
1

COSMOS: a Statistical Model Checker for the
Hybrid Automata Stochastic Logic

Paolo Ballarini∗, Hilal Djafri†, Marie Duflot‡, Serge Haddad† and Nihal Pekergin‡
∗INRIA Bretagne Atlantique †LSV - ENS Cachan ‡LACL - UPEC

Abstract—This tool paper introduces COSMOS, a statistical
model checker for the Hybrid Automata Stochastic Logic
(HASL). HASL employs Linear Hybrid Automata (LHA), a gen-
eralization of Deterministic Timed Automata (DTA), to describe
accepting execution paths of a Discrete Event Stochastic Process
(DESP), a class of stochastic models which includes, but is not
limited to, Markov chains. As a result HASL verification turns
out to be a unifying framework where sophisticated temporal
reasoning is naturally blended with elaborate reward-based
analysis. COSMOS takes as input a DESP (described in terms of a
Generalized Stochastic Petri Net), an LHA and an expression Z
representing the quantity to be estimated. It returns a confidence
interval estimation of Z. COSMOS is written in C++ and is freely
available to the research community.

I. INTRODUCTION

Probabilistic model checking is concerned with the as-
sessment of probabilistic statements regarding a probabilistic
model. In the case of Markov models, efficient (symbolic)
numerical methods have been developed and popular model
checking tools, most notably PRISM [7], take advantage of
them. Nevertheless numerical model checking suffers from
state space explosion thus large models are intractable. On
the other hand the statistical model checking approach, which
does not require storage of a model’s state space, has been
gaining popularity in recent times. Dedicated statistical model
checkers have been developed [5] [1] [4], while tools which
were originally designed for numerical verification, such as
PRISM and MRMC[3], have been then extended with statistical
verification functionalities. Yet, there seem to be at least two
important restrictions concerning existing verification tools for
probabilistic models: their limited markovian scope (despite
the fact that many systems cannot realistically be modeled
in terms of exponentially distributed activities only) and the
restrained expressivity of the logic used to assert the statement
to be assessed.

In this paper we introduce COSMOS, a statistical verification
tool which targets DESP (i.e. possibly infinite state, not-
necessarily Markovian probabilistic models). COSMOS is based
on a novel, very expressive logic, named HASL, which we
briefly describe next.

II. HYBRID AUTOMATA STOCHASTIC LOGIC

HASL is a stochastic logic for DESP models introduced
in [6]. A formula of HASL consists of a Linear Hybrid
Automata (LHA) A, characterizing the accepted paths, and
an expression Z, describing the quantity to be measured. The
output of HASL procedure is the estimation of the expectation

of Z wrt the paths accepted by A.The distinctive aspect
of LHA-based verification is that LHA employ real valued
variables (as opposed to Timed Automata’s clocks), to store
relevant statistics of the processed paths. This provides the

Arrive1 Exp(λ1)

Request1

Start1

Access1

End1 Unif [α1, β1]

Free

Request2

Arrive2Exp(λ2)

Start2

Access2

End2Unif [α2, β2]

Fig. 1. Infinite-state GSPN model of a shared memory system.

modeler with a very expressive language to reason about
a model, a language through which relevant behaviors can
be characterized by any combination of timing conditions,
events-occurrence conditions and cost/reward conditions. If x
is a data-variable of an LHA, then typical HASL expressions
include, for example: Z ≡ E[last(x)] (for estimating the
expectation of the last value assumed by x on an accepting
path), Z ≡ E[avg(x)] (for estimating the expectation of the
average value assumed by x on an accepting path), etc. Note
that the assessment of a measure of probability (which is the
probabilistic model checking problem) is obtained, in HASL
terms, through Z ≡ E[last(x)] where x is binomial random
variable set to 1 on acceptance of a path and to 0 on rejection.

Init
ẋ0:1
ẋ1:0

Free

l1
ẋ0:1
ẋ1:1

Access1

l2
ẋ0:1
ẋ1:−1

Access2

E,x0<α

E
,x

0
<
α

E
,x

0
<
α

E,x0<α

E,x0<αE,x0<α

E,x0<α

l3

],x
0
=
α

∧
x
1
>

0

],x
0=α∧x

1>0],x
0=
α∧
x1>

0

Fig. 2. An LHA for measures related to the difference of memory usage

The LHA in Figure 2 is an example automaton for assessing
measures related to the utilization difference between 2 classes
of users sharing a mutual exclusive resource (see the DESP
model depicted, in Petri-net form, in Figure 1). Such LHA uses
a (global) clock variable (x0) and a variable (x1) for recording
the utilization difference. x1 grows with rate 1 when the
resource is held by class 1 users (location l1), is decremented
with rate -1 when class 2 users hold the resource (l2) and
doesn’t change when the resource is free (Init). A path is
accepted (l3) only if at time x0 = α the resource has been
held longer by class 1 users (x1 ≥ 0). Z ≡ E[max(x1)] is an
example of relevant HASL expression for this case: it allows

2

PROBABILITY first queue is full (Tandem Queuing System, bounded queue length C = 5) AVERAGE WAITING-TIME of station 1
probability measure gen. paths gain runtime (sec) runtime-gain waiting-time measure

T PRISM-n PRISM-s COSMOS COSMOS PRISM-s COS-G++ COS-LLVM COS-G++ COS-LLVM T PRISM-n PRISM-s COSMOS

20 0.33574 -0.00137 +0.0001 +35.89% 18.64 51.61 14.63 - 176.87% +21.51% 10 1.08484 +0.01778 +0.00197
40 0.56931 +0.00061 +0.00126 +29.59% 30.03 89.12 24.59 -196.76% +18.11% 20 2.49446 +0.0634 +0.01604
80 0.82229 +0.00351 +0.0064 +57.84% 42.54 73.73 20.22 -73.31% +52.46% 50 6.73012 +0.20522 -0.00962

TABLE I
COMPARING COSMOS VS PRISM: ESTIMATION OF A MEASURE OF PROBABILITY AND OF A MEASURE OF WAITING-TIME

for measuring the (expected value of the) maximum of the
utilization time difference (between class 1 and class 2 users)
on condition that, at time t = α the difference is positive.
Figure 3 depicts the trend of E[max(x1)] as a function of
the time bound α and for different arrival rate (λ2) for class
2 users. Note that HASL verification is (currently) limited to
the assessment of finite-horizon (either time-bounded or event-
occurrence bounded) properties of a DESP.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350

Ex
pe

ct
at

io
n

alpha (time-bound)

E[max(x1-x2|x1>=x2)]

Lambda2=0.8
Lambda2=0.9
Lambda2=1.0
Lambda2=1.1
Lambda2=1.2

Fig. 3. Maximum of the difference for memory occupation times

III. COSMOS TOOL

COSMOS is implemented in C++ and relies on the BOOST

libraries for random number generation functionalities. Cur-
rently two versions of the tool are available, one suitable
for compilation with the G++ compiler, the other suitable to
optimized compilation through the LLVM compiler infrastruc-
ture [2].

Inputs. COSMOS takes as input a DESP (represented in

CODE
GENERATOR

D : DESP (GSPN)

A : LHA

COMPILER
(G++, LLVM)

COSMOS.exeCOSMOS.cpp

Z : expr.

� : conf.-level
δ : inter. width

Z

Fig. 4. COSMOS’s architecture layout

terms of a Generalized Stochastic Petri Net (GSPN)1), and an
LHA, both stored into (formatted) textual files (extension .gspn
and .lha respectively). On execution COSMOS prompts for the
expression Z to be estimated, plus the estimation parameters:
the confidence level ε, the interval width δ. It returns the
estimated value Z. The tool is realized according to a model
driven code generation scheme (Figure 4): the input model
D, and the input automaton A are first processed and tailored
C++ code is generated which then yields the executable for the
HASL statistical model checker for model D and automaton
A. Such executable is then used to calculate the Z expressions

1extended with generally distributed timed-transitions.

provided as input on execution.
Tool evaluation. We performed a number of experiments
aimed at evaluating COSMOS both in terms of accuracy and
runtime. We considered two popular workbench models avail-
able at [7]: a Tandem Queuing System (TQS) and a Cyclic
Server Polling System (CSPS). We encoded the models and
the corresponding (time-bounded) properties in COSMOS and
run experiments both with COSMOS and PRISM. An excerpt
of the results is reported in Table I. The leftmost part of the
table refers to the evaluation of a measure of probability of the
TQS whereas the rightmost part refers to the evaluation of the
average waiting-time for one station of the CSPS. To assess
the accuracy of COSMOS we compared its output with that pro-
duced by PRISM via both its numerical engine (PRISM-n) and
its statistical engine (PRISM-s)2: results indicate that COSMOS

is comparably accurate to PRISM-s in estimating measures of
probability whereas it appears more accurate in estimating
non-probability measures (see waiting-time estimations). With
respect to runtime COSMOS-LLVM appears (up to twice) faster
than PRISM whereas COSMOS-G++ (up to twice) slower than
PRISM. When confronting runtimes it should be noted that:
simulation of the synchronized D×A process (HASL), is
inherently costlier than simulation of a CTMC (CSL); such
extra cost is compensated by the fact that COSMOS (which
establishes when to stop paths generation at run-time) requires
a substantially smaller number of runs than those required (and
statically determined) by PRISM.

Development. We plan to evolve COSMOS in several re-
spects, including: (1) accelerating the path generation when
faced to difficult acceptance condition via the rare event
approach; (2) improve the usability by: supporting the execu-
tion of batches of experiments (short-term), adding graphical
support for definition of GSPN model and LHA (long-term).
The (provisional) web-page for COSMOS is http://www.lsv.
ens-cachan.fr/∼djafri/cosmos/.

REFERENCES

[1] APMC home page: http://sylvain.berbiqui.org/apmc.
[2] LLVM home page. http://llvm.org/.
[3] MRMC home page. http://www.mrmc-tool.org/trac/.
[4] VESTA home page: http://osl.cs.uiuc.edu/ ksen/vesta2/.
[5] YMER home page. http://www.tempastic.org/ymer/.
[6] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Peker-

gin. HASL : an expressive language for statistical verifica-
tion of stochastic models. In ValueTOOLS’11. To appear.

[7] PRISM home page. http://www.prismmodelchecker.org.

2experiments executed with confidence-level=99.99%, interval-width=0.01
both for COSMOS and PRISM-s.

