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Abstract—Censored Markov chains (CMC) allow to represent
the conditional behavior of a system within a subset of observed
states. They provide a theoretical framework to study the
truncation of a discrete-time Markov chain when the generation
of the state-space is too hard or when the number of states is
too large. But the stochastic matrix of a CMC may be difficult
to obtain. Dayar et al. (2006) have proposed an algorithm, called
DPY, that computes a stochastic bounding matrix for a CMC with
a smaller complexity with only a partial knowledge of the chain.
We prove that this algorithm is optimal for the information they
take into account. We also show how some additional knowledge
on the chain can improve stochastic bounds for CMC.

I. INTRODUCTION

Let {Xt}t≥0 be a Discrete Time Markov Chain (DTMC)
with a state space X . Let E ⊂ X be the set of observed states,
X = E ∪ Ec, E ∩ Ec = ∅. For simplicity of presentation, we
assume here that the state space is finite and denote by n = |E|
and m = |Ec|. Assume that successive visits of {Xt}t≥0 to
E take place at time epochs 0 ≤ t0 < t1 < . . . Then the
chain {XEk }k≥0 = {Xtk

}k≥0 is called the censored chain with
censoring set E [7]. Let P denote the transition probability
matrix of chain {Xt}t≥0. Consider the partition of the state
space to obtain a block description of P :

P =
[
A B
C D

]
.

Blocks A, B, C, and D contain respectively transitions from
E to E , from E to Ec, from Ec to E , and from Ec to Ec. The
censored chain only observes the states in E . We assume that
Ec does not contain any reducible classes (so that the matrix
Id−D is regular). Then the transition probability matrix of the
censored chain, often also called the stochastic complement of
matrix A, is equal to [7]:

SA = A+B(Id −D)−1C = A+B

( ∞∑
i=0

Di

)
C. (1)

The second term of the right-hand side represents the proba-
bilities of paths that return to set E through states in Ec.

In many problems, initial probability matrix P can be large
or some transition probabilities may be unknown. Therefore,
it is difficult or even impossible to compute (Id − D)−1 to
get SA. Deriving bounds for SA from block A of matrix P
and from some information on the other blocks is thus an
interesting alternative approach and several algorithms have
been proposed in the literature. Truffet [6] considered the
case when only block A is known. In that case, the stochastic

bound is obtained by assuming that all the unknown returning
transitions go to the last state of E (i.e. state n).

Dayar et al. [2] proposed an algorithm, called DPY, for
the case when blocks A and C are known. We prove here
that their algorithm is optimal when we do not have any
information on blocks B (transitions between observed and
non-observed states) and D (transitions between the non-
observed states). We consider further how to improve bounds
when some additional information is known on blocks B or D.

In Section II we introduce an alternative decomposition of
stochastic complement SA that turns out to be natural for de-
riving stochastic bounds. In Section III we describe algorithm
DPY and prove its optimality using this decomposition. Then
in Section IV we discuss how to use additional information
on non-observed states to improve DPY bounds.

II. DECOMPOSITION OF STOCHASTIC COMPLEMENT

Throughout the paper, all the vectors are row vectors, e is a
vector with all components equal to 1, vt denotes a transposed
vector, [x]+ = max{x, 0}, for x ∈ R, �el is element-wise
comparison of two vectors (or matrices), and M [i, ∗] is row i
of matrix M .

Let us denote by W the diagonal matrix diag(1 − s1, 1 −
s2, . . . , 1− sm), where si =

∑m
j=1D[i, j], for all 1 ≤ i ≤ m.

If for some 1 ≤ i ≤ m, si = 1, then row i of W is equal to 0
and matrix W is singular. Therefore, we define a new matrix

W̃ = W +W ′, W ′ = diag(1{s1=1}, . . . ,1{sm=1}).

Matrix W̃ is always regular, so W̃−1 is well defined. Now
matrix SA can be decomposed as:

SA = A+B(Id −D)−1W̃W̃−1C. (2)

It is straightforward to check that:

Lemma 1. Matrices W ′ and W̃ satisfy:

(Id −D)−1W ′W̃−1C = 0.

The following proposition gives an alternative decomposi-
tion of stochastic complement. To the best of our knowledge
such a representation was not previously stated even if it
appears quite simple. Using this new representation we can
derive new arguments to prove stochastic bounds based on
comparison of stochastic vectors. Such an approach was harder
with the usual representation in Eq. 1. as (Id − D)−1 is a
matrix of expectations.



Proposition 1 (Decomposition of stochastic complement).
1) Matrix (Id −D)−1W is stochastic.
2) Matrix W̃−1C has rows that are either stochastic or

equal to 0.
3) Matrix SA can be decomposed as:

SA = A+B(Id −D)−1WW̃−1C. (3)

Proof: 1) We know that row i of matrix (Id −D)−1C is
equal to the conditional probability vector of entering the set E ,
knowing that we initially start in i ∈ Ec. Let G = (Id−D)−1.
Therefore, for all i,

∑
k(GC)[i, k] = 1 and:∑

j

(GW )[i, j] =
∑

j

G[i, j](1− sj) =
∑

j

G[i, j]
∑

k

C[j, k]

=
∑

k

∑
j

G[i, j]C[j, k] =
∑

k

(GC)[i, k] = 1.

Thus matrix (Id −D)−1W is stochastic.
2) For each row i of matrix W̃−1C, we have two cases: If

si = 1, then row i of matrix C is equal to 0 and so is row i
of matrix W̃−1C. If si < 1, then 1− si = C[i, ∗]et, so row i

of matrix W̃−1C is stochastic.
3) Lemma 1 and Eq. 2. imply Eq. 3.

III. DPY
Prior to stating the algorithm DPY and proving its optimal-

ity, we recall first the definition of strong stochastic ordering
of random variables on a finite state space {1, . . . , n} (see [5]
for more details on stochastic orders).

A. Some Fundamental Results on Stochastic Bounds

We will define operators r and v as in [1] and s for any
m× n matrix M :

r(M)[i, j] =
n∑

k=j

M [i, k], ∀i, j, (4)

v(M)[i, j] = max
k≤i
{r(M)[k, j]}, ∀i, j. (5)

s(M)[j] = max
i
{r(M)[i, j]}, ∀j. (6)

Let X and Y be two random variables with probability
vectors p and q (p[k] = P (X = k), q[k] = P (Y = k), ∀k).

Definition 1. X �st Y if
∑n

k=j p[k] ≤
∑n

k=j q[k], ∀j (i.e.
r(p) �el r(q)).

Let {Xt}t≥0 and {Yt}t≥0 be two DTMC with transition
probability matrices P and Q. Then we say that {Xt}t≥0 �st

{Yt}t≥0 if Xt �st Yt for all t ≥ 0.

Definition 2. For two probability matrices P and Q, P �st Q
if r(P ) �el r(Q).

Definition 3. A probability matrix P is �st-monotone if for
any two probability vectors p and q:

p �st q ⇒ pP �st qP.

We will use the following characterization of monotonicity
(see [5] for the proof):

Proposition 2. A probability matrix P is �st-monotone iff:

P [i− 1, ∗] �st P [i, ∗], ∀i > 1. (7)

i.e. iff v(P ) = P .

Sufficient conditions for comparison of two DTMC based
on stochastic comparison and monotonicity can be found in
[5]. These conditions can be easily checked algorithmically
and it is also possible to construct a monotone upper bound
for an arbitrary stochastic matrix P [1].

Proposition 3. (Vincent’s algorithm [1]) Let P be any
stochastic matrix. Then the Vincent’s bound is given by
Q = r−1v(P ), where r−1 denotes the inverse of r. Then Q
is �st-monotone and P �st Q, therefore Q is a transition
probability matrix of an upper bounding DTMC. Furthermore,
if P1 �st P2, then r−1v(P1) �st r

−1v(P2).

Corollary 1. (Optimality [1, Lemma 3.1]) Let P be any
stochastic matrix and Q = r−1v(P ). Then Q is the smallest
�st-monotone upper bound for P , i.e. if R is any stochastic
matrix such that R is �st-monotone and P �st R, then
Q �st R.

B. Stochastic bounds for CMC

Now we can formally state the problems we consider:
1) Given only block A, compute a matrix Q such that

SA �st Q. Is there an optimal bound (in the sense of
Definition 4), knowing only block A?

2) Given blocks A and C, compute a matrix Q such that
SA �st Q. Is this bound better than the one obtained
knowing only block A? Is there an optimal bound
knowing only blocks A and C?

3) Can some additional information on blocks B and D
improve stochastic bounds for CMC?

The first question was already answered by Truffet [6].
Denote by β = e − Aet the slack of probability mass for
matrix A. Then the bound in Truffet [6] is given by:

T (A) = A+ βt(0, . . . , 0, 1). (8)

It is straightforward to see that SA �st T (A). Furthermore,
this is the best bound one can obtain knowing only block A.
More formally:

Definition 4. Let M be a family of stochastic matrices. A
stochastic matrix Q is an �st-upper bound for family M if:

P �st Q, ∀P ∈M.

An �st-upper bound Q of M is optimal if:

Q �st R, for any �st-upper bound R of M.

Let R be the set of all stochastic matrices such that Ec does
not contain any reducible class (so that for any matrix Z ∈ R,
the stochastic complement SZ is well defined by Eq. 1). Then
the Truffet’s bound T (A) in Eq. 8 is the optimal �st-upper
bound for family:

M(A) = {SZ : Z ∈ R, ZE,E = A}.



The proof is straightforward.
The second question was partially answered by Dayar et al.

[2]: they derived an algorithm DPY that computes a stochastic
bound for SA when blocks A and C are known. In Algorithm 1
we give the algorithm DPY in its original form in [2]. We show
later in this section that DPY bound is optimal, which then
fully answers the second question. The third question will be
discussed in Section IV.

Algorithm 1: DPY(A,C) [2]
Data: Blocks A and C.
Result: Matrix Q such that SA �st Q.
begin

β = e−Aet;
for j = n downto 1 do

H[j] = maxk∈Ec

(Pn
l=j C[k,l]Pn
l=1 C[k,l]

)
;

for i = 1 to n do
F [i, j] = (β[i]H[j]−

∑n
l=j+1 F [i, l])+;

Q = A+ F ;
return Q;

end

Using operators r and s as defined in Eq. 4 and 6, DPY
can be rewritten as:

1) H = s(W̃−1C),
2) F = βtr−1(H),
3) Q = A+ F .

Thus:
DPY (A,C) = A+ βtr−1(s(W̃−1C)). (9)

From the above equation it obviously follows that
DPY (A,C) �st T (A). The following example shows
that DPY can improve the Truffet’s bounds.

Example 1. Let

A =

264 0.4 0.1 0.2 0.0
0.2 0.1 0.3 0.1
0.2 0.1 0.0 0.3
0.0 0.0 0.4 0.1

375 , B =

264 0.1 0.2 0.0 0.0
0.3 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.3 0.2 0.0 0.0

375 .

C =

264 0.2 0.1 0.1 0.0
0.1 0.3 0.0 0.0
0.4 0.1 0.2 0.1
0.0 0.1 0.0 0.0

375 , D =

264 0.1 0.2 0.1 0.2
0.3 0.0 0.3 0.0
0.1 0.0 0.0 0.1
0.3 0.3 0.3 0.0

375 .

Then the stochastic complement of A is equal to:

SA =

264 0.521 0.214 0.253 0.012
0.334 0.185 0.371 0.110
0.352 0.272 0.059 0.317
0.210 0.171 0.500 0.119

375 .

The Truffet’s bound T (A) and the DPY bound DPY (A,C)
are:

T (A) =

264 0.4 0.1 0.2 0.3
0.2 0.1 0.3 0.4
0.2 0.1 0.0 0.7
0.0 0.0 0.4 0.6

375 ,

DPY (A, C) =

264 0.4 0.287 0.275 0.038
0.2 0.287 0.375 0.138
0.2 0.35 0.10 0.35
0.0 0.312 0.525 0.163

375 .

C. Optimality of DPY

We will show here the optimality of DPY for family

M(A,C) = {SZ : Z ∈ R, ZE,E = A, ZEc,E = C}

of all transition probability matrices in R with given blocks
A and C.

Theorem 1 (Optimality of DPY). Matrix DPY (A,C) is the
optimal �st-upper bound for family M(A,C).

Proof: The proof that DPY (A,C) is an �st-upper bound
for family M(A,C) was already given in [2].

We prove here that DPY (A,C) is the optimal bound for
M(A,C). Consider any non-zero row j of matrix C (i.e. such
that sj < 1) and denote by Bj the matrix such that for all i,
Bj [i, k] = 0, if k 6= j, and Bj [i, j] = β[i]. Let Dj be a matrix
such that for all i, Dj [i, k] = 0, if k 6= j, and Dj [i, j] = si.
Let Zj be the matrix composed of blocks A, Bj , C, and Dj .
Then clearly Zj ∈ M(A,C). For Zj all the returning paths
from Ec to E go by state j ∈ Ec. Denote C̃ = W̃−1C to ease
the notation. Any �st-upper bound R for family M(A,C)
satisfies in particular:

SZj
= A+ βtC̃[j, ∗] �st R,

i.e. r(A+βtC̃[j, ∗]) �el r(R). This is valid for all j such that
C̃[j, ∗] 6= 0. Thus:

max
j
r(A+βtC̃[j, ∗]) = max

{j : eC[j,∗] 6=0}
r(A+βtC̃[j, ∗]) �el r(R).

And

max
j
r(A+ βtC̃[j, ∗]) = r(A) + βts(C̃)

= r(A) + βtH = r(A+ F ),

so DPY (A,C) = A+ F �st R.
Similarly, let Me(A,C) be the family of all ergodic matri-

ces in M(A,C).

Theorem 2 (Optimality of DPY for the ergodic matrices).
Matrix DPY (A,C) is the optimal �st-upper bound for family
Me(A,C).

Proof: The main step of the proof is to show that family
Me(A,C) is dense within M(A,C), i.e. that for any U ∈
M(A,C) and for any ε > 0 there exists V ∈Me(A,C) such
that ||U − V ||1 ≤ ε.

In order to obtain an upper bound for the chain {XEk }k≥0,
we can now apply Proposition 3 and Corollary 1:

Corollary 2. The smallest �st-monotone upper bound for
{XEk }k≥0 is given by the transition probability matrix:

r−1(v(DPY (A,C))).



Remark 1 (Lower bounds). Similar algorithm to compute
lower bounds can be obtained using the symmetry of �st

order. The proof is omitted here for the sake of conciseness.

We proved the optimality of DPY for the case when only
blocks A and C are known. In the following section we
consider the case when we have some additional information
about block B.

IV. USING ADDITIONAL INFORMATION

The bounds consist in two parts: 1) find a deterministic part
we can obtain from A, C and all the additional information
on the model; and 2) apply DPY to the unknown part. Thus
the optimality of DPY is not sufficient in general to imply the
optimality of these bounds. Let us first assume that we also
know block B.

Proposition 4. Assume that A, B, and C are known. Then:

SA �st DPY (A+BC,C).

Proof: The proof is based on two steps. First we build
a new expression for the stochastic complement associated
with a new matrix. Then we prove that the matrix we have
built is stochastic and we use DPY to obtain a bound of the
stochastic complement of that matrix. Let us remember Eq. 3
and remember that as D does not contain any recurrent class
we have: (Id−D)−1 =

∑∞
i=0D

i = Id +D(Id−D)−1. After
substitution we get: SA = A+B(Id+D(Id−D)−1)WW̃−1C.
After simplification we obtain:

SA = A+BC +BD(Id −D)−1WW̃−1C. (10)

Therefore we obtain SA as the complement of matrix(
A+BC BD

C D

)
. Simple algebraic manipulations allow

to prove that this matrix is stochastic. Thus SA is upper
bounded by DPY (A+BC,C).

Using as example the same blocks A, B, and C already
defined, we obtained a new upper bound of the stochastic
complement SA denoted as H0. Clearly the bound is better
than the one obtained with DPY using only A and C:

H0 =

264 0.440 0.282 0.255 0.023
0.260 0.242 0.375 0.123
0.240 0.370 0.060 0.330
0.080 0.277 0.505 0.138

375 .

Now assume that we also know D, but we cannot compute
(Id − D)−1 because of the computational complexity. This
assumption is similar to the one developed in [4] where graph
theoretical arguments were used to obtain bounds.

Proposition 5. For any K ≥ 0, SA �st DPY (A +
B
∑K

i=0D
iC,C).

The proof relies on the same technique as the latter propo-
sition and is omitted here for the sake of conciseness. Let us
turn back now to the example for the same blocks and for
K = 1 (bound H1) and K = 2 (bound H2).

H1 =

264 0.484 0.244 0.254 0.018
0.284 0.225 0.374 0.117
0.312 0.304 0.060 0.324
0.140 0.227 0.504 0.129

375 ,

H2 =

264 0.499 0.232 0.254 0.015
0.310 0.204 0.372 0.114
0.324 0.295 0.060 0.321
0.172 0.201 0.502 0.125

375 .

For the same blocks and the same values of K we have also
computed the bound obtained with algorithm based on breadth
first search algorithm [4], which are clearly less accurate than
the bounds we obtain with the last proposition:

FPY 1 =

264 0.484 0.192 0.231 0.093
0.284 0.160 0.339 0.217
0.312 0.244 0.036 0.408
0.140 0.132 0.457 0.271

375 ,

FPY 2 =

264 0.499 0.205 0.237 0.059
0.310 0.176 0.351 0.163
0.324 0.258 0.041 0.377
0.172 0.155 0.471 0.202

375 .

V. CONCLUSIONS AND FINAL REMARKS

This approach gives a theoretical framework for the par-
tial generation of the state-space and the transition matrix
of a really large Markov chain. Partial generation is often
performed heuristically by software tools without any control
on the accuracy of the results. If the chain is designed using
an initial state and the successor function, when we stop the
generation, we obtain blocks A and B. Similarly, using an
initial state and the predecessor function we get blocks A
and C when the partial generation is achieved. Tensor based
representation [3] allows to build all blocks, but it is also
possible to take advantage of a partial representation to reduce
the complexity of the computational algorithms. Clearly, the
more information (i.e. blocks) we put in the model, the more
accurate are the bounds. Similarly, when we increase K, we
also increase the tightness of the bounds. We also want to
emphasize the importance of DPY algorithm, which is optimal
when only A and C are known and which allows to derive
better bounds when we add further useful information. More
algorithms and results will be presented in the full version of
this paper.
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