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Abstract. We consider restrictions of first-order logic and of fixpoint logic in
which all occurrences of negation are required to be guarded by an atomic pred-
icate. In terms of expressive power, the logics in question, called GNFO and
GNFP, extend the guarded fragment of first-order logic and guarded least fix-
point logic, respectively. They also extend the recently introduced unary negation
fragments of first-order logic and of least fixpoint logic.
We show that the satisfiability problem for GNFO and for GNFP is 2ExpTime-
complete, both on arbitrary structures and on finite structures. We also study the
complexity of the associated model checking problems. Finally, we show that
GNFO and GNFP are not only computationally well behaved, but also model
theoretically: we show that GNFO and GNFP have the tree-like model property
and that GNFO has the finite model property, and we characterize the expressive
power of GNFO in terms of invariance for an appropriate notion of bisimulation.

1 Introduction

Modal logic is well known for its “robust decidability”: not only are basic decision
problems such as satisfiability, validity and entailment decidable, but the decidability
of these problems is preserved under various natural variations and extensions to the
syntax and semantics of modal logic (e.g., addition of fixpoint operators, backward
modalities, nominals; restriction to finite structures). As observed by Vardi [14], this
robust decidability is intimately linked to the fact that modal logic has a combination of
three properties, namely (i) the tree model property (if a formula has a model, it has a
model which is a tree), (ii) translatability into monadic second-order logic (MSO), and
thereby into tree automata and, (iii) the finite model property (every satisfiable modal
formula is satisfied in a finite structure). The decidability of satisfiability (on arbitrary
structures and on finite structures) follows immediately from these three properties.
However, we should note here that the two way µ-calculus (the extension of modal
logic with fixpoint operators and backward modalities) lacks the finite model property,
and hence the decidability of satisfiability on finite structures for this logic involves a
separate (non trivial) argument [5].

The properties (i), (ii) and (iii) described above can be viewed as a semantic expla-
nation for the robust decidability of modal logic. Given that modal logic can be viewed
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as a syntactic fragment of first-order logic, it is also natural to ask for syntactic ex-
planations: what syntactic features of modal formulas (viewed as first-order formulas)
are responsible for their good behavior? And can we generalize modal logic, preserv-
ing these features, while at the same time dropping inessential restrictions inherent in
modal logic (such as the fact that it can only describe structures with unary and binary
relations)?

Several answers to these questions have been proposed. The first one is to con-
sider the two variable fragment of first-order logic, which is decidable and has the finite
model property [12]. Unfortunately, this observation does not go very far towards ex-
plaining the robust decidability of modal logic, since it seems impossible to extend the
two variable fragment with a fixpoint mechanism while maintaining decidability [9].

The second proposal is to consider logics with guarded quantifications. The guarded
fragment of first-order logic (GFO) consists of FO formulas in which all quantifiers are
“guarded” by atomic predicates. It was introduced in [1]. It has a natural extension with
fixpoint operators (GFP) that extends the two-way µ-calculus [10]. Both GFO and GFP
have the tree-like model property (if a formula has a model, it has one of bounded tree
width), they can be interpreted into MSO (each formula can be transformed into a tree
automaton recognizing tree decompositions of its models of bounded tree width) and
GFO has the finite model property [1, 8]. Finite satisfiability of GFP was only recently
proved decidable in [2].

The third, and most recent proposal is based on unary negation. Unary negation
first-order logic (UNFO) restricts first-order logic by constraining the use of negation to
subformulas having at most one free variable (and viewing universal quantification as a
defined connective). Unary negation fixpoint (UNFP) is the natural extension of UNFO
using monadic fixpoints. Again, UNFO generalizes modal logic, and UNFP generalizes
the two-way µ-calculus. Both UNFO and UNFP have the tree-like model property, they
can be interpreted into MSO and UNFO has the finite model property [13]. Decidability
of finite satisfiability for UNFP was also established in [13].

The three extensions of modal logics presented above are incomparable in terms
of expressive power. In particular there are properties expressible in UNFO that are
not expressible in GFO and vice-versa. In this paper we unify the unary negation and
guarded quantification approaches by introducing guarded negation logics.

Guarded negation first-order logic (GNFO) restricts FO by requiring that all occur-
rences of negation are of the form α ∧ ¬φ where the “guard” α is an atomic formula
(possibly an equality statement) containing all the free variables of φ. We also disallow
universal quantification as a primitive connective (though a limited form of universal
quantification can be expressed using existential quantification and guarded negation).
For instance, GNFO cannot express x 6= y but it can express R(x, y, z) ∧ x 6= y.
Guarded negation fixpoint (GNFP) extends GNFO with a guarded fixpoint mechanism.
In terms of expressive power, GNFO forms a strict extension of both UNFO and GFO.

We show that our guarded negation logics have the same desirable properties as
modal logics, unary negation logics and guarded logics. In particular, the satisfiability
problem for GNFO and GNFP is decidable, both on arbitrary structures and on finite
structures. These problems are all 2ExpTime-complete, even for a fixed finite schema
(recall that satisfiability of GFO is in ExpTime when the schema is fixed). We also study



the (combined) complexity of the model checking problem of GNFO and GNFP. The
problem is PNP[O(log2 n)]-complete for GNFO. In the case of GNFP, it is hard for PNP

and contained in NPNP ∩ coNPNP. Note that a similar gap between the upper bound
and the lower bound exists for GFP and the µ-calculus, where the complexity of model
checking is known to lie between PTime and NP ∩ coNP [4]. Recall that the model
checking problem of GFO is PTime-complete [4]. Our proofs are based on reductions
to the model checking problem for UNFO and UNFP. Finally, we show that GNFO
and GNFP have the tree-like model property, and that GNFO has the finite model prop-
erty, and we characterize the expressive power of GNFO in terms of invariance for an
appropriate notion of bisimulation.

The most difficult result is the decidability of satisfiability on finite structures. For
GNFO, we give a reduction to testing whether a union of conjunctive queries is implied
by a guarded formula, recently shown decidable in [3]. In the case of GNFP, we make
a reduction to the decidability of finite satisfiability of GFP, recently proved in [2].

Related work GNFO and GNFP form decidable extensions of GFO and GFP. Other
decidable extensions of GNFO and GNFP have been considered in the past, most no-
tably the clique-guarded fragment (and the related packed fragment, as well as the
weaker loosely-guarded fragment) of first-order logic, and of least fixpoint logic [6].
The logics GNFO and GNFP we propose here are incomparable in expressive power to
the clique guarded fragments. We leave open the question whether a decidable common
generalization exists.

2 Preliminaries

Structures and formulas. We are working on relational structures. We assume given
a relational schema τ consisting of a finite set of relation symbols, each having an
associated arity. By the arity of a schema, we mean the maximal arity of its relations.
A structure (or model) M over a relational schema τ consists of a set dom(M), the
domain of M , together with an interpretation of each relation symbol R ∈ τ as a k-ary
relation over dom(M) for k the arity of R according to τ . A structure M is said to
be finite if dom(M) is finite. If a tuple of elements ā from dom(M) belongs to the
interpretation of a relation symbol R, then we say that R(ā) is a fact of M . A tuple (or
set) of elements of M is guarded if it is a singleton or all its components (elements)
occur among those in a fact of M .

We assume familiarity with first-order logic, FO, and least fixpoint logic, LFP, over
relational structures. We use classical syntax and semantics for FO and LFP. We write
φ(x̄) to denote the fact that the free variables of φ are exactly the variables in x̄. We
also write M |= φ(ū) or M, ū |= φ(x̄) for the fact that the tuple ū of elements of the
model M makes the formula φ(x̄) true in M . The size of a formula φ, denoted by |φ|,
is the number of symbols needed to write down the formula.

Conjunctive queries. A conjunctive query (CQ) is a first-order formula of the form
∃x̄α where α is a conjunction of positive atomic formulas (including equalities). A
union of conjunctive queries (UCQ) is a disjunction of CQs. A positive-existential query



is an FO formula built using disjunction, conjunction and existential quantification only.
Every positive-existential query can be transformed in a UCQ at the cost of a possible
exponential blow-up. Positive-existential queries belong to GNFO, even to UNFO. The
width of a CQ is the number of variables occurring in it, and the width of a UCQ is the
maximum width of its CQs. The height of a UCQ is the maximum size of its CQs.

GNFO. We define GNFO, guarded negation FO, as the fragment of FO given by the
following grammar, where R ranges over predicate symbols, and α(x̄ȳ) is an atomic
formula (possibly an equality statement).

ϕ ::= R(x̄) | x = y | ∃xϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | α(x̄ȳ) ∧ ¬ϕ(ȳ) (1)

Hence the logic can only negate a subformula if all its free variables are “guarded” by
some fact, or if the subformula has at most one free variable (in which case one can use
an equality statement of the form x = x or y = y as the guard). For example, x 6= y is
not a formula of GNFO but R(x, y, z) ∧ x 6= y is.

We say that a formula of GNFO is in GN-normal form if, in its syntax tree, no
disjunction is directly below an existential quantifier or a conjunction, and no existential
quantifier is directly below a conjunction sign. Every GNFO formula can be brought
into GN-normal form, at the cost of an exponential increase in length and linear increase
in the number of variables, using the following equivalences as rewrite rules (where x′
is a variable not occurring in ψ):

∃x(φ ∨ ψ) ' ∃xφ ∨ ∃xψ, φ ∧ (ψ ∨ χ) ' (φ ∧ ψ) ∨ (φ ∧ χ), (∃xφ) ∧ ψ ' ∃x′(φ[x′/x] ∧ ψ)

The appeal of the GN-normal form is that it highlights the fact that GNFO formulas
can be naturally viewed as being built up from atomic formulas using guarded negation,
and unions of conjunctive queries. Indeed, the GNFO formulas in GN-normal form are
precisely generated by the following recursive definition:

ϕ ::= R(x̄) | x = y | α(x̄ȳ) ∧ ¬ϕ(ȳ) | q[ϕ1/U1, . . . , ϕs/Us] (2)

where q is a UCQ using relation symbolsU1, . . . , Us, and ϕ1, . . . , ϕs are formulas (gen-
erated by the same recursive definition) with the appropriate number of free variables
corresponding to the relation symbols they replace. Here, q[ϕ1/U1, . . . , ϕs/Us] is the
result of replacing in q all subformulas of the form Ui(x̄) with i ≤ s by φi(x̄).

A formula of GNFO is said to be of width k if, when brought into GN-normal form
in the way described above, it uses at most k variables (or equivalently, is built up using
UCQs q of width at most k). We denote by GNFOk all GNFO formulas of width k.

GNFO extends GFO and UNFO. GNFO generalizes the logic UNFO, studied in [13],
which only allows the negation of formulas having at most one free variable. It also gen-
eralizes the guarded fragment of first-order logic (GFO). The logic GFO is the fragment
of FO defined by the following grammar, where, again, α(x̄ȳz̄) is an atomic formula
(possibly an equality statement):

ϕ ::= R(x̄) | x = y | ϕ ∨ ϕ|ϕ ∧ ϕ|¬ϕ | ∃x̄ α(x̄ȳz̄) ∧ ϕ(x̄ȳ) | ∀x̄ α(x̄ȳz̄)→ ϕ(x̄ȳ)

It is straightforward to check that:



Proposition 1. Every GFO sentence is equivalent to a GNFO sentence, via a polyno-
mial time transformation.4

Proof. Let ϕ be any GFO sentence. We may assume that ϕ does not contain universal
quantifiers, by using negation and (guarded) existential quantification instead. Sinceϕ is
a sentence, every subformula ϑ(x̄) is in the scope of an (inner-most) guarded existential
quantifier ∃x̄ū(αϑ(x̄ū)∧· · · ). We replace in ϕ each negated subformula ϑ(x̄) = ¬ψ(x̄)
by αϑ(x̄ū) ∧ ¬ψ(x̄) to obtain the desired equivalent GNFO-sentence. ut

Example 1. The GNFO sentence δ = ∃xy
(
E(x, y) ∧ ¬∃uvw(E(x, u) ∧ E(u, v) ∧

E(v, w) ∧ E(w, y))
)

is not equivalent to any GFO sentence or to any UNFO sentence,
even on undirected graphs. This is because δ defines a property that is not invariant
under guarded bisimulation (which, incidentally, amounts to ordinary bisimulation in
case of undirected graphs), as can be easily verified, nor is it invariant under “UN-
bisimulation” as befits UNFO formulas, cf. [13].

3 The satisfiability problem for GNFO

We show in this section how to reduce the (finite) satisfiability problem for GNFO to
the problem of testing whether a GFO formula entails (on finite structures) a UCQ.
The latter problem is also known as the problem of query answering against a GFO
theory, and it has been solved in [3]. To streamline the presentation, we will allow the
possibility of zero-ary relation symbols.

Lemma 1. To every ϕ(x̄) ∈ GNFO[τ ] one can associate in polynomial time a compan-
ion formula ψ(x̄) ∈ GNFO[τ ] σ] of the form

ψ(x̄) = S(x̄) ∧
∧
j

∀ z̄ū.Rj(z̄ū)→ qj(z̄)︸ ︷︷ ︸
ψ+

∧
∧
i

∀ z̄ū.Ti(z̄ū)→ ¬pi(z̄)︸ ︷︷ ︸
ψ−

(3)

where σ comprises the new relation symbols occurring as S, Rj or Ti, where the qj’s
and pi’s are positive-existential, width(ψ) = width(ϕ) and such that ϕ ↔ ∃S ∃T ψ.

Proof. Given a GNFO-formula ϕ consider an inner-most occurrence of a guarded nega-
tion R(z̄ū) ∧ ¬q(z̄) as a subformula of ϕ. Then q(z̄) is necessarily positive existential.
Let T be a new predicate symbol of the same arity as R. We substitute T (z̄ū) in the
input formula for the subformula R(z̄ū)∧¬q(z̄), and add the following as conjuncts to
ψ+ and ψ−, according to their kind.

∀ z̄ū.T (z̄ū)→ ¬q(z̄)
∀ z̄ū.T (z̄ū)→ R(z̄ū)
∀ z̄ū.R(z̄ū)→ T (z̄ū) ∨ q(z̄)

Inner-most equality-guarded negations z = u ∧ ¬q(z, u) are handled in a similar fash-
ion. Again, q(z, u) must be positive-existential. We choose a new unary relation symbol

4 This is only true for sentences, as ¬R(xy) is in GFO but not expressible in GNFO.



T , replace the subformula in question by z = u ∧ T (z), and add ∀ z.T (z) → ¬q[u/z]
and ∀ z.T (z) ∨ q[u/z] as conjuncts to the normal form.

Proceeding in this manner from the inside-out we eliminate all guarded negations
until the original input formula is reduced to a single positive-existential formula p(x̄)
(in the extended signature). Finally we replace p(x̄) with S(x̄) where S is an appropriate
new predicate symbol and add ∀ x̄.S(x̄)→ p(x̄) as conjunct to the normal form, which
is thus finalized. It is now easy to verify the correctness of this transformation. ut

We may assume wlog. that the positive-existential formulas qj of (3) are in prenex
normal form, i.e. qj(z̄) = ∃ūξj(z̄, v̄). Also note that each conjunct ∀ z̄ū.Ti(z̄ū) →
¬pi(z̄) of (3) is the negation of a positive-existential sentence ∃ z̄ū.Ti(z̄ū) ∧ pi(z̄).
Therefore, the entire ψ− of (3) can be conceived as the negation of a single positive-
existential sentence q. This leads us to the following equivalent formula.

S(x̄) ∧
∧
j

(
∀ z̄ū.Rj(z̄ū)→ ∃v̄ξj(z̄v̄)

)
︸ ︷︷ ︸

ψ+

∧ ¬
∨
i

(
∃ z̄ū.Ti(z̄ū) ∧ pi(z̄)

)
︸ ︷︷ ︸

q

(4)

Observe next that without affecting satisfiability of (4) we may introduce new atoms
guarding the existential quantifiers in ψ+ thus obtaining a GFO-formula

ψ∗ = S(x̄) ∧
∧
j

(
∀ z̄ū.Rj(z̄ū)→ ∃v̄Qj(z̄v̄) ∧ ξj(z̄v̄)

)
where the Qj’s are distinct new relation symbols of appropriate arity. Then, ψ∗ |= ψ+

and, conversely, every model of ψ+ has an expansion modeling ψ∗.

The entire transformation of an input GNFO-formula ϕ to the equi-satisfiable ψ∗ ∧
¬q, with ψ∗ in GFO and q positive existential, can be performed in polynomial time
and only results in a polynomial blowup in the signature of the latter normal form. In
a final transformation step, which may require at most exponential time, the positive-
existential sentence q can be converted to an equivalent Boolean UCQ q∗. In general q∗

may be comprised of exponentially many CQs each of size at most |q|. Summing up all
the reduction steps we obtain:

Proposition 2. For each ϕ(x̄) ∈ GNFO[τ ] one can compute in exponential time a
GFO-formula ψ∗(x̄) and UCQ q∗ =

∨
lQl, both of signature τ ] {T̄}, such that

ϕ ←→ ∃T̄ (ψ∗ ∧ ¬ q∗ ) (5)

is valid, and that |ψ∗| = O(|ϕ|) and height(q∗) = maxl|Ql| ≤ |ϕ|.

We now summarize the main results of [3]. Later we will build on key elements of
the construction of [3], stated below as Lemmas 2 and 3 and Theorem 4, from which
the following Theorem 1 can be directly derived.

Theorem 1 ([3]). Given a GFO-formula ψ and a UCQ q of height h it is decidable in
time |q| · 2(h|ψ|)O(h|ψ|)

whether or not ψ ∧ ¬q is satisfiable; and if ψ ∧ ¬q has a model
then it has a finite model of size 2(h|ψ|)O(h|ψ|)



By combining Theorem 1 with the estimates of Proposition 2 we derive the com-
plexity of satisfiability for GNFO, as well as its finite model property.

Theorem 2. 1. The satisfiability problem for GNFO is 2EXPTIME-complete.

2. Every satisfiable GNFO-sentence ϕ has a finite model of size 22|ϕ|
O(1)

.

The 2EXPTIME lower bound follows immediately from the fact that satisfiability for
UNFO is already hard for 2EXPTIME [13, 7]. It holds even if the schema is fixed (recall
that when the schema is fixed the complexity of satisfiability for GFO is ExpTime-
complete).

4 The satisfiability problem for GNFP

In a nutshell, GNFP is the extension of GNFO with guarded fixpoints. We show here
that both satisfiability and finite satisfiability are decidable for GNFP.

GNFP. In order to define GNFP we introduce extra predicate variables, which will
serve for computing fixpoints. We denote the predicates given by the relational schema
by P,Q,R, S etc. and the predicate variables serving for computing the fixpoints by
X,Y, Z etc. However the fixpoint predicates are not permitted to be used as guards. For
instance R(x̄) ∧ ¬Y (x̄) is allowed but Y (x̄) ∧ ¬R(x̄) is not. Formulas of GNFP[τ ],
we omit the schema τ when it is clear from the context, pertain to the following syntax
whereR is any relational symbol in τ , α(x̄ȳ) is an atomic formula (possibly an equality
statement), and σ ⊆ τ .

φ ::= R(x̄) | x=y | X(x̄) | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃xφ | α(x̄ȳ) ∧ ¬φ(x̄) |
µZ,z̄[ guardedσ(z̄) ∧ φ(Ȳ , Z, z̄) ](x̄) | νZ,z̄[ guardedσ(z̄) ∧ φ(Ȳ , Z, z̄) ](x̄)

Here µ and ν stand for least- and greatest fixpoints, respectively, and it is further re-
quired that in the matrix φ(Ȳ , Z, z̄) of a fixpoint formula i) the fixpoint variable Z
occurs only positively (i.e. always under an even number of negations) and never as a
guard; ii) no first-order parameters (i.e., free variables other than those z̄ bound by the
fixpoint operator) are permitted; and iii) free fixpoint variables Ȳ are allowed, to enable
nesting of fixpoint declarations. The clause guardedσ(z̄) signifies the requirement that
all tuples belonging to a predicate defined by a fixpoint construct must be guarded by a
relational atom of the underlying structure. The clause guardedσ(z̄) can be understood
in either of two ways: as a syntactic element (keyword) signifying this intended seman-
tics, or as a formula defining guardedness by a disjunction of existentially quantified
relational atoms (allowing relation symbols from σ as well as equality) involving all of
the variables z̄. Note that while the definitions of least- and greatest fixpoint formulas
are symmetric, the two operators are not each others duals. This is due to the fact that
the dualization of ν may introduce negations that are not guarded.

Since GNFP can be seen as a syntactic fragment of least fixed point logic LFP, we
omit the definition of the semantics, cf. [11].

The definition of GN-normal form that we gave for GNFO formulas applies to
GNFP as well. Formulas of GNFP in GN-normal form can be naturally thought of



as being built up from atomic formulas using (i) guarded negation, (ii) unions of con-
junctive queries, and (iii) fixpoint operators. As in the case of GNFO, the width of
a GNFP-formula is the number of variables it contains after being put in GN-normal
form and we let GNFPk denote the set of GNFP-formulas of width k.

GNFP extends GFP and UNFP. Syntactically, GNFP generalizes the logic UNFP
studied in [13], which only allows the negation of formulas having at most one free
variable, and only unary fixpoints. GNFP also generalizes the guarded fragment of fix-
point logic (GFP) [10]. The logic GFP is the fragment of LFP defined as for GNFP
but replacing the first-order part of the syntax based on GNFO by the syntax of GFO.
It is not immediate from the syntax, but it is easy to check by induction building on
Proposition 1 that GNFP generalizes GFP.

Proposition 3. Every sentence of GFP is equivalent to a sentence of GNFP, via a poly-
nomial time transformation.

The aim of this section is to establish the following main result.

Theorem 3. It is decidable whether a sentence of GNFP has a model and whether it
has a finite model. Both of these problems are 2EXPTIME-complete.

The proof of Theorem 3 is a reduction to the (finite) satisfiability of GFP: given a
formula of GNFP we construct a formula of GFP whose (finite) satisfiability is equiv-
alent to the one of the initial formula and we then apply known results on (finite) sat-
isfiability for GFP [10, 2]. Before we describe the reduction, we start with some useful
notation and some preliminary results taken from [3].

Acyclicity and treeification. We say that a conjunctive query is acyclic if it is seman-
tically equivalent to a formula of GFO built with only conjunction and existential quan-
tification. For instance the query ∃yzw T (x, y, z) ∧ T (x,w, z) ∧E(x, y) is acyclic be-
cause it is equivalent to the guarded formula ∃yzT (x, y, z)∧E(x, y)∧(∃wT (x,w, z)).
It is easy to check that this definition is equivalent to acyclicity (in the hypergraph sense)
of the hypergraph induced by the atoms of the query with its variables as vertices.

Definition 1. Given a schema τ , the τ -treeificationΛτq (x̄) of a positive existential query
q(x̄) over τ is the UCQ consisting of the disjunction of all those acyclic CQs over τ
(modulo renaming of bound variables) that imply q and that are minimal (in the sense
that removing any atomic formula would render it non-acyclic or not implying q).

Consider for instance q(x) = ∃yzwE(x, y) ∧ E(y, z) ∧ E(z, w) ∧ E(w, x). Then
Λ
{E}
q = E(x, x)∨∃y E(x, y)∧E(y, x). Indeed, the only acyclic queries implying q(x)

are obtained by identifying some of its variables resulting in either a reflexive edge on
x or a pair of inverse edges. If the schema is {E, T} where T is a ternary predicate
the treeification of q(x) has a number of additional disjuncts corresponding to various
triangulations of q(x), such as ∃yzw T (x, y, z) ∧ T (x,w, z) ∧ E(x, y) ∧ E(y, z) ∧
E(z, w) ∧ E(w, x). It can be shown that each disjunct in the treeification of any CQ
in whatever schema contains at most three times as many atoms as the CQ itself [3]
leading to the following observations.5

5 These figures constitute a slight refinement of those offered in [3, Lemma 10].



Lemma 2. Consider a schema τ having r many predicate symbols of maximal arity w.
Let q(x̄) be a UCQ of height h over τ . ThenΛτq (x̄) has widthw, length rO(h)(hw)O(hw),
height O(h), and can be constructed in time |q|rO(h)(hw)O(hw).

Guarded bisimulation and covers. Guarded bisimulations [6] are, roughly speak-
ing, strategies for Duplicator in Ehrenfeucht-Fraı̈ssé games played on structures M and
N , with positions restricted to (ā, b̄) such that ā is guarded in M and b̄ guarded in N
(cf. also Definition 3 below). Guarded bisimilarity implies GFP-indistinguishability [6].
There is an associated notion of guarded unraveling, which, given a structure M , pro-
vides an acyclic structure M∗ that is guarded bisimilar to M , thus exhibiting the tree-
like model property of GFP [6]. Note that M∗ is in general infinite and, because it is
acyclic, over M∗ every conjunctive query is equivalent to its treeification (indeed, this
is one justification for the name “treeification”). An analogue of guarded unraveling for
finite structures was provided in [3] in the form of a construction, for all n, of a finite
companion M (n) of any finite structure M such that M (n) is guarded bisimilar to M
and M (n) |= q ↔ Λτq for all UCQs q of width at most n.

Definition 2. A guarded bisimilar cover π : N ∼→M is an onto homomorphism π : N →
M inducing a guarded bisimulation {(b̄, π(b̄)) | b̄ guarded in N}. The cover is weakly
n-acyclic if for every homomorphism h : Q → N from a structure Q on at most n el-
ements into N there exists an acyclic substructure M0 of M (not necessarily induced)
with π(h(Q)) ⊆M0.

The following lemma shows how covers relate to treeification.

Lemma 3. Let π : N ∼→ M be a weakly n-acyclic guarded bisimilar cover of τ -
structures, and let q(x̄) be a UCQ of width at most n. Then for every guarded tuple b̄
(of not necessarily distinct elements) in N we have N |= q(b̄)↔ Λτq (b̄).

Theorem 4 (Rosati cover [3]). For all n ∈ N every relational structure M of schema
τ admits a weakly n-acyclic guarded bisimilar cover π : M (n) ∼→M . IfM is finite then
|M (n)| = |M |wO(n)

, where w is the arity of τ , andM (n) can be effectively constructed.
We call M (n) the n-th Rosati cover of M .

Say that a relation Z ⊆Mr is guarded in M if every tuple ā ∈ Z is guarded in M .
The following is an immediate consequence of the definitions.

Fact 1 Consider a weakly n-acyclic cover π : N
∼→ M and guarded predicates

Z1, . . . , Zk over M . Then π : (N,W1, . . . ,Wk) ∼→ (M,Z1, . . . , Zk) is a weakly n-
acyclic cover, where Wi = π−1(Zi) =

⋃
{π−1(ā) | ā ∈ Zi} for each 1 ≤ i ≤ k.

Reduction to (finite) satisfiability for GFP. Let ϕ be any given GNFP sentence. As a
first step, we compute its GN-normal form ϕ̃. Note that ϕ̃ has the following dimensions:
|ϕ̃| = 2O(|ϕ|), width(ϕ̃) = O(|ϕ|), and ϕ̃ is built up using only UCQs of height at most
|ϕ| (as well as guarded negations and fixpoint operators) as in (2).

Next, essentially, our reduction transforms all UCQs occurring in ϕ̃ to their treeifi-
cation. For every k ≥ 1, and for every relational schema τ consisting of at most k-ary



relations, we define a translation η from GNFPk[τ ] sentences in GN-normal form to
GFPk[τ ] {Ck}] sentences, where Ck is a new symbol of arity k, by structural recur-
sion, using the following rules.

η(R(x̄) ) = R(x̄) (a)
η(Z(x̄) ) = Z(x̄) (b)

η(α(x̄ȳ) ∧ ¬ψ(x̄) ) = α(x̄ȳ) ∧ ¬ η(ψ(x̄)) (c)
η(µZ,z̄[ guardedτ (z̄) ∧ ψ(Ȳ , Z, z̄) ] ) = µZ,z̄[ guardedτ (z̄) ∧ η(ψ(Ȳ , Z, z̄)) ] (d)
η( νZ,z̄[ guardedτ (z̄) ∧ ψ(Ȳ , Z, z̄) ] ) = νZ,z̄[ guardedτ (z̄) ∧ η(ψ(Ȳ , Z, z̄)) ] (d′)

η( q[φ1/U1, . . . , φs/Us] ) = Λ
τ]{U1,...,Us,Ck}
q [η(φ1)/U1, . . . , η(φs)/Us] (e)

where in (e) q is a UCQ of signature {U1, . . . , Us} disjoint from τ ] {Ȳ , Ck} and
φ1, . . . , φs ∈ GNFPk[τ ] {Ȳ }], where Ȳ enumerates the free fixpoint variables occur-
ring in any of the φi’s, each of which is of a form (a)–(d), and such that q[φ1/U1, . . . , φs/Us]
is a subformula of ϕ̃. In particular the φi define guarded relations. It can be readily seen
that all formulas in GN-normal form can be decomposed as in (a)–(e) and we have the
following bounds and on the translation η.

Lemma 4. For all GNFPk-formula ϕ of GN-normal form ϕ̃, |η(ϕ̃)| = 2(k|ϕ|)O(1)
and

η(ϕ̃) can be computed within this time bound, and its width remains k.

The following key lemma generalizes Lemma 3 and attests to the correctness of our
reduction. It is proved by structural induction on formulas, while relying on Fact 1 and
Lemma 3 to deal with the cases (d) and (e), respectively.

Lemma 5. Let π : N ∼→M be a weakly k-acyclic guarded bisimilar cover of τ]{Ck}-
structures and φ(Ȳ , x̄) ∈ GNFPk[τ ] a formula in GN-normal form with free fixpoint
variables Ȳ . Then for every assignment of guarded relations W̄ on N to Ȳ such that
Wi = π−1(π(Wi)) for all 1 ≤ i ≤ |Ȳ | and for every guarded tuple b̄ in N we have:

(N, W̄ ) |= η(φ)(b̄)↔ φ(b̄) .

Theorem 5. A GNFPk-sentence ϕ̃ in GN-normal form is satisfiable (in the finite) if,
and only if, η(ϕ̃) ∈ GFPk is satisfiable (in the finite).

Proof. It is easy to see that for every model M of ϕ̃ its expansion (M,Ck) is a model
of η(ϕ̃), where each Ck is the complete k-ary relation on M .

Conversely, consider some M a model of η(ϕ̃) and its k-th Rosati cover M (k),
equally a model of η(ϕ̃). Lemma 5 proves that M (k) is, in fact, a model of ϕ̃, and we
know from Theorem 4 that if M is finite then so is M (k). ut

Both satisfiability [10] and finite satisfiability [2] of GFP sentences have been shown
decidable in time 2O(nww), where n is the length of the input formula andw is its width.
Starting with a GNFPk sentence ϕ whose GN-normal form is ϕ̃, we get from Lemma 4
that |η(ϕ̃)| = 2(k|ϕ|)O(1)

and that η(ϕ̃) is computable within that same time bound, but
its width remains k. Theorem 3 now follows from these bounds via Theorem 5.



5 Additional results

Model checking In this section we study the combined complexity of the model check-
ing problem, where the input consists of a sentence and a structure and the goal is to
decide whether the sentence is true on the structure. It was shown in [13] that the model
checking problem for UNFO is PNP[O(log2 n)]-complete, and that the model checking
problem for UNFP is in NPNP ∩ coNPNP and PNP-hard. We show that the upper-bounds
also apply to GNFO and GNFP. The proof is a reduction to formulas with unary nega-
tions by constructing an incidence structure.

Theorem 6. The model checking problem for GNFO is PNP[O(log2 n)]-complete.
For GNFP it is in NPNP ∩ coNPNP and hard for PNP.

Expressive power We develop an appropriate notion of bisimulation for GNFO and
GNFP, and use it to characterize the expressive power of GNFO.

Recall that a tuple of elements of a structure M is said to be guarded if there is a
fact of M in which all elements from the tuple occur. We denote by guarded(M) the
set of all guarded tuples of M . If M and N are structures and ā and b̄ are tuples of
elements from dom(M) and dom(N), respectively, then we say that M, ā and N, b̄ are
locally isomorphic if there is a partial isomorphism f : M → N such that f(ā) = b̄.

Definition 3. Let M,N be two structures. A GN-bisimulation (of width k ≥ 1) is a
binary relation Z ⊆ guarded(M)× guarded(N) such that the following hold for every
pair (ā, b̄) ∈ Z, where ā = a1, . . . , am and b̄ = b1, . . . , bn

– M, ā and N, b̄ are locally isomorphic (and in particular, m = n)
– For every finite set X ⊆ dom(M) (with |X| ≤ k) there is a partial homomorphism
h : M → N whose domain is X , such that h(ai) = bi for all ai in X , and such
that every ā′ ∈ guarded(M) consisting of elements in the domain of h, the pair
(ā′, h(ā′)) belongs to Z.

– Likewise in the other direction, where X ⊆ dom(N).

Note that if X above is restricted to guarded sets then we obtain a definition of
guarded bisimulation. We write M ≈(k)

GN N if there is a non-empty GN-bisimulation
(of width k) between M and N .

Proposition 4. For k ≥ 1, if M ≈kGN N then M and N satisfy the same GNFPk

sentences. In particular, ifM ≈GN N thenM andN satisfy the same GNFP sentences.

In fact, GN-bisimulation invariance can be used to characterize GNFO.

Theorem 7. GNFO is the ≈GN -invariant fragment of FO, and for all k ≥ 1, GNFOk

is the ≈kGN -invariant fragment of FO (on arbitrary structures).

Finally, building on Theorem 7 and Theorem 5, we can show the following.

Theorem 8. GNFP has the tree-like model property.



6 Discussion

We have provided a logical framework generalizing both GFO and UNFO while pre-
serving their nice properties, in particular decidability of satisfiability. Our results on
satisfiability carry over to the validity and entailment problems for GNFO, and likewise
for GNFP, as these problems are all reducible to each other. For instance, a GNFO en-
tailment φ(x̄ȳ) |= ψ(x̄z̄) holds if, and only if, for a fresh relation R of appropriate arity
∃x̄ȳz̄(φ(x̄ȳ) ∧R(x̄ȳz̄) ∧ ¬ψ(x̄z̄))) is not satisfiable.

Another immediate consequence of our results is that query answering for unions
of conjunctive queries with respect to guarded negation fixpoint theories (i.e., the ana-
logue of Theorem 1 replacing GFO by GNFP) is decidable and 2ExpTime-complete.
Furthermore, although our definition of GNFO does not include constant symbols, they
could be added without affecting the complexity of these problems, relying on the same
technique used in [7].

It would be tempting to further generalize by including the two variable fragment
of FO (FO2). Unfortunately this would lead to undecidability. Actually a simple com-
bination of FO2 with UNFO already yields undecidability as FO2 can express the fact
that a relation correspond to inequality (∀x, y R(x, y) ↔ x 6= y) and the extension of
UNFO with inequality is undecidable [13]. Similarly, unconstrained universal quantifi-
cation leads to undecidability, since every subformula of the form¬ψ(x̄) can be trivially
guarded using a fresh relation R(x̄), adding ∀x̄ Rx̄ as a conjunct to the main formula.
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8. Erich Grädel. Why are modal logics so robustly decidable? In Current Trends in Theoretical

Computer Science, pages 393–408. 2001.
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