
Partial Order Reduction for Security Protocols ∗

David Baelde, Stéphanie Delaune, and Lucca Hirschi

LSV, ENS Cachan & CNRS
{baelde,delaune,hirschi}@lsv.ens-cachan.fr

Abstract
Security protocols are concurrent processes that communicate using cryptography with the aim
of achieving various security properties. Recent work on their formal verification has brought
procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability,
vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive
symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits
the scalability and practical impact of the verification tools.

In this paper, we mitigate this difficulty by developing partial order reduction techniques for
the verification of security protocols. We provide reduced transition systems that optimally elim-
inate redundant traces, and which are adequate for model-checking trace equivalence properties
of protocols by means of symbolic execution. We have implemented our reductions in the tool
Apte, and demonstrated that it achieves the expected speedup on various protocols.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases cryptographic protocols, verification, process algebra, trace equivalence

1 Introduction

Security protocols are concurrent processes that use various cryptographic primitives in
order to achieve security properties such as secrecy, authentication, anonymity, unlinkability,
etc. They involve a high level of concurrency and are difficult to analyse by hand. Actually,
many protocols have been shown to be flawed several years after their publication (and
deployment). This has led to a flurry of research on formal verification of protocols.

A successful way of representing protocols is to use variants of the π-calculus, whose
labelled transition systems naturally express how a protocol may interact with a (potentially
malicious) environment whose knowledge increases as more messages are exchanged over
the network. Some security properties (e.g., secrecy, authentication) are then described as
reachability properties, while others (e.g., unlinkability, anonymity) are expressed as trace
equivalence properties. In order to decide such properties, a reasonable assumption is to
bound the number of protocol sessions, thereby limiting the length of execution traces. Even
under this assumption, infinitely many traces remain, since each input may be fed infinitely
many different messages. However, symbolic execution and dedicated constraint solving
procedures have been devised to provide decision procedures for reachability [18, 12] and,
more recently, equivalence properties [23, 9]. Unfortunately, the resulting tools, especially
those for checking equivalence (e.g., Apte [8], Spec [22]), have a very limited practical impact
because they scale very badly. This is not surprising since they treat concurrency in a very
naive way, exploring all possible symbolic interleavings of concurrent actions.
Contributions. We develop partial order reduction (POR) techniques for trace equivalence
checking of security protocols. Our main challenge is to do it in a way that is compatible with

∗ This work has been partially supported by the project JCJC VIP ANR-11-JS02-006, and the Inria large
scale initiative CAPPRIS.

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

symbolic execution: we should provide a reduction that is effective when messages remain
unknown, but leverages information about messages when it is inferred by the constraint
solver. We achieve this by refining interleaving semantics in two steps, gradually eliminating
redundant traces. The first refinement, called compression, uses the notion of polarity [2] to
impose a simple strategy on traces. It does not rely on data analysis at all and can easily be
used as a replacement for the usual semantics in verification algorithms. The second one,
called reduction, takes data into account and achieves optimality in eliminating redundant
traces. In practice, the reduction step can be implemented in an approximated fashion,
through an extension of constraint resolution procedures. We have done so in the tool Apte,
showing that our theoretical results do translate to significant practical optimisations.
Related work. The theory of partial order reduction is well developed in the context of
reactive systems verification (e.g., [21, 6, 16]). However, as pointed out by E. Clarke et al.
in [11], POR techniques from traditional model-checking cannot be directly applied in the
context of security protocol verification. Indeed, the application to security requires one to
keep track of the knowledge of the attacker, and to refer to this knowledge in a meaningful
way (in particular to know which messages can be forged at some point to feed some input).
Furthermore, security protocol analysis does not rely on the internal reduction of a protocol,
but has to consider arbitrary execution contexts (representing interactions with arbitrary,
active attackers). Thus, any input may depend on any output, since the attacker has the
liberty of constructing arbitrary messages from past outputs. This results in a dependency
relation which is a priori very large, rendering traditional POR arguments suboptimal, and
calling for domain-specific techniques.

In order to achieve our goal of improving existing tools, our techniques are designed to
integrate nicely with symbolic execution. This is necessary to precisely deal with infinite,
structured data, without considering an a priori fixed and finite set of messages, as is the case
in several earlier works, e.g., [11, 13]. In this task, we get some inspiration from Mödersheim
et al. [20]. While their reduction is very limited, it brings some key insight on how POR
may be combined with symbolic execution in the context of security protocols verification.
All of the papers mentioned above only consider reachability properties, while we develop
an approach which is adequate for model-checking trace equivalence properties. In earlier
work [4] we have combined the idea of [20] with more powerful partial order reduction, in
a way that is compatible with trace equivalence checking. This settled the general ideas
behind the present paper, but only covered the very restrictive class of simple processes
(parallel processes communicate on distinct channels, and replication and nested parallel
composition are not allowed). Actually, we made heavy use of specific properties of those
simple processes to define our reductions and prove them correct. The present work also
brings a solid implementation in the tool Apte [8].
Outline. We consider in Section 2 a rich process algebra for representing security protocols.
It supports arbitrary cryptographic primitives, and even includes a replication operator
suitable for modelling unbounded numbers of sessions. Thus, we are not restricted to a
particular fragment for which a decision procedure exists, but show the full scope of our
theoretical results. We give in Section 3 an annotated semantics that will facilitate the
following technical developments. We then define our compressed semantics in Section 4
and the reduced semantics in Section 5. In both sections, we first restrict the transition
system, then show that the restriction is adequate for checking trace equivalence under
some action-determinism condition. We finally discuss how these results can be lifted to
the symbolic setting in Section 6. Specifically, we describe how we have implemented our
techniques in Apte, and we present experimental results showing that the optimisations are

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 2–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

fully effective in practice.
Due to lack of space, the reader is referred to the companion technical report [5] for the

missing proofs and additional details. In particular, a comparison of this work with the
extensive literature about POR can be found in [5, §7].

2 Model for security protocols

In this section we introduce our process algebra, which is a variant of the applied π-calculus [1]
that has been designed with the aim of modelling cryptographic protocols. Processes can
exchange complex messages, represented by terms quotiented by some equational theory.

One of the key difficulties in the applied π-calculus is that it models the knowledge of
the environment, seen as an attacker who listens to network communication and may also
inject messages. One has to make a distinction between the content of a message (sent by
the environment) and the way the message has been created (from knowledge available to
the environment). While the distinction between messages and recipes came from security
applications, it may be of much broader interest, as it gives a precise, intentional content to
labelled transitions that we exploit to analyse data dependencies.

We study a process algebra that may seem quite restrictive: we forbid internal commu-
nication and private channels. However, this is reasonable when studying security protocols
faced with the usual omnipotent attacker. In such a setting, we end up considering the
worst-case scenario where any communication has to be made via the environment.

2.1 Syntax
We assume a number of disjoint and infinite sets: a set C of channels, whose elements are
denoted by a, b, c; a set N of private names or nonces, denoted by n or k; a set X of variables,
denoted by x, y, z as usual; and a set W of handles, denoted by w and used for referring to
previously output terms. Next, we consider a signature Σ consisting of a finite set of function
symbols together with their arity. Terms over S, written T (S), are inductively generated
from S and function symbols from Σ. When S ⊆ N , elements of T (S) are called messages.
When S ⊆ W, they are called recipes and written M , N . Intuitively, recipes express how a
message has been derived by the environment from the messages obtained so far. Finally, we
consider an equational theory E over terms to assign a meaning to function symbols in Σ.

I Example 1. Let Σ = {enc/2, dec/2, h/1} and E be the equational theory induced by the
equation dec(enc(x, y), y) = x. Intuitively, the symbols enc and dec represent symmetric
encryption and decryption, whereas h is used to model a hash function. Now, assume that
the environment knows the key k as well as the ciphertext enc(n, k), and that these two
messages are referred to by handles w and w′. The environment may decrypt the ciphertext
with the key k, apply the hash function, and encrypt the result using k to get the message
m0 = enc(h(n), k). This computation is modelled using the recipe M0 = enc(h(dec(w′, w)), w).

I Definition 2. Processes are defined by the following syntax where c, a ∈ C, x ∈ X ,
u, v ∈ T (N ∪ X), and #»c (resp. #»n) is a sequence of channels from C (resp. names from N).

P,Q ::= 0 | (P | Q) | in(c, x).P | out(c, u).P | if u = v then P else Q | !a#»c , #»nP

The last construct combines replication with channel and name restriction: !a#»c , #»nP may be
read as !(ν #»c .out(a, #»c).ν #»n.P) in standard applied π-calculus. Our goal with this compound
construct is to support replication in a way that is not fundamentally incompatible with the

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 3–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

action-determinism condition which we eventually impose on our processes. This is achieved
here by advertising on the public channel a any new copy of the replicated process. At the
same time, we make public the new channels #»c on which the copy may operate — but not
the new names #»n . While it may seem restrictive, this style is actually natural for security
protocols where the attacker knows exactly to whom he is sending a message and from whom
he is receiving, e.g., via IP addresses.

We shall only consider ground processes, where each variable is bound by an input. We
denote by fc(P) and bc(P) the set of free and bound channels of P .

I Example 3. The process P0 models an agent who sends the ciphertext enc(n, k), and then
waits for an input on c. In case the input has the expected form, the constant ok is emitted.

P0 = out(c, enc(n, k)).in(c, x).if dec(x, k) = h(n) then out(c, ok).0 else 0
The processes P0 as well as !ac,nP0 are ground. We have that fc(P0) = {c} and bc(P0) = ∅
whereas fc(!ac,nP0) = {a} and bc(!ac,nP0) = {c}.

2.2 Semantics
We only consider processes that are normal w.r.t. internal reduction defined as follows:

if u = v then P else Q P when u =E v P | Q P ′ | Q
if u = v then P else Q Q when u 6=E v Q | P Q | P ′

}
when P P ′

(P1 | P2) | P3 P1 | (P2 | P3) P | 0 P 0 | P P

Any process in normal form built from parallel composition can be uniquely written as
P1 | (P2 | (. . . | Pn)) with n ≥ 2, which we denote Πn

i=1Pi, where each process Pi is neither
a parallel composition nor the process 0.

We now define our labelled transition system. It deals with configurations (denoted
by A, B) which are pairs (P; Φ) where P is a multiset of ground processes and Φ, called
the frame, is a substitution mapping handles to messages that have been made available to
the environment. Given a configuration A, Φ(A) denotes its second component. Given a
frame Φ, dom(Φ) denotes its domain.

In ({in(c, x).Q}] P; Φ) in(c,M)−−−−−→ ({Q{MΦ/x}}] P; Φ) M ∈ T (dom(Φ))

Out ({out(c, u).Q}] P; Φ) out(c, w)−−−−−→ ({Q}] P; Φ ∪ {w 7→ u}) w ∈ W fresh

Repl ({!a#»c , #»nP}] P; Φ) sess(a, #»c)−−−−−−→ ({P ; !a#»c , #»nP}] P; Φ) #»c , #»n fresh

Par ({Πn
i=1Pi}] P; Φ) τ−→ ({P1, . . . , Pn}] P; Φ)

Zero ({0}] P; Φ) τ−→ (P; Φ)

Rule In expresses that an input process may receive any message that the environment
can derive from the current frame. In rule Out, the frame is enriched with a new message.
The last two rules simply translate the parallel structure of processes into the multiset
structure of the configuration. As explained above, rule Repl combines the replication of a
process together with the creation of new channels and nonces. The channels #»c are implicitly
made public, but the newly created names #»n remain private. Remark that channels #»c

and names #»n must be fresh, i.e., they do not appear free in the original configuration. As
usual, freshness conditions do not block executions: it is always possible to rename bound
channels #»c and names #»n of a process !a#»c , #»nP before applying Repl. We denote by bc(tr)
the bound channels of a trace tr, i.e., all the channels that occur in second argument of an
action sess(a, #»c) in tr, and we consider traces where channels are bound at most once.

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 4–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Example 4. Going back to Example 3 with Φ0 = {w1 7→ k}, we have that:

({!ac,nP0}; Φ0) sess(a, c)−−−−−→ out(c, w2)−−−−−→ in(c,M0)−−−−−→ ({out(c, ok).0; !ac,nP0}; Φ)

where Φ = {w1 7→ k,w2 7→ enc(n, k)} and M0 = enc(h(dec(w2, w1)), w1).

2.3 Equivalences
We are concerned with trace equivalence, which is used [7, 15] to model anonymity, un-
traceability, strong secrecy, etc. Finer behavioural equivalences, e.g., weak bisimulation,
appear to be too strong with respect to what an attacker can really observe. Intuitively, two
configurations are trace equivalent if the attacker cannot tell whether he is interacting with
one or the other. To make this formal, we introduce a notion of equivalence between frames.

I Definition 5. Two frames Φ and Φ′ are in static equivalence, written Φ ∼ Φ′, when
dom(Φ) = dom(Φ′), and: MΦ =E NΦ ⇔ MΦ′ =E NΦ′ for any terms M,N ∈ T (dom(Φ)).

I Example 6. Continuing Example 4, consider Φ′ = {w1 7→ k′, w2 7→ enc(n, k)}. The test
enc(dec(w2, w1), w1) = w2 is true in Φ but not in Φ′, thus Φ 6∼ Φ′.

We then define obs(tr) to be the subsequence of tr obtained by erasing τ actions.

I Definition 7. Let A and B be two configurations. We say that A v B when, for any
A tr−→ A′ such that bc(tr) ∩ fc(B) = ∅, there exists B tr′−→ B′ such that obs(tr) = obs(tr′) and
Φ(A′) ∼ Φ(B′). They are trace equivalent, written A ≈ B, when A v B and B v A.

In order to lift our optimised semantics to trace equivalence, we will require configurations
to be action-deterministic. This common assumption in POR techniques [6] is also reasonable
in the context of security protocols, where the attacker knows with whom he is communicating.

I Definition 8. A configuration A is action-deterministic if whenever A tr−→ (P ; Φ), and P,Q
are two elements of P, we have that P and Q cannot perform an observable action of the
same nature (in, out, or sess) on the same channel (i.e., if both actions are of same nature,
their first argument has to differ).

3 Annotated semantics

We shall now define an intermediate semantics whose transitions are equipped with more
informative actions. The annotated actions will notably feature labels ` ∈ N∗ indicating from
which concurrent processes they originate. A labelled action will be written [α]` where α is
an action and ` is a label. Similarly, a labelled process will be written [P]`. When reasoning
about trace equivalence between two configurations, it will be crucial to maintain a consistent
labelling between configurations along the execution. In order to do so, we define skeletons
of observable actions, which are of the form inc, outc or !a where a, c ∈ C, and we assume a
total ordering over those skeletons, denoted < with ≤ being its reflexive closure. Any process
that is neither 0 nor a parallel composition induces a skeleton corresponding to its toplevel
connective, and we denote it by sk(P) (e.g., sk(in(c, x).0) = inc).

We then define in Figure 1 the annotated semantics −→a over configurations whose
processes are labelled. In Par, note that sk(Pi) is well defined as Pi cannot be 0 nor
a parallel composition. Note that the annotated transition system does not restrict the
executions of a process but simply annotates them with labels, and replaces τ actions by
more descriptive actions.

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 5–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

In ({[in(c, x).Q]`}] P; Φ) [in(c,M)]`−−−−−−−→a ({[Q{MΦ/x}]`}] P; Φ) M ∈ T (dom(Φ))

Out ({[out(c, u).Q]`}] P; Φ) [out(c,w)]`−−−−−−−→a ({[Q]`}] P; Φ ∪ {w 7→ u}) w ∈ W fresh

Repl ({[!a#»c , #»nP0]`}] P; Φ) [sess(a, #»c)]`−−−−−−−−→a ({[P0]`·1, [!a#»c , #»nP0]`·2}] P; Φ) #»c , #»n fresh

Par ({[Πn
i=1Pi]`}] P; Φ)

[par(σπ(1);...;σπ(n))]`
−−−−−−−−−−−−−→a ({[Pπ(1)]`·1, . . . , [Pπ(n)]`·n}] P; Φ)

σi = sk(Pi) and π is a permutation over [1, ...n] such that σπ(1) ≤ . . . ≤ σπ(n)

Zero ({[0]`}] P; Φ) [zero]`−−−−→a (P; Φ)

Figure 1 Annotated semantics

We now define how to extract dependencies from annotated traces, which will allow us to
analyse concurrency in an execution without referring to configurations. We obtain sequential
dependencies from labels, in a way that is similar, e.g., to the use of causal relations in
CCS [14]. We also define recipe dependencies which are a sort of data dependencies reflecting
our specific setting, where we consider an arbitrary attacker who may interact with the
process, relying on (maybe several) previously outputted messages to derive input messages.

I Definition 9. Two labels are dependent if one is a prefix of the other. We say that the
labelled actions α and β are sequentially dependent when their labels are dependent, and
recipe dependent when {α, β} = {[in(c,M)]`, [out(c′, w)]`′} with w occurring inM . They are
dependent when they are sequentially or recipe dependent. Otherwise, they are independent.

I Definition 10. A configuration (P ; Φ) is well labelled if P is a multiset of labelled processes
such that two elements of P have independent labels.

Obviously, any unlabelled configuration may be well labelled. Further, it is easy to see
that well labelling is preserved by −→a. Thus, we shall implicitly assume to be working with
well labelled configurations. Under this assumption, we obtain the following lemma.

I Lemma 11. Let A be a (well labelled) configuration, α and β be two independent labelled
actions. We have A α.β−−→a A

′ if, and only if, A β.α−−→a A
′.

Symmetries of trace equivalence. We will see that, when checking A ≈ B for action-
deterministic configurations, it is sound to require that B can perform all traces of A in the
annotated semantics (and the converse). In other words, labels and detailed non-observable
actions zero and par(σ1 . . . σn) are actually relevant for trace equivalence. Obviously, this
can only hold if A and B are labelled consistently. In order to express this, we extend sk(P)
to parallel and 0 processes: we let their skeletons be the associated action in the annotated
semantics. Next, we define the labelled skeletons by skl([P]`) = [sk(P)]`. When checking for
equivalence of A and B, we shall assume that skl(A) = skl(B), i.e., the configurations have
the same set of labelled skeletons. This technical condition is not restrictive in practice.

I Example 12. Let A = ({[in(a, x).((out(b,m).P1) | P2)]0}; Φ) with P1 = in(c, y).0 and
P2 = in(d, z).0, and B the configuration obtained from A by swapping P1 and P2. We have
skl(A) = skl(B) = {[ina]0}. Consider the following trace:

tr = [in(a, ok)]0.[par({outb; ind})]0.[out(b, w)]0·1.[in(c, w)]0·1.[in(d,w)]0·2

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 6–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Start/In

P is initial (P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P] {P};∅; Φ) foc(in(c,M))−−−−−−−−−→c (P;P ′; Φ)

Start/!

P is initial (!a#»c , #»nP ; Φ) sess(a, #»c)−−−−−−→a ({!a#»c , #»nP ;Q}; Φ)

(P] {!a#»c , #»nP};∅; Φ) foc(sess(a, #»c))−−−−−−−−−−→c (P] {!a#»c , #»nP};Q; Φ)

Pos/In

(P ; Φ) in(c,M)−−−−−→a (P ′; Φ)

(P;P ; Φ) in(c,M)−−−−−−→c (P;P ′; Φ)

Neg
(P ; Φ) α−→a (P ′; Φ′)

(P] {P};∅; Φ) α−−→c (P] P ′;∅; Φ′)
α ∈ {par(_), zero, out(_,_)}

Release (P; [P]`; Φ) [rel]`−−−−→c (P] {[P]`};∅; Φ) when P is negative

Labels are implicitly set in the same way as in the annotated semantics. Neg is made
non-branching by imposing an arbitrary order on labelled skeletons of available actions.

Figure 2 Compressed semantics

Assuming outb < ind and ok ∈ Σ, we have A tr−→a A
′. However, there is no B′ such that

B tr−→a B
′, for two reasons. First, B cannot perform the second action since skeletons of sub-

processes of its parallel composition are {outb; inc}. Second, B would not be able to perform
the action in(c, w) with the right label. Such mismatches can actually be systematically
used to show A 6≈ B, as shown next.

I Lemma 13. Let A and B be two action-deterministic configurations such that A ≈ B
and skl(A) = skl(B). For any execution A

[α1]`1
−−−−→a A1

[α2]`2
−−−−→a A2 . . .

[αn]`n−−−−→a An with

bc(α1. . . . αn)∩ fc(B) = ∅, there exists an execution B [α1]`1
−−−−→a B1

[α2]`2
−−−−→a B2 . . .

[αn]`n−−−−→a Bn
such that Φ(Ai) ∼ Φ(Bi) and skl(Ai) = skl(Bi) for any 1 ≤ i ≤ n.

4 Compression

Our first refinement of the semantics, which we call compression, is closely related to focusing
from proof theory [2]: we will assign a polarity to processes and constrain the shape of
executed traces based on those polarities. This will provide a first significant reduction of the
number of traces to consider when checking reachability-based properties such as secrecy, and
more importantly, equivalence-based properties in the action-deterministic case. Moreover,
compression can easily be used as a replacement for the usual semantics in verification
algorithms.

I Definition 14. A process P is positive if it is of the form in(c, x).Q, and it is negative
otherwise. A multiset of processes P is initial if it contains only positive or replicated
processes, i.e., of the form !a#»c , #»nQ.

The compressed semantics (see Figure 2) is built upon the annotated semantics. It
constrains the traces to follow a particular strategy, alternating between negative and positive
phases. It uses enriched configurations of the form (P;F ; Φ) where (P; Φ) is a labelled
configuration and F is either a process (signalling which process is under focus in the positive
phase) or ∅ (in the negative phase). The negative phase lasts until the configuration is initial

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 7–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(i.e., unfocused with an initial underlying multiset of processes) and in that phase we perform
actions that decompose negative non-replicated processes. This is done using the Neg rule,
in a completely deterministic way. When the configuration becomes initial, a positive phase
can be initiated: we choose one process and start executing the actions of that process (only
inputs, possibly preceded by a new session) without the ability to switch to another process
of the multiset, until a negative subprocess is released and we go back to the negative phase.
The active process in the positive phase is said to be under focus. Between any two initial
configurations, the compressed semantics executes a sequence of actions, called blocks, of the
form foc(α).tr+.rel.tr− where tr+ is a (possibly empty) sequence of input actions, whereas
tr− is a (possibly empty) sequence of out, par, and zero actions. Note that, except for
choosing recipes, the compressed semantics is completely non-branching when executing a
block. It may branch only when choosing which block is performed.

I Example 15. Consider the process P = !ac,kin(c, x).out(c, enc(x, k)).0. We have that:

({P};∅; Φ) foc(sess(a, ci))−−−−−−−−−→c ({P}; {in(ci, x).out(c, enc(x, ki)).0}; Φ)
in(ci,Mi).rel−−−−−−−−→c ({P, out(c, enc(MiΦ, ki)).0};∅; Φ)

out(ci, wi).zero−−−−−−−−−→c ({P};∅; Φ′).

Once a replication is performed, the resulting process is under focus and must be executed in
priority until the end. Note that, after executing the input, the resulting process is negative
and, thus, still has priority. Thus, on this example, all compressed executions are made of
blocks of the form: sess(a, ci).in(ci,Mi).out(ci.wi).

4.1 Reachability
We now formalise the relationship between traces of the compressed and annotated semantics.
In order to do so, we translate between configuration and enriched configuration as follows:

d(P; Φ)e = (P;∅; Φ), b(P;∅; Φ)c = (P; Φ) and b(P;P ; Φ)c = (P] {P}; Φ).
Similarly, we map compressed traces to annotated ones:

bεc = ε, bfoc(α).trc = α.btrc, brel.trc = btrc and bα.trc = α.btrc otherwise.
We observe that we can map any execution in the compressed semantics to an execution

in the annotated semantics. Indeed, a compressed execution is simply an annotated execution
with some extra annotations (i.e., foc and rel) indicating positive/negative phase changes.

I Lemma 16. For any configurations A, A′ and tr, A tr−→c A
′ implies bAc btrc−−→a bA′c.

Going in the opposite direction is more involved. In general, mapping annotated executions
to compressed ones requires to reorder actions. Compressed executions also force negative
actions to be performed unconditionally and blocks to be fully executed. One way to handle
this is to consider complete executions of a configuration, i.e., executions after which no more
action can be performed except possibly the ones that consist in unfolding a replication (i.e.,
rule Repl). Inspired by the positive trunk argument of [19], we show the following lemma.

I Lemma 17. Let A, A′ be two configurations and tr be such that A tr−→a A
′ is complete.

There exists a trace trc, such that btrcc can be obtained from tr by swapping independent
labelled actions, and dAe trc−→c dA′e.

Proof sketch. We proceed by induction on the length of a complete execution starting from A.
If A is not initial, then we need to execute some negative action using Neg: this action

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 8–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

must be present somewhere in the complete execution, and we can permute it with preceding
actions using Lemma 11. If A is initial, we analyse the prefix of input and session actions
and we extract a subsequence of that prefix that corresponds to a full positive phase. J

4.2 Equivalence
We now define compressed trace equivalence (≈c) and prove that it coincides with ≈.

I Definition 18. Let A and B be two configurations. We say that A vc B when, for any
A tr−→c A

′ such that bc(tr)∩ fc(B) = ∅, there exists B tr−→c B
′ such that Φ(A′) ∼ Φ(B′). They

are compressed trace equivalent, denoted A ≈c B, if A vc B and B vc A.

Compressed trace equivalence can be more efficiently checked than regular trace equi-
valence. Obviously, it explores fewer interleavings by relying on −→c rather than −→. It also
requires that traces of one process can be played exactly by the other, including details
such as non-observable actions, labels, and focusing annotations. The subtleties shown
in Example 12 are crucial for the completeness of compressed equivalence w.r.t. regular
equivalence. Since the compressed semantics forces to perform available outputs before e.g.
input actions, some non-equivalences are only detected thanks to the labels and detailed
non-observable actions of our annotated semantics.

I Theorem 19. Let A and B be two action-deterministic configurations with skl(A) = skl(B).
We have A ≈ B if, and only if, dAe ≈c dBe.

Proof sketch. (⇒) Consider an execution dAe tr−→c A
′. Using Lemma 16, we get A btrc−−→a bA′c.

Then, Lemma 13 yields B btrc−−→a B
′ for some B′ such that Φ(bA′c) ∼ Φ(B′) and labelled

skeletons are equal all along the executions. Relying on those skeletons, we show that
positive/negative phases are synchronised, and thus dBe tr−→c B

′′ for some B′′ with bB′′c = B′.
(⇐) Consider an execution A tr−→a A

′. We first observe that it suffices to consider only complete
executions there. This allows us to get a compressed execution dAe trc−→c dA′e by Lemma 17.
Since dAe ≈c dBe, there exists B′ such that dBe trc−→c B

′ with Φ(dA′e) ∼ Φ(B′). Thus we
have B btrcc−−→a bB′c but also B tr−→a bB′c thanks to Lemma 11. J

Improper blocks. Note that blocks of the form foc(α).tr+.rel.zero do not bring any new
information to the attacker. While it would be incorrect to fully ignore such improper blocks,
it is in fact sufficient to only consider them at the end of traces. We show in [5] that ≈c
coincides with a further optimised compressed trace equivalence that only checks for proper
traces, i.e., ones that have at most one improper block and only at the end of trace.

5 Reduction

Our compressed semantics cuts down interleavings by using a simple focused strategy.
However, this semantics does not analyse data dependency that happen when an input
depends on an output, and is thus unable to exploit the independency of blocks to reduce
interleavings. We tackle this problem now.

I Definition 20. Two blocks b1 and b2 are independent, written b1 ‖ b2, when all labelled
actions α1 ∈ b1 and α2 ∈ b2 are independent. Otherwise they are dependent, written b1
 b2.

Obviously, Lemma 11 tells us that independent blocks can be permuted in a trace without
affecting the executability and the result of executing that trace. But this notion is not very
strong since it considers fixed recipes, which are irrelevant (in the end, only the derived

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 9–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

messages matter) and can easily introduce spurious dependencies. Thus we define a stronger
notion of equivalence over traces, which allows permutations of independent blocks but also
changes of recipes that preserve messages. During these permutations, we will also require
that traces remain plausible, which is defined as follows: tr is plausible if for any input
in(c,M) such that tr = tr0.in(c,M).tr2 then M ∈ T (W) where W is the set of all handles
occurring in tr0. Given a block b, i.e., a sequence of the form foc(α).tr+.rel.tr−, we denote
by b+ (resp. b−) the part of b corresponding to the positive (resp. negative) phase, i.e.,
b+ = α.tr+ (resp. b− = tr−). We note (b1 =E b2)Φ when b+1 Φ =E b

+
2 Φ and b−1 = b−2 .

I Definition 21. Given a frame Φ, the relation ≡Φ is the smallest equivalence over plausible
compressed traces such that tr.b1.b2.tr′ ≡Φ tr.b2.b1.tr′ when b1 ‖ b2, and tr.b1.tr′ ≡Φ tr.b2.tr′
when (b1 =E b2)Φ.

I Lemma 22. Let A and A′ be two initial configurations such that A tr−→c A
′. We have that

A tr′−→c A
′ for any tr′ ≡Φ(A′) tr.

We now turn to defining our reduced semantics, which is going to avoid the redundancies
identified above by only executing specific representatives in equivalence classes modulo ≡Φ.
More precisely, we shall only execute minimal traces according to some order, which we now
introduce. We assume an order ≺ on blocks that is insensitive to recipes, and such that
independent blocks are always strictly ordered in one way or the other. We finally define ≺lex
on compressed traces as the lexicographic extension of ≺ on blocks.

In order to incrementally build representatives that are minimal with respect to ≺lex,
we define a predicate that expresses whether a block b should be authorised after a given
trace tr. Intuitively, this is the case only when, for any block b′ � b in tr, dependencies forbid
to swap b and b′. We define this with recipe dependencies first, then quantify over all recipes
to capture message dependencies.

I Definition 23. A block b is authorised after tr, noted tr . b, when tr = ε; or tr = tr0.b0 and
either (i) b
 b0 or (ii) b ‖ b0, b0 ≺ b, and tr0 . b.

We finally define −→r as the least relation such that:

Init
A ε−→r A

Block A tr−→r (P;∅; Φ) (P;∅; Φ) b−→c A
′

A tr.b−−→r A
′

if tr . b′ for all b′
with (b′ =E b)Φ

Our reduced semantics only applies to initial configurations: otherwise, no block can be
performed. This is not restrictive since we can, without loss of generality, pre-execute
non-observable and output actions that may occur at top level.

I Example 24. We consider roles Ri := in(ci, x).if x = ok then out(ci, ok) where ok is a
public constant, and then consider a parallel composition of n such processes: Pn := Πn

i=1Ri.
Thanks to compression, we will only consider traces made of blocks, and obtain a first
exponential reduction of the state space. However, contrary to the case of a replicated process
(see Example 15), we still have many interleavings to consider – blocks can be interleaved in
all the possible ways. We will see that our reduced semantics cuts down these interleavings.
Assume that our order ≺ prioritises blocks on ci over those on cj when i < j, and consider a
trace starting with in(cj ,Mj).out(cj , wj). Trying to continue the exploration with a block
on ci with i < j, the authorisation predicate . will impose that there is a dependency between
the block on ci and the previous one on cj . In this case it must be a data dependency: the
recipe of the message passed as input on ci must make use of the previous output to derive
ok. Since ok is a public constant, it is possible to derive it without using any previous output

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 10–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

and thus the block on ci cannot be authorised by .. Thus, on this simple example, the
reduced semantics will not explore any trace where a block on ci is performed after one on cj
with i < j.

5.1 Reachability
An easy induction on the compressed trace tr allows us to map an execution w.r.t. the
reduced semantics to an execution w.r.t. the compressed semantics.

I Lemma 25. For any configurations A and A′, A tr−→r A
′ implies A tr−→c A

′.

Next, we show that our reduced semantics only explores specific representatives. Given a
frame Φ, a plausible trace tr is Φ-minimal if it is minimal in its equivalence class modulo ≡Φ.

I Lemma 26. Let A be an initial configuration and A′ = (P;∅; Φ) be a configuration such
that A tr−→c A

′. We have that tr is Φ-minimal if, and only if, A tr−→r A
′.

Proof sketch. In order to relate minimality and executability in the reduced semantics, let us
say that a trace is bad if it is of the form tr.b0 . . . bn.b′.tr′ where n ≥ 0, there exists a block b′′
such that (b′′ =E b

′)Φ, we have bi ‖ b′′ for all i, and bi ≺ b′′ ≺ b0 for all i > 0. This pattern
is directly inspired by the characterisation of lexicographic normal forms by Anisimov and
Knuth in trace monoids [3]. We note that a trace that can be executed in the compressed
semantics can also be executed in the reduced semantics if, and only if, it is not bad. Since
the badness of a trace allows to swap b′ before b0, and thus obtain a smaller trace in the
class ≡Φ, we show that a bad trace cannot be Φ-minimal (and conversely). J

5.2 Equivalence
The reduced semantics induces an equivalence ≈r that we define similarly to the compressed
one, and we then establish its soundness and completeness w.r.t. ≈c.

I Definition 27. Let A and B be two configurations. We say that A vr B when, for every
A tr−→r A

′ such that bc(tr) ∩ fc(B) = ∅, there exists B tr−→r B
′ such that Φ(A′) ∼ Φ(B′).

They are reduced trace equivalent, denoted A ≈r B, if A vr B and B vr A.

I Theorem 28. Let A and B be two initial, action-deterministic configurations.
A ≈c B if, and only if, A ≈r B

Proof sketch. We first prove that tr ≡Φ tr′ iff tr ≡Ψ tr′ when Φ ∼ Ψ. (⇒) This implication is
then an easy consequence of Lemma 26. (⇐) We start by showing that it suffices to consider
a complete execution A tr−→c A

′. Since A′ is initial, by taking trm to be a Φ(A′)-minimal trace
associated to tr, we obtain a reduced execution of A leading to A′. Using our hypothesis
A ≈r B, we obtain that B trm−−→r B

′ with corresponding relations over frames. We finally
conclude that B tr−→c B

′ using Lemma 22 and the result stated above. J

Improper blocks. Similarly as we did for the compressed semantics in Section 4, we can
further restrict ≈r to only check proper traces.

6 Application

We have developed two successive refinements of the concrete semantics of our process algebra,
eventually obtaining a reduced semantics that achieves an optimal elimination of redundant

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 11–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

interleavings. However, the practical usability of these semantics in algorithms for checking
the equivalence of replication-free processes is far from immediate: indeed, all of our semantics
are still infinitely branching, because each input may be fed with arbitrary messages. We
now discuss how existing decision procedures based on symbolic execution [18, 12, 23, 9]
can be modified to decide our optimised equivalences rather than the regular one, before
presenting our implementation and experimental results.

6.1 Symbolic execution
Our compressed semantics can easily be used as a replacement of the regular one, in any
tool whose algorithm is based on a forward exploration of the set of possible traces. This
modification is very lightweight, and already brings a significant optimisation. In order
to make use of our final, reduced semantics, we would need to enter into the details of
constraint solving. In addition to imposing the compressed strategy and the sequential
dependencies imposed by our predicate tr . b, symbolic execution should be modified to
generate dependency constraints in order to reflect the data dependencies imposed by tr . b.
The generation of dependency constraints can be done in a similar way to [4]. The constraint
solver is then modified in a non-invasive way: dependency constraints are used to dismiss
configurations when it becomes obvious that they cannot be satisfied.

I Example 29. We consider the symbolic reduced executions of process Pn from Example 24.
In symbolic executions, input recipes and messages are initially left unknown, and gradually
discovered by constraint resolution procedures. Assume that we have already executed a
block on cj . After that, we can execute symbolically an input on ci, with i < j: let us write
it in(ci, Xi). Because we use the reduced semantics, a dependency constraint dep(Xi, wj) is
generated, expressing that the recipe denoted by Xi must depend on wj . After executing its
input, process Ri makes a test (x = ok). Its else branch is trivial: it leads to an improper
block, allowing us to stop any further exploration. When taking the then branch, we add a
constraint expressing that recipe Xi must derive the message ok. In a tool such as Apte, this
constraint is immediately solved by instantiating Xi := ok (considering other ways to derive
ok is useless). After this instantiation, our dependency constraint has become dep(ok, wj)
which is obviously unsatisfiable, and thus the branch is discarded.

The modified verification algorithm may explore symbolic traces that do not correspond
to Φ-minimal representatives (when dependency constraints cannot be shown to be infeasible)
but we will see that this approach allows us to obtain a very effective optimisation. Finally,
note that, because we may over-approximate dependency constraints, we must ensure that
constraint resolution prunes executions in a symmetrical fashion for both processes being
checked for equivalence.

6.2 Experimental results
The optimisations developed in the present paper have been implemented, following the
above approach, in the official version of the state of the art tool Apte [10]. We now report
on experimental results; sources and instructions for reproduction are available [17]. We only
show examples in which equivalence holds, because the time spent on inequivalent processes
is too sensitive to the order in which the (depth-first) exploration is performed.

Toy example. We consider again our simple example described in Section 6.1. We ran Apte
on Pn ≈ Pn for n = 1 to 22, on a single 2.67GHz Xeon core (memory is not relevant). We
performed our tests on the reference version and the versions optimised with the compressed

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 12–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

and reduced semantics respectively. The results are shown on the left graph of Figure 3,
in logarithmic scale: it confirms that each optimisation brings an exponential speedup, as
predicted by our theoretical analysis.

10-3

10-2

10-1

100

101

102

103

104

 5 10 15 20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

10-3

10-2

10-1

100

101

102

103

104

 3 6 9 12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Figure 3 Impact of optimisations on toy example (left) and Denning-Sacco (right).

Denning-Sacco protocol. We ran a similar benchmark, checking that Denning-Sacco ensures
strong secrecy in various scenarios. The protocol has three roles and we added processes
playing those roles in turn, starting with three processes in parallel. The results are plotted
on Figure 3. The fact that we add one role out of three at each step explains the irregular
growth in verification time. We still observe an exponential speedup for each optimisation.

Practical impact. Finally, we illustrate how our optimisations make Apte much more useful
in practice for investigating interesting scenarios. Verifying a single session of a protocol
brings little assurance into its security. In order to detect replay attacks and to allow the
attacker to compare messages that are exchanged, at least two sessions should be considered.
This means having at least four parallel processes for two-party protocols, and six when
a trusted third party is involved. This is actually beyond what the unoptimised Apte can
handle in a reasonable amount of time. We show below how many parallel processes could
be handled in 20 hours by the different versions of Apte on various use cases of protocols.

Protocol ref comp red Protocol ref comp red
Needham Schroeder (3-party) 4 6 7 Denning-Sacco (3-party) 5 9 10
Private Authent. (2-party) 4 7 7 WMF (3-party) 6 12 13
Yahalom (3-party) 4 5 5 E-Passport PA (2-party) 4 7 9

7 Conclusion

We have developed two POR techniques that are adequate for verifying reachability and
trace equivalence properties of action-deterministic security protocols. We have effectively
implemented them in Apte, and shown that they yield the expected, significant benefit.

We are considering several directions for future work. Regarding the theoretical results
presented here, the main question is whether we can get rid of the action-determinism
condition without degrading our reductions too much. Regarding the practical application
of our results, we can certainly go further. We first note that our compression technique
should be applicable and useful in other verification tools, not necessarily based on symbolic
execution. Next, we could investigate the role of the particular choice of the order ≺, to
determine heuristics for maximising the practical impact of reduction. Finally, we plan
to adapt our treatment of replication to bounded replication to obtain a first symmetry

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 13–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

elimination scheme, which should provide a significant optimisation when studying security
protocols with several sessions.

References
1 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

Proceedings of POPL’01. ACM Press, 2001.
2 J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,

2(3), 1992.
3 A.V. Anisimov and D.E. Knuth. Inhomogeneous sorting. International Journal of Com-

puter & Information Sciences, 8(4):255–260, 1979.
4 D. Baelde, S. Delaune, and L. Hirschi. A reduced semantics for deciding trace equivalence

using constraint systems. In Proc. of POST’14. Springer, 2014.
5 David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for security

protocols. CoRR, abs/1504.04768, 2015.
6 C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series).

The MIT Press, 2008.
7 Mayla Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of privacy for

RFID systems. In Proc. of CSF’10, 2010.
8 V. Cheval. Apte: an algorithm for proving trace equivalence. In Proc. TACAS’14.
9 V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative tests

and non-determinism. In Proc. of CCS’11. ACM Press, 2011.
10 V. Cheval and L. Hirschi. sources of APTE, 2015. https://github.com/APTE/APTE.
11 E. Clarke, S. Jha, and W. Marrero. Efficient verification of security protocols using partial-

order reductions. Int. Journal on Software Tools for Technology Transfer, 4(2), 2003.
12 H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for crypto-

graphic protocols. Application to key cycles. ACM Transactions on Computational Logic
(TOCL), 11(4), 2010.

13 Cas JF Cremers and Sjouke Mauw. Checking secrecy by means of partial order reduction.
In System Analysis and Modeling. Springer, 2005.

14 Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A partial ordering semantics for
ccs. Theoretical Computer Science, 75(3):223–262, 1990.

15 S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic voting
protocols: A taster. In Towards Trustworthy Elections – New Directions in Electronic
Voting, volume 6000. Springer, 2010.

16 Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer
Science. Springer, 1996.

17 L. Hirschi. APTE with POR. http://www.lsv.ens-cachan.fr/~hirschi/apte_por.
18 J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol

analysis. In Proceedings of CCS’01. ACM Press, 2001.
19 D. Miller and A. Saurin. From proofs to focused proofs: A modular proof of focalization

in linear logic. In Proc. of CSL’07, volume 4646. Springer, 2007.
20 S. Mödersheim, L. Viganò, and D. Basin. Constraint differentiation: Search-space reduction

for the constraint-based analysis of security protocols. JCS, 18(4), 2010.
21 D. Peled. Ten years of partial order reduction. In Proc. of CAV’98. Springer, 1998.
22 A. Tiu. Spec: http://users.cecs.anu.edu.au/~tiu/spec/, 2010.
23 A. Tiu and J. E. Dawson. Automating open bisimulation checking for the spi calculus. In

Proc. of CSF’10. IEEE Comp. Soc. Press, 2010.

© D. Baelde, S. Delaune, and L. Hirschi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 14–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/APTE/APTE
http://www.lsv.ens-cachan.fr/~hirschi/apte_por
http://users.cecs.anu.edu.au/~tiu/spec/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Model for security protocols
	Syntax
	Semantics
	Equivalences

	Annotated semantics
	Compression
	Reachability
	Equivalence

	Reduction
	Reachability
	Equivalence

	Application
	Symbolic execution
	Experimental results

	Conclusion

