
Model-Checking Bounded Multi-Pushdown
Systems?

Kshitij Bansal1 and Stéphane Demri1,2

1New York University, USA 2LSV, CNRS, France

Abstract. We provide complexity characterizations of model checking
multi-pushdown systems. We consider three standard notions for bound-
edness: context boundedness, phase boundedness and stack ordering. The
logical formalism is a linear-time temporal logic extending well-known
logic CaRet but dedicated to multi-pushdown systems in which abstract
operators are parameterized by stacks. We show that the problem is
ExpTime-complete for context-bounded runs and unary encoding of the
number of context switches; we also prove that the problem is 2ExpTime-
complete for phase-bounded runs and unary encoding of the number of
phase switches. In both cases, the value k is given as an input, which
makes a substantial difference in the complexity. 1

1 Introduction

Verification problems for pushdown systems, systems with a finite automaton
and an unbounded stack, have been extensively studied and decidability can be
obtained as in the case for finite-state systems. For instance, computing pre?(X)
(set of configurations reaching a regular set X), post?(X) (correspondingly, con-
figurations accessible from X), reachability and LTL model checking have been
shown to be decidable [8,18]. These have also been implemented, for instance in
the model-checker Moped [18]. It can be argued that they are natural models
for modeling recursive programs. Two limitations though of the model are the
inability to model programs with infinite domains (like integers) and modeling
concurrency. Having an infinite automaton to handle the former limitation leads
to undecidability. An approach to tackle this has been to abstract infinite-state
programs to Boolean programs using, for instance, predicate abstraction. The
model is repeatedly refined, as needed, like in tools SLAM, SatAbs etc. For
concurrency, a natural way to extend this model would be to consider pushdown
automata with multiple stacks, which has seen significant interest in the recent
past [2,6,9,10]. This is the main object of study in this paper which we call
multi-pushdown systems (MPDS).

The difficulty of model-checking MPDS is that a pushdown system with even
two stacks and with a singleton stack alphabet is sufficient to model a Turing

? Work partially supported by projects ARCUS IdF/Inde and EU Seventh Framework
Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).

1 Omitted proofs and additional material can be found in the technical report [5].

machine, hence making the problem of even testing reachability undecidable.
This is not a unique situation and similar issues exists with other abstractions,
like model-checking problems on counter systems; other models of multithreaded
programs are also known to admit undecidable verification problems. That is
why subclasses of runs have been introduced as well as problems related to the
search for ‘bounded runs’ that may satisfy a desirable or undesirable property.
For instance, context-bounded model-checking (bound on the number of context
switches) [17] allows to regain decidability.

This paper focuses on the study of model-checking problems for MPDS based
on LTL-like dialects, naturally allowing to express liveness properties, when some
bounds are fixed. Though decidability of these problems has been established in
some recent works we aim to provide optimal computational complexity anal-
ysis for LTL-like properties. In particular, we consider a LTL-like specification
language based on CaRet [1], which strikes to us as fitting given the interest
of the model in program verification. As in [14], CaRet generalized to multiple
stacks and called Multi-CaRet is considered. Under this logic, we show model-
checking problem of MPDS restricted to k-context bounded runs is in Exp-
Time, when k is encoded in unary. Since this problem is a generalization of
LTL model checking pushdown systems which is known to be ExpTime-hard,
this is an optimal result. Viewed as an extension of [8], we consider both a
more general model and a more general logic, while still preserving the com-
plexity bounds. At a technical level, we focus on combining several approaches
in order to achieve optimal complexity bounds. In particular, we combine the
approach taken in CaRet model-checking of recursive state machines machines,
ideas from reachability analysis of multi-pushdown systems [18] and the tech-
niques introduced in [8,18]. We also consider less restrictive notions, showing
optimal 2-ExpTime for k-phase bounded runs [12] when k is in unary. Note
that in all restrictions we consider, k is given as an input and not as a parameter
of the problem, which makes a substantial difference when complexity analysis
is provided. When k is encoded in binary, the bounds are 2-ExpTime and 3-
ExpTime for context and phase boundedness respectively. For a third notion of
ordered multi-pushdown systems [3], model-checking is in 2ExpTime.

Related work. In [16], decidability results are found for classes of automata
with auxiliary storage based on MSO property, see also [15]. This includes MPDS
with bounded context and ordered MPDS. Unlike our ExpTime bound, the
complexity is non-elementary in the size of the formula. This stems from the use
of celebrated Courcelle’s Theorem, which has parameterized complexity non-e-
lementary, the parameter being the size of formula plus the tree-width.

More closely related to our approach of generalizing the automata-based ap-
proach for LTL are two recent works [4,14]; indeed model-checking of linear-time
properties for MPDS under several boundedness hypothesis has been the sub-
ject of several recent studies. In [4], LTL model-checking on multi-pushdown
systems when runs are k-scope-bounded is shown ExpTime-complete. Scope-
boundedness strictly extends context-boundedness and therefore Corollary 7(I)
and [4, Theorem 7] are closely related even though Corollary 7(I) deals with the

2

richer Multi-CaRet and it takes into account specifically context-boundedness.
By contrast, [14] introduces an extension of CaRet that is expressively identical
to the variant we consider in our paper (models are multiply nested words).
Again, it deals with scope-boundedness and Corollary 7(I) and [14, Theorem
6] are closely related even though Corollary 7(I) takes into account context-
boundedness specifically, which leads to a slightly different result. Similarly, up-
per bounds [14, Theorem 7] about ordered multiply nested words, is related to
upper bound we provide in Corollary 8 for OBMC. Nevertheless, as technical
contributions, we first deal with context-boundedness, phase-boundedness and
ordered MPDS uniformly independent of the notion of boundedness by following
an automata-based approach reducing to the corresponding repeated reachabil-
ity problem. In second step, we provide optimal complexity bounds by building
on analysis for context-boundedness on [8,18] whereas for ordered MPDS it relies
on [2]. Finally, our construction allows us to add regularity constraints on stack
contents, extending notions from [11], that are known to go beyond first-order
language, by an adaptation of the case for Multi-CaRet.

2 Preliminaries

We write [N] to denote the set {1, 2, . . . , N}. We also use a boldface as a short-
hand for elements indexed by [N], for e.g., a = {ai | i ∈ [N]}. For a finite
word w = a1 . . . ak over the alphabet Σ, we write |w| to denote its length k. For
0 ≤ i < |w|, w(i) represents the (i+ 1)-th letter of the word, here ai+1.

Pushdown systems provide a natural execution model for programs with
recursion. A generalization with multiple stacks allows us to model threads,
formally defined next. A multi-pushdown system (MPDS) is a tuple of the form
P = (G,N, Γ,∆1, . . . ,∆N), for some N ≥ 1 such that G is a non-empty finite
set of global states, Γ is the finite stack alphabet containing the distinguished
letter ⊥, for every s ∈ [N], ∆s is the transition relation acting on the s-th stack
where ∆s is a relation included in G × Γ × G × A(Γ) with A(Γ) defined as

A(Γ)
def
=
⋃
a∈Γ {call(a), return(a), internal(a)}. Elements of the set A(Γ) are to

be thought of as actions modifying the stack with alphabet Γ . A configuration
c of P is the global state along with contents of the N stacks, i.e. c belongs
to G × (Γ ∗)N . For every s ∈ [N], we write −→s to denote the one-step relation
w.r.t. the s-th stack. Given two configurations c = (g, w1, . . . , wsa, . . . wN) and
c′ = (g′, w1, . . . , w

′
s, . . . , wN), c −→s c

′ iff (g, a, g′, a(b)) ∈ ∆s where a(b) reflects
the change in the stack enforcing one of the conditions below: ws = w′s, a = return
and a = b, or w′s = wsb and a = internal, or w′s = wsab and a = call. The letter
⊥ from the stack alphabet plays a special role; indeed the initial content of
each stack is precisely ⊥. Moreover, ⊥ cannot be pushed, popped or replaced by
any other symbol. This is a standard way to constrain the transition relations
and to check for ‘emptiness’ of the stack. We write −→P to denote the relation
(
⋃
s∈[N] −→s). Given a configuration c, there may exist c1, c2 and i1 6= i2 ∈ [N]

such that c −→i1 c1 and c −→i2 c2, which is the fundamental property to consider
such models as adequate for modeling concurrency. An infinite run is an ω-

3

sequence of configurations c0, c1, c2, . . . s.t. for every i ≥ 0, we have ci −→P ci+1.
If ci −→s ci+1, then we say that for that step, the s-th stack is active. Similar
notions can be defined for finite runs. A standard problem on MPDS is the state
reachability problem: given a MPDS P , a configuration c and a global state g,
is there a run from c to some configuration c′ s.t. the state of c′ is g?

An enhanced multi-pushdown system is a multi-pushdown system of the form
P = (G × [N] , N, Γ,∆1, . . . ,∆N) s.t. for every s ∈ [N], ∆s ⊆ (G × {s}) × Γ ×
(G× [N])×A(Γ). In such systems, the global state contains enough information
to determine the next active stack. Observe that the way the one-step relation
is defined, we do not necessarily need to carry this information as part of the
finite control (see Lemma 1). We do that in order to enable us to assert about
active stack in our logic (see Section 3), and for technical convenience.

Lemma 1. Given P = (G,N, Γ,∆), one can construct in polynomial time an
enhanced P ′ = (G × [N] , N, Γ,∆′) such that (I) for every infinite run of P
of the form c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · there is an infinite run c′0 −→s0

c′1 −→s1 · · · c′t −→st c
′
t+1 · · · of P ′ such that (?) for t ≥ 0, if ct = (gt, {wts}s),

then c′t = ((gt, st) , {wts}s) and (II) similarly, for every infinite run of P ′ of the
form c′0 −→s0 c

′
1 −→s1 · · · c′t −→st c

′
t+1 · · · there is an infinite run c0 −→s0 c1 −→s1

· · · ct −→st ct+1 · · · of P such that (?).

The proof is by an easy verification. In the sequel, w.l.o.g., we consider en-
hanced MPDS only since all the properties that can be expressed in our logical
languages are linear-time properties. For instance, there is a logspace reduction
from the state reachability problem to its restriction to enhanced MPDS.

State reachability problem is known to be undecidable by a simple reduction
from the non-emptiness problem for intersection of context-free grammars. This
has motivated works on restrictions on runs so that decidability can be regained
(for state reachability problem and for model-checking problems). We recall be-
low standard notions for boundedness; other notions can be found in [13,9].
Definitions are provided for infinite runs but they can be adapted to finite runs.

For the notion of k-boundedness, a phase is understood as a sub-run such that
a single stack is active (see e.g. [17]). Let ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · ·
be an infinite run and k ≥ 0. We say that ρ is k-bounded if there exist positions
i1 ≤ i2 ≤ . . . ≤ ik−1 such that st = st+1 for all t ∈ N \ {i1 . . . ik−1}. In the
notion of k-phase-boundednessdefined below, a phase is understood as a sub-
run such that return actions are performed on a single stack, see e.g. [12]. Let
ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · be an infinite run and k ≥ 0. We say that
ρ is k-phase-bounded if there is a partition Y1, . . . , Yα of N with α ≤ k such that
for every j ∈ [1, α] there is s ∈ [N] s.t. for every i ∈ Yj , if a return action is
performed from ci to ci+1, then it is done on the sth stack. Finally, in the notion
of order-boundedness defined below, the stacks are linearly ordered and a return
action on a stack can only be performed if the smallest stacks are empty, see
e.g. [3]. Let P be a multi-pushdown system and �= ([N] ,≤) be a total ordering.
Let ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · be an infinite run. We say that ρ is
�-bounded if for every t ∈ N that a return is performed on the s-th stack, all the
stacks strictly smaller than s w.r.t. � are empty.

4

3 Specification Language Multi-CaRet

Below, we introduce Multi-CaRet, an extension of the logic CaRet proposed in [1],
and dedicated to runs of MPDS (instead of for runs of recursive state machines
as done in [1]). The logic below can be seen as a fragment of MSO and therefore
the decidability results from [6,16] apply to the forthcoming model-checking
problems. However, our definition makes a compromise between a language of
linear properties that extends the logic from [1] and the most expressive logic for
which our model-checking problems are known to be decidable. The logic below
is expressively identical as well as syntactically and semantically similar to one
in [14], except for the presence of regular constraints.

Models of Multi-CaRet are infinite runs of multi-pushdown systems. For each
(enhanced) multi-pushdown system P = (G× [N] , N, Γ,∆1, . . . ,∆N), the frag-
ment Multi-CaRet(P) of CaRet that uses syntactic resources from P (namely G
and [N]). Multi-CaRet is defined as the union of all the sub-languages Multi-
CaRet(P). The grammar φ := g | s | call | return | internal | φ ∨ φ | ¬φ
| Xφ | φUφ | Xa

sφ | φUa
sφ | Xc

sφ | φUc
sφ, defines formulas of Multi-CaRet(P),

with s ∈ [N], g ∈ G. Models of Multi-CaRet(P) formulae are ω-sequences in(
G× [N]× (Γ ∗)N

)ω
, which can be obviously understood as infinite runs of P .

Semantics. Given an infinite run ρ = c0c1 . . . ct . . . with ct = (gt, st, w
t
1, . . . , w

t
N)

for every position t ∈ N, the satisfaction relation ρ, t |= φ with φ in Multi-
CaRet(P) is defined inductively as follows (successor relations are defined just
below and obvious clauses are omitted):

ρ, t |= g iff gt = g and ρ, t |= s iff st = s

ρ, t |= a iff
(
a,
∣∣wt+1
st

∣∣− ∣∣wtst∣∣) ∈ {(call, 1) , (internal, 0) , (return,−1)}
ρ, t |= φ1Uφ2 iff there is a sequence of positions i0 = t, i1 . . . , ik, s.t.

for j < k, ij+1 = succρ(ij), ρ, ij |= φ1 and ρ, ik |= φ2
For b ∈ {a, c} and s ∈ [N]:

ρ, t |= Xbsφ iff succb,sρ (t) is defined and ρ, succb,sρ (t) |= φ

ρ, t |= φ1U
a
sφ2 iff there exists a sequence of positions t ≤ i0 < i1

· · · < ik, where i0 smallest such with si0 = s, for

j < k, ij+1 = succa,sρ (ij), ρ, ij |= φ1 and ρ, ik |= φ2

ρ, t |= φ1U
c
sφ2 iff there exists a sequence of positions t ≥ i0 > i1

· · · > ik, where i0 greatest such with si0 = s, for

j < k, ij+1 = succc,sρ (ij), ρ, ij |= φ1 and ρ, ik |= φ2

Definition for |= uses three successor relations: global successor relation, abstract
successor relation that jumps to the first future position after a return action
at the same level, if any, and the caller successor relation that jumps to the
latest past position before a call action at the same level, if any. Here are the

definitions: succρ(t)
def
= t + 1 for every t ∈ N; succc,sρ (t) (caller of s-th stack):

5

largest t′ < t s.t. st′ = s and
∣∣∣wt′s ∣∣∣ = |wts| − 1. If such a t′ does not exist, then

succc,sρ (t) is undefined; and succa,sρ (t) is defined when s is active at position t:

1. If
∣∣wt+1
s

∣∣ = |wts| + 1 (call), then succa,sρ (t) is the smallest t′ > t such that

st′ = s and
∣∣∣wt′s ∣∣∣ = |wts|. If there is no such t′ then succa,sρ (t) is undefined.

2. If
∣∣wt+1
s

∣∣ = |wts| (internal), then succa,sρ (t) is the smallest t′ > t such that
st′ = s (first position when sth stack is active).

3. If
∣∣wt+1
s

∣∣ = |wts| − 1 (return), then succa,sρ (t) is undefined.

In the sequel, we write ρ |= φ whenever ρ, 0 |= φ.

Adding regularity constraints. We define Multi-CaRetreg as the extension of
Multi-CaRet in which regularity constraints on stack contents can be expressed.
Logic Multi-CaRetreg is defined from Multi-CaRet by adding atomic formulae of
the form in(s,A) where s is a stack identifier and A is a finite-state automaton
over the stack alphabet Γ . The satisfaction relation |= is extended accordingly:
ρ, t |= in(s,A) iff wts ∈ L(A) where L(A) is the set of finite words accepted by
A. Note that regularity constraints can be expressed on each stack.

Let us introduce the model-checking problems considered herein. The model-
checking problem for MPDS (MC) is defined s.t. it takes as inputs a MPDS P ,
a configuration

(
g, (⊥)N

)
and a formula φ in Multi-CaRet(P) and asks whether

there is an infinite run ρ from
(
g, (⊥)N

)
such that ρ |= φ. We know that the

model-checking problem for MPDS is undecidable whereas its restriction to a sin-
gle stack is ExpTime-complete [1]. Now, let us turn to bounded model-checking
problems. Bounded model-checking problem for MPDS (BMC) is defined such
that it takes as inputs P , a configuration

(
g, (⊥)N

)
, a formula φ in Multi-

CaRet(P) and a bound k ∈ N and it asks whether there is an infinite k-bounded
run ρ from

(
g, (⊥)N

)
such that ρ |= φ. Note that k ∈ N is an input and not

a parameter of BMC. This makes a significant difference for complexity since
usually complexity can increase when passing from being a constant to being an
input. Phase-bounded model-checking problem (PBMC) is defined similarly by
replacing in the above definition ’k-bounded run’ by ’k-phase-bounded run’. Sim-
ilarly, we can obtain a definition with order-boundedness. Order-bounded model-
checking problem for multi-pushdown systems (OBMC) is defined such that it
takes as inputs P , a configuration

(
g, (⊥)N

)
, a formula φ in Multi-CaRet(P) and

a total ordering �= ([N] ,≤) and it asks whether there is an infinite �-bounded
run ρ from

(
g, (⊥)N

)
such that ρ |= φ.

The problem of repeated reachability of MPDS, written REP, is defined in the
expected way with a generalized Büchi acceptance condition related to states.
We refer to the problem restricted to k-bounded runs by BREP. Obviously,
the variants with other notions of boundedness can be defined too. Now, the
simplified version of Multi-CaRet consists of the restriction of Multi-CaRet in
which atomic formulae are of the form (g, s) when enhanced MPDS are involved.
For every P in {MC,BMC,PBMC,OBMC}, there is a logspace reduction to P
restricted to formulae from the simplified language. The proof idea consists in
adding to global states information about the next active stack and about the

6

type of action. In the sequel, w.l.o.g., we restrict ourselves to the simplified
languages. By [16], we conclude that BMC, PBMC and OBMC are decidable (use
of Courcelle’s Theorem). However, it provides non-elementary upper bounds. As
a main result of our paper, we show that BMC is ExpTime-complete when k is
encoded in unary even in presence of regular constraints.

4 From Model-Checking to Repeated Reachability

Herein, we reduce the problem of model checking (MC) to the problem of re-
peated reachability (REP) while noting complexity features that are helpful
later on (Theorem 4). This generalizes Vardi-Wolper reduction from LTL model-
checking into non-emptiness for generalized Büchi automata, similarly to the ap-
proach followed in [14]; not only we have to tailor the reduction to Multi-CaRet
and to MPDS but also we aim at getting tight complexity bounds afterwards.
The instance of MC that we have is a MPDS P , a formula φ and initial state
(g0, i0). For the instance of REP we will reduce to, we will denote the MPDS by

P̂ , the set of acceptance sets by F and the set of initial states by I0.

Augmented Runs. Let ρ be a run of the multi-pushdown system P = (G ×
[N] , N, Γ,∆) with ρ ∈ (G × [N] × (Γ ∗)N)ω. The multi-pushdown system P̂
is built in such a way that its runs correspond exactly to runs from P but
augmented with pieces of information related to the satisfaction of subformulas
(taken from the closure set Cl(φ) elaborated on shortly), whether a stack is dead
or not (using a tag from {alive, dead}) and whether the current call will ever
be returned or not (using a tag from {noreturn,willreturn}). These additional
tags will suffice to reduce the existence of a run satisfying φ to the existence
of a run satisfying a generalized Büchi condition. First, we define from ρ an
“augmented run” γ(ρ) which is an infinite sequence from (Ĝ × [N] × (Γ̂ ∗)N)ω

where Ĝ = G × P(Cl(φ))N × {noreturn,willreturn}N × {alive, dead}N and Γ̂ =
Γ ×P(Cl(φ))×{noreturn,willreturn}. By definition, an augmented run is simply
an ω-sequence but it remains to check that indeed, it will be also a run of the
new system. We will see that Ĝ× [N] is the set of global states of P̂ and Γ̂ is the

stack alphabet of P̂ . Before defining γ(·) which maps runs to augmented runs, let
us introduce the standard notion for closure but slightly tailored to our needs.
Each global state is partially made of sets of formulas that can be viewed as
future obligations. This is similar to what is done for LTL and is just a variant
of Fischer-Ladner closure. An obligation for a stack is a set of subformulas that
is locally consistent; such consistent sets are called atoms and they are defined
below as well as the notion of closure. Given a formula φ, its closure, denoted
Cl(φ), is the smallest set that contains φ, the elements of G× [N], and satisfies
the following properties (b ∈ {a, c} and s ∈ [N]): (i) if ¬φ′ ∈ Cl(φ) or Xφ′ ∈ Cl(φ)
or Xbsφ

′ ∈ Cl(φ) then φ′ ∈ Cl(φ); (ii) if φ′ ∨ φ′′ ∈ Cl(φ), then φ′, φ′′ ∈ Cl(φ); (iii)
if φ′Uφ′′ ∈ Cl(φ), then φ′, φ′′, and X(φ′Uφ′′) are in Cl(φ); (iv) if φ′Ubsφ

′′ ∈ Cl(φ),
then φ′, φ′′, and Xbs(φ

′Ubsφ
′′) are in Cl(φ); (v) if φ′ ∈ Cl(φ) and φ′ in not of the

form ¬φ′′, then ¬φ′ ∈ Cl(φ). The number of formulas in Cl(φ) is linear in the

7

size of φ and P . An atom of φ, is a set A ⊆ Cl(φ) that satisfies the following
properties: (a) for ¬φ′ ∈ Cl(φ), φ′ ∈ A iff ¬φ′ /∈ A; (b) or φ′ ∨ φ′′ ∈ Cl(φ),
φ′ ∨ φ′′ ∈ A iff (φ′ ∈ A or φ′′ ∈ A); (c) or φ′Uφ′′ ∈ Cl(φ), φ′Uφ′′ ∈ A iff φ′′ ∈ A
or (φ′ ∈ A and X(φ′Uφ′′) ∈ A); (d) A contains exactly one element from G× [N].
Let Atoms(φ) denote the set of atoms of φ, along with empty set (used as special
atom, use will become clear later). Note that there are 2O(|φ|) atoms of φ.

We write ((gt, st),wt) to denote the t-th configuration of ρ. We define the

augmented run γ(ρ) so that its t-th configuration is of the form ((ĝt, st), ŵt)

with ĝt = (gt,At, rt,dt) and ŵtj = (wtj , v
t
j , u

t
j) for every j in [N]. We say that

the stack j is active at time t if st = j. Then, we define dead-alive tag to be dead
if and only if the stack is not active at or after the corresponding position. The
idea of the closure as we discussed is to maintain the set of subformulas that hold
true at each step. We will expect it to be the empty set if the stack is dead. As for
willreturn-noreturn tag, it reflects whether a call action has a “matching” return.
This is similar to the {∞, ret} tags in [1]. This may be done by defining tag to
be noreturn if stack will never become smaller than what it is now. Finally, the
formulas and willreturn-noreturn tag on the stack are defined to be what they
were in the global state at the time when the corresponding letter was pushed.

∀t ≥ 0, j ∈ [N] : (dtj = dead)
def⇔ (∀t′ ≥ t, st

′
6= j). (1)

∀t ≥ 0, j ∈ [N] with dtj = alive, ψ ∈ Cl(φ):

ψ ∈ Atj
def⇔ ρ, t′ |= ψ where t′ is the least t′ ≥ t with st

′
= j. (2)

∀t ≥ 0, j ∈ [N] with dtj = dead: Atj
def
= ∅. (3)

∀t ≥ 0, j ∈ [N] : (rtj = noreturn)
def⇔ (∀t′ ≥ t,

∣∣∣wt′j ∣∣∣ ≥ ∣∣wtj∣∣). (4)

∀t ≥ 0, j ∈ [N] : vtj
def
= At1j A

t2
j . . . A

tl
j and utj

def
= dt1j d

t2
j . . . d

tl
j ,

where for k in [l]: tk is largest tk ≤ t such that
∣∣wtkj ∣∣ = k − 1. (5)

Construction. We construct a system which simulates the original system with
accepting runs having augmentations faithful to the semantics described above
in (1)-(5). We define the multi-pushdown system P̂ as (Ĝ× [N] , N, Γ̂ , ∆̂) with

the states and alphabet as defined earlier, and each transition relation ∆̂s is

defined s.t. (ĝ, s, â, ĝ′, s′, a(â′)) is in ∆̂s
def⇔ conditions from Fig. 1 are satisfied.

The set F is defined by the following sets of accepting states:

(a) For each ψ = φ1Uφ2 ∈ Cl(φ), we define F 1
ψ

def
= {(ĝ, s) | φ2 ∈ As or ψ /∈ As}.

(b) For each abstract-until formula ψ = φ1U
a
sφ2 ∈ Cl(φ), we define F 2

ψ
def
=

{(ĝ, s) | rs = noreturn and (φ2 ∈ As or ψ /∈ As)}.
(c) For each j ∈ [N], we define F 3

j
def
= {(ĝ, s) | j = s} ∪ {(ĝ, s) | dj = dead}.

(d) For each j ∈ [N], F 4
j

def
= {(ĝ, s) | dj = dead} ∪ {(ĝ, s) | j = s, ds = noreturn}.

Lemma 2. Let ρ be a run of P . Then, γ(ρ) is a run of P̂ such that for every
F ∈ F , there is a global state in F that is repeated infinitely often.

8

1. ((g, s), aS , (g
′, s′), a(a′S)) ∈ ∆s

2. ds = alive
3. ∀j 6= s, dj = d′j
4. If a = call, then rs = willreturn ⇒

r′s = willreturn and a′r = rs
5. If a = internal, then r′s = rs and

a′r = ar
6. If a = return, then rs = willreturn and

r′s = ar
7. ∀j 6= s, rj = r′j
8. (g, s) ∈ As

9. ∀j 6= s, Aj = A′
j

10. XAs ⊆ A′
s′ (= As′)

11. If a = call, then a′A = As

12. If a = internal, then Xa
sAs ⊆ A′

s and
a′A = aA.

13. If a = return, then Xa
saA ⊆ A′

s

14. Further, Xa
sAs = ∅ if

(a) a = call and rs = noreturn, or
(b) a = return, or
(c) d′s = dead

15. If a = call, Xc
sA

′
s′ = (Xc

s Atoms(φ)) ∩
As

16. If a = internal, then Xc
sA

′
s′ = Xc

sAs.
17. Let b ∈ {a, c}. Let ψ ∈ Cl(φ), ψ =

φ1U
b
sφ2. Then, ψ ∈ As iff either φ2 ∈

As or (φ1 ∈ As and Xa
sψ ∈ As).

18. Let b ∈ {a, c}. Let ψ ∈ Cl(φ), ψ =
φ1U

b
jφ2 with j 6= s. Then ψ ∈ As iff

ψ ∈ A′
s.

19. ∀j: If dj = dead, then Aj = ∅ and
rj = noreturn.

Fig. 1. Conditions for ∆̂s. XA = {ψ | Xψ ∈ A}, Xa
1A = {ψ | Xa

1ψ ∈ A} and â =
(aS , aA, ar) (similarly, â′).

Lemma 3. Let ρ̂ be a run of P̂ satisfying the acceptance condition F . Then, ρ̂
projected over states of P , denoted Π(ρ̂), is a run of P and γ(Π(ρ̂)) = ρ̂.

From Lemmas 2 and 3 the soundness and completeness of the reduction follow if
we define the set of new initial states I0 for the REP problem as states with initial
state (g0, i0) for the MC problem and φ present in the part tracking formulas
that hold true: I0 = {((g0,A,d, r), i0) | φ ∈ Ai0}. This gives an exponential-
time reduction from MC to REP as well as their bounded variants. Theorem 4
below can be viewed as a counterpart of [14, Theorem 3].

Theorem 4. Let P be a MPDS with initial configuration (g, (⊥)N) and φ be

a Multi-CaRet formula. Let P̂ be the system built from P , g and φ, I0 be the
associated set of initial states and F be the acceptance condition. (I) If ρ1 is a

run of P from (g, (⊥)N) then ρ2 = γ(ρ1) is a run of P̂ satisfying F and (A)-(C)

hold true. (II) If ρ2 is a run of P̂ from some configuration with global state in
I0 and satisfying F , then Π(ρ2) is a run of P and (A)-(C) hold true too.

Conditions (A)–(C) are defined as follows: (A) ρ1 is k-bounded iff ρ2 is k-
bounded, for all k ≥ 0; (B) ρ1 is k-phase-bounded iff ρ2 is k-phase-bounded, for
all k ≥ 0; (C) ρ1 is �-bounded iff ρ2 is �-bounded, for all total orderings of the
stacks �= ([N] ,≤).

Note that at each position, ρ1 and ρ2 work on the same stack and perform the
same type of action (call, return, internal move), possibly with slightly different
letters. This is sufficient to guarantee the satisfaction of the conditions (A)–(C).

9

5 Complexity Analysis with Bounded Runs

Bounded Repeated Global State Reachability Problem. We evaluate
the complexity of BREP as well as its variant restricted to a single accepting
global state, written BREPsingle. There is a logspace reduction from BREP to
BREPsingle by copying the MPDS as many times as the cardinality of F (as
done to reduce non-emptiness problem for generalized Büchi automata to non-
emptiness problem for standard Büchi automata). This allows us to conclude
about the complexity upper bound for BMC itself but it is worth noting that
the MPDS obtained by synchronization has an exponential number of global
states and therefore a refined complexity analysis is required to get optimal
upper bounds. In order to analyze the complexity for BREPsingle, we take ad-
vantage of proof techniques that are introduced earlier and for which we provide
a complexity analysis that will suit our final goal. Namely, existence of an infi-
nite k-bounded run s.t. a final global state (gf , if) is repeated infinitely often is
checked: (1) by first guessing a sequence of intermediate global states witness-
ing context switches of length at most k + 1, (2) by computing the (regular)
set of reachable configurations following that sequence and then (3) by verifying
whether there is a reachable configuration leading to an infinite run s.t. (gf , if) is
repeated infinitely often and no stack switch is performed. The principle behind
(2) is best explained in [17] but we provide a complexity analysis using the com-
putation of post?(X) along the lines of [18]. Sets post?(X) need to be computed
at most k times, which might cause an exponential blow-up (for instance if at
each step the number of states were multiplied by a constant). Actually, comput-
ing post? adds an additive factor at each step, which is essential for our analysis.
Let us define BREPsingle: it takes as inputs P , a configuration

(
(g, i) , (⊥)N

)
, a

global state (gf , if) and k ∈ N and it asks whether there is an infinite k-bounded
run ρ from

(
(g, i) , (⊥)N

)
s.t. (gf , if) is repeated infinitely often.

Proposition 5. BREPsingle can be solved in time O(|P |k+1×p(k, |P |)) for some
polynomial p(·, ·).

The proof of Proposition 5 is at the heart of our complexity analysis and it relies
on constructions from [8,18]. We take advantage of it with the input system P̂ .

Corollary 6. (I) BMC with k encoded with a unary representation is Exp-
Time-complete. (II) BMC with k in binary encoding is in 2ExpTime.

Note that [6, Theorem 15] would lead to an ExpTime upper bound for BMC
if k is not part of the input, see the ExpTime upper bound for the problem
NESTED-TRACE-SAT(L−, k) from [6]; in our case k is indeed part of the input
and in that case, the developments in [6] will lead to a 2ExpTime bound by using
the method used for NESTED-TRACE-SAT(L−, k) even if k is encoded in unary.
Indeed, somewhere in the proof, the path expression succ≤k is exponential in the
value k. Hence, Corollary 6(I) is the best we can hope for when k is part of the
input of the model-checking problem. We write BMCreg to denote the extension
of BMC in which Multi-CaRet is replaced by Multi-CaRetreg.

10

Corollary 7. (I) BMCreg with k encoded with an unary representation is Exp-
Time-complete. (II) BMCreg with k in binary encoding is in 2ExpTime.

Complexity Results for Other Boundedness Notions. We focus on the
complexity analysis for OBMC and PBMC. Let OREPsingle be the variant of
BREPsingle with ordered MPDS: it takes as inputs an ordered multi-pushdown
system P , a configuration

(
(g, i) , (⊥)N

)
, a global state (gf , if) and it asks

whether there is an infinite run ρ from
(
(g, i) , (⊥)N

)
such that (gf , if) is re-

peated infinitely often. According to [2, Theorem 11], OREPsingle restricted to

ordered multi-pushdown systems with k stacks can be checked in time O(|P |2
d k

)

where d is a constant. Our synchronized product P̂ is exponential in the size of
formulas (see Section 4), whence OBMC is in 2ExpTime too (k is linear in the
size of our initial P). Condition (C) from Theorem 4 needs to be used here.

Corollary 8. OBMC is in 2ExpTime.

The same complexity upper bound can be shown with regularity constraints.
Now, let us consider k-bounded-phase runs. Let us define PBREPsingle in a

similar way: it takes as inputs a MPDS P , a configuration
(
(g, i) , (⊥)N

)
, a global

state (gf , if) and k ∈ N and it asks whether there is an infinite k-phase-bounded
run ρ from

(
(g, i) , (⊥)N

)
such that (gf , if) is repeated infinitely often. In [3,

Section 5], it is shown that non-emptiness for k-phase MPDS can be reduced to
non-emptiness for ordered MPDS with 2k stacks. By inspecting the proof, we
can conclude: a similar reduction can be performed for reducing the repeated
reachability of a global state, and non-emptiness of k-phase P with N stacks is
reduced to non-emptiness of one of Nk instances of P ′ with 2k stacks and each
P ′ is in polynomial-size in k + |P |. Therefore, PBREPsingle is in 2ExpTime.
Indeed, there is an exponential number of instances and checking non-emptiness
for one of them can be done in double exponential time. By combining the
different complexity measures above, checking an instance of PBREPsingle with

P̂ requires time in O(Nk ×
∣∣∣P̂ ∣∣∣2d 2k

) which is double-exponential in the size

of P . Consequently, bounded model-checking with bounded-phase MPDS is in
2ExpTime too if the number of phases is encoded in unary.

Corollary 9. (I) PBMC where k is encoded in unary is in 2ExpTime. (II)
PBMC where k is encoded in binary is in 3ExpTime.

Again, the same complexity upper bounds apply when regularity constraints are
added. Note that an alternative proof of Corollary 9(I) can be found in the recent
paper [7] where fragments of MSO are taken into account.

6 Conclusion

We showed that model-checking over MPDS with k-bounded runs is ExpTime-
complete when k is an input bound encoded in unary, otherwise the problem
is in 2ExpTime with a binary encoding. The logical language is a version of

11

CaRet in which abstract temporal operators are related to calls and returns and
parameterized by the stacks, and regularity constraints on stack contents are
present too. A 2ExpTime upper bound is also established with ordered MPDS
or with k-phase bounded runs.
Acknowledgments. We thank the reviewers for their time and helpful comments.
K. Bansal also thanks LSV & ENS Cachan (France), and Clark Barrett in New
York, for making the internship in Summer 2011 and hence, this work, possible.

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, vol. 2988 of LNCS, pp. 467–481. Springer, 2004.

2. M. Atig. Global model checking of ordered multi-pushdown systems. In
FST&TCS’10, pp. 216–227. LIPICS, 2010.

3. M. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is
2ETIME-complete. In DLT’08, vol. 5257 of LNCS, pp. 121–133. Springer, 2008.

4. M. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. Linear-time model-cheking
for multithreaded programs under scope-bounding. In ATVA’12, vol. 7561 of
LNCS, pp. 152–166. Springer, 2012.

5. K. Bansal and S. Demri. A note on the complexity of model-checking bounded
multi-pushdown systems. Technical Report TR2012-949, NYU, Dec 2012.

6. B. Bollig, A. Cyriac, P. Gastin, and M. Zeitoun. Temporal logics for concurrent
recursive programs: Satisfiability and model checking. In MFCS’11, vol. 6907 of
LNCS, pp. 132–144, 2011.

7. B. Bollig, D. Kuske, and R. Mennicke. The complexity of model-checking multi-
stack systems. 2012. Submitted.

8. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: application to model-checking. In CONCUR’97, vol. 1243 of LNCS, pp.
135–150. Springer, 1997.

9. A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown
systems via split-width. In CONCUR’12, vol. 7454 of LNCS, pp. 547–561, 2012.

10. J. Esparza and P. Ganty. Complexity of pattern-based verification for multi-
threaded programs. In POPL’11, pp. 499–510. ACM, 2011.

11. J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valua-
tions for pushdown systems. In TACS’01, vol. 2215 of LNCS, pp. 316–339, 2001.

12. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS’07, pp. 161–170. IEEE, 2077.

13. S. La Torre and M. Napoli. Reachability of multistack pushdown systems with
scope-bounded matching relations. In CONCUR’11, vol. 6901 of LNCS, pp. 203–
218. Springer, 2011.

14. S. La Torre and M. Napoli. A temporal logic for multi-threaded programs. In TCS
2012, vol. 7604 of LNCS, pp. 225–239. Springer, 2012.

15. S. La Torre and G. Parlato. Scope-bounded multistack pushdown systems: fixed-
point, sequentialization and tree-width. In FSTTCS’12, pp. 173–184. LIPICS,
2012.

16. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL’11,
pp. 283–294. ACM, 2011.

17. S. Qaader and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’05, vol. 3440 of LNCS, pp. 93–107. Springer, 2005.

18. S. Schwoon. Model-checking pushdown systems. PhD thesis, TUM, 2002.

12

	 Model-Checking Bounded Multi-Pushdown Systems

