the notations of [12], we consider a new set X 2 of
second-order variables, denoted by X, Y , etc. We shall use those variables to abstract over
recipes. We denote by fv2(o) the set of free second-order variables of an object o, typically a
constraint system. To prevent ambiguities, we shall use fv1 instead of fv for free first-order
variables.

Definition 4.1 (constraint system). A constraint system C = (Φ;S) consists of a frame Φ,
and a set of constraints S. We consider three kinds of constraints:

D `?
X x u=? v u 6=? v

where D ⊆ W, X ∈ X 2, x ∈ X and u, v ∈ T (Σ,N ∪ X).

The first kind of constraint expresses that a second-order variableX has to be instantiated
by a recipe that uses only variables from a certain set D, and that the obtained term should
be x. The handles in D represent terms that have been previously outputted by the process.

We are not interested in general constraint systems, but only consider constraint systems
that are well-formed. Given a constraint system C, we define a dependency order on first-
order variables in fv1(C) ∩ X by declaring that x depends on y if, and only if, S contains a
deduction constraint D `?

X x with y ∈ fv1(Φ(D)). A constraint system C is well-formed if:

• the dependency relationship is acyclic, and
• for every x ∈ fv1(C) ∩ X (resp. X ∈ fv2(C)) there is a unique constraint D `?

X x in S.

14 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

For X ∈ fv2(C), we write DC(X) for the domain D ⊆ W of the deduction constraint D `?
X x

associated to X in C.

Example 4.2. Continuing Example 2.5, let Φ = Φ0]{w3.aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska))}
with N = adec(y, skb), and S be a set containing two constraints:

{w0, w1, w2} `?
Y y and π2(N) =? pk(ska).

We have that C = (Φ;S) is a well-formed constraint system. There is only one first-order
variable y ∈ fv1(C) ∩ X , and it does not occur in fv1(Φ({w0, w1, w2})), which is empty.
Moreover, there is indeed a unique constraint that introduces y.

Our notion of well-formed constraint systems is in line with what is used, e.g. in [39, 12].
We use a simpler variant here that is sufficient for our purpose.

Definition 4.3 (solution). A solution of a constraint system C = (Φ;S) is a substitution θ
such that dom(θ) = fv2(C), and Xθ ∈ T (Σ, DC(X)) for any X ∈ dom(θ). Moreover, we
require that there exists a ground substitution λ with dom(λ) = fv1(C) such that:

• for every D `?
X x in S, we have (Xθ)(Φλ) =E xλ, valid((Xθ)(Φλ)), and valid(xλ);

• for every u=? v in S, we have uλ =E vλ, valid(uλ), and valid(vλ); and

• for every u 6=? v in S, we have uλ 6=E vλ, or ¬valid(uλ), or ¬valid(vλ).

Moreover, we require that all the terms occurring in Φλ are valid. The set of solutions
of a constraint system C is denoted Sol(C). Since we consider constraint systems that are
well-formed, the substitution λ is unique modulo E given θ ∈ Sol(C). We denote it by λθ
when C is clear from the context.

Note that the validity constraints in the notion of solution of symbolic processes reflect
the validity constraints of the concrete semantics (i.e. outputted and inputted terms must
be valid and the equality between terms requires the two terms to be valid). Since we
consider well-formed constraint systems, we may note that the substitution λ above is not
obtained through unification. This substitution is entirely determined (modulo E) from θ by
considering the deducibility constraints only.

Example 4.4. Consider again the constraint system C given in Example 4.2. We have
that θ = {Y 7→ aenc(〈w1, w1〉, w2)} is a solution of C. Its associated first-order solution is
λθ = {y 7→ aenc(〈pk(ska), pk(ska)〉, pk(skb))}.

4.2. Symbolic processes: syntax and semantics. Given an extended simple process
(P; Φ), we compute the constraint systems capturing its possible executions, starting from
the symbolic process (P; Φ; ∅). Note that we are now manipulating processes that are not
ground anymore, but may contain free variables.

Definition 4.5 (symbolic process). A symbolic process is a tuple (P; Φ;S) where (Φ;S) is
a constraint system and fv1(P) ⊆ (fv1(S) ∩ X).

We give in Figure 5 a standard symbolic semantics for symbolic basic processes. From
this semantics given on symbolic basic processes only, we derive a semantics on simple
symbolic processes in a natural way:

(P ; Φ;S) α7−→ (P ′; Φ′;S ′)
({P}] P; Φ;S) α7−→ ({P ′}] P; Φ′;S ′)

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 15

In (in(c, y).P ; Φ;S) in(c,X)7−−−−→ (P{y 7→ x}; Φ;S ∪ {dom(Φ)`?
X x})

where X (resp. x) is a fresh second-order (resp. first-order) variable

Out (out(c, u).P ; Φ;S) out(c, w)7−−−−−→ (P ; Φ ∪ {w . u};S)
where w is a fresh first-order variable

Then (if u = v then P else Q; Φ;S) τ7−−→ (P ; Φ;S ∪ {u=? v})
Else (if u = v then P else Q; Φ;S) τ7−−→ (Q; Φ;S ∪ {u 6=? v})

Figure 5: Symbolic semantics for symbolic basic processes

We can also derive our compressed symbolic semantics tr7−→c following the same pattern
as for the concrete semantics (see Figure 6). We consider interleavings that execute maximal
blocks of actions, and we allow improper termination of a block only at the end of a trace.
Note that the ¬valid(u) conditions of the third Proper rule and the second Improper rule
are replaced by u 6=? u constraints in their symbolic counterparts.

In

(P ; Φ;S) in(c,X)7−−−−→ (P ′; Φ′;S ′) (P ′; Φ′;S ′) tr7−−→→i∗ (P ′′; Φ′′;S ′′)

(P ; Φ;S)
in(c,X).tr7−−−−−−→→` (P ′′; Φ′′;S ′′)

with ` ∈ {i∗; i+}

Out

(P ; Φ;S) out(c, w)7−−−−−→ (P ′; Φ′;S ′) (P ′; Φ′;S ′) tr7−−→→o∗ (P ′′; Φ′′;S ′′)

(P ; Φ;S)
out(c,w).tr7−−−−−−−→→` (P ′′; Φ′′;S ′′)

with ` ∈ {i∗; o∗}

Tau

(P ; Φ;S) τ7−→ (P ′; Φ′;S ′) (P ′; Φ′;S ′) tr7−−→→` (P ′′; Φ′′;S ′′)

(P ; Φ;S)
tr7−−→→` (P ′′; Φ′′;S ′′)

with ` ∈ {o∗; i+; i∗}

Proper (0; Φ;S)
ε7−−→→o∗ (0; Φ;S) (in(c, x).P ; Φ;S)

ε7−−→→o∗ (in(c, x).P ; Φ;S)

(out(c, u).P ; Φ;S)
ε7−−→→o∗ (out(c, u).P ; Φ;S ∪ {u 6=? u})

Improper (0; Φ;S)
ε7−−→→i∗ (⊥; Φ;S) (out(c, u).P ; Φ;S)

ε7−−→→i∗ (⊥; Φ;S ∪ {u 6=? u})

Block Failure

(Q; Φ;S)
tr7−−→→i+ (Q′; Φ′;S ′) Q′ 6= ⊥

({Q}] P; Φ;S) tr7−−→c ({Q′}] P; Φ′;S ′)
(Q; Φ;S)

tr7−−→→i+ (Q′; Φ′;S ′) Q′ = ⊥
({Q}] P; Φ;S) tr7−−→c (∅; Φ′;S ′)

Figure 6: Compressed symbolic semantics

Example 4.6. Continuing Example 2.5, we have that ({Q0(skb, pk(ska))}; Φ0; ∅) tr7−→c

(∅; Φ;S) where:

• tr = in(cB, Y) · out(cB, w3), and
• C = (Φ;S) is the constraint system defined in Example 4.2.

16 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

We are now able to define the notion of equivalence associated to these two semantics,
namely symbolic trace equivalence (denoted ≈s) and symbolic compressed trace equivalence
(denoted ≈sc). For a trace tr, we note obs(tr) the trace obtained from tr by removing all τ
actions.

Definition 4.7. Let A = (P; Φ) and B = (Q; Ψ) be two simple processes. We have that
A vs B when, for every trace tr such that (P ; Φ; ∅) tr7−→ (P ′; Φ′;SA), for every θ ∈ Sol(Φ′;SA),
we have that:

• (Q; Ψ; ∅) tr′7−→ (Q′; Ψ′;SB) where obs(tr′) = obs(tr) with θ ∈ Sol(Ψ′;SB), and
• Φ′λAθ ∼ Ψ′λBθ where λAθ (resp. λBθ) is the substitution associated to θ w.r.t. (Φ′;SA) (resp.

(Ψ′;SB)).

We have that A and B are in trace equivalence w.r.t. 7−→, denoted A ≈s B, if A vs B and
B vs A.

We derive similarly the notion of trace equivalence induced by 7−→c. We do not have to
take care of the τ actions since they are performed implicitly in the compressed semantics.

Definition 4.8. Let A = (P; Φ) and B = (Q; Ψ) be two extended simple processes. We
have that A vsc B when, for every trace tr such that (P; Φ; ∅) tr7−→c (P ′; Φ′;SA), for every
θ ∈ Sol(Φ′;SA), we have that:

• (Q; Ψ; ∅) tr7−→c (Q′; Ψ′;SB) with θ ∈ Sol(Ψ′;SB), and
• Φ′λAθ ∼ Ψ′λBθ where λAθ (resp. λBθ) is the substitution associated to θ w.r.t. (Φ′;SA) (resp.

(Ψ′;SB)).

We have that A and B are in trace equivalence w.r.t. 7−→c, denoted A ≈sc B, if A vsc B and
B vsc A.

Example 4.9. We have that ({Q0(skb, pk(ska))}; Φ0) 6vsc ({Q0(skb, pk(ska ′))}; Φ0). Contin-
uing Example 4.6, we have seen that:

• ({Q0(skb, pk(ska))}; Φ0; ∅) tr7−→c (∅; Φ;S) (see Example 4.6), and
• θ = {Y 7→ aenc(〈w1, w1〉, w2)} is a solution of C = (Φ;S) (see Example 4.4).

The only symbolic process that is reachable from ({Q0(skb, pk(ska ′))}; Φ0; ∅) using tr is
(∅; Φ′;S ′) with:

• Φ′ = Φ0] {w3 . aenc(〈π2(N), 〈nb, pk(skb)〉〉, pk(ska′))}, and
• S ′ =

{
{w0, w1, w2} `?

Y y; π2(N) =? pk(ska′)
}

.

One can check that θ is not a solution of (Φ′;S ′).

For processes without replication, the symbolic transition system induced by 7−→ (resp 7−→c)
is essentially finite. Indeed, the choice of fresh names for handles and second-order variables
does not matter, and therefore the relations 7−→ and 7−→c are essentially finitely branching.
Moreover, the length of traces of a simple process is obviously bounded. Thus, deciding
(symbolic) trace equivalence between processes boils down to the problem of deciding a
notion of equivalence between sets of constraint systems. This problem is well-studied and
several procedures already exist [12, 24], e.g. Apte [20] (see Section 6).

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 17

4.3. Soundness and completeness. It is well-known that the symbolic semantics 7−→ is
sound and complete w.r.t. −→, and therefore that the two underlying notions of equivalence,
namely ≈s and ≈, coincide. This has been proved for instance in [12, 22]. Using the same
approach, we can show soundness and completeness of our symbolic compressed semantics
w.r.t. our concrete compressed semantics. We have:

• Soundness: each transition in the compressed symbolic semantics represents a set of
transitions that can be done in the concrete compressed semantics.
• Completeness : each transition in the compressed semantics can be matched by a transition

in the compressed symbolic semantics.

These results are formally expressed in Proposition 4.10 and Proposition 4.11 below.
These propositions are simple consequences of similar propositions that link the (small-step)
symbolic semantics and the (small-step) standard semantics. Lifting these results to the
compressed semantics is straightforward since both semantics are built using exactly the
same scheme (see Figures 3 and 6).

Proposition 4.10. Let (P; Φ) be an extended simple process such that (P; Φ; ∅) tr7−→c

(P ′; Φ′;S ′), and θ ∈ Sol(Φ′;S ′). We have that (P ; Φ) trθ−→c (P ′λ; Φ′λ) where λ is the first-order
solution of (P ′; Φ′;S ′) associated to θ.

Proposition 4.11. Let (P; Φ) be an extended simple process such that (P; Φ) tr−→c (P ′; Φ′).
There exists a symbolic process (Ps; Φs;S), a solution θ ∈ Sol(Φs;S), and a sequence trs
such that:

• (P; Φ; ∅) trs7−→c (Ps; Φs;S);
• (P ′; Φ′) = (Psλ; Φsλ); and
• tr = trsθ

where λ is the first-order solution of (Ps; Φs;S) associated to θ.

Finally, relying on these two results, we can establish that symbolic trace equivalence
(≈sc) exactly captures compressed trace equivalence (≈c). Actually, both inclusions can be
established separately.

Theorem 4.12. For any extended simple processes A and B, we have that:

A vc B ⇐⇒ A vsc B.

As an immediate consequence of Theorem 3.11 and Theorem 4.12, we obtain that the
relations ≈ and ≈sc coincide.

Corollary 4.13. For any initial simple processes A and B, we have that:

A ≈ B ⇐⇒ A ≈sc B.

5. Reduction using dependency constraints

Unlike compression, which is essentially based on the input/output nature of actions, our
second optimisation takes into account the exchanged messages. Let us first illustrate one
simple instance of our optimisation and how dependency constraints [40] may be used to
incorporate it into symbolic semantics.

18 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Example 5.1. Let Pi = in(ci, xi).out(ci, ui).P
′
i with i ∈ {1, 2}, and Φ0 = {w0 . n} be a

ground frame. We consider the simple process A = ({P1, P2}; Φ0), and the two symbolic
interleavings depicted in Figure 7. The two resulting symbolic processes are of the form
({P ′1, P ′2}; Φ;Si) where Φ = Φ0] {w1 . u1, w2 . u2},

S1 =
{
w0 `?

X1
x1; w0, w1 `?

X2
x2

}
, and S2 =

{
w0 `?

X2
x2; w0, w2 `?

X1
x1

}
.

The sets of concrete processes that these two symbolic processes represent are different,
which means that we cannot discard any of those interleavings. However, these sets have
a significant overlap corresponding to concrete instances of the interleaved blocks that are
actually independent, i.e. where the output of one block is not necessary to obtain the input
of the next block. In order to avoid considering such concrete processes twice, we may add
a dependency constraint X1nw2 in S2, whose purpose is to discard all solutions θ such
that the message x1λθ can be derived without using w2 . u2λθ. For instance, the concrete
trace in(c2, w0) · out(c2, w2) · in(c1, w0) · out(c1, w1) would be discarded thanks to this new
constraint.

•

•

•

•

•

•

•

•

•

in(c1, X1)

out(c1, w1)

in(c2, X2)

out(c2, w2)

in(c2, X2)

out(c2, w2)

in(c1, X1)

out(c1, w1)

Figure 7: Two symbolic compressed traces (Example 5.1)

The idea of [40] is to accumulate dependency constraints generated whenever such a
pattern is detected in an execution, and use an adapted constraint resolution procedure to
narrow and eventually discard the constrained symbolic states. We seek to exploit similar
ideas for optimising the verification of trace equivalence rather than reachability. This
requires extra care, since pruning traces as described above may break completeness when
considering trace equivalence. As before, the key to obtain a valid optimisation will be to
discard traces in a similar way on the two processes being compared. In addition to handling
this necessary subtlety, we also propose a new proof technique for justifying dependency
constraints. The generality of that technique allows us to add more dependency constraints,
taking into account more patterns than the simple one from the previous example.

5.1. Reduced semantics. We start by introducing dependency constraints.

Definition 5.2. A dependency constraint is a constraint of the form
−→
Xn−→w where

−→
X is a

vector of second-order variables in X 2, and −→w is a vector of handles, i.e. variables in W.
Given a constraint system C = (Φ;S), a set SD of dependency constraints, and θ ∈ Sol(C).

We write θ |=(Φ;S) SD when θ also satisfies the dependency constraints in SD, i.e. when

for each
−→
Xn−→w ∈ SD there is some Xi ∈

−→
X such that for all recipes M ∈ T (Σ, DC(Xi))

satisfying M(Φλθ)=E(Xiθ)(Φλθ) and valid(M(Φλθ)), we have that fv1(M) ∩ −→w 6= ∅ where
λθ is the substitution associated to θ w.r.t. (Φ;S).

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 19

Intuitively, a dependency constraint
−→
Xn−→w is satisfied as soon as at least one message

among those in (
−→
Xθ)(Φλθ) can only be deduced by using a message stored in −→w .

Example 5.3. Continuing Example 5.1, assume that u1 = u2 = n and let θ = {X1 7→
w2;X2 7→ w0}. We have that θ ∈ Sol(C2) and the substitution associated to θ w.r.t. C2 is
λ2
θ = {x1 7→ n;x2 7→ n}. However, θ does not satisfy the dependency constraint X1nw2.

Indeed, we have that w0(Φλ2
θ) =E (X1θ)(Φλ

2
θ) whereas {w0} ∩ {w2} = ∅. Intuitively, this

means that there is no good reason to postpone the execution of the block on channel c1 if
the output on c2 is not useful to build the message used in input on c1.

We shall now define formally how dependency constraints will be added to our constraint
systems. For this, we fix an arbitrary total order ≺ on channels. Intuitively, this order
expresses which executions should be favored, and which should be allowed only under

dependency constraints. To simplify the presentation, we use the notation ioc(
−→
X,−→w) as a

shortcut for in(c,X1)·. . .·in(c,X`)·out(c, w1)·. . .·out(c, wk) assuming that
−→
X = (X1, . . . , X`)

and −→w = (w1, . . . , wk). Note that
−→
X and/or −→w may be empty.

Definition 5.4 (generation of dependency constraints). Let c be a channel, and tr =

ioc1 (
−→
X1,
−→w1) · . . . · iocn (

−→
Xn,
−→wn) be a trace. If there exists a rank k ≤ n such that c ≺ ck

and ci ≺ c for all k < i ≤ n, then dep (tr, c) = { w | w ∈ −→wi with k ≤ i ≤ n}. Otherwise, we
have that dep (tr, c) = ∅.

Then, given a trace tr, we define Deps (tr) by Deps (ε) = ∅ and

Deps
(
tr · ioc(

−→
X,−→w)

)
=

{
Deps (tr) ∪ {

−→
Xndep (tr, c)} if dep (tr, c) 6= ∅

Deps (tr) otherwise

Intuitively, Deps (tr) corresponds to the accumulation of the dependency constraints
generated for all prefixes of tr.

Example 5.5. Let a, b, and c be channels in C such that a ≺ b ≺ c. The depen-
dency constraints generated during the symbolic execution of a simple process of the form
({in(a, xa).out(a, ua), in(b, xb).out(b, ub), in(c, xc).out(c, uc)}; Φ) are depicted below.

•

• • •

• • • • • •

• • • • • •

ioa iob ioc

iob ioc ioa ioc
ioa

iob

ioc iob ioc ioa iob ioa

We use ioi as a shortcut for in(i,Xi) ·out(i, wi) and we represent dependency constraints
using arrows. For instance, on the trace ioa · ioc · iob, a dependency constraint of the form
Xbnwc (represented by the left-most arrow) is generated. Now, on the trace ioc · ioa · iob
we add Xanwc after the second transition, and Xbn{wc, wa} (represented by the dashed
2-arrow) after the third transition. Intuitively, the latter constraint expresses that iob is only
allowed to come after ioc if it depends on it, possibly indirectly through ioa.

Dependency constraints give rise to a new notion of trace equivalence, which further
refines the previous ones.

20 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Definition 5.6 (reduced trace equivalence). Let A = (P; Φ) and B = (Q; Ψ) be two
extended simple processes. We have that A vsr B when, for every sequence tr such that
(P; Φ; ∅) tr7−→c (P ′; Φ′;SA), for every θ ∈ Sol(Φ′;SA) such that θ |=(Φ′;SA) Deps (tr), we have
that:

• (Q; Ψ; ∅) tr7−→c (Q′; Ψ′;SB) with θ ∈ Sol(Ψ′;SB), and θ |=(Ψ′;SB) Deps (tr);

• Φ′λAθ ∼ Ψ′λBθ where λAθ (resp. λBθ) is the substitution associated to θ w.r.t. (Φ′;SA) (resp.
(Ψ′;SB)).

We have that A and B are in reduced trace equivalence, denoted A ≈sr B, if A vsr B and
B vsr A.

5.2. Soundness and completeness. In order to establish that ≈sc and ≈sr coincide, we
shall study more carefully concrete traces, consisting of proper blocks possibly followed
by a single improper block. We will then define a precise characterization of executions
whose associated solution satisfies dependency constraints. We denote by B the set of blocks

ioc(
−→
M,−→w) such that c ∈ C, Mi ∈ T (Σ,W) for each Mi ∈

−→
M , and wj ∈ W for each wj ∈ −→w .

In this section, a concrete trace is seen as a sequence of blocks, i.e. it belongs to B∗.

Definition 5.7 (independence between blocks). Two blocks b1 = ioc1 (
−→
M1,
−→w1) and b2 =

ioc2 (
−→
M2,
−→w2) are independent, written b1 || b2, when c1 6= c2 and none of the variables of

−→w2 occurs in
−→
M1, and none of the variables of −→w1 occurs in

−→
M2. Otherwise the blocks are

dependent.

It is easy to see that independent blocks that are proper can be permuted in a compressed
trace without affecting the executability and the result of executing that trace. It is not
the case for improper blocks, which can only be performed at the very end of a compressed
execution.

However, this notion of independence based on recipes is too restrictive: it may introduce
spurious dependencies. Indeed, it is often possible to make two blocks dependent by slightly
modifying recipes without altering the inputted messages. For instance, w′ does not occur in
recipe M = w but does in M ′ = π1(〈w,w′〉) while M ′ induces the same message as M . We
thus define a more permissive notion of equivalence over traces, which allows permutations
of independent blocks but also changes of recipes that preserve messages. During these
permutations, we require that (concrete) traces remain plausible.

Definition 5.8 (plausible). A trace tr is plausible if for any input in(c,M) such that
tr = tr0 · in(c,M) · tr2, we have M ∈ T (Σ,W0) where W0 is the set of handles occurring
in tr0.

Given two blocks b1 = ioc1 (
−→
M1,
−→w1) and b2 = ioc2 (

−→
M2,
−→w2), we note (b1 =E b2)Φ when

−→
M1Φ =E

−→
M2Φ, valid(M1Φ), valid(M2Φ), and −→w1 = −→w2. Intuitively, the two blocks only differ

by a change of recipes such that the underlying messages are kept unchanged. We lift this
notion to sequences of blocks, i.e. (tr =E tr′)Φ, in the natural way.

Definition 5.9. Given a frame Φ, the relation ≡Φ is the smallest equivalence over plausible
traces (made of blocks) such that:

(1) tr · b1 · b2 · tr′ ≡Φ tr · b2 · b1 · tr′ when b1 || b2; and
(2) tr · b1 · tr′ ≡Φ tr · b2 · tr′ when (b1 =E b2)Φ.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 21

Lemma 5.10. Let A tr−→c (P; Φ) with tr be a trace made of proper blocks. We have that
A tr′−→c (P; Φ) for any tr′ ≡Φ tr.

This result is easily proved, following from the fact that proper compressed executions
are preserved by the two generators of ≡Φ. The first case is given by Lemma 3.8. The second
one follows from a simple observation of the transition rules: only the derived messages
matter, while the recipes that are used to derive them are irrelevant (as long as validity is
ensured).

We established that compressed executions are preserved by changes of traces within ≡Φ-
equivalence classes. We shall now prove that, by keeping only executions satisfying depen-
dency constraints, we actually select exactly one representative in this class.

We lift the ordering on channels to blocks: ioc(
−→
M,−→w) ≺ ioc′(

−→
M ′,
−→
w′) if and only if

c ≺ c′. Finally, we define ≺ on concrete traces as the lexicographic extension of the order on
blocks. Given a frame Φ, we say that a plausible trace tr is Φ-minimal if it is minimal in its
equivalence class modulo ≡Φ.

Lemma 5.11. Let A tr7−→c (P; Φ;S) and θ ∈ Sol(Φ;S). We have that trθ is Φλθ-minimal if,
and only if, θ |=(Φ;S) Deps (tr).

Proof. Let A and (P; Φ;S) be such that A tr7−→c (P; Φ;S) and θ ∈ Sol(Φ;S). Let λθ be the
substitution associated to θ w.r.t. (Φ;S).

(⇒) We first show that if trθ is Φλθ-minimal then θ |=(Φ;S) Deps (tr), by induction on the
length of the trace tr. The base case, i.e. tr = ε, is straightforward since Deps (tr) = ∅. Now,
assume that tr = tr0 · b for some block b and A tr07−→c (P0; Φ0;S0) b7−→c (P; Φ;S). Let θ0 be
the substitution θ restricted to variables occurring in (Φ0;S0), and λθ0 be the associated
first-order substitution. We have that θ0 ∈ Sol(Φ0;S0), λθ0 coincides with λθ on variables
occurring in (Φ0;S0), and Φ0λθ0 coincides with Φλθ on the domain of Φ0λθ0 . As a prefix
of trθ, we have that tr0θ is Φλθ-minimal. We can thus apply our induction hypothesis on

A tr07−→c (P0; Φ0;S0) and θ0 ∈ Sol(Φ0;S0). Assume that b = ioc(
−→
X,−→w). If dep (tr0, c) = ∅,

we immediately conclude. Otherwise, it only remains to show that θ |=(Φ;S)
−→
Xndep (tr0, c).

By definition of the generation of dependency constraints, we know that tr0 is of the form
tr′0 · bc0 · bc1 · . . . · bcn where:

• ∀ 0 ≤ i ≤ n, bci = ioci(
−→
Xi,
−→wi),

• c ≺ c0 and ci ≺ c for all 0 < i ≤ n; and
• dep (tr, c) = {w | w ∈ −→wi with 0 ≤ i ≤ n}.
Assume that the dependency constraint is not satisfied, this means that for some

−→
M such that

(
−→
Xθ)(Φλθ) =E (

−→
M)(Φλθ) and valid((

−→
M)(Φλθ)), we have that fv1(

−→
M)∩{w | w ∈ −→wi with 0 ≤

i ≤ n} = ∅. Therefore, we have that

trθ = tr0θ · bθ
= tr′0θ · bc0θ · bc1θ · . . . · bcnθ · ioc(

−→
Xθ,−→w)

≡Φλθ tr′0θ · ioc(
−→
M,−→w) · bc0θ · bc1θ · . . . · bcnθ.

Since c ≺ c0, this would contradict the Φλθ-minimality of trθ. Hence the result.

(⇐) Now, assuming that trθ is not Φλθ-minimal, we shall establish that there is a dependency

constraint
−→
Xn−→w ∈ Deps (tr) that is not satisfied by θ. Let trm be a Φλθ-minimal trace of

the equivalence class of trθ. We have in particular trm ≡Φλθ trθ and trm ≺ trθ.

22 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Let tr0 (resp. tr0m) be the longest prefix of tr (resp. trm) such that (tr0θ =E tr0m)Φλθ.
We have that tr = tr0 · b · tr1 and trm = tr0m · bm · tr1m with cm ≺ c where cm (resp. c)
is the channel used in block bm (resp. b). By definition of ≡Φλθ , block bm must have a
counterpart in tr and, more precisely, in tr1. We thus have a more precise decomposition of
tr: tr = tr0 · b · tr11 · b′m · tr12 such that (b′mθ =E bm)Φλθ.

Let b′m = iocm (
−→
X,−→w). We now show that the constraint

−→
Xndep (tr0 · b · tr11, cm) is

in Deps (tr) and is not satisfied by θ, implying θ 6|=(Φ;S) Deps (tr). We have seen that
(b′mθ =E bm)Φλθ and cm ≺ c. Since cm ≺ c, by definition of dep (·, ·) we deduce that
∅ 6= dep (tr0 · b · tr11, cm) ⊆ { w | out(d,w) occurs in b · tr11 for some d,w }. But, since we
also know that (b′mθ =E bm)Φλθ and trm = tr0m · bm · tr1m is a plausible trace, we have that

bm = iocm (
−→
M,−→wm) for some recipes M such that

−→
MΦλθ =E (

−→
Xθ)Φλθ, valid(

−→
MΦλθ), and

fv1(M) ∩ dep (tr0 · b · tr11, cm) = ∅. This allows us to conclude that θ 6|=(Φ;S) Deps (tr).

We are now able to show that the notion of trace equivalence based on this reduced
semantics coincides with the compressed one (as well as its symbolic counterpart as given in
Definition 4.8). Even though the reduced semantics is based on the symbolic compressed
semantics, it is more natural to establish the theorem by going back to the concrete
compressed semantics, because we have to consider a concrete execution to check whether
dependency constraints are satisfied or not in our reduced semantics anyway.

Theorem 5.12. For any extended simple processes A and B, we have that:

A vc B if and only if A vsr B.

Proof. Let A = (P; Φ) and B = (Q; Ψ) be two extended simple processes.

(⇒) Consider an execution of the form (P; Φ; ∅) trs7−→c (Ps; Φs;SA) and a substitution θ ∈
Sol(Φs;SA) such that θ |=(Φs;SA) Deps (trs). Thanks to Proposition 4.10, we have that

(P; Φ) trsθ−−→c (PsλAθ ; Φsλ
A
θ) where λAθ is the substitution associated to θ w.r.t. (Φs;SA).

Since A vc B, we deduce that there exists (Q′; Ψ′) such that:

B
def
= (Q; Ψ) trsθ−−→c (Q′; Ψ′) and Φsλ

A
θ ∼ Ψ′

Relying on Proposition 4.11, we deduce that there exists (Qs; Ψs;SB) such that:

(Q; Ψ; ∅) trs7−→c (Qs; Ψs;SB), θ ∈ Sol(Ψs;SB) and (QsλBθ ; Ψsλ
B
θ) = (Q′; Ψ′)

where λBθ is the substitution associated to θ w.r.t. (Ψs;SB). The fact that we get the same
symbolic trace trs and same solution θ comes from the third point of Proposition 4.11 and
the flexibility of the symbolic semantics ·7−→c that allows us to choose second order variables
of our choice (as long as they are fresh).

Lemma 5.11 tells us that trθ is Φsλ
A
θ -minimal. Since Φsλ

A
θ ∼ Ψsλ

B
θ , we easily deduce

that trsθ is also Ψsλ
B
θ -minimal, and thus Lemma 5.11 tells us that θ |=(Ψs;SB) Deps (tr).

This allows us to conclude.

(⇐) Consider an execution of the form (P ; Φ) tr−→c (P ′; Φ′). We prove the result by induction
on the number of blocks involved in tr, and we distinguish two cases depending on whether tr
ends with an improper block or not.

Case where tr is made of proper blocks. Let trm be a Φ′-minimal trace in the equivalence

class of tr. Lemma 5.10 tells us that (P; Φ) trm−−→c (P ′; Φ′). Thanks to Proposition 4.11, we
know that there exist (Ps; Φs;SA), trsm, and θ such that:

(P; Φ; ∅) trsm7−−→c (Ps; Φs;SA), θ ∈ Sol(Φs;SA), (PsλAθ ; Φsλ
A
θ) = (P ′; Φ′), and trsmθ = trm.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 23

Using Lemma 5.11, we deduce that θ |=(Φs;SA) Deps (trsm). By hypothesis, A vsr B, hence:

• (Q; Ψ; ∅) trsm7−−→c (Qs; Ψs;SB) with θ ∈ Sol(Ψs;SB), and θ |=(Ψs;SB) Deps (trsm);

• Φsλ
A
θ ∼ Ψsλ

B
θ where λBθ is the substitution associated to θ w.r.t. (Φs;SB)

Thanks to Proposition 4.10, we deduce that

(Q; Ψ) trsmθ−−→c (QsλBθ ; Ψsλ
B
θ).

Moreover, since Φ′ = Φsλ
A
θ ∼ Ψsλ

B
θ , we get trm ≡ΨsλBθ

tr from the fact that trm ≡Φ′ tr.

Applying Lemma 5.10, we conclude that

(Q; Ψ) tr−→c (QsλBθ ; Ψsλ
B
θ) with Φ′ ∼ Ψsλ

B
θ .

Case where tr is of the form tr0 · b where b is an improper block. We have that:

(P; Φ) tr0−→c (P ′; Φ′) b−→c (∅; Φ′)

Let trm be a Φ′-minimal trace in the equivalence class of tr. By definition of the relation ≡,
block b must have a counterpart in trm. We thus have that trm is of the form trm = tr1 ·bm ·tr2
where bm is the improper block corresponding to b. We do not necessarily have that b = bm
but we know that (b =E bm)Φ′. If tr2 is an empty trace, i.e. bm is at the end of trm, the
reasoning from the previous case applies.

Otherwise, we have that tr1 · tr2 ≡Φ′ tr0, tr1 · tr2 is Φ′-minimal, and tr2 is non empty.
Thus, thanks to Lemma 5.10, we have that:

(P; Φ) tr1−→c (P1; Φ1) tr2−→c (P ′; Φ′)

Since tr1 · tr2 is made of proper blocks, we can apply our previous reasoning, and conclude
that there exist (Q1; Ψ1) and (Q′; Ψ′) such that:

(Q; Ψ) tr1−→c (Q1; Ψ1) tr2−→c (Q′; Ψ′) and Φ′ ∼ Ψ′ (and thus (b =E bm)Ψ′).

Since we know that (P ′; Φ′) b−→c (∅; Φ′), and tr0 · b ≡Φ′ tr1 · bm · tr2, we deduce that
(P1; Φ1) bm−→c (∅; Φ1). We have that (P ; Φ) tr1 · bm−−−−→c (∅; Φ1), and tr1 · bm is a Φ1-minimal trace
(note that the improper block is at the end). Thus, applying our induction hypothesis, we
have that:

(Q; Ψ) tr1−→c (Q1; Ψ1) bm−→c (∅; Ψ1).

Since the channel used in bm does not occur in tr2, we deduce that

(Q; Ψ) tr1−→c (Q1; Ψ1) tr2−→c (Q′; Ψ′) bm−→c (∅; Ψ′)

Relying on Lemma 5.10 and the fact that (bm =E b)Ψ
′, we deduce that

(Q; Ψ) tr0−→c (Q′; Ψ′) b−→c (∅; Ψ′).

Putting together Theorem 3.11 and Theorem 5.12, we are now able to state our main
result: our notion of reduced trace equivalence actually coincides with the usual notion of
trace equivalence. This result is generic and holds for an arbitrary equational theory, as well
as for an arbitrary notion of validity (as defined in Section 2.1).

Corollary 5.13. For any initial simple processes A and B, we have that:

A ≈ B if and only if A ≈sr B.

24 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

6. Integration in Apte

We validate our approach by integrating our refined semantics in the Apte tool. As we shall
see, the compressed semantics can easily be used as a replacement for the usual semantics
in verification algorithms. However, exploiting the reduced semantics is not trivial, and
requires to adapt the constraint resolution procedure.

It is beyond the scope of this paper to provide a detailed summary of how the verification
tool Apte actually works. A 50 pages paper describing solely the constraint resolution
procedure of Apte is available [21]. This procedure manipulates matrices of constraint
systems, with additional kinds of constraints necessary for its inner workings. Proofs of
the soundness, completeness and termination of the algorithm are available in a long and
technical appendix (more than 100 pages).

In order to show how our reduced semantics have been integrated in the constraint
solving procedure of Apte, we choose to provide a high-level axiomatic presentation of Apte’s
algorithm. This allows us to prove that our integration is correct without having to enter
into complex, unnecessary details of Apte’s algorithm. Our axioms are consequences of
results stated and proved in [18] and have been written in concertation with Vincent Cheval.
However, due to some changes in the presentation, proving them will require to adapt most
of the proofs. It is therefore beyond the scope of this paper to formally prove that our
axioms are satisfied by the concrete procedure.

We start this section with a high-level axiomatic presentation of Apte’s algorithm,
following the original procedure [20] but assuming public channels only (sections 6.1, 6.2).
The purpose of this presentation is to provide enough details about Apte to explain how our
optimisations have been integrated, leaving out unimportant details. Next, we show that
this axiomatization is sufficient to prove soundness and completeness of Apte w.r.t. trace
equivalence (Section 6.3). Then we explain the simplifications induced by the restriction to
simple processes, and how compressed semantics can be used to enhance the procedure and
prove the correctness of this integration (Section 6.4). We finally describe how our reduction
technique can be integrated, and prove the correctness of this integration (Section 6.5). We
present some benchmarks in Section 6.6, showing that our integration allows to effectively
benefit from both of our partial order reduction techniques.

6.1. Apte in a nutshell. Apte has been designed for a fixed equational theory EApte (formally
defined in Example 2.2) containing standard cryptographic primitives. It relies on a notion of
message which requires that only constructors are used, and a semantics in which actions are
blocked unless they are performed on such messages. This fits in our framework, described
in Section 2, by taking M = T (Σc,N).

We now give a high-level description of the algorithm that is implemented in Apte. The
main idea is to perform all possible symbolic executions of the processes, keeping together
the processes that can be reached using the same sequence of symbolic action. Then, at
each step of this symbolic execution, the procedure checks that for every solution of every
process on one side, there is a corresponding solution for some process on the other side so
that the resulting frames are in static equivalence. This check for symbolic equivalence is not
obviously decidable. To achieve it, Apte’s procedure relies on a set of rules for simplifying
sets of constraint systems. These rules are used to put constraint systems in a solved form
that enables the efficient verification of symbolic equivalence.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 25

The symbolic execution used in Apte is the same as described in Section 4. However,
Apte’s constraint resolution procedure introduces new kinds of constraints. Fortunately, we
do not need to enter into the details of those constraints and how they are manipulated.
Instead, we treat them axiomatically.

Definition 6.1 (extended constraint system/symbolic process). An extended constraint
system C+ = (Φ;S;S+) consists of a constraint system C = (Φ;S) together with an additional
set S+ of extended constraints. We treat this latter set abstractly, only assuming an
associated satisfaction relation, written θ |= S+, such that θ |= ∅ always holds, and θ |= S+

1

implies θ |= S+
2 when S+

2 ⊆ S
+
1 . We define the set of solutions of C+ as Sol+(C+) = { θ ∈

Sol(C) | θ |= S+ }.
An extended symbolic process (P; Φ;S;S+) is a symbolic process with an additional

set of extended constraints S+.

We shall denote extended constraint systems by S+, S+
1 , etc. Extended symbolic

processes will be denoted by A+, B+, etc. Sets of extended symbolic processes will simply
be denoted by A, B, etc. For convenience, we extend Sol and Sol+ to symbolic processes
and extended symbolic processes in the natural way:

Sol(P; Φ;S) = Sol(Φ;S) and Sol+
(
P; Φ;S;S+

)
= Sol+(Φ;S;S+).

We may also use the following notation to translate back and forth between symbolic
processes and extended symbolic processes:

d(P; Φ;S)e = (P; Φ;S; ∅) and b
(
P; Φ;S;S+

)
c = (P; Φ;S).

We can now introduce the key notion of symbolic equivalence between sets of extended
symbolic processes, or more precisely between their underlying extended constraint systems.

Definition 6.2 (symbolic equivalence). Given two sets of extended symbolic processes A
and B, we have that A ≺+ B if for every A+ =

(
PA; ΦA;SA;S+

A

)
∈ A, for every

θ ∈ Sol+(A+), there exists B+ =
(
PB; ΦB;SB;S+

B

)
∈ B such that θ ∈ Sol+(B+) and

ΦAλ
A
θ ∼ ΦBλ

B
θ where λAθ (resp. λBθ) is the substitution associated to θ w.r.t. (ΦA;SA)

(resp. (ΦB;SB)). We say that A and B are in symbolic equivalence, denoted by A ∼+ B,
if A ≺+ B and B ≺+ A.

The whole trace equivalence procedure can finally be abstractly described by means of a
transition system 7−→A on pairs of sets of extended symbolic processes, labelled by observable
symbolic actions. Informally, the intent is that a pair of processes is in trace equivalence iff
only symbolically equivalent pairs may be reached from the initial pair using 7−→A.

We now define 7−→A formally. A transition (A; B) 7−→A can take place iff A and B are in
symbolic equivalence2.

Each transition for some observable action α consists of two steps, i.e. (A; B) α7−→A

(A′′; B′′) iff (A; B) α7−→A1 (A′; B′) and (A′; B′) 7−→A2 (A′′; B′′), where the latter transitions
are described below:

(1) The first part of the transition consists in performing an observable symbolic action α
(either in(c,X) or out(c, w)) followed by all available unobservable (τ) actions. This is
done for each extended symbolic process that occurs in the pair of sets, and each possible

2 This definition yields infinite executions for 7−→A if no inequivalent pair is met. Each such execution
eventually reaches (∅; ∅) while, in practice, executions are obviously not explored past empty pairs. We chose
to introduce this minor gap to make the theory more uniform.

26 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

transition of one such process generates a new element in the target set. Formally, we
have (A; B) α7−→A1 (A′; B′) if

A′ =
⋃

(P;Φ;S;S+)∈A

{
(P ′; Φ′;S ′;S+) | (P; Φ;S) α · τ∗7−−−→ (P ′; Φ′;S ′) 6 τ7−→

}
,

and correspondingly for B′. Note that elements of (A; B) that cannot perform α are
simply discarded, and that the constraint systems of individual processes are enriched
according to their own transitions whereas the extended part of constraint systems are
left unchanged. For a fixed symbolic action α, the α7−→A1 transition is deterministic. The
choice of names for handles and second-order variables does not matter, and therefore
the relation 7−→A1 is also finitely branching.

(2) The second part consists in simplifying the constraint systems of (A′; B′) until reaching
solved forms. This part of the transition is non-deterministic, i.e. several different
(A′′; B′′) may be reached depending on various choices, e.g. whether a message is derived
by using a function symbol or one of the available handles. Although branching, this
part of the transition is finitely branching. Moreover, only extended constraints may
change: for any (P; Φ;S;S+

1) ∈ A′′ there must be a S+
0 such that (P; Φ;S;S+

0) ∈ A′,
and similarly for B′′.

An important invariant of this construction is that all the processes occurring in any
of the two sets of processes have constraint systems that share a common structure. More
precisely the transitions maintain that for any (P1; Φ1;S1;S+

1), (P2; Φ2;S2;S+
2) ∈ A ∪ B,

fv2(S1) = fv2(S2) and D `?
X x occurs in S1 iff it occurs in S2.

Example 6.3. Consider the simple basic processes Ri = in(ci, xi).if xi = ok then out(ci, ni)
for i ∈ N, xi ∈ X , ni ∈ N , ok a public constant. We illustrate the roles of 7−→A1 and 7−→A2 on
the pair ({Q0}; {Q0}) where Q0 = ({R1, R2}; ∅; ∅; ∅). We have that

({Q0}; {Q0}) in(c2, X2)7−−−−−→A1 ({Qt0, Qe0}; {Qt0, Qe0})
where Qt0 and Qe0 are the two symbolic processes one may obtain by executing the observable
action in(c2, X2), depending on the conditional after that input. Specifically, we have:

• Qt0 =
(
{R1, out(c2, n2)}; ∅; {X2 `?

∅ x2, x2 =? ok}; ∅
)

• Qe0 =
(
{R1}; ∅; {X2 `?

∅ x2, x2 6=? ok}; ∅
)

After this first step, 7−→A2 is going to non-deterministically solve the constraint systems.
From the latter pair, it will produce only two alternatives. Indeed, if x2 =? ok holds then
Apte infers that the only recipe that it needs to consider is the recipe R = ok. In that case,
the only considered solution is {X2 7→ ok}. Otherwise, x2 6=? ok holds but, at this point, no
more information is inferred on X2. Formally,

({Qt0, Qe0}; {Qt0, Qe0}) 7−→A2 ({Qt1}; {Qt1})
({Qt0, Qe0}; {Qt0, Qe0}) 7−→A2 ({Qe1}; {Qe1})

where

• Qt1 =
(
{R1, out(c2, n2)}; ∅; {X2 `?

∅ x2, x2 =? ok};St1
)

and Sol+(Qt1) = {Θt
1} where Θt

1 =
{X2 7→ ok};
• Qe1 =

(
{R1}; ∅; {X2 `?

∅ x2, x2 6=? ok};Se1
)
.

The content of St1 and Se1 is not important. Note that after 7−→A2, only one alternative remains
(i.e. there is only one extended symbolic process on each side of the resulting pair) because
only one of the two processes Qt0, Q

e
0 complies with the choices made in each branch.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 27

Definition 6.4 (≈A). Let A = (PA; ΦA) and B = (PB; ΦB) be two processes. We say that
A ≈A B when A ∼+ B for any pair (A; B) such that ((PA; ΦA; ∅; ∅) ; (PB; ΦB; ∅; ∅)) tr7−→A (A; B).

As announced above, we expect ≈A to coincide with trace equivalence. We shall actually
prove it (see Section 6.3), after having introduced a few axioms (Section 6.2). We note,
however, that this can only hold under some minor assumptions on processes. In practice,
Apte does not need those assumptions but they allow for a more concise presentation.

Definition 6.5. A simple process (resp. symbolic process) A is said to be quiescent when
A 6 τ−→ (resp. A 6 τ7−→). An extended symbolic process A+ is quiescent when bA+c 6 τ7−→.

In α7−→A1 transitions, processes must start by executing an observable action α and
possibly some τ actions after that. Hence, it does not make sense to consider 7−→A transitions
on processes that can still perform τ actions. We shall thus establish that ≈A and ≈s
coincide only on quiescent processes, which is not a significant restriction since it is always
possible to pre-execute all available τ -actions before testing equivalences.

6.2. Specification of the procedure. We now list and comment the specification satisfied
by the exploration performed by Apte. These statements are consequences of results stated
and proved in [18] but it is beyond the scope of this paper to prove them.

Soundness and completeness of constraint resolution. The 7−→A2 step, corresponding to Apte’s
constraint resolution procedure, only makes sense under some assumptions on the (common)
structure of the processes that are part of the pairs of sets under consideration. Rather than
precisely formulating these conditions (which would be at odds with the abstract treatment
of extended constraint systems) we start by defining an under-approximation of the set of
pairs on which we may apply 7−→A2 at some point. We choose this under-approximation
sufficiently large to cover pairs produced by the compressed semantics, and we then formulate
our specifications in that domain. More precisely, the under-approximation has to cover two
things:

(1) we have to consider additional disequalities of the form u 6=? u in constraint systems
since they are eventually added by our compressed symbolic semantics (see Figure 6);

(2) we have to allow the removal of some extended symbolic process from the original
sets since they are eventually discarded by our compressed (resp. reduced) symbolic
semantics.

Given an extended symbolic process A+ = (P; Φ;S;S+), we denote add(A+) the set of
extended symbolic processes obtained from A+ by adding into S a number of disequalities
of the form u 6=? u with fv1(u) ⊆ fv1(S). This is then extended to sets of extended symbolic
processes as follows: add({A+

1 , . . . , A
+
n }) = {{B+

1 , . . . , B
+
n } | B+

i ∈ add(A+
i)}.

Definition 6.6 (valid and intermediate valid pairs). The set of valid pairs is the least set
such that:

• For all quiescent, symbolic processes A = (P; Φ; ∅) and B = (Q; Ψ; ∅), ({dAe}; {dBe}) is
valid.
• If (A; B) is valid and A ∼+ B, (A; B) α7−→A1 (A1; B1), A2 ⊆ A1, B2 ⊆ B1, A3 ∈ add(A2),

B3 ∈ add(B2), and (A3; B3) 7−→A2 (A′; B′) then (A′; B′) is valid. In that case, the pair
(A3; B3) is called an intermediate valid pair.

28 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

It immediately follows that ({dAe}; {dBe}) tr7−→A (A; B) implies that (A; B) is valid and
only made of quiescent, extended symbolic processes. But the notion of validity accomodates
more pairs: it will cover pairs accessible under refinements of 7−→A based on subset restrictions
of 7−→A1. We may note that these pairs are actually pairs that would have been explored by
Apte when starting with another pair of processes (e.g. a process that makes explicit the
use of trivial conditionals of the form if u = u then P else Q). Therefore, those pairs do
not cause any trouble when they have to be handled by Apte.

Axiom 1 (soundness of constraint resolution). Let (A′; B′) be an intermediate valid pair
such that (A′; B′) 7−→A2 (A′′; B′′). Then, for all A′′ ∈ A′′ (resp. B′′ ∈ B′′) there exists some
A′ ∈ A′ (resp. B′ ∈ B′) such that bA′c = bA′′c (resp. bB′c = bB′′c) and Sol+(A′′) ⊆ Sol+(A′)
(resp. Sol+(B′′) ⊆ Sol+(B′)).

Apte treats almost symmetrically the two components of the pair of sets on which
transitions take place. This is reflected by the fact that axioms concern both sides and are
completely symmetric, like Axiom 1. In order to make the following specifications more
concise and readable, we state properties only for one of the two sets and consider the other
“symmetrically” as well.

The completeness specification is in two parts: it first states that no first-order solution
is lost in the constraint resolution process, and then that the branching of 7−→A2 corresponds
to different second-order solutions.

Axiom 2 (first-order completeness of constraint resolution). Let (A; B) be an intermediate
valid pair. For all A+ ∈ A and θ ∈ Sol(A+) there exists (A; B) 7−→A2 (A2; B2), A+

2 ∈ A2

and θ+ ∈ Sol+(A+
2) such that bA+

2 c = bA+c and λAθ =E λ
A
θ+ , where λAθ (resp. λAθ+) is the

substitution associated to θ (resp. to θ+) w.r.t. bA+c. Symmetrically for B+ ∈ B.

Axiom 3 (second-order consistency of constraint resolution). Let (A; B) be an intermediate
valid pair such that (A; B) 7−→A2 (A2; B2), θ ∈ Sol+(A+) for some A+ ∈ A and θ ∈ Sol+(C+

2)
for some C+

2 ∈ A2 ∪ B2. Then there exists some A+
2 ∈ A2 such that bA+c = bA+

2 c and
θ ∈ Sol+(A+

2). Symmetrically for B+ ∈ B.

Partial solution. In order to avoid performing some explorations when dependency constraints
of our reduced semantics are not satisfied, we shall be interested in knowing when all solutions
of a given constraint system assign a given recipe to some variable. Such information is
generally available in the solved forms computed by Apte, but not always in a complete
fashion. We reflect this by introducing an abstract function that represents the information
that can effectively be inferred by the procedure.

Definition 6.7 (partial solution). We assume a partial solution3 function ps which maps
sets of extended constraints S+ to a substitution, such that for any θ ∈ Sol+ (P; Φ;S;S+),
there exists θ′ such that θ = ps(S+) t θ′. We extend ps to extended symbolic processes:
ps (P; Φ;S;S+) = ps(S+).

3We use the notation σ1 t σ2 to emphasize the fact that the two substitutions do not interact together.
They have disjoint domain, i.e. dom(σ1) ∩ dom(σ2) = ∅, and no variable of dom(σi) occurs in img(σj) with
{i, j} = {1, 2}.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 29

Intuitively, given an extended constraint system, the function ps returns the value of
some of its second-order variables (those for which their instantiation is already completely
determined). Our specification of the partial solution shall postulate that the partial solution
returned by Apte is the same for each extended symbolic process occurring in a pair (A; B)
reached during the exploration. Moreover, there is a monotonicity property that ensures
that this partial solution becomes more precise along the exploration.

Axiom 4. We assume the following about the partial solution:

(1) For any valid pair (A; B), we have that ps(A) = ps(B) for any A,B ∈ A ∪ B. This
allows us to simply write ps(A; B) when A ∪B 6= ∅.

(2) For any intermediate valid pair (A; B) such that (A; B) 7−→A2 (A′; B′) and A′ ∪B′ 6= ∅,
we have ps(A′; B′) = ps(A; B) t θ for some θ.

Example 6.8. Continuing Example 6.3, we first note that ({Q0}; {Q0}) is a valid pair.
Second, the exploration ({Q0}; {Q0}) in(c2, X2)7−−−−−→A ({Qt1}; {Qt1}) covers all executions of the
form bQ0c in(c2, X2).τ7−−−−−−→ bQt1c going to the then branch even though the only solution of Qt1 is
Θt

1. Indeed, if Θ ∈ Sol(bQt1c) then the message computed by X2Θ should be equal to ok and
thus no first-order solution is lost as stated by Axiom 2. Moreover, because the value of X2

is already known in Qt1, we may have ps(Qt1) = ps(S+
1) = {X2 7→ ok}.

6.3. Proof of the original procedure. The procedure, axiomatized as above, can be
proved correct w.r.t the regular symbolic semantics 7−→ and its induced trace equivalence ≈s
as defined in Section 4.2. Of course, Axiom 4 is unused in this first result. It will be used
later on when implementing our reduced semantics. We first start by establishing that all
the explorations performed by Apte correspond to symbolic executions.

This result is not new and has been established from scratch (i.e. without relying on the
axioms stated in the previous section) in [18]. Nevertheless, we found it useful to establish
that our axioms are sufficient to prove correctness of the original Apte procedure. The proofs
provided in the following sections to establish correctness of our optimised procedure follow
the same lines as the ones presented below.

Lemma 6.9. Let (A; B) be a valid pair such that (A; B) tr7−→A (A′; B′). Then, for all A′ ∈ A′

there is some A ∈ A such that bAc tr′7−→ bA′c for some tr′ with obs(tr′) = tr. Symmetrically
for B′ ∈ B′.

Proof. We proceed by induction on tr. When tr is empty, we have that (A; B) = (A′; B′),
and the result trivially holds. Otherwise we have that:

(A; B) α7−→A1 (A1; B1) 7−→A2 (A2; B2) tr07−→A (A′; B′) with tr = α · tr0.

Let A′ be a process of A′. By induction hypothesis we have some A2 ∈ A2 such that
bA2c tr′07−→ bA′c with obs(tr′0) = tr0. By Axiom 1 there is some A1 ∈ A1 such that bA1c = bA2c,
and by definition of 7−→A1 we finally find some A ∈ A such that bAc α · τk7−−−→ bA1c. To sum up,
we have A ∈ A such that bAc tr7−→ bA′c with obs(tr′) = tr.

30 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

We now turn to completeness results. Assuming that processes under study are in
equivalence ≈A (so that Apte will not stop its exploration prematurely), we are able to show
that any valid symbolic execution (i.e. a symbolic execution with a solution in its resulting
constraint system) is captured by an exploration performed by Apte. Actually, since Apte
discards some second-order solution during its exploration, we can only assume that another
second-order solution with the same associated first-order solution will be found.

Lemma 6.10. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅) and A′ = (P ′; Φ′;S ′) be three quiescent,
symbolic processes such that (P; Φ) ≈A (Q; Ψ), A tr7−→ A′, and θ ∈ Sol(A′). Then there exists
an Apte exploration ({dAe}; {dBe}) tro7−→A (A′; B′) and some A+ ∈ A′, θ+ ∈ Sol+(A+) such
that obs(tr) = tro, bA+c = A′ and λθ =E λθ+, where λθ (resp. λθ+) is the substitution
associated to θ (resp. to θ+) with respect to (Φ′;S ′). Symmetrically for B tr7−→ B′.

Proof. By hypothesis, we have that A tr7−→ A′. We will first reorganize this derivation to
ensure that τ actions are always performed as soon as possible. Then, we proceed by
induction on obs(tr). When obs(tr) is empty, we have that A′ = A since A is quiescent.
Let (A′; B′) = ({dAe}; {dBe}), A+ = dAe, θ+ = θ. We have that θ ∈ Sol(A) and therefore
θ ∈ Sol+(dAe), i.e. θ+ = θ ∈ Sol+(A+). We easily conclude.

Otherwise, consider A tr07−→ A1
α · τk7−−−→ A′ with θ ∈ Sol(A′). Let A′ = (P ′; Φ′;S ′) and

A1 = (P1; Φ1;S1). We have that S1 ⊆ S ′. Since θ ∈ Sol(A′), we also have θ|V ∈ Sol(A1)
where V = fv2(S1). Therefore, we apply our induction hypothesis and we obtain that there
exists an Apte exploration ({dAe}; {dBe}) tr′07−→A (A1; B1) and some A+

1 ∈ A1, θ+
1 ∈ Sol+(A+

1)
such that obs(tr0) = tr′0, bA+

1 c = A1, and the first-order substitutions associated to θ|V and
θ+

1 with respect to (Φ1;S1) are identical. By hypothesis we have (P; Φ) ≈A (Q; Ψ), thus
A1 ∼+ B1. Hence a 7−→A1 transition can take place on that pair. By definition of 7−→A1 and
since bA+

1 c = A1
α · τk7−−−→ A′ with A′ quiescent, there must be some (A1; B1) α7−→A1 (A2; B2)

with A+
2 ∈ A2, bA+

2 c = A′. Thus θ ∈ Sol(A+
2) and we can apply Axiom 2. There exists

(A2; B2) 7−→A2 (A′; B′), A+ ∈ A′, bA+c = bA+
2 c and θ+ ∈ Sol+(A+) such that bA+

2 c = bA+c,
and the substitutions associated to θ (resp. θ+) w.r.t. (Φ′;S ′) coincide. To sum up, the
exploration

({dAe}; {dBe}) tr′07−→A (A1; B1) α7−→A1 (A2; B2) 7−→A2 (A′; B′)

together with A+ ∈ A′, and θ+ ∈ Sol+(A+) satisfy all the hypotheses.

Lemma 6.11. Let A,B,A′ be quiescent symbolic processes such that A tr7−→ A′ = (P ′; Φ′;S ′),
θ ∈ Sol(A′) and ({dAe}; {dBe}) tro7−→A (A′; B′) with obs(tr) = tro and θ ∈ Sol+(C) for some
C ∈ A′ ∪ B′. Then there exists some A+ ∈ A′ such that bA+c = A′ and θ ∈ Sol+(A+).
Symmetrically for B tr7−→ B′.

Proof. We proceed by induction on tro. When tro is empty, we have that A′ = A (because A
is quiescent), A′ = {dAe}, and B′ = {dBe}. Let A+ be dAe = dA′e. We deduce that
θ ∈ Sol+(A+) from the fact that θ ∈ Sol(A) and A+ = dAe.

We consider now the case of a non-empty execution:

({dAe}; {dBe}) tro7−→A (A1; B1) α7−→A1 (A2; B2) 7−→A2 (A3; B3) and A tr7−→ A1
α · τk7−−−→ A3.

Note that, by reordering τ actions, we can assume A1 to be quiescent. By assumption
we have θ ∈ Sol(A3), obs(tr) = tro and θ ∈ Sol+(C3) for some C3 ∈ A3 ∪B3. By Axiom 1,
there exists some C2 ∈ A2 ∪B2 such that θ ∈ Sol+(C2). By definition of 7−→A1 we obtain
C1 ∈ A1 ∪B1 such that bC1c α · τk7−−−→ bC2c and S+(C1) = S+(C2) (i.e. the sets of extended

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 31

constraints of C1 and C2 coincide). The first fact implies θ|V ∈ Sol(C1) by monotonicity
(where V = fv2(S(C1)), i.e. second-order variables that occur in the set of non-extended
constraints of C1), and the second allows us to conclude more strongly that θ|V ∈ Sol+(C1).
Since we also have θ|V ∈ Sol(A1) by monotonicity, the induction hypothesis applies and we
obtain some A+

1 ∈ A1 with bA+
1 c = A1 and θ|V ∈ Sol+(A+

1).
By definition of 7−→A1, and since bA+

1 c
α · τk7−−−→ A3 6 τ7−→ (A3 is quiescent by hypothesis), we

have A+
2 ∈ A2 such that bA+

2 c = A3 and S+(A+
1) = S+(A+

2). Therefore, we have that
θ ∈ Sol(bA+

2 c), and the fact that S+(A+
1) = S+(A+

2) allows us to say that θ ∈ Sol+(A+
2)

We can finally apply Axiom 3 to obtain some A+
3 such that bA+

3 c = bA+
2 c = A3 and

θ ∈ Sol+(A+
3).

Theorem 6.12. For any quiescent extended simple processes, we have that:

A ≈s B if, and only if, A ≈A B.

Proof. Let A0 = (P; Φ), B0 = (P ′; Φ′), A0 = {(P; Φ; ∅; ∅)} and B0 = {(P ′; Φ′; ∅; ∅)}. We
prove the two directions separately.

(⇒) Assume A0 ≈s B0 and consider some exploration (A0; B0) tro7−→A (A; B). We shall
establish that A ≺+ B. Let A = (PA; ΦA;SA) be in A and θ ∈ Sol+(A). By Lemma 6.9, we
have (P ; Φ; ∅) tr7−→ bAc such that obs(tr) = tro. By hypothesis, there exists B = (PB; ΦB;SB)
such that (P ′; Φ′; ∅) tr′7−→ B, obs(tr′) = obs(tr) = tro, θ ∈ Sol(B) and ΦBλ

B
θ ∼ ΦAλ

A
θ . We

can finally apply Lemma 6.11, which tells us that there must be some B+ ∈ B such that
bB+c = B and θ ∈ Sol+(B+).

(⇐) We now establish A0 vs B0 assuming A0 ≈A B0. Consider (P ; Φ; ∅) tr7−→ A and θ ∈ Sol(A).
If A is not quiescent, it is easy to complete the latter execution into (P; Φ; ∅) tr · τk7−−−→ A′ =
(PA; ΦA;SA) and θ ∈ Sol(A′) such that A′ is quiescent. By Lemma 6.10 we know that
(A0; B0) tro7−→A (A; B) with obs(tr) = tro, A

+ ∈ A, θ+ ∈ Sol+(A+) with A′ = bA+c and
λθ =E λθ+ where λθ (resp. λθ+) is the substitution associated to θ (resp. θ+) w.r.t. (ΦA;SA).
By assumption we have A ≺+ B and thus there exists some B = (PB; ΦB;SB;S+

B) ∈ B

with θ+ ∈ Sol+(B), and ΦBλ
B
θ+ ∼ ΦAλθ+ where λBθ+ is the substitution associated to θ+

w.r.t. (ΦB;SB). By Lemma 6.9 we have (P ′; Φ′; ∅) tr′7−→ bBc with obs(tr′) = tro = obs(tr). To
conclude the proof, it remains to show that θ ∈ Sol(bBc) and that ΦAλθ ∼ ΦBλ

B
θ where λBθ

is the substitution associated to θ w.r.t. (ΦB;SB).
For any X ∈ fv2(SB) = fv2(SA), we have valid((Xθ)(ΦAλθ+)), valid((Xθ+)(ΦAλθ+)),

and
(Xθ)(ΦAλθ+) =E (Xθ)(ΦAλθ) =E xAλθ =E xAλθ+ =E (Xθ+)(ΦAλθ+)

where xA is the first-order variable associated to X in SA. Since ΦAλθ+ ∼ ΦBλ
B
θ+ , we deduce

that (Xθ)(ΦBλ
B
θ+) =E (Xθ+)(ΦBλ

B
θ+), valid((Xθ)(ΦBλ

B
θ+)) and therefore θ ∈ Sol(bBc), and

its associated substitution λBθ w.r.t. (ΦB;SB) coincides with λBθ+ , and therefore ΦAλθ ∼
ΦBλ

B
θ is a direct consequence of ΦBλ

B
θ+ ∼ ΦAλθ+ and λθ =E λθ+ .

6.4. Integrating compression. We now discuss the integration of the compressed seman-
tics of Section 4 as a replacement for the regular symbolic semantics in Apte.

Although our compressed semantics 7−→c has been defined as executing blocks rather
than elementary actions, we allow ourselves to view it in a slightly different way in this
section: we shall assume that the symbolic compressed semantics deals with elementary
actions and enforces that those actions, when put together, form a prefix of a sequence of

32 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

blocks that can actually be executed (for the process under consideration) in the compressed
semantics of Section 4. This can easily be obtained by means of extra annotations at the
level of processes, and we will not detail that modification. This slight change makes it
simpler to integrate compression into Apte, both in the theory presented here and in the
implementation.

Definition 6.13. Given two sets of extended symbolic processes A,B, and an observable
action α, we write (A; B) α7−→A1

c (A′; B′) when

A′ =
⋃

(P;Φ;S;S+)∈A

{
(P ′; Φ′;S ′;S+) | (P; Φ;S) α7−→c (P ′; Φ′;S ′) 6 τ7−→

}
,

and similarly for B′. We say that (A; B) α7−→A
c (A′′; B′′) when (A; B) α7−→A1

c (A′; B′) and
(A′; B′) 7−→A2 (A′′; B′′).

Finally, given two simple extended processes A = (PA; ΦA) and B = (PB; ΦB), we say
that A ≈A

c B when A ≈+ B for any ({d(PA; ΦA; ∅)e}; {d(PB; ΦB; ∅)e}) tr7−→A
c (A; B).

As expected, 7−→A1
c allows to consider much fewer explorations than with the original 7−→A1.

It inherits the features of compression, prioritizing outputs, not considering interleavings
of outputs, executing inputs only under focus, and preventing executions beyond improper
blocks. These constraints apply to individual processes in A ∪ B, but we remark that
they also have a global effect in 7−→A1

c , e.g. all processes of A ∪B must start a new block
simultaneously: recall that the beginning of a block corresponds to an input after some
outputs, and such inputs can only be executed if no more outputs are available.

Example 6.14. Continuing Example 6.8, there is only one non-trivial4 compressed explo-
ration of one action from the valid pair ({Qt1}; {Qt1}). It corresponds to the output on channel
c2: ({Qt1}; {Qt1}) out(c2, w2)7−−−−−−→A

c ({Q2}, {Q2}) for Q2 =
(
{R1}; {w2 . n2}; {X2 `?

∅ x2, x2 =? ok};S+
2

)
.

In particular, for any i ∈ {1, 2}, we have ({Qt1}; {Qt1}) in(ci, Xi)7−−−−−→A
c (∅; ∅).

Observe that, because 7−→A
c is obtained from 7−→A by a subset restriction in 7−→A1 up to

some disequalities, we have that (A′; B′) is a valid pair when ({dAe}; {dBe}) tr7−→A
c (A′; B′)

for some quiescent, symbolic processes A,B having empty sets of constraints. Following the
same reasoning as the one performed in Section 6.3, we can establish that ≈sc coincides with
≈A
c . The main difference is that 7−→c already ignores τ -actions, and therefore we do not need

to apply the obs(·) operator.

Lemma 6.15. Let (A; B) be a valid pair such that (A; B) tr7−→A
c (A′; B′). Then, for all

A′ ∈ A′ there is some A ∈ A such that bAc tr7−→c bA′c. Symmetrically for B′ ∈ B′.

Lemma 6.16. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅), and A′ = (P ′; Φ′;S ′) be three quiescent,
symbolic processes such that (P; Φ) ≈A

c (Q; Ψ), A tr7−→c A
′ and θ ∈ Sol(A′). Then there exists

an exploration ({dAe}; {dBe}) tr7−→A
c (A′; B′) and some A+ ∈ A′, θ+ ∈ Sol+(A+) such that

bA+c = A′ and λθ =E λθ+ , where λθ (resp. λθ+) is the substitution associated to θ (resp. to
θ+) with respect to (Φ′;S ′). Symmetrically for B tr7−→c B

′.

Lemma 6.17. Let A,B and A′ be quiescent, simple symbolic processes such that A tr7−→c

A′ = (P ′; Φ′;S ′), θ ∈ Sol(A′), and ({dAe}; {dBe}) tr7−→A
c (A′; B′) with θ ∈ Sol+(C) for some

C ∈ A′ ∪ B′. Then there exists some A+ ∈ A′ such that bA+c = A′ and θ ∈ Sol+(A+).
Symmetrically for B tr7−→c B

′.

4 We dismiss here the (infinitely many) transitions obtained for infeasible actions, which yield (∅; ∅).

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 33

Theorem 6.18. For any quiescent extended simple processes, we have that:

A ≈sc B if, and only if, A ≈A
c B.

6.5. Integrating dependency constraints in Apte. We now define a final variant of Apte
explorations, which integrates the ideas of Section 5 to further reduce redundant explorations.
We can obviously generate dependency constraints in Apte, just like we did in Section 5,
but the real difficulty is to exploit them in constraint resolution to prune some branches
of the exploration performed by Apte. Roughly, we shall simply stop the exploration when
reaching a state for which we know that all of its solutions violate dependency constraints.
To do that, we rely on the notion of partial solution introduced in Section 6.1. In other
words, we do not modify Apte’s constraint resolution, but simply rely on information that it
already provides to know when dependency constraints become unsatisfiable. As we shall
see, this simple strategy is very satisfying in practice.

Definition 6.19. We define 7−→A
r as the greatest relation contained in 7−→A

c and such that,
for any symbolic processes A and B with empty constraint sets, ({dAe}; {dBe}) tr7−→A

r (A′; B′)

implies that there is no
−→
Xn−→w ∈ Deps (tr) such that for all Xi ∈

−→
X we have Xi ∈

dom(ps(A′; B′)), and −→w ∩ fv1(Xips(A
′; B′)) = ∅.

Finally, given two simple extended process A = (PA; ΦA) and B = (PB; ΦB), we say
that A ≈A

r B when A ∼+ B for any pair (A; B) such that ((PA; ΦA; ∅; ∅); (PB; ΦB ; ∅; ∅)) tr7−→A
r

(A; B).

Example 6.20. Continuing Example 6.14, consider the following compressed exploration,
where Q3 contains the constraints X2 `?

∅ x2, X1 `?
{w2.n2} x1, x2 =? ok and x1 =? ok:

({Q0}; {Q0}) in(c2, X2)7−−−−−→A
c

out(c2, w2)7−−−−−−→A
c ({Q2}; {Q2}) in(c1, X1)7−−−−−→A

c . . .
out(c1, w1)7−−−−−−→A

c ({Q3}; {Q3}).
Assuming that ps(Q3) = {X2 7→ ok, X1 7→ ok} (which is the case in the actual Apte procedure)
this compressed exploration is not explored by 7−→A

r because

X1nw2 ∈ Deps (ioc2(X2, w2) · ioc1(X1, w1)) , X1ps(Q3) = ok and {w2} ∩ fv1(ok) = ∅.

Lemma 6.21. Let A = (P; Φ; ∅), B = (Q; Ψ; ∅) and A′ = (P ′; Φ′;S ′) be quiescent, simple
symbolic processes such that (P ; Φ) ≈A

r (Q; Ψ), A tr7−→c A
′, θ ∈ Sol(A′) and θ |=(Φ′;S′) Deps (tr).

Then there exists an exploration ({dAe}; {dBe}) tr7−→A
r (A′; B′) and some A+ ∈ A′, θ+ ∈

Sol+(A+) such that bA+c = A′ and λθ =E λθ+, where λθ (resp. λθ+) is the substitution
associated to θ (resp. to θ+) with respect to (Φ′;S ′). Symmetrically for B tr7−→c B

′.

Proof. We proceed by induction on tr. The empty case is easy. Otherwise, consider A tr7−→c

A1
α7−→c A3 = (P3; Φ3;S3) with θ ∈ Sol(A3), A1, A3 quiescent, and θ |=(Φ3;S3) Deps (tr · α).

Let A1 = (P1; Φ1;S1) and V1 = fv2(S1). We also have θ|V1 ∈ Sol(A1) and θ|V1 |=(Φ1;S1)

Deps (tr), so the induction hypothesis applies and we obtain ({dAe}; {dBe}) tr7−→A
r (A1; B1)

with A+
1 ∈ A1, bA+

1 c = A1 and θ+
1 ∈ Sol+(A+

1) such that the first-order substitutions
associated to θ|V1 and θ+

1 w.r.t. (Φ1;S1) coincide.
By hypothesis we have A ≈A

r B, thus A1 ∼+ B1. Hence a 7−→A1
c transition can take

place on that pair. By definition of 7−→A1
c and since bA+

1 c = A1
α7−→c A3, there must be some

(A1; B1) α7−→A1
c (A2; B2) with A+

2 ∈ A2, bA+
2 c = A3. Thus θ ∈ Sol(A+

2) and we can apply
Axiom 2 to obtain (A2; B2) 7−→A2 (A3; B3) with A+

3 ∈ A3, bA+
3 c = bA+

2 c and θ+
3 ∈ Sol+(A+

3)
such that the subsitutions associated to θ and θ+

3 w.r.t. (Φ3;S3) coincide.

34 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

It only remains to show that this extra execution step in 7−→A
c is also present in 7−→A

r , i.e.
that ps(A3; B3) does not violate Deps (tr · α) in the sense of Definition 6.19. This is because,
by definition of the partial solution, we have that θ+

3 = ps(A3; B3) t τ for some τ , so that
if ps(A3; B3) violated Deps (tr · α) then we would have θ+

3 6|=(Φ3;S3) Deps (tr · α). Since θ+
3

and θ induce the same first-order substitutions with respect to (Φ3;S3), we would finally
have θ 6|=(Φ3;S3) Deps (tr · α), contradicting the hypothesis on θ.

Theorem 6.22. For any quiescent initial simple processes A and B, we have that:

A ≈ B if, and only if, A ≈A
r B.

Proof. Let A = (P ; Φ) and B = (Q; Ψ) be two quiescent, initial simple processes. Thanks to
our previous results, we have that A ≈ B implies A ≈A

c B. Then, we obviously have A ≈A
r B:

for any ({d(P; Φ; ∅)e}; {d(Q; Ψ; ∅)e}) tr7−→A
r (A′; B′) we have ({d(P; Φ; ∅)e}; {d(Q; Ψ; ∅)e}) tr7−→A

c

(A′; B′) by definition of 7−→A
r , and thus A′ ∼+ B′ by hypothesis.

For the other direction, it suffices to show that A ≈A
r B implies A vsr B. Let (P ; Φ; ∅) tr7−→c

A′ = (P ′; Φ′;S ′) with θ ∈ Sol(A′) and θ |=(Φ′;S′) Deps (tr). By Lemma 6.21 we have

({d(P; Φ; ∅)e}; {d(Q; Ψ; ∅)e}) tr7−→A
r (A′; B′) with A+ ∈ A′, θ+ ∈ Sol+(A+) such that bA+c =

A′ and λA
′

θ =E λ
A′

θ+ where λA
′

θ (resp. λA
′

θ+) is the substitution associated to θ (resp. θ+) w.r.t.
(Φ′;S ′).

Since A ≈A
r B, we have A′ ∼+ B′: there must be some B+ = (PB′ ; ΦB′ ;SB′ ;S+

B) ∈ B′

such that θ+ ∈ Sol+(B+) and Φ′λA
′

θ+ ∼ ΦB′λ
B′

θ+ where λB
′

θ+ is the substitution associated to θ+

w.r.t. (ΦB′ ;SB′). By Lemma 6.15 we have (Q; Ψ; ∅) tr7−→c bB+c. Furthermore, we can show

as before (see the end of the proof of Theorem 6.12) that θ ∈ Sol(B+) and Φ′λA
′

θ ∼ ΦB′λ
B′
θ ,

where λB
′

θ is the substitution associated to θ w.r.t. (ΦB′ ;SB′). Finally, by θ |=(Φ′;S′) Deps (tr),
D(Φ′;S′) = D(ΦB′ ;SB′) (i.e. sets of handles that second-order variables may use coincide), and

Φ′λA
′

θ ∼ ΦB′λ
B′
θ , we obtain that θ |=(ΦB′ ;SB′) Deps (tr).

6.6. Benchmarks. The optimisations developed in the present paper have been imple-
mented, following the above approach, in the official version of Apte [23].

In practice, many processes enjoy a nice property that allows one to ensure that non-
blocking outputs will never occur: it is often the case that enough tests have been performed
before outputting a term to ensure its validity.

Example 6.23. Consider the following process, where k′ is assumed to be valid (e.g. because
it is a pure constructor term):

in(c, x).if dec(x, k) = hash(u) then out(c, enc(dec(x, k), k′))

The term outputted during an execution is necessarily valid thanks to the test that is performed
just before this output.

We exploit this property in order to avoid adding additional disequalities when integrating
compression in Apte. Therefore, in this section, we will restrict ourselves to simple processes
that are non-blocking as defined below.

Definition 6.24. Let (P; Φ) be a simple process. We say that (P; Φ) is non-blocking if u
is valid for any tr, c, u, Q′, Q, Ψ such that (P; Φ) tr−→ ({out(c, u).Q′} ∪ Q; Ψ).

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 35

This condition may be hard to check in general, but it is actually quite easy to see that
it is satisfied on all of our examples. Roughly, enough tests are performed before any output
action, and this ensures the validity of the term when the output action becomes reachable,
as in Example 6.23.

Our modified version of Apte can verify our optimised equivalences in addition to the
original trace equivalence. It has been integrated into the main development line of the tool.
The modifications of the code (≈ 2kloc) are summarized at

https://github.com/lutcheti/APTE/compare/ref...APTE:POR

For reference, the version of Apte that we are using in the benchmarks below is avail-
able at https://github.com/APTE/APTE/releases/tag/bench-POR-LMCS together with
all benchmark files, in subdirectory bench/protocols. More details, including instructions
for reproducing our benchmarks are available at http://www.lsv.fr/~hirschi/apte_por.

We ran the tool (compiled with OCaml 3.12.1) on a single 2.67GHz Xeon core (memory
is not relevant) and compared three different versions:

• reference: the reference version without our optimisations (i.e. ≈A);
• compression: using only the compression optimisation (i.e. ≈A

c);
• reduction: using both compression and reduction (i.e. ≈A

r).

We first show examples in which equivalence holds. They are the most significant,
because the time spent on inequivalent processes is too sensitive to the order in which the
(depth-first) exploration is performed.

Toy example. We consider a parallel composition of n roles Ri as defined in Example 6.3:
Pn := Πn

i=1Ri. When executed in the regular symbolic semantics 7−→, the 2n actions of Pn
may be interleaved in (2n)!/2n ways in a trace containing all actions. In the compressed
symbolic semantics 7−→c, the actions of individual Ri processes must be bundled in blocks, so
there are only n! interleavings containing all actions. In the reduced symbolic semantics
7−→r, only one interleaving of that length remains: the trace cannot deviate from the priority
order, since the only way to satisfy a dependency constraint would be to feed an input with
a message that cannot be derived without some previously output nonce ni, but in that
case the message will not be ok and the trace won’t be explored further. Note that there is
still an exponential number of symbolic traces in the reduced semantics when one takes into
account traces with less than 2n actions.

We show in Figure 8 the time needed to verify Pn ≈ Pn for n = 1 to 22 in the three
versions of Apte described above: reference, compression and reduction. The results, in
logarithmic scale, show that each of our optimisations brings an exponential speedup, as
predicted by our theoretical analysis. Similar improvements are observed if one compares
the numbers of explored pairs rather than execution times.

Denning-Sacco protocol. We ran a similar benchmark, checking that Denning-Sacco ensures
strong secrecy in various scenarios. The protocol has three roles and we added processes
playing those roles in turn, starting with three processes in parallel. Srong secrecy is
expressed by considering, after one of the roles B, the output of a message encrypted with
the established key on one side of the equivalence, and with a fresh key on the other side.
The results are plotted in Figure 9. The fact that we add one role out of three at each step
explains the irregular growth in verification time. We still observe an exponential speedup
for each optimisation.

https://github.com/lutcheti/APTE/compare/ref...APTE:POR
https://github.com/APTE/APTE/releases/tag/bench-POR-LMCS
http://www.lsv.fr/~hirschi/apte_por

36 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

10-3
10-2
10-1
100
101
102
103
104
105

 5 10 15 20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Figure 8: Impact of optimisations on verification time on toy example.

10-3
10-2
10-1
100
101
102
103
104

 3 6 9 12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Figure 9: Impact of optimisations on verification time on Denning-Sacco.

Practical impact. Finally, we illustrate how our optimisations make Apte much more useful
in practice for investigating interesting scenarios. Verifying a single session of a protocol
brings little assurance into its security. In order to detect replay attacks and to allow the
attacker to compare messages that are exchanged, at least two sessions should be considered.
This means having at least four parallel processes for two-party protocols, and six when
a trusted third party is involved. This is actually beyond what the unoptimised Apte can
handle in a reasonable amount of time. We show in Figure 10 how many parallel processes
could be handled in 20 hours by Apte on various use cases of protocols, for the same three
variants of Apte as before, i.e. reference, compression and reduction. We verify an anonymity
property for the Passive Authentication protocol of e-passports. For other protocols, we
analyse strong secrecy of established keys: for one of the roles we add, on one side of the
equivalence, an output encrypted by the established key and, on the other side, an output
encrypted by a fresh key.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 37

Protocol reference compression reduction
Needham Schroeder (3-party) 4 6 7
Private Authentication (2-party) 4 7 7
Yahalom (3-party) 4 5 5
E-Passport PA (2-party) 4 7 9
Denning-Sacco (3-party) 5 9 10
Wide Mouth Frog (3-party) 6 12 13

Figure 10: Maximum number of parallel processes verifiable in 20 hours.

We finally present the benefits of our optimisations for discovering attacks. We performed
some experiments on flawed variants of protocols, shown in Figure 11, corresponding to
example files in subdirectory bench/protocols/attacks/ of the above mentioned release.
The scenario Denning-Sacco A expresses strong secrecy of the (3-party) Denning-Sacco
protocol, but this time on two instances of roles at the same time (instead of one as in
Figure 10). In Denning-Sacco B, we consider again a form of strong secrecy expressed by
outputting encrypted messages but this time at the end of role B. The Needham-Schroeder
pub scenario corresponds to strong secrecy of the public-key Needham-Schroder protocol.
The E-Passport PA exposed experiments show that anonymity is (obviously) lost with
the Passive Authentication protocol when the secret key is made public. Similarly, the
Yahalom exposed experiment shows that strong secrecy of Yahalom is lost when secrets
keys are revealed. Since Apte stops its exploration as soon as an attack is found, the time
needed for Apte to find the attack highly depends on the order in which the depth-first
exploration is performed. However, as shown in Figure 11, we always observe in practice
dramatic improvements brought by our optimisations compared to the reference version of
Apte. In some cases, our optimisations are even mandatory for Apte to find the attack using
reasonable resources.

Protocol reference compression reduction
Denning-Sacco A (6 par. proc.) OoM 0.07s 0.02s
Denning-Sacco B (6 par. proc.) 5.83s 0.04s 0.04s
Needham-Shroeder pub (7 par. proc.) TO 0.77s 0.67s
Needham-Shroeder pub (5 par. proc.) 0.79s 0.21s 0.13s
E-Passport PA exposed (8 par. proc.) TO 0.02s 0.02s
E-Passport PA exposed (6 par. proc.) 4.37s 0.03s 0.02s
Yahalom exposed (4 par. proc.) 7.24s 0.02s 0.02s

Figure 11: Impact of optimisations for finding attacks (OoM denotes a consumption of
>32Go of RAM and TO denotes a running time of >20 hours).

7. Related Work

The techniques we have presented borrow from standard ideas from concurrency theory and
trace theory. Blending all these ingredients, and adapting them to the demanding framework
of security protocols, we have come up with partial order reduction techniques that can
effectively be used in symbolic verification algorithms for equivalence properties of security

38 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

protocols. We now discuss related work, and there is a lot of it given the huge success of
POR techniques in various application areas. We shall focus on the novel aspects of our
approach, and explain why such techniques have not been needed outside of security protocol
analysis. These observations are not new: as pointed out by Baier and Katoen [11], “[POR]
is mainly appropriate to control-intensive applications and less suited for data-intensive
applications”; Clarke et al. [25] also remark that “In the domain of model checking of reactive
systems, there are numerous techniques for reducing the state space of the system. One
such technique is partial-order reduction. This technique does not directly apply to [security
protocol analysis] because we explicitly keep track of knowledge of various agents, and our
logic can refer to this knowledge in a meaningful way.” We first compare our work with
classical POR techniques, and then comment on previous work in the domain of security
protocol analysis.

7.1. Classical POR. Partial order reduction techniques have proved very useful in the
domain of model checking concurrent programs. Given a Labelled Transition System (LTS)
and some property to check (e.g. a Linear Temporal Logic formula), the basic idea of
POR [41, 34, 11] is to only consider a reduced version of the given LTS whose transitions of
some states might be not exhaustive but are such that this transformation does not affect
the property. POR techniques can be categorized in two groups [34]. First, the persistent
set techniques (e.g. stubborn sets, ample sets) where only a sufficiently representative subset
of available transitions is explored. Second, sleep set techniques memoize past exploration
and use this information along with available transitions to disable some provably redundant
transitions. Note that these two kinds of techniques are compatible, and are indeed often
combined to obtain better reductions. Theoretical POR techniques apply to transition
systems which may not be explicitly available in practice, or whose explicit computation
may be too costly. In such cases, POR is often applied to an approximation of the LTS
that is obtained through static analysis. Another, more recent approach is to use dynamic
POR [31, 45, 3] where the POR arguments are applied based on information that is obtained
during the execution of the system.

Clearly, classical POR techniques would apply to our concrete LTS, but that would not
be practically useful since this LTS is wildly infinite, taking into account all recipes that
the attacker could build. Applying most classical POR techniques to the LTS from which
data would have been abstracted away would be ineffective: any input would be dependent
on any output (since the attacker’s knowledge, increased by the output, may enable new
input messages). Our compression technique lies between these two extremes. It exploits a
semi-commutation property: outputs can be permuted before inputs, but not the converse
in general. Further, it exploits the fact that inputs do not increase the attacker’s knowledge,
and can thus be executed in a chained fashion, under focus. The semi-commutation is
reminiscent of the asymmetrical dependency analysis enabled by the conditional stubborn set
technique [34], and the execution of inputs under focus may be explained by means of sleep
sets. While it may be possible to formally derive our compressed semantics by instantiating
abstract POR techniques to our setting, we have not explored this possibility in detail5.
Concerning our reduced semantics, it may be seen as an application of the sleep set technique

5 Although this would be an interesting question, we do not expect that any improvement of compression
would come out of it. Indeed, compression can be argued to be maximal in terms of eliminating redundant
traces without analysing data: for any compressed trace there is a way to choose messages and modify tests
to obtain a concrete execution which does not belong to the equivalence class of any other compressed trace.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 39

(or even as a reformulation of Anisimov’s and Knuth’s characterization of lexicographic
normal forms) but the real contribution with this technique is to have formulated it in
such a way (see Definition 5.4) that it can be implemented without requiring an a priori
knowledge of data dependencies: it allows us to eliminate redundant traces on-the-fly as
data (in)dependency is discovered by the constraint resolution procedure (as explained in
Section 6.5)—in this sense, it may be viewed as a case of dynamic POR.

Narrowing the discussion a bit more, we now focus on the fact that our techniques
are designed for the verification of equivalence properties. This requirement turns several
seemingly trivial observations into subtle technical problems. For instance, ideas akin to
compression are often applied without justification (e.g. in [44, 45, 40]) because they are
obvious when one does reachability rather than equivalence checking. To understand this, it
is important to distinguish between two very different ways of applying POR to equivalence
checking (independently of the precise equivalence under consideration). The first approach
is to reduce a system such that the reduced system and the original systems are equivalent.
In the second approach, one only requires that two reduced systems are equivalent iff
the original systems are equivalent. The first approach seems to be more common in the
POR literature (where one finds, e.g. reductions that preserve LTL-satisfiability [11] or
bisimilarity [37]) though there are instances of the second approach (e.g. for Petri nets [33]).
In the present work, we follow the second approach: neither of our two reduction techniques
preserves trace equivalence. This allows stronger reductions but requires extra care: one has
to ensure that the independencies used in the reduction of one process are also meaningful
for the other processes; in other words, reduction has to be symmetrical. We come back to
these two different approaches later, when discussing specific POR techniques for security.

7.2. Security applications. The idea of applying POR to the verification of security
protocols dates back, at least, to the work of Clarke et al. [25, 26]. In this work, the authors
remark that traditional POR techniques cannot be directly applied to security mainly
because “[they] must keep track of knowledge of various agents” and “[their] logic can refer
to this knowledge in a meaningful way”. This led them to define a notion of semi-invisible
actions (output actions, that cannot be swapped after inputs but only before them) and
design a reduction that prioritizes outputs and performs them in a fixed order. Compared to
our work, this reduction is much weaker (even weaker than compression only), only handles
a finite set of messages, and only focuses on reachability properties checking.

In [30], the authors develop “state space reduction” techniques for the Maude-NRL
Protocol Analyzer (Maude-NPA). This tool proceeds by backwards reachability analysis and
treats at the same level the exploration of protocol executions and attacker’s deductions.
Several reductions techniques are specific to this setting, and most are unrelated to partial
order reduction in general, and to our work in particular. We note that the lazy intruder
techniques from [30] should be compared to what is done in constraint resolution procedures
(e.g. the one used in Apte) rather than to our work. A simple POR technique used in
Maude-NPA is based on the observation that inputs can be executed in priority in the
backwards exploration, which corresponds to the fact that we can execute outputs first in
forward explorations. We note again that this is only one aspect of the focused strategy, and
that it is not trivial to lift this observation from reachability to trace equivalence. Finally, a
“transition subsumption” technique is described for Maude-NPA. While highly non-trivial
due to the technicalities of the model, this is essentially a tabling technique rather than a
partial order reduction. Though it does yield a significant state space reduction (as shown in

40 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

the experiments [30]) it falls short of exploiting independencies fully, and has a potentially
high computational cost (which is not evaluated in the benchmarks of [30]).

In [32], Fokkink et al. model security protocols as labeled transition systems whose
states contain the control points of different agents as well as previously outputted messages.
They devise some POR technique for these transition systems, where output actions are
prioritized and performed in a fixed order. In their work, the original and reduced systems
are trace equivalent modulo outputs (the same traces can be found after removing output
actions). The justification for their reduction would fail in our setting, where we consider
standard trace equivalence with observable outputs. More importantly, their requirement
that a reduced system should be equivalent to the original one makes it impossible to swap
input actions, and thus reductions such as the execution under focus of our compressed
semantics cannot be used. The authors leave as future work the problem of combining their
algorithm with symbolic executions, in order to be able to lift the restriction to a finite
number of messages.

Cremers and Mauw proposed [29] a reduction technique for checking secrecy in security
protocols. Their method allows to perform outputs eagerly, as in our compressed semantics.
It also uses a form of sleep set technique to avoid redundant interleavings of input actions.
In addition to being applicable only for reachability property, the algorithm of [29] works
under the assumption that for each input only finitely many input messages need to be
considered. The authors identify as important future work the need to lift their method to
the symbolic setting.

Earlier work by Mödersheim et al. has shown how to combine POR techniques with
symbolic semantics [40] in the context of reachability properties for security protocols. This
has led to high efficiency gains in the OFMC tool of the AVISPA platform [7]. While their
reduction is very limited, it brings some key insight on how POR may be combined with
symbolic execution. For instance, their reduction imposes a dependency constraint (called
differentiation constraint in their work) on the interleavings of

{in(c, x).out(c,m), in(d, y).out(d,m′)}.
Assuming that priority is given to the process working on channel c, this constraint enforces
that any symbolic interleaving of the form in(d,M ′).out(d,w′).in(c,M).out(c, w) would
only be explored for instances of M that depend on w′. Our reduced semantics constrains
patterns of arbitrary size (instead of just size 2 diamond patterns as above) by means of
dependency constraints. Going back to Example 5.5, their technique will only be able (at
most) to exploit the dependencies depicted in plain blue arrows, and they will not consider the
one represented by the dashed 2-arrow. Moreover, while we generate dependency constraints
on the fly, they implement their technique by looking for such a pattern afterwards. This
causes a tradeoff between reduction and the cost of redundancy detection: their technique
fails to detect all patterns of this kind. Besides these differences, we note that Mödersheim
et al. use dependency constraints to guide a dedicated constraint resolution procedure, while
we chose to treat constraint resolution (almost) as a black box, and leave it unchanged.
Finally, we recall that our POR technique has been designed to be sound and complete for
trace equivalence checking as well as reachability checking.

Finally, in [10], the authors of the present paper extend some of the results presented
here. Instead of considering the syntactic fragment of simple processes, we work under the
more general semantical assumption of action-determinism. We show that compression and
reduction can be extended to that case, preserving the main result: the induced equivalences

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 41

coincide. However, that work is completely carried out in concrete rather than symbolic
semantics. Thus, this development should be viewed as being orthogonal to the one carried
out in the present paper. The main ideas behind the integration in symbolic semantics and
Apte would apply to the action-deterministic case as well. The line of research followed in
[10], that consists in extending the supported fragment for our POR techniques, is still open:
it would be interesting to support processes that are not action-deterministic, which are
commonplace when analysing anonymity or unlinkability scenarios.

8. Conclusion

We have developed two POR techniques that are adequate for verifying trace equivalence
properties between simple processes. The first refinement groups actions in blocks, while
the second one uses dependency constraints to restrict to minimal interleavings among a
class of permutations. In both cases, the refined semantics has less traces, yet we show
that the associated trace equivalence coincides with the standard one. We have effectively
implemented these refinements in Apte, and shown that they yield the expected, significant
benefit.

We claim that our POR techniques – at least compression – and the significant opti-
misations they allow are generic enough to be applicable to other verification methods as
long as they perform forward symbolic executions. In addition to the integration in Apte
we have extensively discussed, we also have successfully done so in Spec [35]. Furthermore,
parts of our POR techniques have been independently integrated and implemented in the
distributed version of Akiss6.

We are considering several directions for future work. Regarding the theoretical results
presented here, it is actually possible to slightly relax the syntactic condition we imposed
on processes by an action-determinism hypothesis and apply our reduction techniques on
replicated processes [10]. The question of whether the action-determinism condition can
be removed without degrading the reductions too much is left open. Another interesting
direction would be to adapt our techniques for verification methods based on backward
search instead of forward search as is the case in this paper. We also believe that stronger
reductions can be achieved: for instance, exploiting symmetries should be very useful for
dealing with multiple sessions. Regarding the practical application of our results, we can
certainly go further. We could investigate the role of the particular choice of the order ≺, to
determine heuristics for maximising the practical impact of reduction.

Acknowledgements. We would like to thank Vincent Cheval for interesting discussions and
comments, especially on Section 6.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc. 28th Symposium
on Principles of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.

[2] M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science, 322(3):427–476, 2004.
[3] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic partial order reduction. ACM

SIGPLAN Notices, 49(1):373–384, 2014.
[4] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput., 2(3), 1992.

6See https://github.com/akiss/akiss.

https://github.com/akiss/akiss

42 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity using the
applied pi calculus. In Proc. 23rd Computer Security Foundations Symposium (CSF’10), pages 107–121.
IEEE Comp. Soc. Press, 2010.

[6] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T. Abad. Formal analysis of saml 2.0 web
browser single sign-on: Breaking the saml-based single sign-on for google apps. In Proc. 6th ACM
Workshop on Formal Methods in Security Engineering (FMSE 2008), pages 1–10, 2008.

[7] A. Armando et al. The AVISPA Tool for the automated validation of internet security protocols and
applications. In Proc. 17th Int. Conference on Computer Aided Verification (CAV’05), LNCS. Springer,
2005.

[8] A. Armando et al. The AVANTSSAR platform for the automated validation of trust and security of
service-oriented architectures. In Tools and Algorithms for the Construction and Analysis of Systems -
18th International Conference, TACAS 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, pages
267–282, 2012.

[9] D. Baelde, S. Delaune, and L. Hirschi. A reduced semantics for deciding trace equivalence using constraint
systems. In Proc. of POST’14. Springer, 2014.

[10] D. Baelde, S. Delaune, and L. Hirschi. Partial order reduction for security protocols. In L. Aceto and
D. de Frutos-Escrig, editors, Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15), volume 42 of Leibniz International Proceedings in Informatics, pages 497–510, Madrid,
Spain, Sept. 2015. Leibniz-Zentrum für Informatik.

[11] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series). The MIT
Press, 2008.

[12] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th Conference on
Computer and Communications Security. ACM, 2005.

[13] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In Proc. 14th Computer
Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp. Soc. Press, 2001.

[14] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for security
protocols. Journal of Logic and Algebraic Programming, 2008.

[15] R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of cryptographic
protocols. In Proc. 21th European Symposium on Programming Languages and Systems (ESOP’12),
LNCS. Springer, 2012.

[16] R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of cryptographic
protocols. In Programming Languages and Systems, pages 108–127. Springer, 2012.

[17] V. Cheval. APTE: http://projects.lsv.ens-cachan.fr/APTE/, 2011.
[18] V. Cheval. Automatic verification of cryptographic protocols: privacy-type properties. Thèse de doctorat,

Laboratoire Spécification et Vérification, ENS Cachan, France, Dec. 2012.
[19] V. Cheval. Apte: an algorithm for proving trace equivalence. In Proc. TACAS’14, 2014.
[20] V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests and non-

determinism. In Proc. 18th Conference on Computer and Communications Security (CCS’11). ACM
Press, 2011.

[21] V. Cheval, H. Comon-Lundh, and S. Delaune. A procedure for deciding symbolic equivalence between
sets of constraint systems. Information and Computation, 2016. To appear.

[22] V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based properties using constraint solving.
Theoretical Computer Science, 492:1–39, June 2013.

[23] V. Cheval and L. Hirschi. sources of APTE, 2015. https://github.com/APTE/APTE.
[24] Y. Chevalier and M. Rusinowitch. Decidability of symbolic equivalence of derivations. Journal of

Automated Reasoning, 48(2), 2012.
[25] E. Clarke, S. Jha, and W. Marrero. Partial order reductions for security protocol verification. In Tools

and Algorithms for the Construction and Analysis of Systems, pages 503–518. Springer, 2000.
[26] E. M. Clarke, S. Jha, and W. R. Marrero. Efficient verification of security protocols using partial-order

reductions. International Journal on Software Tools for Technology Transfer, 4(2):173–188, 2003.
[27] V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of ballot secrecy. Journal of Computer

Security, 21(1):89–148, 2013.
[28] C. J. F. Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols. In

Proc. 20th International Conference on Computer Aided Verification (CAV’08), LNCS. Springer, 2008.

http://projects.lsv.ens-cachan.fr/APTE/
https://github.com/APTE/APTE

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 43

[29] C. J. F. Cremers and S. Mauw. Checking secrecy by means of partial order reduction. In System Analysis
and Modeling. Springer, 2005.

[30] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. State space reduction in the maude-nrl protocol
analyzer. Inf. Comput., 238:157–186, 2014.

[31] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In ACM
Sigplan Notices, volume 40, pages 110–121. ACM, 2005.

[32] W. Fokkink, M. T. Dashti, and A. Wijs. Partial order reduction for branching security protocols. In
Proceedings of ACSD’10. IEEE, 2010.

[33] P. Godefroid. Using partial orders to improve automatic verification methods. In Computer-Aided
Verification, pages 176–185. Springer Berlin Heidelberg, 1991.

[34] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach to the
State-Explosion Problem, volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

[35] L. Hirschi. SPEC with dependency constraints. http://www.lsv.ens-cachan.fr/~hirschi/spec.php.
Accessed: 2017-04-04.

[36] L. Hirschi and S. Delaune. A survey of symbolic methods for establishing equivalence-based properties
in cryptographic protocols. Journal of Logical and Algebraic Methods in Programming, 2016. To appear.

[37] M. Huhn, P. Niebert, and H. Wehrheim. Partial order reductions for bisimulation checking. In V. Arvind
and R. Ramanujam, editors, Foundations of Software Technology and Theoretical Computer Science,
18th Conference, Chennai, India, December 17-19, 1998, Proceedings, volume 1530 of Lecture Notes in
Computer Science, pages 271–282. Springer, 1998.

[38] S. Meier, B. Schmidt, C. J. F. Cremers, and D. Basin. The tamarin prover for the symbolic analysis of
security protocols. In Proc. International Conference on Computer Aided Verification (CAV’13), pages
696–701. Springer, 2013.

[39] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In
Proc. 8th ACM Conference on Computer and Communications Security (CCS’01). ACM Press, 2001.

[40] S. Mödersheim, L. Viganò, and D. A. Basin. Constraint differentiation: Search-space reduction for the
constraint-based analysis of security protocols. Journal of Computer Security, 18(4):575–618, 2010.

[41] D. Peled. Ten years of partial order reduction. In Proc. 10th International Conference on Computer
Aided Verification, CAV’98, volume 1427 of Lecture Notes in Computer Science. Springer, 1998.

[42] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-complete. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01), pages 174–190. IEEE Comp. Soc.
Press, 2001.

[43] S. Santiago, S. Escobar, C. Meadows, and J. Meseguer. A formal definition of protocol indistinguishability
and its verification using Maude-NPA. In Security and Trust Management, pages 162–177. Springer,
2014.

[44] K. Sen and G. Agha. Automated systematic testing of open distributed programs. In Fundamental
Approaches to Software Engineering, pages 339–356. Springer, 2006.

[45] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha. Transdpor: A
novel dynamic partial-order reduction technique for testing actor programs. In Formal Techniques for
Distributed Systems, pages 219–234. Springer, 2012.

[46] A. Tiu. Spec: http://users.cecs.anu.edu.au/~tiu/spec/, 2010.
[47] A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi calculus. In Proc. 23rd

IEEE Computer Security Foundations Symposium (CSF’10), pages 307–321. IEEE Computer Society
Press, 2010.

http://www.lsv.ens-cachan.fr/~hirschi/spec.php
http://users.cecs.anu.edu.au/~tiu/spec/

44 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

Appendix A. Notations

Symbol Description Reference

−→ transition for concrete processes Figure 2
=⇒ −→ up-to non-observable actions Section 2.2
∼ static equivalence Definition 2.7
v trace inclusion for concrete processes Definition 2.9
≈ trace equivalence for concrete processes Definition 2.9
−→→ focused semantics Figure 3
−→c compressed semantics Figure 4
vc trace inclusion induced by −→c Definition 3.6
≈c trace equivalence induced by −→c Definition 3.6

7−→ symbolic semantics Figure 5
7−→→ focused symbolic semantics Figure 6
7−→c compressed symbolic semantics Figure 6
vs trace inclusion induced by 7−→ Definition 4.7
vsc trace inclusion induced by 7−→c Definition 4.8
≈s trace equivalence induced by 7−→ Definition 4.7
≈sc trace equivalence induced by 7−→c Definition 4.8
−→
Xn−→w dependency constraint Definition 5.2

Deps (tr) dependency constraints induced by a trace Definition 5.4
vsr trace inclusion up-to dependency constraints Definition 5.6
≈sr trace equivalence up-to dependency constraints Definition 5.6
|| independence of blocks Definition 5.7
≡Φ equivalence of two traces Definition 5.9

d(P; Φ;S)e associated extented symbolic process Section 6.1
b(P; Φ;S;S+)c associated symbolic process Section 6.1

≺+ symbolic inclusion of sets of extended symbolic processes Definition 6.2
∼+ symbolic equivalence of sets of extended symbolic processes Definition 6.2

7−→A Apte exploration step Section 6.1

7−→A1 first part of Apte exploration step Section 6.1

7−→A2 second part of Apte exploration step Section 6.1

7−→A
c compressed version of 7−→A Section 6.4

7−→A
r reduced version of 7−→A

c Section 6.5
≈A equivalence induced by 7−→A Definition 6.4
≈A
c equivalence induced by 7−→A

c Section 6.4
≈A
r equivalence induced by 7−→A

r Section 6.5

Appendix B. Proofs of Section 3

Lemma 3.8. Let A, A′ be two extended simple processes and tr, tr′ be such that tr =Ia tr′.

We have that A
tr

=⇒ A′ if, and only if, A
tr′

=⇒ A′.

Proof. It suffices to establish that A
α·α′
==⇒ A′ implies A

α′·α
==⇒ A′ for any α Ia α′.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 45

• Assume that we have A
out(ci,wi)
======⇒ Ai

out(cj ,wj)
======⇒ A′ with ci 6= cj . Because we are considering

simple processes, the two actions must be concurrent. More specifically, our process A
must be of the form ({Pi, Pj}] Pr; Φ) with Pi (resp. Pj) being a basic process on channel
ci (resp. cj). We assume that in our sequence of reductions, τ actions pertaining to Pi
are all executed before reaching Ai, and that τ actions pertaining to Pr are executed
last. This is without loss of generality, because a τ action on a given basic process
can easily be permuted with actions taking place on another basic process, since it
does not depend on the context and has no effect on the frame. Thus we have that
Ai = ({P ′i , Pj}]Pr; Φ]{wi .mi}), A′ = ({P ′i ;P ′j}]P ′r; Φ]{wi .mi, wj .mj}). Since the

τ actions taking place on P ′r rely neither on the frame nor on the first two basic processes,
we easily obtain the permuted execution:

A
out(cj ,wj)
======⇒ ({Pi, P ′j}] Pr; Φ] {wj . mj})
out(ci,wi)
======⇒ ({P ′i , P ′j}] P ′r; Φ] {wi . mi, wj . mj})

• The permutation of two input actions on distinct channels is very similar. In this case,
the frame does not change at all, and the order in which messages are derived from the
frame does not matter. Moreover, the instantiation of the input variable on one basic
process has no impact on the other ones.

• Assume that we have A
out(ci,wi)
======⇒ Ai

in(cj ,M)
=====⇒ A′ with ci 6= cj and wi 6∈ fv(M). Again, the

two actions are concurrent, and we can assume that τ actions are organized conveniently so
that A is of the form ({Pi, Pj}]Pr; Φ) with Pi (resp. Pj) a basic process on ci (resp. cj); Ai
is of the form ({P ′i , Pj}]Pr; Φ]{wi.mi}); and A′ is of the form ({P ′i , P ′j}]P ′r; Φ]{wi.mi}).
As before, the τ actions from Pr to P ′r are easily moved around. Additionally, wi 6∈ fv(M)
implies fv(M) ⊆ dom(Φ) and thus we have:

({Pi, Pj}] Pr; Φ)
in(cj ,M)
=====⇒ ({Pi, P ′j}] Pr; Φ)

The next step is trivial:

({Pi, P ′j}] Pr; Φ)
out(ci,wi)
======⇒ ({P ′i , P ′j}] P ′r; Φ] {wi . mi})

• We also have to perform the reverse permutation, but we shall not detail it; this time we
are delaying the derivation of M from the frame, and it only gets easier.

Proposition 3.10. Let A, A′ be two initial simple processes, and tr be a trace made of

proper blocks such that A
tr

=⇒ A′. Then, we have that A tr−→c A
′.

Proof. We first observe that A
tr
=⇒ A′ implies A

tr−→→o∗ A
′ if A′ is initial and tr is a (possibly

empty) sequence of output actions on the same channel. We prove this by induction on the
sequence of actions. If it is empty, we can conclude using one of the Proper rules because
A = A′ is initial. Otherwise, we have:

A
out(c,w)
=====⇒ A′′

tr
=⇒ A′.

We obtain A′′
tr−→→o∗ A

′ by induction hypothesis, and conclude using rules Tau and Out.

The next step is to show that A
tr
=⇒ A′ implies A

tr−→→i∗ A
′, if A′ is initial and tr is the

concatenation of a (possibly empty) sequence of inputs and a non-empty sequence of outputs,
all on the same channel. This is easily shown by induction on the number of input actions.
If there are none we use the previous result, otherwise we conclude by induction hypothesis

46 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

and using rules Tau and In. Otherwise, the first output action allows us to conclude from
the previous result and rules Tau and Out.

We can now show that A
tr
=⇒ A′ implies A

tr−→→i+ A′ if A′ is initial and tr is a proper
block. Indeed, we must have

A
in(c,M)
====⇒ A′′

tr′
=⇒ A′

which allows us to conclude using the previous result and rules Tau and In.

We finally obtain that A
tr
=⇒ A′ implies A tr−→c A

′ when A and A′ are initial simple
processes and tr is a sequence of proper blocks. This is done by induction on the number of
blocks. The base case is trivial. Because A is initial, the execution of its basic processes can
only start with observable actions, thus only one basic process is involved in the execution
of the first block. Moreover, we can assume without loss of generality that the execution
of this first block results in another initial process: indeed the basic process resulting from
that execution is either in the final process A′, which is initial, or it will perform another
block, i.e. it can perform τ actions followed by an input, in which case we can force those τ
actions to take place as early as possible. Thus we have

A
b

=⇒ A′′
tr′
=⇒ A′

where b is a proper block, and we conclude using the previous result and the induction
hypothesis.

Before proving Theorem 3.11, we establish the following result.

Proposition B.1. Let tr be a trace of observable actions such that, for any channel c
occurring in the trace, it appears first in an input action. There exists a sequence of proper
blocks trio and a sequence of improper blocks tri such that tr =Ia trio · tri.

Proof. We proceed by induction on the length of tr, and distinguish two cases:

• If tr has no output action then, by swapping input actions on distinct channels, we reorder
tr so as to obtain tri = trc1 · . . . · trcn =Ia tr where the ci’s are pairwise distinct and trci is
an improper block on channel ci.
• Otherwise, there must be a decomposition tr = tr1 · out(c, w) · tr2 such that tr1 does

not contain any output. We can perform swaps involving input actions of tr1 on all
channel c′ 6= c, so that they are delayed after the first output on c. We obtain tr =Ia
in(c,M1) · . . . · in(c,Mn) · out(c, w) · tr′1 · tr2 with n ≥ 1. Next, we swap output actions
on channel c from tr′1 · tr2 that are not preceded by another input on c, so as to obtain

tr =Ia in(c,M1) . . . in(c,Mn) · out(c, w) · out(c, w1) . . . out(c, wm) · tr′2
such that either tr′2 does not contain any action on channel c or the first one is an input
action. We have thus isolated a first proper block, and we can conclude by induction
hypothesis on tr′2.

Note that the above result does not exploit all the richness of Ia. In particular, it never
relies on the possibility to swap an input action before an output when the input message
does not use the output handled. Indeed, the idea behind compression does not rely on
messages. This is no longer the case in Section 5 where we use Ia more fully.

We finally prove the main result about the compressed semantics relying on Proposi-
tion B.1 stated and proved above. Given two simple process A = (P; Φ) and A′ = (P ′; Φ′),
we shall write Φ(A) ∼ Φ(A′) (or even A ∼ A′) instead of Φ ∼ Φ′.

A REDUCED SEMANTICS FOR DECIDING TRACE EQUIVALENCE 47

Theorem 3.11. Let A and B be two initial simple processes. We have that

A ≈ B ⇐⇒ A ≈c B.

Proof. We prove the two directions separately.
(⇒) Let A be an initial simple process such that A ≈ B and A tr−→c A

′. One can easily see
that the trace tr must be of the form trio · tri where trio is made of proper blocks and tri is a
(possibly empty) sequence of inputs on the same channel cj . We have:

A trio−−→c A
′′ tri−→c A

′

Using Proposition 3.9, we obtain that A
trio==⇒ A′′. We also claim that A′′

tri=⇒ A+ for some
A+ having the same frame as A′ which is itself equal to the one of A′′. This is obvious when
tri is empty—in that case we can simply choose A+ = A′ = A′′. Otherwise, the execution of
the improper block tri results from the application of rule Improper. Except for the fact
that this rule “kills” the resulting process, its subderivation simply packages a sequence of
inputs, and so we have a suitable A+. We thus have:

A
trio==⇒ A′′

tri=⇒ A+

By hypothesis, it implies that B
trio==⇒ B′′ and B

trio·tri====⇒ B+ with A′′ ∼ B′′ and A+ ∼ B+.
Relying on the fact that B is a simple process, we have:

B
trio==⇒ B′′

tri=⇒ B+

It remains to establish that B tr−→c B
′ such that B′ ∼ A′. We can assume that B′′ does

not have any basic process starting with a test, without loss of generality since forcing τ
actions cannot break static equivalence. Further, we observe that B′′ is initial. Otherwise, it
would mean that a basic process of B is not initial (absurd) or that one of the blocks of
trio, which are maximal for A, is not maximal for B (absurd again, because it contradicts
A ≈ B). This allows us to apply Proposition 3.10 to obtain

B trio−−→c B
′′.

This concludes when tri is empty, because B′ = B′′ ∼ A′′ = A′. Otherwise, we note that A+

cannot perform any action on channel cj , because the execution of tri in the compressed
semantics must be maximal. Since A ≈ B, it must be that B+ cannot perform any observable
action on the channel cj either. Thus B′′ can complete an improper step:

B′′ tri−→c B
′ where B′ = (∅; Φ(B+)).

We can finally conclude that B tr−→c B
′ with Φ(B′) = Φ(B+) ∼ Φ(A+) = Φ(A′).

(⇐) Let A be an initial simple process such that A ≈c B and A
tr
=⇒ A′. We “complete” this

execution as follows:

• We force τ actions whenever possible.
• If the last action on c in tr is an input, we trigger available inputs on c using a valid public

constant as a recipe.
• We trigger all the outputs that are available and not blocked.

We obtain a trace of the form tr · tr+. Let A+ be the process obtained from this trace:

A
tr
=⇒ A′

tr+
=⇒ A+

We observe that A+ is initial. Indeed, for each basic process that performs actions in tr · tr+,
we have that:

48 D. BAELDE, S. DELAUNE, AND L. HIRSCHI

• either the last action on its channel is an output and the basic process is of the form
in(c,).P or out(c, u).P with ¬valid(u),
• or the last action is an input and the basic process is reduced to 0 and disappears, or it is

an output which is blocked.

Next, we apply Proposition B.1 to obtain traces trsio (resp. tri) made of proper (resp. im-
proper) blocks, such that tr · tr+ =Ia trio · tri. By Lemma 3.8 we know that this permuted
trace can also lead to A+:

A
trio==⇒ Aio

tri=⇒ A+

As before, we can assume that Aio cannot perform any τ action. Under this condition,
since A+ is initial, Aio must also be initial.

By Proposition 3.10 we have that A trio−−→c Aio, and A ≈c B implies that:

B trio−−→c Bio with Φ(Aio) ∼ Φ(Bio).

A simple inspection of the Proper rules shows that a basic process resulting from the
execution of a proper block must be initial. Thus, since the whole simple process B is initial,
Bio is initial too.

Thanks to Proposition 3.9, we have that B
trio==⇒ Bio. Our goal is now to prove that we

can complete this execution with tri. This trace is of the form trc1 · trc2 . . . trcn where trci

contains only inputs on channel ci and the ci are pairwise disjoint. Now, we easily see that
for each i,

Aio
trci
==⇒ Ai

and Ai has no more atomic process on channel ci. Thus we have Aio
trci−−→c A

0
i with

A0
i = (∅; Φ(Ai)). Since A ≈c B, we must have some B0

i such that:

B trio−−→c Bio
trci−−→c B

0
i

We can translate this back to the regular semantics, obtaining B
trio==⇒ Bio

trci
==⇒ Bi. We can

now execute all these inputs to obtain an execution of trio · tri towards some process B+:

B
trio==⇒ Bio

tri=⇒ B+

Permuting those actions, we obtain thanks to Lemma 3.8:

B
tr
=⇒ B′

tr+
=⇒ B+

We observe that Φ(B+) = Φ(Bio) ∼ Φ(Aio) ∼ Φ(A+), and it follows that A′ ∼ B′ because
those frames have the same domain, which is a subset of that of Φ(A+) ∼ Φ(B+).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Model for security protocols
	2.1. Syntax
	2.2. Semantics
	2.3. Trace equivalence

	3. Compression based on grouping actions
	3.1. Compressed semantics
	3.2. Soundness and completeness

	4. Deciding trace equivalence via constraint solving
	4.1. Constraint systems
	4.2. Symbolic processes: syntax and semantics
	4.3. Soundness and completeness

	5. Reduction using dependency constraints
	5.1. Reduced semantics
	5.2. Soundness and completeness

	6. Integration in Apte
	6.1. Apte in a nutshell
	6.2. Specification of the procedure
	6.3. Proof of the original procedure
	6.4. Integrating compression
	6.5. Integrating dependency constraints in Apte
	6.6. Benchmarks

	7. Related Work
	7.1. Classical POR
	7.2. Security applications

	8. Conclusion
	References
	Appendix A. Notations
	Appendix B. Proofs of Section ??

