
Int. J. Inf. Secur. (2011) 10:107–134
DOI 10.1007/s10207-011-0125-6

REGULAR CONTRIBUTION

Cryptographically sound security proofs for basic
and public-key Kerberos

Michael Backes · Iliano Cervesato ·
Aaron D. Jaggard · Andre Scedrov · Joe-Kai Tsay

Published online: 20 April 2011
© Springer-Verlag 2011

Abstract We present a computational analysis of basic
Kerberos with and without its public-key extension PKI-
NIT in which we consider authentication and key secrecy
properties. Our proofs rely on the Dolev–Yao style model of
Backes, Pfitzmann, and Waidner, which allows for mapping
results obtained symbolically within this model to crypto-
graphically sound proofs if certain assumptions are met. This
work was the first verification at the computational level of
such a complex fragment of an industrial protocol. By consid-
ering a recently fixed version of PKINIT, we extend symbolic

Backes was partially supported by the German Research Foundation
(DFG) under grant 3194/1-1. Cervesato was partially supported by
ONR under Grant N00014-01-1-0795 and by the Qatar Foundation
under grant number 930107. Jaggard was partially supported by NSF
Grants DMS-0239996, CNS-0429689, and CNS-0753492, and by
ONR Grant N00014-05-1-0818. Scedrov was partially supported by
OSD/ONR CIP/SW URI “Software Quality and Infrastructure
Protection for Diffuse Computing” through ONR Grant
N00014-01-1-0795 and OSD/ONR CIP/SW URI “Trustworthy
Infrastructure, Mechanisms, and Experimentation for Diffuse
Computing” through ONR Grant N00014-04-1-0725. Scedrov was
also partially supported by ONR Grant N00014-07-1-1039 and by
NSF Grants CNS-0524059 and CNS-0830949 and CNS-0429689.
This material is based upon work supported by the MURI program
under AFOSR Grant No: FA9550-08-1-0352. Tsay was partially
supported by ONR Grant N00014-01-1-0795 and NSF grant
CNS-0429689. A preliminary version of this work appeared as [5].

M. Backes
Saarland University, Saarbrücken, Germany
e-mail: backes@cs.uni-sb.de

I. Cervesato
Carnegie Mellon University, Doha, Qatar
e-mail: iliano@cmu.edu

A. D. Jaggard
Colgate University, Hamilton, NY, USA
e-mail: adj@dimacs.rutgers.edu

correctness results we previously attained in the Dolev–Yao
model to cryptographically sound results in the computa-
tional model.

Keywords Kerberos Protocol · PKINIT ·
Security Protocol Verification · Dolev-Yao ·
Cryptography · Computationally Sound Analysis

1 Introduction

Cryptographic protocols have traditionally been verified in
one of two ways: the first, known as the Dolev–Yao or
symbolic approach, abstracts cryptographic concepts into an
algebra of symbolic messages [37]; the second, known as the
computational or cryptographic approach, retains the con-
crete view of messages as bitstrings and cryptographic oper-
ations as algorithms on bitstrings, while drawing security
definitions from complexity theory [16,39,40]. While proofs
in the computational approach (with its much more compre-
hensive adversary model) entail stronger security guarantees,
conducting such proofs by hand is tedious and error-prone
even for simple protocols and impractical for larger proto-
cols. A first approach in mechanizing proofs in this model has
so far only been tested on one commercial protocol [19]. On
the other hand, verification methods based on the Dolev–Yao

A. D. Jaggard
Rutgers University, New Brunswick, NJ, USA

A. Scedrov
University of Pennsylvania, Philadelphia, PA, USA
e-mail: scedrov@math.upenn.edu

J.-K. Tsay (B)
LSV, ENS Cachan and CNRS and INRIA,
Cachan Cedex, France
e-mail: tsay@lsv.ens-cachan.fr

123

108 M. Backes et al.

abstraction have become efficient and robust enough to tackle
a wide range of large commercial protocols, often even auto-
matically [1,14,15,21,22,48].

Kerberos, a widely deployed protocol that allows a user
to authenticate herself to multiple end servers based on a
single login, constitutes one of the most important exam-
ples that have been formally analyzed within the Dolev–
Yao approach so far. Kerberos 4, the then prevalent version,
was verified using the Isabelle theorem prover [14,15]. The
currently predominant version, Kerberos 5 [54], has been
extensively analyzed using the Dolev–Yao approach. This
analysis of Kerberos 5 showed: (a) the core protocol enjoys
the expected authentication and secrecy properties except for
some relatively innocuous anomalies [21]; (b) “cross-realm”
authentication in Kerberos is correct when compared against
its specification but has weaknesses in practice [30]; and
(c) the then-current specification of the public-key extension
(PKINIT) of Kerberos was susceptible to a serious attack
[27–29]. The discovery of the attack on PKINIT led to
an immediate correction of the specification and a security
bulletin and patch for Microsoft Windows [50].

The earlier security proofs for both Kerberos 5 and
the fixes to PKINIT were carried out in the Dolev–Yao
approach. Thus, despite the extensive research dedicated to
the Kerberos protocol, and despite its tremendous impor-
tance in practice, at the time of our preliminary report on this
work [5], it remained an open question whether an actual
implementation of Kerberos based on provably secure cryp-
tographic primitives is secure under cryptographic security
definitions with its much more comprehensive adversary. We
closed this gap (at least partially) in the preliminary version
of this paper [5] by providing the first security proofs of
the core aspects of the Kerberos protocol in the computa-
tional approach. More precisely, we showed in the prelimi-
nary version of this paper [5] that core parts of Kerberos 5
are secure against arbitrary active attacks if the Dolev–Yao-
based abstraction of the employed cryptography is imple-
mented with actual cryptographic primitives that satisfy the
commonly accepted security notions under active attacks,
e.g., IND-CCA2 for public-key encryption.

Obviously, establishing proofs in the computational
approach presupposes dealing with cryptographic details
such as computational restrictions and error probabilities,
hence one naturally assumes that our proofs heavily rely
on complexity theory. However, our proofs are not per-
formed from scratch in the cryptographic setting but based
on the Dolev–Yao style framework of Backes, Pfitzmann,
and Waidner [8,11,12] (called the BPW model henceforth),
which provides computationally faithful symbolic abstrac-
tions of cryptographic primitives. The symbolically proved
security properties also hold computationally when the sym-
bolic abstractions are implemented with actual (secure)
cryptographic operations. Thus our proofs themselves are

symbolic in nature, but refer to primitives from the BPW
model. Kerberos is the largest and most complex protocol
whose cryptographic security has so far been inferred from
proofs in this approach. Earlier proofs in this approach were
conducted mainly for small examples of primarily academic
interest [4,7,10]; some similar work had been done on indus-
trial protocols, e.g., by He and Mitchell [42], although none
that were as complex as Kerberos. (In Sect. 1.1, we note other
analyses of industrial protocols that appeared after the pre-
liminary report on this work [5].) We furthermore analyze the
recently fixed version of PKINIT and derive computational
guarantees for it from a symbolic proof based on the BPW
model. Finally, we also draw some lessons learned in the pro-
cess, which highlight areas where to focus research in order to
simplify the verification of large commercial protocols with
computational security guarantees. In particular, it would be
desirable to devise suitable proof techniques, based on the
BPW model, for splitting large protocols into smaller pieces
that can then be analyzed modularly while still retaining the
strong link between the Dolev–Yao and the computational
approaches. We view this as a research opportunity for the
short-term future.

This paper extends work that has previously appeared in
abbreviated form [5]. Differently from that presentation, here
we present the full set of algorithms formalizing Kerberos and
PKINIT as well as more complete proofs of our results. We
have also changed our formalization of certificates binding
keys to principals. Essentially, we now represent certificates
using data structures that have previously been studied in the
BPW model instead of defining new structures, which would
require separate analysis of those structures.

1.1 Related work

Early work on linking Dolev–Yao models and cryptog-
raphy [2,3,41,46] only considered passive attacks and
therefore cannot make general statements about protocols.
A cryptographic justification for a Dolev–Yao model in
the sense of simulatability [55], i.e., under active attacks
and within arbitrary surrounding interactive protocols, was
first given by Backes, Pfitzmann, and Waidner in [11] with
extensions in [8,12]. Based on that Dolev–Yao model, the
well-known Needham-Schroeder-Lowe, Otway-Rees, and
Yahalom protocols were proved secure in [4,7,10]. All these
protocols are considerably simpler than Kerberos, which we
analyze in this paper, and arguably of much more limited
practical interest. Some work has been done on industrial
protocols, such as 802.11i [42], although Kerberos is still a
much more complex protocol.

Laud [47] has presented a cryptographic underpinning for
a Dolev–Yao model of symmetric encryption under active
attacks. His work is directly connected with a formal proof
tool, but it is specific to certain confidentiality properties

123

Cryptographically sound security proofs for basic and public-key Kerberos 109

and protocol classes. Herzog et al. [43] and Micciancio and
Warinschi [49] have also given a cryptographic underpin-
ning under active attacks. They consider slightly simpler
real implementations than in [11], but their results are spe-
cific for public-key encryption and certain protocol clas-
ses and are thus narrower than those in [11]. Cortier and
Warinschi [33] have shown that symbolically secret nonces
are also computationally secret, i.e., indistinguishable from a
fresh random value given the view of a cryptographic adver-
sary. Backes and Pfitzmann [9] have established new sym-
bolic criterion for proving a key cryptographically secret.
Canetti and Herzog [26] have presented symbolic criteri-
ons for proving cryptographic secrecy and authentication in
a Dolev–Yao model for public-key encryption that is more
restricted but slightly simpler than the symbolic BPW model.
The simulatibility soundness of their work relies on [24] and
has recently been extended to include Diffie–Hellman key
exchange in [25]. The restrictions imposed on the symbolic
model makes this model immediately accessible to existing
proof tools.

Unfortunately, none of the work above is comprehen-
sive enough to provide computational security guarantees
for Kerberos based on an existing symbolic proof; the work
is missing suitable cryptographic primitives or it relies on
slightly changed symbolic abstractions, e.g., as in [11].

Sprenger et al. [58,59] explored the mechanization of
BPW proofs using the Isabelle/HOL theorem prover. Via a
series of sound abstractions, they obtain their abstract pro-
tocol model for role-based protocols that does not rely on
handles as pointers to message terms. The efficiency is com-
parable to one of [47] but, again, their model is restricted to
protocols that only use public-key encryption and no other
cryptographic primitives. Therefore, neither the tool nor the
abstract protocol model can be used to analyze Kerberos
mechanically or to achieve simpler proofs.

Subsequent to the first version of this work [5], vari-
ous additional related work has appeared in the literature.
Boldyreva and Kumar showed in [20] that the encryption
algorithm of the simplified profile of basic Kerberos sat-
isfies the cryptographic assumptions made in [5] for sym-
metric encryption. They also showed that the general profile
encryption of basic Kerberos is weak and proposed a cor-
rected version of the general profile encryption that satisfies
these properties. Roy et al. [56] also proved computational
security of Kerberos. In [57], Roy et al. proved computa-
tional security of the PKINIT operation mode (“DH mode”)
that we do not consider here, as well as security of IKEv2.
As another example of cryptographic proofs of security of
an industrial-scale protocol, Gajek et al. [38] proved security
properties of TLS.

In work with Blanchet [18,19], the last three authors of
this paper used the CryptoVerif tool [17] to mechanically
prove security properties of Kerberos in the computational

model. CryptoVerif relies on a probabilistic polynomial-time
process calculus [52]. There is also other work on formulat-
ing syntactic calculi for dealing with probability and polyno-
mial-time considerations and encoding them into proof tools,
in particular [34,45,51]. This is orthogonal to the work of
justifying Dolev–Yao models, which offer a higher level of
abstractions and thus much simpler proofs where applicable,
so that proofs of larger systems can be automated.

1.2 Structure of the paper

We start in Sect. 2 with a review of Kerberos and its pub-
lic-key extension PKINIT. In Sect. 3, we recall the BPW
model (e.g., [6,8,12,13]) and apply it to the specification
of Kerberos 5 and public-key Kerberos (i.e., Kerberos with
PKINIT). In Sect. 4, we prove security results for these proto-
cols and lifts them to the computational level. Finally, Sect. 5
summarizes this effort and outlines areas of future work.

2 Kerberos 5 and its public-key extension

The Kerberos protocol [53,54] allows a legitimate user to log
on to her terminal once a day (typically) and then transpar-
ently access all the networked resources she needs for the
rest of that day in her organization. Each time she wants to,
e.g., retrieve a file from a remote server, a Kerberos client
running on her behalf securely handles the required authen-
tication. The client acts behind the scenes, without any user
intervention.

The main Kerberos protocol comprises three exchanges:
the initial round of authentication, in which the client obtains
log-in credentials that might be good for a full day; the sec-
ond round of authentication, in which she presents her first
credentials in order to obtain a short-term credentials (five-
minute lifetime) to use a particular network service; and
the client’s interaction with the network service, in which
she presents her short-term credentials in order to negotiate
access to the service.

In the core specification of Kerberos 5 [54], all three
exchanges solely use symmetric (shared key) cryptography.
Since the initial specification of Kerberos 5, the protocol has
been extended by the definition of an alternate first round
that uses asymmetric (public-key) cryptography. This alter-
native exchange, that is called PKINIT, may be used in two
modes: “public-key encryption mode” and “Diffie–Hellman
(DH) mode.” In recent work [27–29], we showed that there
was an attack against the then-current draft specification of
PKINIT when the public-key encryption mode was used and
then symbolically proved the security of the specification as
it was revised in response to our attack. Here we study both
basic Kerberos (without PKINIT) and the public-key mode of
PKINIT as it was revised to prevent our attack. The fix first

123

110 M. Backes et al.

appeared in revision 27 of the PKINIT specification [44];
subsequent drafts have not changed this aspect of PKINIT.
The fix is also present in the current version of PKINIT [61],
which is now a RFC within the IETF [60] standards pro-
cess. In the rest of this section, we describe the operation of
both basic Kerberos and Kerberos with PKINIT in public-key
mode.

Kerberos basics The client process—usually acting for a
human user—interacts with three additional types of prin-
cipals when using Kerberos 5 (with or without PKINIT).
The client’s goal is to be able to authenticate herself to var-
ious application servers (e.g., email, file, and print servers).
This is done by obtaining a “ticket-granting ticket” (TGT)
from a “Kerberos Authentication Server” (KAS) and then
presenting this to a “Ticket-Granting Server” (TGS) in order
to obtain a “service ticket” (ST), the credentials that the
client uses to authenticate herself to the application server.
A TGT might be valid for a day, and may be used to obtain
several STs for many different application servers from the
TGS, while a single ST is valid for a few minutes (although
it may be used repeatedly) and is used for a single applica-
tion server. The KAS and the TGS are together known as the
“Key Distribution Center” (KDC).

The client’s interactions with the KAS, TGS, and dif-
ferent application servers are called the Authentication
Service (AS), Ticket-Granting (TG), and Client-Server (CS)
exchanges, respectively. We will describe the AS exchange
separately for basic and public-key Kerberos; as PKINIT
does not modify the other exchanges, we only need to
describe them once.

The traditional AS exchange The abstract structure of the
AS exchange is given in Fig. 1. A client C generates a fresh
nonce n1 and sends it, together with her own name and the
name T of the TGS for whom she desires a TGT, to the
KAS K . This message is called the AS_REQ message [54].
The KAS responds by generating a fresh authentication key
AK for use between the client and the TGS and sending an
AS_REP message to the client. Within this message, AK
is sent back to the client in the encrypted message compo-
nent {AK , n1, tK , T }kC ; this also contains the nonce n1 from
the AS_REQ, the KAS’s local time tK , and the name of the
TGS for whom the TGT was generated. (The AK and tK

to the right of the figure illustrate that these values are new
between the two messages.) This component is encrypted
under a long-term key kC shared between C and the KAS;
this key is usually derived from the user’s password. This
is the only time that kC is used in a standard Kerberos run
because later exchanges use freshly generated keys. AK is
also included in the ticket-granting ticket TGT sent along-
side the message encrypted for the client. The TGT consists
of AK , C, tK , where tK is K ’s local time, encrypted under

a long-term key kT shared between the KAS and the TGS
named in the request. The computational model we use here
does not support timestamps, so we will treat these as non-
ces; as shown in [31], this does not alter the authentication
and confidentiality properties of a protocol such as Kerberos.
These encrypted messages are accompanied by the client’s
name—and other data that we abstract away—sent in the
clear. Once the client has received this reply, she may under-
take the Ticket-Granting exchange.

It should be noted that the actual AS exchange, as well
as the other exchanges in Kerberos, is more complex than
the abstract view given here. In particular, we do not model
Kerberos’ options or flags, which range over a limited num-
ber of valid numbers that are publicly known. Neither do we
model error messages or most checksums. We refer the reader
to [54] for the complete specification of Kerberos 5, [61] for
the specification of PKINIT, and [21] for a formalization of
Kerberos at an intermediate level of detail.

The AS exchange with PKINIT PKINIT [61] is an exten-
sion to Kerberos 5 that uses public-key cryptography to avoid
shared secrets between a client and KAS; it modifies the AS
exchange but not other parts of the basic Kerberos 5 pro-
tocol. The long-term shared key (kC) in the traditional AS
exchange is typically derived from a password, which lim-
its the strength of the authentication to the user’s ability to
choose and remember good passwords; PKINIT does not use
kC and thus avoids this problem. Furthermore, if a public-key
infrastructure (PKI) is already in place, PKINIT allows net-
work administrators to use it rather than expending additional
effort to manage users’ long-term keys as in traditional Kerb-
eros. This protocol extension adds complexity to Kerberos
as it retains symmetric encryption in the later rounds but
relies on asymmetric encryption, digital signatures, and cor-
responding certificates in the first round.

In PKINIT, the client C and the KAS each possess public/
private key pairs, (pkC , skC) and (pkK , skK), respectively.
Certificate sets CertC and CertK issued by a PKI indepen-
dent from Kerberos are used to testify of the binding between
each principal and her purported public key. This simplifies
administration as authentication decisions can now be made
based on the trust the KDC holds in just a few known cer-
tification authorities within the PKI, rather than keys indi-
vidually shared with each client (local policies can, however,
still be installed for user-by-user authentication). Dictionary
attacks are defeated as user-chosen passwords are replaced
with automatically generated asymmetric keys.1

1 The login process changes as very few users would be able to remem-
ber a random public/secret key pair. In Microsoft Windows, keys and
certificate chains are stored in a smartcard that the user swipes in a
reader at login time. A passphrase is generally required as an addi-
tional security measure [36]. Other possibilities include keeping these
credentials on the user’s hard drive, again protected by a passphrase.

123

Cryptographically sound security proofs for basic and public-key Kerberos 111

Fig. 1 Message Flow in the
Traditional AS Exchange, where
TGT = {AK , C, tK }kT

Fig. 2 Message flow in the
fixed version of PKINIT, where
TGT = {AK , C, tK }kT

As noted above, PKINIT can operate in two modes. These
resemble the basic AS exchange in that the KAS generates
a fresh key AK for the client and TGS to use, and then the
KAS transmits AK and the TGT to the client. The modes of
PKINIT provide two different ways for the KAS to transmit
this key using the asymmetric key pairs rather than a key that
is shared between the client and KAS. In DH mode, the key
pairs (pkC , skC) and (pkK , skK) are used to provide digital
signature support for an authenticated Diffie–Hellman key
agreement that produces a key which is then used to protect
the fresh key AK . A variant of this mode allows the reuse of
previously generated shared secrets. In public-key encryp-
tion mode, analyzed here, the key pairs are used for both sig-
nature and encryption. The latter is designed to (indirectly)
protect the confidentiality of AK , while the former ensures
its integrity.

We will not discuss the DH mode any further; the only
support we are aware of for this mode is in the Packet-
Cable system [23], developed by CableLabs, a cable tele-
vision research consortium. As noted above, DH mode has
been analyzed by Roy et al. [57].

Figure 2 illustrates the AS exchange when the fixed ver-
sion (which defends against the attack of [27–29]) of PKINIT
is used. Here, we use [m]sk for the digital signature of mes-
sage m with secret key sk, {{m}}pk for the encryption of m
with the public key pk, and {m}k for the encryption of m
with the symmetric key k.

The first line of Fig. 2 shows our formalization of the
AS_REQ message that a client C sends to a KAS K when
using PKINIT. The last part of the message—C, T, n1—is
the message in the traditional AS_REQ message. The new
data that are added by PKINIT consist of the client’s certifi-
cates CertC and her signature (with her secret key skC) over
a timestamp tC and another nonce n2. (The nonces and time-
stamp at the left of this line indicate that these are generated
by C specifically for this request.)

The second line in Fig. 2 shows our formalization of K ’s
response, which is more complex than in basic Kerberos.
The last part of the message—C, T GT, {AK , n1, tK , T }k—
is very similar to K ’s reply in basic Kerberos; the difference
is that the symmetric key k (which takes the place of kC in

basic Kerberos) protecting AK is now freshly generated by
K and is not a long-term shared key. Because k is freshly
generated for the reply, it must be communicated to C before
she can learn AK . PKINIT does this by adding the message
{{CertK , [k, ck]skK }}pkC . This contains K ’s certificates and
his signature, using his secret key skK , over k and a keyed
hash ck (“checksum” in the language of [54]) taken over the
entire request AS_REQ from C using the key k; all of this
is encrypted under C’s public key pkC . The keyed hash ck
binds this response to the client’s request and was added in
response to the attack we discovered and reported in [27–29].

The later exchanges After the client C has obtained the
key AK and the TGT, either through the basic AS exchange
or the PKINIT AS exchange, she then initiates the TGS
exchange. This exchange is shown in Fig. 3. The first line
of this figure shows our formalization of the client’s request,
called a TGS_REQ message; it contains the TGT (which is
opaque to the client), an authenticator {C, tC }AK , the name
of the server S for which C desires a service ticket and a
nonce n3. Once the TGS receives this message, he decrypts
the TGT to learn AK and uses this to decrypt the authen-
ticator. Assuming his local policies for granting a service
ticket are satisfied (while we do not model these here, they
might include checks such as whether the request is suffi-
ciently fresh), the TGS produces a fresh key SK for C and
S to share and sends this back to the client in a TGS_REP
message. The form of this message is essentially the same as
the basic AS_REP message from the KAS to C : it contains a
ticket (now the service ticket, or ST, {SK , C, tT }kS instead of
the TGT) encrypted for the next server (now S instead of T)
and encrypted data for C (now encrypted under AK instead
of kC or k).

Finally, after using the AS exchange to obtain the key SK
and the ST, the client may use the CS exchange to authenti-
cate herself to the end server. Figure 4 shows this exchange,
including the optional reply from the server that authenti-
cates this server to the client. As shown in the first line of
the figure, C starts by sending a message (AP_REQ) that is
similar to the TGS_REQ message of the previous round: it
contains the (service) ticket and an authenticator ({C, t ′C }SK)

123

112 M. Backes et al.

Fig. 3 Message flow in the
TGS exchange, where
TGT = {AK , C, tK }kT and
ST = {SK , C, tT }kS

Fig. 4 Message flow in the CS
exchange, where
ST = {SK , C, tT }kS

that is encrypted under the key contained in the ST. As shown
in the second line of the figure, the server S simply responds
with an AP_REP message {t ′C }SK containing the timestamp
from the authenticator encrypted under the key from the ST.

Attack on PKINIT The attack we found against the then-
current specification of PKINIT was reported in [27–29].
This attack was possible because, at the time, the reply
from the KAS to the client contained [k, n2]skK in place of
[k, ck]skK . In particular, the KAS did not sign any data that
depended upon the client’s name. This allowed an attacker
who was herself a legitimate client to intercept a message
from another client C to the KAS, use this data in her own
request to the KAS, read the reply from the KAS, and then
send this reply to C as though it was generated by the KAS for
C (instead of for the attacker). The effect of this attack was
that the attacker could gain knowledge of all new keys shared
between the client and various servers. It could do so either
by translating messages as in the AS exchange (collecting
keys along the way) or by impersonating these servers (and
creating the keys in the first place). In the former variation,
the client would be authenticated as the attacker and not as C .

Security properties We now summarize the security prop-
erties that we prove here at the symbolic level for both basic
Kerberos and Kerberos with PKINIT; the implications on the
computational level are discussed in the subsequent sections.
We have proved similar properties in symbolic terms using a
formalization in MSR for basic Kerberos [21,22] and for the
AS exchange when PKINIT is used [27–29]. Our subsequent
work with CryptoVerif has given mechanized proofs of sim-
ilar properties in the computational model [18,19]. The first
property we prove here concerns the secrecy of exchanged
keys, a notion that is captured formally as Definition 1 in
Sect. 4. This property may be summarized as follows:

Property 1 (Key secrecy) For any honest client C and honest
server S, if the TGS T generates a symmetric key SK for C
and S to use (in the CS exchange), then the intruder does not
learn the key SK .

The second property we study here concerns entity authen-
tication, formalized as Definition 2 in Sect. 4. This property
may be summarized as follows:

Property 2 (Authentication properties)

i. If a server S completes a run of Kerberos, apparently
with C , then earlier: (a) C started the protocol with
some KAS to get a ticket-granting ticket; and (b) then
requested a service ticket from some TGS.

ii. If a client C completes a run of Kerberos, apparently
with server S, then S sent a valid AP_REP message
to C .

Theorem 1 below shows that these properties hold for our
symbolic formalizations of basic and public-key Kerberos in
the BPW model; Theorem 2 shows that the authentication
property holds as well for cryptographic implementations of
these protocols if provably secure primitives are used; the
standard cryptographic definition of key secrecy, however,
turns out not to hold for cryptographic implementations of
Kerberos. We will return to this point below. Because authen-
tication can be shown to hold for Kerberos with PKINIT, it
follows that at the level of cryptographic implementation, the
fixed specification of PKINIT does indeed defend against the
attack reported in [27–29].

3 The BPW model

We will now abstractly review the BPW model and then
formalize Kerberos using it.

3.1 Review of the BPW model

The BPW model introduced in [13] offers a determinis-
tic Dolev–Yao style formalism of cryptographic protocols
with commands for a vast range of cryptographic operations
such as public-key and symmetric key encryption/decryp-
tion, generation, and verification of digital signatures as well

123

Cryptographically sound security proofs for basic and public-key Kerberos 113

as message authentication codes, and nonce generation as
well as the inclusion of payloads (application data). Every
protocol participant is assigned a machine (an I/O automa-
ton), which is connected to the machines of other protocol
participants and which executes the protocol for its user
by interacting with the other machines (see Fig. 5). In this
reactive scenario, semantics is based on state, i.e., on who
already knows which terms. The state is here represented
by an abstract “database” and handles to its entries: Each
entry (denoted D[j]) of the database has a type (e.g., “signa-
ture”) and pointers to its arguments (e.g., “private key” and
“message”). This corresponds to the way Dolev–Yao terms
are represented. Furthermore, each entry in the abstract data-
base also comes with handles to participants who have access
to that entry. These handles determine the state. The BPW
model does not allow cheating: only if a participant has a han-
dle to the entry D[j] itself or to the right entries that could
produce a handle to D[j] can the participant learn the term
stored in D[j]. For instance, if the BPW model receives a
command, e.g., from a user machine, to encrypt a message m
with key k, then it makes a new abstract database entry for the
cyphertext with a handle to the participant that sent the com-
mand and pointers to the message and the key as arguments;
only if a participant has handles to the cyphertext and also to
the key can the participant ask for decryption. Furthermore,
if the BPW model receives the same encryption command
a second time, then it will generate a new (different) entry
for the cyphertext. This meets the fact that secure encryp-
tion schemes are necessarily probabilistic. Entries are made
known to other participants by a send command, which adds
handles to the entry.

The BPW model is based on a detailed model of asynchro-
nous reactive systems introduced in [55] and is represented
as a deterministic machine THH (also an I/O automaton),
called trusted host, where H = {u1, . . . , um} denotes the set
of all honest participants. This machine executes the com-
mands from the user machines, in particular including the
commands for cryptographic operations. A system consists
of several possible structures. A structure consists of a set M̂
of connected correct user machines and a subset S of the free
ports, i.e., S is the user interface of honest users. In order to

analyze the security of a structure (M̂, S), an arbitrary prob-
abilistic polynomial-time user machine H is connected to the
user interface S and a polynomial-time adversary machine A
is connected to all the other ports and H. This completes a
structure into a configuration of the system (see Fig. 5). The
machine H represents all users. A configuration is a runnable
system, i.e., for each security parameter k, which determines
the input lengths (including the key length), one gets a well-
defined probability space of runs. The BPW model main-
tains length functions on the entries of the abstract database;
to guarantee that the system is polynomially bounded in the
security parameter, there are bounds on the lengths of mes-
sages, as well as bounds on the number of signatures per key
and the number of inputs per port [13]. The view of H in a run
is the restriction to all inputs and outputs that H sees at the
ports it connects to, together with its internal states. Formally
one defines the view viewcon f (H) of H for a configuration
conf to be a family of random variables Xk where k denotes
the security parameter. For a given security parameter k, Xk

maps runs of the configuration to a view of H.
Corresponding to the BPW model, there exists a crypto-

graphic implementation of the BPW model and a compu-
tational system, in which honest participants also operate
via handles on cryptographic objects. However, the objects
are now bitstrings representing real cryptographic keys,
cyphertexts, etc., acted upon by interactive polynomial-time
Turing machines (instead of the symbolic machines and the
trusted host). The implementation of the commands now
uses provably secure cryptographic primitives according to
standard cryptographic definitions (with small additions like
type tagging and additional randomization). In [8,11–13], it
was established that the cryptographic implementation of the
BPW model is at least as secure as the BPW model (denoted
by≥, see Fig. 6), meaning that whatever an active adversary
can do in the implementation can also be achieved by another
adversary in the BPW model, or the underlying cryptography
can be broken. More formally, a system Sys1 being at least as
secure as another system Sys2 means that for all probabilis-
tic polynomial-time user H, for every probabilistic polyno-
mial-time adversary A1 and for every computational structure
(M̂1, S) ∈ Sys1, there exists a polynomial-time adversary A2

Fig. 5 Overview of the
Kerberos symbolic system

123

114 M. Backes et al.

Fig. 6 Simulatability: The
views of H must be
indistinguishable

on a corresponding symbolic structure (M̂2, S) ∈ Sys2 such
that the view of H is computationally indistinguishable in
both configurations (Fig. 6). This captures the cryptographic
notion of reactive simulatability.

Not explicitly noted in [8] is that the soundness of the
BPW model for symmetric encryption holds only when dis-
honestly generated symmetric keys cannot be injected by the
adversary so that these are used by honest parties. For encryp-
tions under these keys (e.g.,when a protocol participant uses
a dishonest session key to encrypt or decrypt a message), one
cannot predict/restrict what happens, as operations under dis-
honest keys are not covered by standard crypto assumptions.
This could lead to attacks on the computational level, which
do not hold on the symbolic level. A few (toy) examples of
what can go wrong are presented in [32]. As a simple rem-
edy, we make the additional assumption that every soundness
result published for symmetric encryption thus far needs to
make (e.g., [32]): We assume a public-key infrastructure and
certificates on symmetric keys, which allows people to dis-
tinguish bad keys from good keys (however, we refrain from
modeling these certificates on the symmetric keys explicitly).

Notation Entries of the database D are tuples (ind, type,
arg, hndu1 , . . . , hndum , hnda, len). We denote by ↓ an error
element available to all ranges and domains of all functions
and algorithms. So, e.g., hnda = ↓means the adversary does
not have a handle to the entry. For entries x ∈ D, the index
x .ind ∈ INDS consecutively numbers all entries in D. The
set INDS is isomorphic to N and is used to distinguish index
arguments. We write D[i] for the selection D[ind = i], i.e.,
it is used as a primary key attribute of the database. The entry
x .t ype ∈ t ypeset = {auth, cert, enc, nonce, list, pke, pkse,
sig, ske, skse} identifies the type of x . Here, ske/pke is a
private/public-key pair and skse is a symmetric key which
comes with a ‘public’ key pkse. This “public key identi-
fier” pkse cannot be used for any cryptographic operation
but works as a pointer to skse instead (see [7] for a more
detailed explanation). The entry x .arg = (a1, . . . , a j) is
a possibly empty list of arguments. Many values ai are in
INDS.x .hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are han-
dles by which u knows this entry. We always use a super-
script “hnd” for handles. x .len ∈ N0 denotes the “length” of

the entry; it is computed by applying length functions (men-
tioned in Sect. 3.1). Initially, D is empty. THH has a counter
si ze ∈ INDS for the current size of D. For the handle
attributes, it has counters currhndu initially 0.

3.2 Kerberos in the BPW model

We now model the Kerberos protocol in the framework
of [13] using the BPW model. We write “:=” for determin-
istic assignment, “=” for testing for equality and “←” for
probabilistic assignment.

The descriptions of the symbolic systems of Kerberos 5
and PKINIT are very similar, with the difference that the
user machines follow different algorithms for the two pro-
tocols. We denote Kerberos with PKINIT by “PK” and
basic Kerberos by “K5.” If we let Kerb∈ {PK, K5} then, as
described in Sect. 3.1, for each user u ∈ {1, . . . , n} there is a
protocol machine MKerb

u which executes the protocol for u.
There are also protocol machines for the KAS K and the TGT
T , denoted by MKerb

K and MKerb
T . Furthermore, if S1, . . . , Sl

are the servers in T ’s ‘realm’,2 then there are server machines
MKerb

S for S ∈ {S1, . . . , Sl}. Each user machine is connected
to the user via ports: A port for outputs to the user and a port
for inputs from the user, labeled KA_outu ! and KA_inu?,
respectively (“KA” for “Key sharing and Authentication”).
The ports for the server machines are labeled similarly (see
Fig. 5).

The algorithms that the protocol machines follow are
described in Figs. 7, 8, 9, 10, 11, 12, 13, 14, and 15.
If, for instance, a protocol machine MPK

u receives a mes-
sage (new_prot, PK, K , T) at KA_inu? then it will exe-
cute Algorithm 1A (Fig. 7) to start a new protocol run
of public-key Kerberos. And if MPK

u receives a message
(continue_prot, PK, T, S, AK hnd) at KA_inu? then it will
execute Algorithm 1B (Fig. 8) in order to use an already
received ticket-granting ticket to access server S.

The state of each protocol machine MKerb
u consists of

bitstring u and the sets Nonceu , Nonce2u , TGTicketu , and
Session_K eysSu , in which MKerb

u stores nonces, ticket-

2 I.e., administrative domain; we do not consider cross-realm authen-
tication here, although it has been analyzed symbolically in [30].

123

Cryptographically sound security proofs for basic and public-key Kerberos 115

Fig. 7 Algorithm 1 of
public-key Kerberos for MPK

u :
Evaluation of inputs from the
user (starting the AS and TG
exchange)

(A)

(B)

granting tickets, and the session keys for server S, respectively.
This is the information a client needs to remember during a
protocol run.

Only the machines of honest users u ∈ {1, . . . , n} and
honest servers S ∈ {S1, . . . , Sl} will be present in the pro-
tocol run, in addition to the machines for K and T . The
others are subsumed in the adversary. We do not consider
adaptive corruption of user machines. We denote by H ⊂
{1, . . . , n, K , T, S1, . . . , Sl} the honest participants, i.e., for
v ∈ H the machine MKerb

v is guaranteed to run correctly. And
we assume that KAS K and TGS T are always honest, i.e.,
K , T ∈ H.

Furthermore, given a set H of honest participants, with
{K , T } ⊂ H ⊂ {1, . . . , n, K , T, S1, . . . , Sl} the user inter-
face of public-key Kerberos will be the set SH := {KA_outu !,
KA_inu? | u ∈ H \ {K , T }}. The symbolic system is the
set SysKerb, symb := {(M̂H, SH)}. Note that, because we are
working in an asynchronous system, we are replacing pro-
tocol timestamps by arbitrary messages that we assume are
known to the participants generating the timestamps (e.g.,
nonces). All algorithms should immediately abort if a com-
mand to the BPW model yields an error, e.g., if a decryption
request fails.

Initialization In order to be able to execute a protocol run,
we first need to add to D the keys that are assumed to be
already distributed before, i.e., long-term shared keys and
public keys, together with handles for the parties that (exclu-
sively) share those keys. For instance, we need to add to D the
symmetric keys shared exclusively by K and T , S and T : kT

and kS , respectively. Public-key Kerberos uses certificates;

therefore, in this case, all users need to know the public key
for certificate authorities and have their own public-key cer-
tificates signed by a certificate authority. For simplicity, we
use only one certificate authority CA. Therefore, we add to
D an entry for the public key of CA with handles for all users
(i.e., to all user machines). And for every user, we add an
entry for the certificate of that user signed by the certificate
authority with a handle for the user (machine). Furthermore,
the machines of K and u need to be able to generate signa-
tures; therefore, we have to add signing key pairs to D with
handles to the private keys for K and u, respectively, and han-
dles to the public verification keys for all u and K . In the case
of Kerberos 5, we are adding entries for the key ku shared
exclusively by K and u, for all user u. All sets of nonces,
tickets, and session keys that the machines of u, K , T , or S
maintain are initially empty. This initialization can be formal-
ized by calling THH with commands to generate the long-
term shared keys (gen_symenc_key(), gen_auth_key())
and public keys (gen_sig_keypair(), gen_enc_keypair())
and then requesting that corresponding handles to those keys
are sent to the respective machines on secure channels. The
initialization commands could be made by a (machine that
represents a) trusted third party; we omit further details
here.

Note that, in contrast to the analysis of Kerberos in MSR,
the BPW model does not come with a type for certificates.
As certificates rely on the signatures of a certificate authority
with the intend of binding a users name and the user’s public
key, here we formalize certificates as signature by an certifi-
cate authority over a list consisting of a user’s name and the
user’s public key.

123

116 M. Backes et al.

Fig. 8 Algorithm 2 of
public-key Kerberos for MPK

K :
Behavior of the KAS

Algorithms The algorithms of all machines for public-key
Kerberos are given in Figs. 7, 8, 9, 10, 11, and 12, the algo-
rithms for Kerberos 5 in Figs. 11, 12, 13, 14, and 15. Note
that the algorithms for the machines of TGS T and a server
S (i.e., Algorithms 4 and 5 in Figs. 11 and 12) are identical
for public-key Kerberos and basic Kerberos 5.

In the following, we explain the steps of the Algorithms
1A and 2 (Figs. 7, 8) for MPK

u and MPK
K , respectively.

Algorithm 1A generates the first message of PKINIT (Fig. 2)
and Algorithm 2 generates the response. With these explana-
tions the remaining algorithms should be easily understand-
able. For details on the definition of the used commands see
[8,12,13]. For readability of the figures, we note on the

right (in curly brackets) to which terms in the more
commonly used Dolev–Yao notation the terms in the algo-
rithms correspond (≈).

Protocol start of PKINIT In order to start a new run
of PKINIT, user u inputs (new_prot, PK, K , T) at port
KA_inu?. Upon such an input, MPK

u runs Algorithm 1A
(Fig. 7) which prepares and sends the AS_REQ, i.e., the
first message in the AS exchange, to K using the BPW
model. MPK

u generates symbolic nonces in steps 1A.1 and
1A.2 by sending the command gen_nonce(). In step 1A.3,
the command list(_, _) concatenates tu and nu,2 into a new
list that is signed in step 1A.4 with u’s private key. Because

123

Cryptographically sound security proofs for basic and public-key Kerberos 117

Fig. 9 Algorithm 3 of
public-key Kerberos for MPK

u ,
part 1: Behavior of user in after
protocol
start

we are working in an asynchronous system, the timestamp tu
is approximated by some arbitrary message (e.g., by a nonce).
The command store(_) in step 1A.5–6 makes entries in the
database for the names of u and T . Handles for the names
u and T are returned, which are added to a list in the next
step. MPK

u stores information in the set Nonceu , which it will
need later in the protocol to verify the message authentication

code sent by K . In step 1A.8, Nonceu is updated. Finally,
in step 1A.9, the AS_REQ is sent over an insecure (“i” for
“insecure”) channel.

Behavior of the KAS K in PKINIT Upon input (v, K , i ,
mhnd) at port outK ? with v ∈ {1, . . . , n}, the machine MPK

K
runs Algorithm 2 (Fig. 8), which first checks if the message

123

118 M. Backes et al.

Fig. 10 Algorithm 3 of
public-key Kerberos for MPK

u ,
part 2: Behavior of user after
protocol start

m is a valid AS_REQ and then prepares and sends the corre-
sponding AS_REP. In order to verify that the input is a possi-
ble AS_REQ, the types of the input message m’s components
are checked in steps 2.1–2.5. The command retrieve(xhnd

i)
in step 2.3 returns the bitstring of the entry D[hndu = xhnd

i].
Next the machine verifies the received certificate x1 of v

by checking the signature of the certificate authority C A
(steps 2.6–2.10). Then the machine extracts the public key
w2 and v’s name out of the certificate (steps 2.12–16) and
uses this public key to verify the signature x2 received in
the AS_REQ (steps 2.18–2.21). In steps 2.23–2.26, the types
of the message components of the signed message y1 are
checked, as well as the freshness of the nonce y12 in compar-
ison with nonces stored in Nonce3K . If the nonce is fresh,
then it will be stored in the set Nonce3K in step 2.28 for
freshness checks in future protocol runs. Finally, in steps
2.29–2.42 MPK

K generates symmetric keys ke, ka , and AK ,
composes the AS_REP, and sends it to v over an insecure
channel.

Note: Unlike in the symbolic model, one cannot use the
same key for the use in two different cryptographic primitives
in the computational model, e.g., for symmetric encryption
and within a message authentication code. Such scenarios are
not covered by standard security definitions of cryptographic
primitives and so their security guarantees may no longer
hold. One needs to consider this when working with compu-
tationally sound symbolic frameworks like the BPW model.
Therefore, Algorithm 2 is generating a key pair, consisting
of a symmetric encryption key ke and an message authenti-
cation key ka , instead of a single symmetric key (which is
denoted by k in Fig. 2).

4 Formal results

We will now prove that the fragments of Kerberos 5 discussed
earlier possess the properties informally outlined in Sect. 2.
We begin by formalizing the respective security properties
and verify them properties in the BPW model in Sect. 4.1.
Then, in Sect. 4.2, we make use of previous work to transfer
the authentication aspect of these results to the computational
setting, and we discuss the notion of computational secrecy.

4.1 Security in the symbolic setting

In order to use the BPW model to prove the computational
security of Kerberos, we first formalize the respective secu-
rity properties and verify them in the BPW model. We prove
that Kerberos keeps the symmetric key, which the TGS T
generated for use between user u and server S, symboli-
cally secret from the adversary. In order to prove this, we
show that Kerberos also keeps the keys generated by KAS
K for the use between u and the TGS T secret. Furthermore,
we prove entity authentication of the user u to a server S
(and subsequently entity authentication of S to u). This form
of authentication is weaker than the authentication Kerberos
offers, because we do not consider the purpose of timestamps
in Kerberos. Timestamps are currently not modeled in the
BPW model.

Secrecy and authentication requirements Next we define
the notion of key secrecy, which was informally captured
already in Property 1 of Sect. 2, as the following formal
requirement in the language of the BPW model.

123

Cryptographically sound security proofs for basic and public-key Kerberos 119

Fig. 11 Algorithm 4 for MPK
T

and MK5
T : Behavior of TGS

Fig. 12 Algorithm 5 for MPK
S

and MK5
S : Behavior of server

Fig. 13 Algorithm 1 of basic
Kerberos for MK5

u : Evaluation of
inputs from the user (starting the
AS and TG exchange)

(A)

(B)

123

120 M. Backes et al.

Fig. 14 Algorithm 2 of basic
Kerberos for MK5

K : Behavior
of the KAS

Definition 1 (Key secrecy requirement) For Kerb∈ {PK,
K5} the secrecy requirement ReqSec

K erbis: For all u ∈ H ∩
{1, . . . , n}, and S ∈ H ∩ {S1, . . . , Sl}, and t1, t2, t3 ∈ N:

(t1 : KA_outS ! (ok, Kerb, u, SKhnd)

∨ t2 : KA_outu ! (ok, Kerb, S, SKhnd)

⇒ t3 : D[hndu = SKhnd].hnda =↓
where t : D denotes the contents of database D at time t .
Similarly, t : p?m and t : p!m denote that message m occurs
at input (respectively output) port p at time t . As above, PK
refers to public-key Kerberos and K5 to basic Kerberos 5.
In the next section, Theorem 1 will show that the symbolic
Kerberos systems specified in Sect. 3.2 satisfy this notion of
secrecy and therefore Kerberos enjoys Property 1.

Next we define the notion of authentication in Property 2
in the language of the BPW model.

Definition 2 (Authentication requirements) For K erb ∈
{P K , K 5}:

i. The authentication requirement ReqAuth1
K erb is: For all v ∈

H∩{1, . . . , n}, for all S ∈ H∩{S1, . . . , Sl}, and K , T :

∃ t3 ∈ N.t3 : KA_outS ! (ok, Kerb, v, SKhnd)

⇒
∃ t1, t2 ∈ N wi th t1 < t2 < t3.

t2 : KA_inv! (continue_prot, Kerb, T , S, ·)
∧t1 : KA_inv! (new_prot, Kerb, K , T)

ii. The authentication requirement ReqAuth2
K erb is: For all u ∈

H∩{1, . . . , n}, for all S ∈ H∩{S1, . . . , Sl}, and K , T :

∃ t2 ∈ N.t2 : KA_outu ! (ok, Kerb, S, SKhnd)

⇒
∃ t1 ∈ N wi th t1 < t2.

t1 : KA_outS ! (ok, Kerb, u, SKhnd)

iii. The overall authentication ReqAuth
K erb for the protocol

Kerb is:

ReqAuth
K erb := ReqAuth1

K erb ∧ ReqAuth2
K erb

Theorem 1 will show that this notion of authentication
is satisfied by the symbolic Kerberos system. Therefore,
Kerberos has Property 2.

When proving that Kerberos has these properties, we
will use the notion of a system Sys perfectly fulfilling a
requirement Req, denoted Sys |�perf Req. This means the
property Req holds with probability 1 over the probability
space of runs for a fixed security parameter (as defined in
Sect. 3.1). Later we will also need the notion of a system
Sys computationally fulfilling a requirement Req, denoted
Sys |�poly Req; this means the property holds with negligi-
ble error probability for all polynomially bounded users and
adversaries (again, over the probability space of all runs for
a fixed security parameter). In particular, perfect fulfillment
implies computational fulfillment.

We can now capture the security of Kerberos in the BPW
model in the following theorem, which says that Properties 1
and 2 hold symbolically for Kerberos. Below we will pres-
ent the proof for public-key Kerberos. The proof for basic
Kerberos can be found in Appendix A.2 and A.3.

Theorem 1 (Security of the Kerberos protocol based on the
BPW model)

– Let SysK5,symb be the symbolic Kerberos 5 system defined
in Sect. 3.2, and let ReqSec

K 5 and ReqAuth
K 5 be the secrecy

123

Cryptographically sound security proofs for basic and public-key Kerberos 121

Fig. 15 Algorithm 3 of basic
Kerberos for MK5

u : Behavior of
user after protocol start

and authentication requirements defined above. Then

SysK5,symb |�perf ReqSec
K 5 ∧ ReqAuth

K 5 .

– Let SysPK,symb be the symbolic public-key Kerberos
system, and let ReqSec

P K and ReqAuth
P K be the secrecy and

authentication requirements defined above. Then

SysPK,symb |�perf ReqSec
P K ∧ ReqAuth

P K .

In order to prove Theorem 1, we first need to prove a num-
ber of auxiliary properties (previously called invariants in,

123

122 M. Backes et al.

e.g., [4,10]). Although these properties are nearly identical
for Kerberos 5 and public-key Kerberos, their proofs had to
be carried out separately. We consider it interesting future
work to augment the BPW model with proof techniques that
allow for conveniently analyzing security protocols in a more
modular manner. In fact, a higher degree of modularity would
simplify the proofs for each individual protocol as it could
exploit the highly modular structure of Kerberos; moreover,
it would also simplify the treatment of the numerous optional
behaviors of this protocol.

Some of the key properties needed in the proof of
Theorem 1, which formalizes Properties 1 and 2, make
authentication and confidentiality statements for the first
two rounds of Kerberos. These properties are described in
English below for public-key Kerberos. For basic Kerberos,
the corresponding properties are formalized and proved in
Appendix A.

Auxiliary properties for public-key Kerberos Next, we will
consider the auxiliary properties from Sect. 4.1 for public-
key Kerberos. We will again informally state the property,
formalize it as a lemma in the language of the BPW model,
and prove it:

Handles contained in the sets Nonceu and Nonce2u are
indeed handles of u to nonces.

Lemma 1 (Correct nonce owner) For all u ∈H, if (xhnd , . . .)

∈ Nonceu or (xhnd , . . .) ∈ Nonce2u, then D[hndu =
xhnd] �= ↓ and D[hndu = xhnd].t ype = nonce.

Proof Let (xhnd , . . .) ∈ Nonceu . By construction, this
entry has been added to Nonceu by MP K

u in step 1A.8.
xhnd has been generated through the input of the command
gen_nonce() at some time t at port inu? of THH. Convention
1 implies xhnd �= ↓, as MP K

u would abort otherwise and not
add the entry to Nonceu . By definition of gen_nonce() and
using Lemma 5.2 of [4] one gets that D[hndu = xhnd] �= ↓
and D[hndu = xhnd].t ype = nonce holds (the proof of the
statement for Nonce2u is analogous). ��

If K generated a symmetric key k or AK for honest v

(i.e., on receiving a AS_REQ from v) and w has a handle to
k or AK , then w must either be v or K. And if T generated
a symmetric key SK for honest v and server S and w has a
handle to SK , then w must be either v, T , or S.

Lemma 2 (Key secrecy) For all v ∈ H, honest K , T, and
S ∈ {S1, . . . , Sl}, and for all j ≤ si ze such that D[j].t ype =
skse:

(a) If D[j] was created by MPK
K in step 2.29 or step 2.30,

then (with the notation of Algorithm 2 (Fig. 8))

D[j].hndw �= ↓ implies w ∈ {v, K }.

(b) If D[j] was created by MPK
K in step 2.31, then (with the

notation of Algorithm 2 (Fig. 8))

D[j].hndw �= ↓ implies w ∈ {v, K , T }.

(c) If D[j] was created by MPK
T in step 4.18, then (with the

notation of Algorithm 4 in Fig. 11)

D[j].hndw �= ↓ implies w ∈ {v, T, S}

where with the notation of Algorithm 4, S = x4.

Proof (a) Say j ≤ si ze, D[j].t ype = skse such that D[j]
was created by MPK

K in step 2.29 at time t (the case
where D[j] was generated in step 2.30 is analogous).
The message m2 (in the notation of Algorithm 2), to
which a handle is sent out in step 2.42, contains D[j]
encrypted under v’s public key. More precisely, a handle
to D[j] is part of the input to the command list creating
zhnd

1 in step 2.33. The list z1 is then signed in step 2.34
creating s2, and the list z2 is created in step 2.35 using
a handle to s2; finally z2 is encrypted in step 2.36 under
v’s public key creating mhnd

21 , where m21 = m2.arg[1].
Note that one can obtain a handle to D[j] from mhnd

21
if one has v’s private key (by applying the basic com-
mands decrypt, list_proj, msg_of_sig); but the other
components of m2 do not contain any handle to D[j], at
most they only contain the index D[j−1].ind (i.e., the
index to the public identifier of the secret key D[j], e.g.,
see mhnd

24 created in step 2.40). Since, by assumption,
handles to private keys are not allowed to be sent around,
only v can decrypt m21 and obtain a handle to D[j] after
mhnd

2 is sent in step 2.42. And since v is honest, MPK
v

never sends any message from which a handle to D[j]
can be obtained for time t ′ > t (by Algorithms 1 and
3). One immediately gets D[j].hnda =↓ for all t ′ > t .

(b) Let j ≤ si ze, D[j].t ype = skse such that D[j] was
created by MPK

K in step 2.31 at time t . The message
m2 (in the notation of Algorithm 2), to which a han-
dle is sent out in step 2.42, contains D[j] encrypted
under the symmetric key ke created by MPK

K in step 2.29
(more precisely, D[m24.ind = m2.arg[4]] is created by
applying the command sym_encrypt taking as argu-
ments a handle to ke and a handle to the list z4 where
z4.arg[1] = D[j].ind). By Key Secrecy (a) and since
v is honest, only v or K can decrypt m24. The message
m2 further contains D[j] encrypted under a symmet-
ric key skseK ,T shared exclusively between K and T
(more precisely, D[T GT .ind = m2.arg[3]] is created
in step 2.38 by applying the command sym_encrypt
taking as arguments a handle to skseK ,T and a handle

123

Cryptographically sound security proofs for basic and public-key Kerberos 123

to the list z3, where z3.arg[1] = D[j].ind). By con-
struction of Algorithm 4 (Fig. 11) and since T is honest,
one sees that MPK

T never sends anything from which a
handle to D[j] can be obtained as part of a new list for
time t ′ > t . Also, by construction of Algorithms 1 and
3 (Figs. 7, 9, 10) and since v and K are honest, one
sees that v and K do not send out any list from which a
handle to D[j] can be obtained for time t ′ > t .

(c) Let j ≤ si ze, D[j].t ype = skse such that D[j] was
created by MPK

T in step 4.18 at time t . The list m4 (in the
notation of Algorithm 4), to which a handle is sent out
in step 4.24, contains D[j] in ST which is a symmetric
encryption under a symmetric key skseT S shared exclu-
sively between T and S (i.e., m4.arg[2] = ST .ind,
ST .arg[1] = D[j].ind), and m4 also contains D[j] in
a list m4.3 (where m4.3.ind = m4.arg[3]), which is a
symmetric encryption under a key y1.1. T gets a handle
to the key y1.1 in step 4.3, i.e., after decryption with
the symmetric key shared exclusively between T and
K (i.e., sksehnd

K T ; see step 4.1), otherwise there would be
an abort, by Convention 1. Since, by construction, MPK

T
does not use the key skseK T for encryption, MPK

K must
have created the cyphertext containing a handle to the
key y1.1. From Algorithm 2, one can now infer that MPK

K
must have created the key y1.1. Key Secrecy (b) and the
honesty of v, K , and T imply that only v, T, and K have
handles to this key. T and K do not use this second key
for decryption; therefore, only v can get a handle to
D[j] through decryption with the key y1.1. Also, only
MPK

S uses sksehnd
T S for decryption (in step 5.2). But, by

construction, neither MPK
S nor MPK

v send out any mes-
sage, from which a handle to D[j] can be obtained for
time t ′ > t . ��

If honest user u receives what appears to u to be a
valid AS_REP message, then this message (disregarding the
T GT) was indeed generated by K for u and an adversary
cannot learn the contained symmetric keys.

Lemma 3 (Authentication of KAS to client and secrecy of
AK) For all u ∈ H, honest KAS K and TGS T , and for all j ≤
si ze with D[j].t ype= list and jhnd := D[j].hndu �= ↓:
If li := D[j].arg[i] for i = 1, 4
with D[l1].t ype = enc and D[l4].t ype = symenc,
x1 := D[l1].arg[2] with D[x1].t ype = list,

{≈ certK , [ke, ka, ck]skK }
x1.1 := D[x1].arg[1] with D[x1.1].t ype = sig, {≈ certK }
x1.2 := D[x1].arg[2] with D[x1.2].t ype = sig,

{≈ [ke, ka, ck]skK }
z1 := D[x1.1].arg[2] with D[z1].t ype = list , {≈ K , pkK }
y1.1 := D[z1].arg[2] with D[y1.1].t ype = pke, {≈ pkK }
y1.2 := D[x1.2].arg[2] with D[y1.2].t ype = list,

{≈ ke, ka, ck}
s1 := D[y1.2].arg[1] with D[s1].t ype = skse, {≈ ke}

s2 := D[y1.2].arg[2] with D[s2].t ype = ska, {≈ ka}
r1 := D[y1.2].arg[3] with D[r1].t ype = auth, {≈ ck}
q1 := D[r1].arg[1] with D[q1].t ype = list, {≈ m1}
p1 := D[r1].arg[2] with D[p1].t ype = pka, {≈ ka}
x4 := D[l4].arg[1] with D[x4].t ype = list,

{≈ AK , n1, tk, T }
y4 := D[x4].arg[2] with D[y4].t ype = nonce, {≈ n1}
and if furthermore

(a) for pke := D[l1].arg[1] one has D[pke− 1].hndu �= ↓
(b) y1.1 = D[x1.2].arg[1] and D[z1.arg[1]] = K
(c) p1 = s2 + 1 and D[l4].arg[2] = s1 + 1
(d) (D[y4].hndu, D[q1].hndu, K) ∈ Nonceu

then D[l1] was created by MPK
K in step 2.32 and D[l4] was

created by MPK
K in step 2.36 and both their indices are argu-

ments of a list created by MPK
K in step 2.41 and sent to u in

step 2.42. Furthermore, D[s1].hnda =↓ and therefore also
D[x4.arg[1]].hnda =↓.

Proof By hypothesis on the structure of D[j], the entry
D[x1.2] is a list signed using a private key corresponding
to the public key D[y1.1], i.e., the index of the private key
is y1.1 − 1. By hypothesis (b) and since handles to private
keys are never sent around by honest K , THH must have
generated D[x1.2] when receiving the command sign from
MPK

K in step 2.34 using K ’s private key. This occurs only if
there was an input (v, K , i, mhnd) at outK ? By construction
of Algorithm 2, K signs a list in step 2.34 consisting of the
indices of a symmetric key generated in step 2.29, a message
authentication code key generated in step 2.30, and a mes-
sage authentication code created in step 2.32, over m using
the symmetric key generated in step 2.30; i.e., s1 is the index
for this symmetric key, s2 is the index for the MAC key, and
q1 is the index of m. In steps 2.34 and 2.35, MPK

K then creates
a list of the signed message and its certificate and encrypts
this list with v’s public key. By the structure of D[j] and by
hypothesis (c), one can see that D[x1] is such a list. Since
by hypothesis (d) (D[y4].hndu , D[q1].hndu , K) ∈ Nonceu ,
Correct Nonce Owner implies that this element was stored
there by MPK

u while running Algorithm 1A; in particular, by
construction of Algorithm 1, MPK

u must, in step 1A.9, have
sent a handle to the list of index q1 to K , which contained
the nonce indexed by y4. Since u’s name is contained in that
message (by Algorithm 1A step 1A.7, q1.arg[3] = u), this
implies that v must equal u, as checked in step 2.4, otherwise
Algorithm 2 would have aborted by Convention 1. This, on
the other hand, implies that MPK

K used u’s public key for
encryption. Hypothesis (a) now gives that D[l1] was gen-
erated by MPK

K in step 2.36. Moreover, we assumed that u
is honest and therefore Key Secrecy gives that only u or
K can use the key from D[s1] for encryption. Inspection

123

124 M. Backes et al.

of Algorithm 1 and Algorithm 2 show that u does not use
this key for encryption and that K uses this key for encryp-
tion of a list containing the nonce indexed y4 in step 2.340,
i.e., D[l4] was generated by MPK

K in step 2.41. Finally, in
step 2.42, MPK

K sends a handle to the list m2 to v = u, where
m2.arg[1] = D[l1].ind and m2.arg[4] = D[l4]. Further-
more, Key Secrecy implies that D[s1].hnda =↓. ��

If TGS T receives a TGT and an authenticator {u, tu}AK

where the key AK and the username of an honest user u are
contained in the TGT, then the TGT was generated by K and
the authenticator was created by u.

Lemma 4 (TGS Authentication of the TGT) For all u ∈
H, honest KAS K and TGS T and for all j ≤ si ze with
D[j].t ype = list and jhnd := D[j].hndT �= ↓:
l1 := D[j].arg[1] with D[l1].t ype = symenc, {≈ T GT }
l2 := D[j].arg[2] with D[l2].t ype = symenc,

{≈ {u, tu}AK }
x1 := D[l1].arg[1] with D[x1].t ype = pkse, {≈ kT }
x2 := D[l1].arg[2] with D[x2].t ype = list, {≈ AK , u, tK }
x2.1 := D[x2].arg[1] with D[x1.1].t ype = skse, {≈ AK }
y1 := D[l2].arg[1] with D[x1].t ype = pkse, {≈ AK }
y2 := D[l2].arg[2] with D[y2].t ype = list, {≈ u, tu}
and if furthermore

(a) D[x1 + 1] = skseK T

(b) D[x2.1 − 1] = D[y1]
(c) D[x2].arg[2] = D[y2].arg[1] = u

then entry D[l1] was generated by MPK
K in step 2.38 at a time

t and entry D[l2] was generated by MPK
u in step 1B.5 at a

time t ′ > t .

Proof By hypothesis (a), D[x2] is encrypted under the sym-
metric key skseK T shared between K and T . It is assumed
that only MPK

K and MPK
T have handles to the key skseK T .

Since by construction of Algorithm 4 (Fig. 11), MPK
T does

not use skseK T for encryption, MPK
K must have created D[l1]

in step 2.38. This step is only executed if there was an input
(v, K , i, mhnd) at outK ?. In step 2.38, MPK

K encrypts a list z3

(in the notation of Algorithm 2) created in step 2.37 using a
handle to the name of user v and a handle to a symmetric key
AK that was freshly generated by THH earlier, when receiv-
ing the command gen_sym_key from MPK

K in step 2.31
(more precisely, z3.arg[2] = v, z3.arg[1] = AK .ind).
Hypothesis (c) now implies that u = v. Since u is assumed
to be honest, we can use Key Secrecy to infer that only u, K ,
or T can have handles to the key AK . Hypotheses (b) and
c) together imply that this key was used for encryption of
a list containing u’s name. By construction, only MPK

u uses
this key for encryption of a list containing u’s name, that is
to say in step 1B.5, i.e., MPK

u generated D[l2] in step 1B.5.

It is obvious that this encryption happened after MPK
K created

D[l1], since MPK
K generates the symmetric encryption key

AK and creates D[l1] before sending out a handle to a list
from which another user can obtain a handle to this key. ��

If honest user u receives what appears to u to be a valid
TGS_REP, then the part of that message that is verifiable by
u, encrypted under the symmetric key AK , was generated by
T for u and S. And an adversary cannot learn the contained
session key SK .

Lemma 5 (Authentication of TGS to client and Secrecy of
SK) For all u ∈ H, honest KAS K and TGS T and for all j ≤
si ze with D[j].t ype = symenc and jhnd := D[j].hndu �=
↓:
p1 := D[j].arg[1] with D[p1].t ype = pkse, {≈ AK }
p2 := D[j].arg[2] with D[p2].t ype = list,

{≈ SK , n3, tT , S}
p2.1 := D[p2].arg[1] with D[p2.1].t ype = skse, {≈ SK }
p2.2 := D[p2].arg[2] with D[p2.2].t ype = nonce, {≈ n3}
and if furthermore

(a) (., shnd
1 , T) ∈ T GT icketu for s1 := p1 + 1

(b) (phnd
2.2 , T, D[p2].arg[4]) ∈ Nonce2u

then D[j] was created by MPK
T in step 4.22.

Furthermore, D[p2.1].hnda =↓.

Proof Hypothesis a) guarantees that MPK
u has a handle to the

symmetric key s1 needed to decrypt the message in D[j]. Ele-
ments in T GT icketu are stored there by MPK

u in step 3.42,
which only occurs if there was an input (v′, u, i, m′hnd) at
outv?. By construction of Algorithm 3, a handle to s1 was
received by MPK

u in step 3.31, otherwise the algorithm would
have aborted. Steps 3.30, 3.25, 3.20, and 3.7 show that a han-
dle to s1 was obtained from the list m′ satisfying the hypothe-
ses of Lemma 3 for honest user u (e.g., D[m′.arg[1]] has the
structure of D[l1] from Lemma 3 and D[m′.arg[4]] has the
structure of D[l4]). Therefore, an adversary cannot obtain a
handle to s1. But MPK

u does not create a list of the form of
D[j], neither does MPK

K . So MPK
T must have created D[j] in

step 4.22. Hypothesis (b) confirms that D[j] has indeed the
structure of the database entry created in step 4.20 by MPK

T ,
i.e., phnd

2.2 is a nonce generated by MPK
u and D[p2].arg[4] ∈

{S1, . . . , Sl}. In order for MPK
T to run Algorithm 4, there must

have been an input (v, T, i, mhnd) at outT ?. Steps 4.12–4.16
ensure that the element x2 (in the notation of Algorithm 4)
has the same structure as the element in D[l2] in Lemma 4.
Since the encryption is under the key s1, v must be honest
and therefore equal to u. Key Secrecy now implies that only
T and u can have handles to the key generated by MPK

T in
step 4.18, i.e., D[p2.1].hnda =↓. ��

If server S receives a service ticket ST and an authenticator
{u, tv}SK where the key SK and the name u are contained in

123

Cryptographically sound security proofs for basic and public-key Kerberos 125

the ST, then the ST was generated by T and the authenticator
was created by u.

Lemma 6 (Server Authentication of the ST) For all u ∈ H,
honest S ∈ {S1, . . . , Sl}, KAS K and TGS T and for all j ≤
si ze with D[j].t ype = list and jhnd := D[j].hndS �= ↓:
l1 := D[j].arg[1] with D[l1].t ype = symenc, {≈ ST }
l2 := D[j].arg[2] with D[l2].t ype = symenc,

{≈ {u, t ′u}SK }
p1 := D[l1].arg[1] with D[p1].t ype = pkse, {≈ kS}
p2 := D[l1].arg[1] with D[p2].t ype = list, {≈ SK, u, tT }
p2.1 := D[p2].arg[1] with D[p2.1].t ype = skse, {≈ SK}
r1 := D[l2].arg[1] with D[r1].t ype = pkse, {≈ SK}
r2 := D[l2].arg[2] with D[r2].t ype = list, {≈ u, t ′u}
and if furthermore

(a) D[p1 + 1] = skseT S

(b) D[p2.1] = D[r1 − 1]
(c) D[p2].arg[2] = D[r2].arg[1] = u

then D[l1] was created by MPK
T in step 4.20 at time t and

D[l2] was created by MPK
u in step 3.59 at time t ′ > t .

Proof By assumption, only T and S have handles to the long-
term shared key skseT S , which was used here for encryption,
as stated by hypothesis (a). But since by construction of
Algorithm 5 (Fig. 12), MPK

S does not use the key skseT S for
encryption, MPK

T must have used it in step 4.20. This step
only occurs after there was an input (v, T, i, mhnd) at outT ?.
In step 4.20, MPK

T encrypts a list that includes indices of a
symmetric key generated in step 4.18 and also of v’s name.
Using hypothesis (c) one obtains that v = u and that the
generated key is D[p2.1]. Hence, D[l1] was created by MPK

T
in step 4.20. We assumed u and S to be honest; therefore,
Key Secrecy implies that only v, T , or S can have a han-
dle to the symmetric key in D[p2.1]. From hypotheses (b)

and (c), one can infer that the symmetric key in D[p2.1] was
used for encryption of a list containing u’s name in order
to create D[l2]. Since neither T nor S use that symmetric
key to encrypt such a list, MPK

u must have generated D[l2] in
step 3.59. Obviously, this happened after D[l1] was gener-
ated by MPK

T in step 4.20 at time t , since a handle to D[p2.1]
was encrypted in step 4.20 before MPK

T sends out any list
from which a handle to D[p2.1] can be obtained. ��

Now we present the proof of Theorem 1 for public-
key Kerberos. The proof for basic Kerberos can be found
in A.3.

Proof of Theorem 1 for Public-key Kerberos First we prove
the Secrecy Property: Assume that there was an output
(ok, PK, S, SKhnd) at KA_outu !. Examining Algorithm 3
(Figs. 9, 10), we see that the handle SKhnd and the
server name S form an element (S, SKhnd) of the set

Session_K eysSu (see steps 3.64, 3.65). By the definition
of Session_K eysSu (see step 3.61), MPK

u obtained the han-
dle SKhnd in step 3.51 and steps 3.55 & 3.56 guarantee that
SKhnd is indeed a handle to symmetric keys. By Algorithm 3
(steps 3.50–3.56), SKhnd , the name of server S and a handle
to a nonce x2.2 were obtained from a list l2 (in the nota-
tion of Algorithm 3) to which MPK

u obtained a handle in
step 3.50 after decrypting d3 with a symmetric key AK ; i.e.,
it is l2.arg[1] = SK .ind, l2.arg[2] = x2.1.ind, l2.arg[4] =
S, d3.t ype = symenc, D[d3.arg[2]].t ype = pkse and
d3.arg[2] = AK .ind − 1, by the definition of the com-
mand sym_decrypt. Here l2.hndu, d3.hndu, AK .hndu �=
↓, otherwise the algorithm would abort by Convention 1; i.e.,
MPK

u has handles to d3 and to the key AK . The steps 3.47
& 3.48 imply that (., AK hnd , T) is an element of the set
T GT icketu . Furthermore, (xhnd

2.2 , T, S) is an element in
Nonce2u , otherwise there would be an abort in step 3.56.
Hence, D[d3] (in the notation of Algorithm 3) satisfies the
hypotheses of Lemma 5 for the element D[j]. In particular,
this means that an adversary cannot get a handle to the key
SK .

Now assume there was an output (ok, PK, u, SKhnd) at
KA_outS !. This only occurs if there was an input (u, S, i,
mhnd) at outS? at a past time for some list m. By Algo-
rithm 5, the handle to SK was contained in a list x (in the
notation of Algorithm 5), to which MPK

S obtained a handle
in step 5.2 after decryption of m5.1 = m.arg[1] using the
long-term shared key skseT S . Here m5.1.hndS , x .hndS �= ↓
since otherwise the algorithm would abort by Convention 1.
Steps 5.6 and 5.7 ensure that the index of x1 = SK really
points to a symmetric key. Also, all other steps of Algorithm 5
must have been executed by MPK

S without abort before the
output (ok, PK, u, khnd). Therefore, we see that steps 5.2–
5.7 and the definitions of the basic command sym_decrypt
guarantee that m5.1 from Algorithm 5 must have the same
structure as l1 from Lemma 6. Furthermore, steps 5.9–5.13
show that u’s name was included in a list y to which S gets
a handle in step 5.9 after decryption of m5.2 using the key
x1 = SK . Therefore, m5.2 from Algorithm 5 has the same
structure as l2 from Lemma 6. Since it is easy to verify that
hypotheses (a), (b) and (c) are also satisfied by the corre-
sponding indices contained in m5.1 and m5.2, and since u is
honest, we can use Lemma 6 to infer that an adversary cannot
get a handle to the key SK . This proves the Secrecy Property.

Next we prove the Authentication Property: (i) Say there
was an output (ok, PK, v, xhnd

1) at KA_outS ! at a time
t3 ∈ N. By construction of Algorithm 5, there must have
been an input (v, S, i, mhnd) at outS? at a past time. In order
for there not to be any abort during the execution of Algo-
rithm 5 at some point between the input (v, S, i, mhnd) at
outS? and the output (ok, PK, v, xhnd

1) at KA_outS !, we see,
just as above, that m’s components m5.1 = m.arg[1] and
m5.2 = m.arg[2] must satisfy the hypotheses for Lemma 6.

123

126 M. Backes et al.

And since v is honest, Lemma 6 implies that m5.2, which
consists of a list that contains v’s name and that is encrypted
under the symmetric key SK , must have been created by

MPK
v in step 3.59. By construction of Algorithm 3, there

must have been an input (T, v, i, m̃hnd) at outv? at a past
time and an output (ok, PK, S′, SKhnd) at KA_outv! at some
later time. Furthermore, (S′, SK) is an element of the set
Session_K eysSu . By the definition of this set in step 3.61,
MPK

v received a handle to SK in step 3.51 after decryption
of d3 = D[m̃].arg[3] using a symmetric key AK (in the
notation of Algorithm 3, i.e., d3.arg[2] + 1 = AK .ind)
in step 3.50. In fact, steps 3.47–3.56 and the definitions of
the basic commands sym_decrypt and list_proj ensure that
D[d3] has the same structure as D[j] from Lemma 5 and sat-
isfies the hypotheses of Lemma 5. Therefore, by Lemma 5,
D[d3]was created by MPK

T in step 4.22, i.e., the key SK must

have been generated by MPK
T step 4.18 for v and S′. Key

Secrecy implies that an adversary cannot get a handle to SK .
One immediately gets that S′ = S. Algorithm 4 is only exe-
cuted by MPK

T if there was an input (v, T, i, m̂hnd) at outT ?
and handles to an in step 4.18 created element can only be
obtained by other users if there was no abort during that run
of Algorithm 4. This implies that D[m̂.arg[1]] must have
the same structure as D[l1] from Lemma 4, as ensured by
steps 4.2–4.9, and D[m̂.arg[2]] must have the same struc-
ture as D[l1] from Lemma 4, as ensured by steps 4.11–4.16
and the definitions of the basic commands sym_decrypt and
list_proj. It is obvious that all hypotheses of Lemma 4 are
satisfied and so one gets, by Lemma 4, that D[m̂.arg[1]]
was created by MPK

K in step 2.38 and D[m̂.arg[2]] was

created by MPK
v in step 1B.5. The latter implies that there

was an input (continue_prot PK, T, S, AK hnd) at KA_inv!
at a past time t2 < t3. On the other hand, by the def-
inition of T GT icketu in step 3.42 and by steps 1B.1 &
1B.2, there must have been an output in step 3.43 that
contained a handle to the same symmetric key as in the
input to Algorithm 1B, namely the key AK . Otherwise
there would be an abort in step 1B.2, i.e., there was
an output (ok, KAS_exchange PK, K , T, (., ., ., AK hnd)) at
KA_outv!. Since the execution of Algorithm 3 did not pro-
duce an error, one can use Lemma 3 to infer that MPK

K must
have run Algorithm 2 and generated AK for v. Finally, by
construction of Algorithm 2 and by definition of the com-
mand verify, one gets that v must have run Algorithm 1 with
the input (new_prot, PK, K , T)) at KA_inv! at a time t1 < t2.
(ii) Now say that there was on output (ok, PK, S, SKhnd) at
port KA_outu ! at time t2. By construction of Algorithm 3,
this only happens after u received an input (S, u, i, mhnd) at
outu? and without there being any abort during the execution
of Algorithm 3 between the input and the output (steps 3.63–
3.73). By steps 3.64 and 3.65, m was encrypted using a sym-
metric key SK (i.e., m.t ype = symenc and m.arg[2] =

SK .ind − 1) for which (S, SKhnd) ∈ Session_K eysSu .
Steps 3.68–3.71 ensure that u’s name was not the first argu-
ment of the list l3 (in the notation of Algorithm 3) to which
MPK

u obtains a handle after decryption of m using SK (i.e.,
u �= l3.arg[1]). Here l3.hndu �= ↓ otherwise there would be
an abort of Algorithm 3, by Convention 1. On the other hand,
the element (S, SKhnd) ∈ Session_K eysSu was added in
step 3.61 after the key SK was used for encryption in step 3.59
of a list x5 (in the notation of Algorithm 3) which does contain
u’s name as its first argument (i.e., u = x5.arg[1]). By con-
struction of Algorithm 3, step 3.59 is the only time that a sym-
metric key SK , for which (S, SKhnd) ∈ Session_K eysSu ,
is used for encryption by MPK

u . Therefore, since the list l3
in m does not contain u’s name as its first argument, MPK

u
did not create D[m]. In order for (S, SKhnd) to be added
to Session_K eysSu in step 3.61, there must have been an
input (T, u, i, m̃hnd) at outu? in the past and there could
not have be any abort in the steps 3.44–3.61. But these
steps, together with the definitions of the basic commands
sym_decrypt and list_proj, guarantee that the m̃ compo-
nent d3 (in the notation of Algorithm 3) satisfies the hypoth-
eses of Lemma 5 (where SK = D[d3.arg[1]].arg[1] and
S = D[d3.arg[1]].arg[4]). Using Lemma 5, we see that
only T , u, and S can have handles to SK . Hence, MPK

S must
have used the handle to the key SK for encryption at a time
t1 < t2. This can only happen in step 5.15 after receiving an
input (v′, S, i, m̃hnd) at outS? where v′ = u as guaranteed by
step 5.9–5.13. The encryption that MPK

S generated using the
key SK must have been sent for others to obtain a handle for
it, so there was no abort in step 5.16; therefore, there must
have been an output (ok, PK, u, SKhnd) at KA_outS ! at some
time t1 < t2. ��

This proof shares similarities with the Dolev–Yao style
proofs of analogous results attained for Kerberos 5 and
PKINIT using the MSR framework [21,22,27–29]. The two
approaches are similar in the sense that both reconstruct a
necessary trace backward from an end state, and in that they
rely on some form of induction (based on rank/co-rank func-
tions in MSR). An intriguing problem for future work is a
formal comparison between these two Dolev–Yao encodings
of a protocol and between the proof techniques they support.

4.2 Security in the cryptographic setting

The results of [13] allow us to take the authentication results
in Theorem 1 and derive a corresponding authentication
results for a cryptographic implementation of Kerberos. Just
as Property 2 holds symbolically for Kerberos, this shows
that it holds in a cryptographic implementation as well. In
particular, entity authentication between a user and a server
in Kerberos holds with overwhelming probability (over the
probability space of runs). However, symbolic results on key

123

Cryptographically sound security proofs for basic and public-key Kerberos 127

secrecy can only be carried over to cryptographic implemen-
tations if the protocol satisfies certain additional conditions.
Kerberos unfortunately does not fulfill these definitions, and
it can easily be shown that cryptographic implementations of
Kerberos do not fulfill the standard notion of cryptographic
key secrecy, see below. With regard to authentication, the
following does hold.

Theorem 2 (Computational security of the Kerberos proto-
col)

– Let SysK5,comp denote the computational basic Kerberos
system implemented with provably secure cryptographic
primitives. Then

SysK5,comp |�poly ReqAuth
K 5 .

– Let SysPK,comp denote the computational public-key
Kerberos system implemented with provably secure
cryptographic primitives. Then

SysPK,comp |�poly ReqAuth
P K .

For the proof of Theorem 2, we need to show that the Com-
mitment Problem does not occur for SysPK,id or SysK5,id . As
in [8], let NoComm be the following property: “If there exists
an input from an honest user that causes a symmetric encryp-
tion to be generated such that the corresponding key is not
known to the adversary, then future inputs may only cause this
key to be sent within an encryption that cannot be decrypted
by the adversary”. The Commitment Problem occurs when
keys that have been used for cryptographic work while being
at that time only known to honest users are revealed to the
adversary later in the protocol. If the simulator in [13] (with
which one can simulate a computational adversary attack on
the symbolic system) learns in some abstract way that, e.g.,
a cyphertext was sent, the simulator generates a distinguish-
able cyphertext without knowing the symmetric key nor the
plaintext. If the symmetric key is revealed later in the pro-
tocol then the trouble for the simulator will be to generate
a suitable symmetric key that decrypts the cyphertext into
the correct plaintext. This is typically an impossible task. In
order for the simulation with the BPW model to work, one
thus needs to check that the Commitment Problem does not
occur in the protocol.

Lemma 7 Absence of the Commitment Problem The ideal
Kerberos SysKerb,id , for Kerb ∈ {P K , K 5}, perfectly fulfills
the property NoComm, i.e., SysKerb,id |�perf NoComm.

Proof Note first that the long-term symmetric keys that are
shared between KAS and TGS, TGS and server, and, in the
case of basic Kerberos, between user and KAS will never be

sent if the user, the TGS, and the server are honest. There-
fore, we are left to verify that the Commitment Problem does
not occur for the keys generated during a protocol run. In the
case of public-key Kerberos: Say i ≤ size, D[j].type = skse
such that D[i]was created in steps 2.29, 2.31 or 4.18. In both
Algorithms 2 and 4, the keys are generated for v ∈ {1, . . . , n}
by MPK

K , respectively MPK
T . If v and K , respectively, v and T ,

are dishonest, then the adversary would get a handle to D[i]
right after the execution of MPK

K , respectively MPK
T , since the

adversary knows the keys shared between dishonest parties.
Note that the message sent at the end of the execution of MPK

K ,
respectively MPK

T also contains a part that is encrypted using
a handle to D[i]. However, this will not cause the simulator
to encrypt with an arbitrary random key since it parses all
messages completely before constructing the computational
version bottom-up (as described in [8,13]), i.e., the simulator
will get a handle to D[i] before constructing the cyphertext
under D[i]. If u, K , T , and S are honest, then the Key Secrecy
property (Lemma 2, respectively Lemma 9) implies that for
the keys created in steps 2.29, 2.30, 2.31, and 4.18, respec-
tively, in steps 2.9 and 4.18, one has D[j].hnda =↓ for all
time t . The argument for basic Kerberos is analogous. ��
Proof of Theorem 2 Public-key Kerberos: By Theorem 1,
we know that SysPK,id |�perf ReqAuth

P K . And, as we men-
tioned earlier, the cryptographic implementation of the BPW
model (using provably secure cryptographic primitives) is
at least as secure as the BPW model, Syscry, comp ≥poly

sec

Syscry, id.
The requirements ReqAuth

K 5 and ReqAuth
P K , which are defined

above, are integrity properties as defined in Definition 2 of
[6]. Because of the polynomial bounds on message length and
number of inputs, it is decidable in polynomial time whether
a run satisfies these requirements. Thus, we may prove
that SysK5, comp |�poly ReqAuth

K 5 and that SysPK, comp |�poly

ReqAuth
P K by applying Theorem 1 (Conservation of Integ-

rity Properties) of [6] to our Theorem 1 above, since these
protocols do not have the “Commitment Problem.”

We may thus invoke the Conservation of Integrity Prop-
erties (Theorem 1 of [6]) to obtain Theorem 2.

Basic Kerberos: The proof is analogous. ��
As far as key secrecy is concerned, it can be proven

that the adversary attacking the cryptographic implementa-
tion does not learn the secret key string as a whole. How-
ever, it does not necessarily rule out that an adversary
will be able to distinguish the key from other fresh ran-
dom keys, as required by the definition of cryptographic
key secrecy. This definition of secrecy says that an adver-
sary cannot learn any partial information about such a
key and is hence considerably stronger than requiring that
an adversary cannot obtain the whole key. For Kerber-
os, we can show that the key SK does not satisfy cryp-
tographic key secrecy after the last round of Kerberos,

123

128 M. Backes et al.

i.e., SK is distinguishable from other fresh random keys.
It should also be noted that this key SK is still indistinguish-
able from random after the second round but before the start
of the third round of Kerberos. We have the following prop-
osition

Proposition 1 (a) Kerberos does not provide cryptographic
key secrecy for the key SK generated by the TGS T for
the use between client C and server S after the start of
the last round of Kerberos.

(b) After the TGS exchange and before the start of the CS
exchange is the key SK generated by the TGS T still
cryptographically secret.

Proof (a) To see that Kerberos does not offer cryptographic
key secrecy for SK after the start of the third round, note
that the key SK is used in the protocol for symmetric
encryption. As symmetric encryption always provides
partial information to an adversary if the adversary also
knows the message that was encrypted. An adversary
can exploit this to distinguish the key SK as follows:
the adversary first completes a regular Kerberos execu-
tion between C and S learning the message {C, t ′}SK

encrypted under the unknown key SK . The adversary
will also learn a bounded time period T P (of a few sec-
onds) in which the timestamp t ′ was generated. Next
a bit b is flipped and the adversary receives a key k,
where k = SK for b = 0 and k is a fresh random
key for b = 1. The adversary now attempts to decrypt
{C, t ′}SK with k yielding a message m. If m �= C, t
for a timestamp t then the adversary guesses b = 1. If
m = C, t for a timestamp t , then the adversary checks
whether t ∈ T P or not. If t /∈ T P then the adversary
guesses b = 1, otherwise the adversary guesses b = 0.
The probability of the adversary guessing correctly is
then 1 − ε, where ε is the probability that for random
keys k, SK the cyphertext {C, t ′}SK decrypted with k
is C, t with t ∈ T P . Clearly, ε is negligible (since the
length of the time period T P does not depend on the
security parameter). Hence, SK is distinguishable and
cryptographic key secrecy does not hold.

(b) However, before the third round has been started the key
SK is not only unknown to the adversary but, in particu-
lar, SK has not been used for symmetric encryption yet.
We can therefore invoke the key secrecy preservation
theorem of [9], which states that a key that is symbol-
ically secret and symbolically unused is also crypto-
graphically secret. This allows us to conclude that SK
is cryptographically secret from the adversary.

��
For similar reasons, we also have the next proposition

Proposition 2 (a) Kerberos does not provide cryptographic
key secrecy for the key AK generated by the KAS K for

the use between client C and TGS T after the start of
the second round of Kerberos.

(b) After the AS exchange and before the start of the TGS
exchange is the key AK generated by the KAS K still
cryptographic secret.

Optional sub-session key Kerberos may allow the client
or the server to generate a sub-session key. This optional key
can then be used for the encryption of further communication
between the two parties. To send the optional sub-session key
to the other party, the generator of this optional key (C or S)
includes the key as part of the message which is encrypted
using the session key SK . For instance, server S may gener-
ate the optional key k and send {t ′, k}SK as the AP_REP. It
is easy to see that, due to the key secrecy of SK , an adver-
sary cannot learn the optional key (i.e., in the language of
the BPW model, an adversary does not get a handle to this
key). Since the optional key is not used in the protocol, we
may invoke the preservation of key secrecy theorem, Theo-
rem IV.1 of [9]. This theorem says that unused keys, which
the adversary cannot learn, are kept cryptographically secret
by the protocol. This approach is illustrated for the Yahalom
protocol in [10].

Corollary 1 (Computational security of the optional sub-
session) Let Kerb ∈ {P K , K 5} be fixed. Then the symbolic
Kerberos system SysKerb,id from Sect. 3.2 keeps the optional
sub-session key symbolically secret, and all polynomial-time
configurations of the computational public-key Kerberos sys-
tem SysKerb,comp keep the optional sub-session key crypto-
graphically secret.

5 Conclusions and future work

In this paper, we have exploited the Dolev–Yao style model
of Backes, Pfitzmann, and Waidner [8,11,12] to obtain
the first computational proof of authentication for the core
exchanges of the Kerberos protocol and its extension to
public keys (PKINIT). Although the proofs sketched here
are conducted symbolically, grounding the analysis on the
BPW model automatically lifts the results to the computa-
tional level, assuming that all cryptography is implemented
using provably secure primitives. We could establish cryp-
tographic key secrecy (in the sense of indistinguishabil-
ity of the exchanged key from a random key) only for
the optional sub-key exchanged in Kerberos; for the actu-
ally exchanged key, we could not prove cryptographic key
secrecy.

Concerning future work, we plan to investigate if the
algorithms that are supported by PKINIT [61] satisfy the
cryptographic assumptions of our proofs. For the symmetric
encryption scheme, which is also used in basic Keberos, this

123

Cryptographically sound security proofs for basic and public-key Kerberos 129

has been done in [20]. It remains an open question whether
the supported public-key encryption schemes, the digital sig-
nature schemes, and the checksum algorithms meet the cryp-
tographic assumptions we make in this work.

Furthermore, it seems promising to augment the BPW
model with specialized proof techniques that allow for
conveniently performing proofs in a modular manner. Such
techniques would provide a simple and elegant way to inte-
grate the numerous optional behaviors supported by Kerb-
eros and nearly all commercial protocols; for example, this
would facilitate the analysis of DH mode in PKINIT which
is part of our ongoing work. We intend to tackle the inven-
tion of such proof techniques that are specifically tailored
toward the BPW model, e.g., by exploiting recent ideas
from [35]. Another potential improvement is to augment
the BPW model with timestamps; this would in particu-
lar allow us to establish authentication properties that go
beyond entity authentication [21,22,27–30]. An additional
item on our research agenda is to fully understand the rela-
tion between the symbolic correctness proof for Kerberos 5
presented here and the corresponding results achieved in the
MSR framework [21,22,27–29].

Acknowledgments We are very grateful for helpful discussions to
Hubert Comon-Lundh, Anupam Datta, Ante Derek, John Mitchell, and
Arnab Roy.

Appendix A: Additional proofs

A.1 Conventions

In all proofs we will use following convention for the
algorithms:

Convention 1 Let Kerb ∈ {PK, K5}. For all w ∈ {1, . . . , n}
∪{S1, . . . , Sl}∪ {K , T } the following holds. If M K erb

w enters
a command at port inw! and receives ↓ at port outw? as the
immediate answer from THH, then M K erb

w aborts the execu-
tion of the current algorithm, except if the command was of
the form list_proj or send_i.

A.2 Auxiliary properties for basic Kerberos

In the following, we will consider the auxiliary properties
for basic Kerberos, i.e., in particular, ‘Algorithm 1’, ‘Algo-
rithm 2’, and ‘Algorithm 3’ will here refer to the algorithm in
Figs. 13, 14, and 15. The algorithms for the TGS T and for
a server S are valid for both public-key and basic Kerberos
(i.e., for MK 5

T , MK 5
S just like for MP K

T , MP K
S).

Handles contained in the sets Nonceu and Nonce2u are
indeed handles of u to nonces.

Lemma 8 (Correct nonce owner) For all u ∈ H, and all
(xhnd , . . .) ∈ Nonceu or (xhnd , . . .) ∈ Nonce2u, it holds

that D[hndu = xhnd] �= ↓ and D[hndu = xhnd].t ype =
nonce.

Proof Let (xhnd , . . .) ∈ Nonceu . By construction, this
entry has been added to Nonceu by MK 5

u in step 1A.5.
xhnd has been generated through the input of the command
gen_nonce() at some time t at port inu? of THH. Convention
1 implies xhnd �= ↓, as MK 5

u would abort otherwise and not
add the entry to Nonceu . By definition of gen_nonce() and
using Lemma 5.2 of [4] one gets that D[hndu = xhnd] �= ↓
and D[hndu = xhnd].t ype = nonce holds (the proof of the
statement for Nonce2u is analogous). ��

If K generated a symmetric key k or AK for v (i.e., on
receiving a AS_REQ from v) and w has a handle to k or AK ,
then w must either be v or K. And if T generated a symmet-
ric key SK for v and server S and w has a handle to SK , then
w must be either v, T , or S.

Lemma 9 (Key secrecy) For all u, v ∈ H, honest K , T, and
S ∈ {S1, . . . , Sl}, and for all j ≤ si ze with D[j].t ype =
skse:

(a) If D[j] was created by MK5
K in step 2.9 then (with the

notation of Algorithm 2 (Fig. 14))

D[j].hndw �= ↓ implies w ∈ {v, K , T }.

(b) If D[j] was created by MK5
T in step 4.18 then (with the

notation of Algorithm 4 (Fig. 11))

D[j].hndw �= ↓ implies w ∈ {v, T, S}

where with the notation of Algorithm 4, S = x4.

Proof (a) Let j ≤ si ze, D[j].t ype = skse such that D[j]
was created by MK5

K in step 2.9 at time t. The message
m2 (in the notation of Algorithm 2), to which a han-
dle is sent out in step 2.15, contains D[j] encrypted
under the encrypted under a symmetric key kv shared
exclusively between K and v (khnd

v , see step 2.13).
More precisely, D[m23.ind = m2.arg[3]] is created by
applying the command sym_encrypt taking as argu-
ments a handle to k and a handle to the list z2 where
z2.arg[1] = D[j].ind. By the assumption on the long-
term key kv , only v or K can decrypt m23. The message
m2 further contains D[j] encrypted under a symmet-
ric key skseK T shared exclusively between K and T
(more precisely, D[T GT .ind = m2.arg[2]] is created
in step 2.11 by applying the command sym_encrypt
taking as arguments a handle to skseK ,T and a handle to
the list z1 where z1.arg[1] = D[j].ind). By construc-
tion of Algorithm 4 (Fig. 11) and since T is honest, one

123

130 M. Backes et al.

sees that MK5
T never sends any message from which a

handle to D[j] for time t ′ > t . Also, by construction of
Algorithms 1 and 3 (Figs. 13, 15) and since v and K are
honest, one sees that v and K do not send out any list
from which a handle to D[j] can be obtained for time
t ′ > t .

(b) Let j ≤ si ze, D[j].t ype = skse such that D[j] was
created by MK5

T in step 4.18 at time t. The message m4

(in the notation of Algorithm 4), to which a handle is
sent out in step 4.24, contains D[j] in ST which is a
symmetric encryption under a symmetric key skseT S

shared exclusively between T and S (i.e., m4.arg[2] =
ST .ind, ST .arg[1] = D[j].ind) and m4 also con-
tains D[j] in a list m4.3 (where m4.3.ind = m4.arg[3])
which is a symmetric encryption under a key y1.1. T gets
a handle to the key y1.1 in step 4.3, i.e., after decryption
with the symmetric key shared exclusively between T
and K (i.e., sksehnd

K T ; see step 4.1), otherwise there would
be an abort, by Convention 1. Since, by construction,
MK5

T does not use the key skseK T for encryption, MK5
K

must have created the cyphertext containing a handle to
the key y1.1. From Algorithm 2 one can now infer that
MK5

K must have created the key y1.1. Key Secrecy (a)
and the honesty of v, K , and T imply that only v, T, K
have handles to this key. T and K do not use this second
key for decryption and therefore only v can get a handle
to D[j] through decryption with the key y1.1. Also, only
MK5

S uses sksehnd
T S for decryption (in step 5.2). But, by

construction, neither MK5
S nor MK5

v send out any mes-
sage, from which a handle to D[j] can be obtained for
time t ′ > t . ��

If honest user u receives what appears to u to be a valid
AS_REP message then this message (disregarding the T GT)
was indeed generated by K for u and an adversary cannot
learn the contained symmetric keys.

Lemma 10 (Authentication of KAS to client and secrecy of
AK) For all u ∈ H, honest KAS K and TGS T , and for all
j ≤ si ze with D[j].t ype = list and jhnd := D[j].hndu �=
↓:
If l3 := D[j].arg[3] with D[l3].t ype = symenc,

{≈ {AK , n1, tK , T }ku }
x1 := D[l3].arg[1] with D[x1].t ype = list,

{≈ AK , n1, tK , T }
y2 := D[x1].arg[2] with D[y2].t ype = nonce, {≈ n1}
and if furthermore

(a) D[D[l3].arg[2]].ind+1 = D[ku].ind, i.e., D[l3].arg[2]
is the public identifier of the long-term key ku shared
between K and u

then D[l3] was created by MK5
K in step 2.13 and its index is

an argument in a list sent to u in step 2.15.

Furthermore, D[x1.arg[1]].hnda =↓.

Proof By hypothesis (a), D[l3] is encrypted using the long-
term key ku shared between K and u. By assumption on
this key and since u is honest, only MK5

K and MK5
u have

handles to ku . Since, by construction, MK5
u does not use

this key for encryption, MK5
K must have used it for encryp-

tion. This occurs only in step 2.13 after there was an input
(v, K , i, mhnd) at outK ?. By Algorithm 2, one has v = u.
Furthermore, the key contained in l3 with index x1.arg[1]
was created in step 2.9. Since u is honest, Key Secrecy implies
that an adversary cannot obtain a handle to this key. For any
user, including u, to be able to obtain a handle to that key,
MK5

u must send it first. This happens in step 2.15, where MK5
u

sends a list m2 (in the notation of Algorithm 2) to v = u,
where m2.arg[3] = D[l3].ind. Furthermore, Key Secrecy
implies that D[x1.arg[1]].hnda =↓. ��

If TGS T receives a TGT and an authenticator {u, tu}AK

where the key AK and the username of an honest user u are
contained in the TGT, then the TGT was generated by K and
the authenticator was created by u.

Lemma 11 (TGS Authentication of the TGT) For all u ∈
H, honest KAS K and TGS T and for all j ≤ si ze with
D[j].t ype = list and jhnd := D[j].hndT �= ↓:
l1 := D[j].arg[1] with D[l1].t ype = symenc, {≈ T GT }
l2 := D[j].arg[2] with D[l2].t ype = symenc, {≈
{u, tu}AK }
x1 := D[l1].arg[1] with D[x1].t ype = pkse, {≈ kK T }
x2 := D[l1].arg[2] with D[x2].t ype = list, {≈ AK , u, tK }
x2.1 := D[x2].arg[1] with D[x1.1].t ype = skse, {≈ AK }
y1 := D[l2].arg[1] with D[x1].t ype = pkse, {≈ AK }
y2 := D[l2].arg[2] with D[y2].t ype = list, {≈ u, tu}
and if furthermore

(a) D[x1 + 1] = skseK T

(b) D[x2.1 − 1] = D[y1]
(c) D[x2].arg[2] = D[y2].arg[1] = u

then entry D[l1] was created by MK5
K in step 2.11 at a time t

and entry D[l2] was generated by MK5
u in step 1B.5 at a time

t ′ > t .

Proof By hypothesis (a), D[x2] is encrypted under the long-
term key shared between K and T . It is assumed that only
MK5

K and MK5
T have handles to the long-term key skseK T .

Since by construction of Algorithm 4 (Fig. 11), MK5
T does

not use this key for encryption, MK5
K must have created D[l1]

in step 2.11. This step is only executed if there was an input
(v, K , i, mhnd) at outK ?. In step 2.11 MK5

K encrypts a list z1

(in the notation of Algorithm 2) created in step 2.10 using a
handle to the name of user v and a handle to a symmetric key

123

Cryptographically sound security proofs for basic and public-key Kerberos 131

AK that was freshly generated by THH earlier, after receiv-
ing the command gen_sym_key from MK5

K in step 2.9 (more
precisely, z1.arg[2] = v, z1.arg[1] = AK .ind). Hypothesis
c) now implies that u = v. Since u is assumed to be honest,
we can use Key Secrecy to infer that only u, K , or T can have
handles to the key AK . Hypotheses (b) and (c) state that this
key was used for encryption of a list containing u’s name.
By construction, only MK5

u uses this key for encryption of a
list containing u’s name, that is to say in step 1B.5, i.e., MK5

u
generated D[l2] in step 1B.5. It is obvious that this encryp-
tion happened after MK5

K created D[l1], since MK5
K generates

the symmetric encryption key AK and creates D[l1] before
sending out a handle to a list from which another user can
obtain a handle to this key. ��

If honest user u receives what appears to u to be a valid
TGS_REP, then the for u verifiable part of that message,
encrypted under the symmetric key AK , was generated by
T for u and S. And an adversary cannot learn the contained
session key SK .

Lemma 12 (Authentication of TGS to client and Secrecy of
SK) For all u ∈ H, honest KAS K and TGS T and for all j ≤
si ze with D[j].t ype = symenc and jhnd := D[j].hndu �=
↓:
p1 := D[j].arg[1] with D[p1].t ype = pkse, {≈ AK }
p2 := D[j].arg[2] with D[p2].t ype = list, {≈
SK , n3, tT , S}
p2.1 := D[p2].arg[1] with D[p2.1].t ype = skse, {≈ SK }
p2.2 := D[p2].arg[2] with D[p2.2].t ype = nonce, {≈ n3}
and if furthermore

(a) (., shnd
1 , T) ∈ T GT icketu for s1 := p1 + 1

(b) (phnd
2.2 , T, D[p2].arg[4]) ∈ Nonce2u

then D[j] was created by MK5
T in step 4.22.

Furthermore, D[p2.1].hnda =↓.

Proof Analogous to the proof of Lemma 5. ��
If server S receives a ST and an authenticator {u, tv}SK

where the key SK and the name of honest user u are con-
tained in the ST, then the ST was generated by T and the
authenticator was created by u.

Lemma 13 (Server Authentication of the ST) For all u ∈ H,
honest S ∈ {S1, . . . , Sl}, KAS K and TGS T and for all j ≤
si ze with D[j].t ype = list and jhnd := D[j].hndS �= ↓:
l1 := D[j].arg[1] with D[l1].t ype = symenc, {≈ ST }
l2 := D[j].arg[2] with D[l2].t ype = symenc,

{≈ {u, t ′u}SK }
p1 := D[l1].arg[1] with D[p1].t ype = pkse, {≈ kT S}
p2 := D[l1].arg[1] with D[p2].t ype = list, {≈ SK , u, tT }

p2.1 := D[p2].arg[1] with D[p2.1].t ype = skse, {≈ SK }
r1 := D[l2].arg[1] with D[r1].t ype = pkse, {≈ SK }
r2 := D[l2].arg[2] with D[r2].t ype = list, {≈ u, t ′u}
and if furthermore

(a) D[p1 + 1] = skseT S

(b) D[p2.1] = D[r1 − 1]
(c) D[p2].arg[2] = D[r2].arg[1] = u

then D[l1] was created by MK5
T in step 4.20 at time t and

D[l2] was created by MK5
u in step 3.36 at time t ′ > t .

Proof Analogous to the proof of Lemma 6. ��

A.3 Proof of Theorem 1, basic Kerberos part

Now we present the proof of Theorem 1 regarding basic
Kerberos:

Proof (of Thm. 1) First we prove the Secrecy Property: Say
there was an output (ok, K5, S, SK hnd) at KA_outu !. Exam-
ining Algorithm 3 (Fig. 15) we see that the handle SK hnd

and the server name S form an element (S, SK hnd) of the set
Session_K eysSu (see steps 3.41, 3.42). By the definition
of Session_K eysSu (see step 3.38), MK5

u obtained the han-
dle SK hnd in step 3.28, and steps 3.32 and 3.33 guarantee
that SK hnd is indeed a handle to symmetric keys. By Algo-
rithm 3 (steps 3.27–3.33), SK hnd , the name of server S and
a handle to a nonce x2.2 were obtained from a list l2 (in the
notation of Algorithm 3) to which MK5

u obtained a handle in
step 3.27 after decrypting d3 with a symmetric key AK ; i.e.,
l2.arg[1] = SK .ind, l2.arg[2] = x2.1.ind, l2.arg[4] =
S, d3.t ype = symenc, D[d3.arg[2]].t ype = pkse and
d3.arg[2] = AK .ind − 1, by the definition of the command
sym_decrypt. Here, l2.hndu, d3.hndu, AK .hndu �= ↓, oth-
erwise the algorithm would abort by Convention 1; i.e., MK5

u
has handles to d3 and to the key AK . Steps 3.24 and 3.25
imply that (., AK hnd , T) is an element of the set T GT icketu .
Furthermore, (xhnd

2.2 , T, S) is an element in Nonce2u , other-
wise there would be an abort in step 3.33. Hence, D[d3]
(in the notation of Algorithm 3) satisfies the hypotheses of
Lemma 12 for the element D[j]. In particular, this means
that an adversary cannot get a handle to the key SK .
Now say there was an output (ok, K5, u, SK hnd) at KA_outS !.
This only occurs if there was an input (u, S, i, mhnd) at outS?
at a past time for some list m. By Algorithm 5, the handle
to SK was contained in a list x (in the notation of Algo-
rithm 5), to which MK5

S obtained a handle in step 5.2 after
decryption of m5.1 = m.arg[1] using the long-term shared
key skseT S . Here, m5.1.hndS , x .hndS �= ↓ since otherwise
the algorithm would abort by Convention 1. Steps 5.6 and
5.7 ensure that the index of x1 = SK really points to a
symmetric key. Also, all other steps of Algorithm 5 must
have been executed by MK5

S without abort before the output

123

132 M. Backes et al.

(ok, K5, u, khnd). Therefore, we see that steps 5.2–5.7 and
the definitions of the basic command sym_decrypt guaran-
tee that m5.1 from Algorithm 5 must have the same structure
as l1 from Lemma 13. Furthermore, steps 5.9–5.13 show that
u’s name was included in a list y to which S gets a handle
in step 5.9 after decryption of m5.2 using the key x1 = SK .
Therefore, m5.2 from Algorithm 5 has the same structure as
l2 from Lemma 13. Since it is easy to verify that hypotheses
(a), (b), and (c) are also satisfied by the corresponding indi-
ces contained in m5.1 and m5.2, and since u is honest, we can
use Lemma 13 to infer that an adversary cannot get a handle
to the key SK . This proves the Secrecy Property.

Next we prove the Authentication Property: (i) Say there
was an output (ok, K5, v, xhnd

1) at KA_outS ! at a time
t3 ∈ N. By construction of Algorithm 5, there must have
been an input (v, S, i, mhnd) at outS? at a past time. In order
for there not to be any abort during the execution of Algo-
rithm 5 at some point between the input (v, S, i, mhnd) at
outS? and the output (ok, K5, v, xhnd

1) at KA_outS !, we see,
just as above, that m’s components m5.1 = m.arg[1] and
m5.2 = m.arg[2] must satisfy the hypotheses for Lemma 6.
And since v is honest, Lemma 13 implies that m5.2, which
consists of a list that contains v’s name and that is encrypted
under the symmetric key SK , must have been created by
MK5

v in step 3.36. By construction of Algorithm 3, there
must have been an input (T, v, i, m̃hnd) at outv? at a past
time and an output (ok, K5, S′, SK hnd) at KA_outv! at some
later time. Furthermore, (S′, SK) is an element of the set
Session_K eysSu . By the definition of this set in step 3.38,
MK5

v received a handle to SK in step 3.28 after decryption
of d3 = D[m̃].arg[3] using a symmetric key AK (in the
notation of Algorithm 3, i.e., d3.arg[2] + 1 = AK .ind)
in step 3.27. In fact, steps 3.24–3.33 and the definitions
of the basic commands sym_decrypt and list_proj ensure
that D[d3] has the same structure as D[j] from Lemma 12
and satisfies the hypotheses of Lemma 12. Therefore, D[d3]
was created by MK5

T in step 4.22, i.e., the key SK must
have been generated by MK5

T step 4.18 for v and S′. Key
Secrecy implies that an adversary cannot get a handle to
SK . One immediately gets that S′ = S. Algorithm 4 is
only executed by MK5

T if there was an input (v, T, i, m̂hnd)

at outT ? and handles to an in step 4.18 created element can
only be obtained by other users if there was no abort dur-
ing that run of Algorithm 4. This means that D[m̂.arg[1]]
must have the same structure as D[l1] from Lemma 11,
as ensured by steps 4.2–4.9, and D[m̂.arg[2]] must have
the same structure as D[l1] from Lemma 11, as ensured by
steps 4.11–4.16 and the definitions of the basic commands
sym_decrypt and list_proj. It is obvious that all hypotheses
of Lemma 11 are satisfied and so one gets that D[m̂.arg[1]]
was created by MK5

K in step 2.11 and D[m̂.arg[2]] was
created by MK5

v in step 1B.5. The latter implies that there
was an input (continue_prot K5, T, S, AK hnd) at KA_inv!

at a past time t2 < t3. On the other hand, by the def-
inition of T GT icketu in step 3.19 and by steps 1B.1
and 1B.2, there must have been an output in step 3.20
that contained a handle to the same symmetric key as in
the input to Algorithm 1B, namely the key AK . Other-
wise there would be an abort in step 1B.2, i.e., there was
an output (ok, KAS_exchange K5, K , T, (., ., ., AK hnd)) at
KA_outv!. Since the execution of Algorithm 3 did not pro-
duce an error, one can use Lemma 10 to infer that MK5

K must
have run Algorithm 2 and generated AK for v. Finally, by
construction of Algorithm 2 and by definition of the com-
mand verify, one gets that v must have run Algorithm 1
with the input (new_prot, K5, K , T)) at KA_inv! at a time
t1 < t2.
(ii) Now say that there was on output (ok, K5, S, SK hnd) at
port KA_outu ! at time t2. By construction of Algorithm 3,
this only happens after u received an input (S, u, i, mhnd) at
outu? and without there being any abort during the execution
of Algorithm 3 between the input and the output (steps 3.40–
3.50). By steps 3.41 and 3.42, m was encrypted using a sym-
metric key SK (i.e., m.t ype = symenc and m.arg[2] =
SK .ind − 1) for which (S, SK hnd) ∈ Session_K eysSu .
Steps 3.45–3.48 ensure that u’s name was not the first
argument of the list l3 (in the notation of Algorithm 3) to
which MK5

u obtains a handle after decryption of m using SK
(i.e., u �= l3.arg[1]). Here, l3.hndu �= ↓, otherwise there
would be an abort of Algorithm 3 by Convention 1. On the
other hand, the element (S, SK hnd) ∈ Session_K eysSu

was added in step 3.56 after the key SK was used for
encryption in step 3.36 of a list x5 (in the notation of Algo-
rithm 3) which does contain u’s name as its first argu-
ment (i.e., u = x5.arg[1]). By construction of Algorithm 3,
step 3.36 is the only time that a symmetric key SK , for which
(S, SK hnd) ∈ Session_K eysSu , is used for encryption by
MK5

u . Therefore, since the list l3 in m does not contain u’s
name as its first argument, MK5

u did not create D[m]. In
order for (S, SK hnd) to be added to Session_K eysSu in
step 3.38, there must have been an input (T, u, i, m̃hnd) at
outu? in the past and there could not have be any abort in the
steps 3.21–3.38. But these steps, together with the defini-
tions of the basic commands sym_decrypt and list_proj,
guarantee that the m̃ components d3 (in the notation of
Algorithm 3) satisfies the hypotheses of Lemma 12 (where
SK = D[d3.arg[1]].arg[1] and S = D[d3.arg[1]].arg[4]).
Therefore, only T , u, and S can have handles to SK . Hence,
MK5

S must have used the handle to the key SK for encryption
at a time t1 < t2. This can only happen in step 5.15 after
receiving an input (v′, S, i, m̃hnd) at outS?, where v′ = u as
guaranteed by step 5.9–5.13. The encryption that MK5

S gen-
erated using the key SK must have been sent for others to
obtain a handle for it, so there was no abort in step 5.16; there-
fore, there must have been an output (ok, K5, u, SK hnd) at
KA_outS ! at some time t1 < t2. ��

123

Cryptographically sound security proofs for basic and public-key Kerberos 133

References

1. The AVISPA tool for the automated validation of internet security
protocols and applications. In: Proceedings of the Computer-aided
Verification (CAV). Springer, 2005. http://www.avispa-project.org
(2005)

2. Abadi, M., Jürjens, J.: Formal eavesdropping and its computational
interpretation. In: Proceedings of TACS, pp. 82–94 (2001)

3. Abadi, M., Rogaway, P.: Reconciling two views of cryptography:
The computational soundness of formal encryption. In: Proceed-
ings of the 1st IFIP International Conference on Theoretical Com-
puter Science, LNCS, vol. 1872, pp. 3–22. Springer (2000)

4. Backes, M.: A cryptographically sound Dolev-Yao style security
proof of the Otway-Rees protocol. In: Proceedings of ESORICS,
LNCS, vol. 3193, pp. 89–108. Springer (2004)

5. Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.:
Cryptographically sound security proofs for basic and public-key
Kerberos. In: Proceedings of ESORICS, pp. 362–383 (2006)

6. Backes, M., Jacobi, C.: Cryptographically sound and machine-
assisted verification of security protocols. In: Proceedings of the
20th STACS, LNCS, vol. 2607, pp. 675–686. Springer (2003)

7. Backes, M., Pfitzmann, B.: A cryptographically sound security
proof of the Needham-Schroeder-Lowe public-key protocol. J. Sel.
Areas Commun. 22(10), 2075–2086 (2004)

8. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulat-
able Dolev-Yao style cryptographic library. In: Proceedings of
CSFW’04, pp. 204–218, June 2004

9. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic
secrecy. IEEE Trans. Dependable Secur. Comput. 2(2), 109–123
(2005)

10. Backes, M., Pfitzmann, B.: On the cryptographic key secrecy of the
strengthened Yahalom protocol. In: Proceedings of 21st IFIP Inter-
national Information Security Conference (SEC), pp. 233–245,
May 2006

11. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryp-
tographic library with nested operations (extended abstract).
In: Proceedings of the CCS’03, pp. 220–230 (2003)

12. Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authenti-
cation within a simulatable cryptographic library. In: Proceed-
ings of ESORICS’03, LNCS, vol. 2808, pp. 271–290. Springer
(2003)

13. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable
cryptographic library. IACR Cryptology ePrint Archive, Report
2003/015, http://www.eprint.iacr.org/, January 2003

14. Bella, G., Paulson, L.C.: Kerberos Version IV: inductive analysis
of the secrecy goals. In: Proceedings of ESORICS’98, LNCS, vol.
1485, pp. 361–375. Springer (1998)

15. Bella, G., Riccobene, E.: Formal analysis of the Kerberos
authentication system. J. Univers. Comput. Sci. 3(12), 1337–1381
(1997)

16. Bellare, M., Rogaway, P.: Entity authentication and key dis-
tribution. In: Proceedings of CRYPTO ’93, LNCS vol. 773,
pp. 232–249. Springer (1994)

17. Blanchet, B.: A computationally sound mechanized prover for
security protocols. In: Proceedings of the 27th IEEE Symposium
on Security & Privacy (2006)

18. Blanchet, B., Jaggard, A.D., Jesse, R., Scedrov, A., Tsay, J.-K.:
Refining computationally sound mechanized proofs for Kerberos,
2009. http://www.infsec.uni-trier.de/fcc2009/

19. Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Computation-
ally sound mechanized proofs for basic and public-key Kerberos.
In: ASIACCS’08, pp. 87–99 (2008)

20. Boldyreva, A., Kumar, V.: Provable-security analysis of authenti-
cated encryption in Kerberos. In: IEEE Symposium on Security
and Privacy (2007)

21. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: An Analysis
of Some Properties of Kerberos 5 Using MSR. In: Proceedings of
CSFW’02 (2002)

22. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A., Walstad, C.:
Formal analysis of Kerberos 5. Theor. Comput. Sci. 367(1–2),
57–87 (2006)

23. Cable Television Laboratories, Inc. PacketCable Security Specifi-
cation. Technical document PKT-SP-SEC-I11-040730 (2004)

24. Canetti, R.: Universal composable security: a new paradigm for
cryptographic protocols. In: 42nd Annual Syposium on Founda-
tions of Computer Science (FOCS 2001), pp. 136–145. IEEE Com-
puter Society, October 2001

25. Canetti, R., Gajek, S.: Universally composable symbolic analysis
of Diffie–Hellman based key exchange. Cryptology ePrint Archive,
Report 2010/303, 2010. http://www.eprint.iacr.org/

26. Canetti, R., Herzog, J.: Universally composable symbolic analysis
of cryptographic protocols (the case of encryption-based mutual
authentication and key exchange). In: Proceedings of the 3rd
Theory of Cryptography Conference (TCC) (2006)

27. Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad, C.:
Breaking and fixing public-key Kerberos, 2006. Presented at
WITS’06 (2006)

28. Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad,
C.: Breaking and fixing public-key Kerberos. In: Proceedings of
ASIAN’06, LNCS, vol. 4435 (2006)

29. Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad, C.:
Breaking and fixing public-key Kerberos. Inf. Comput. 206(2–4),
402–424 (2008)

30. Cervesato, I., Jaggard, A.D., Scedrov, A., Walstad, C.: Specify-
ing Kerberos 5 Cross-Realm Authentication. In: Proceedings of
WITS’05, pp. 12–26 (2005)

31. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authen-
tication logic for reasoning about key distribution protocol. In:
Proceedings of CSFW-18, pp. 48–61, Aix-en-Provence, France,
20–22 June 2005. IEEE Computer Society Press

32. Comon-Lundh, H., Cortier, V.: Computational soundness of obser-
vational equivalence. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security CCS 2008. ACM Press
(2008)

33. Cortier, V., Warinschi, B.: Computationally sound, automated
proofs for security protocols. In: Proceedings of ESOP-14, pp.
157–171 (2005)

34. Datta, A., Derek, A., Mitchell, J., Shmatikov, V., Turuani, M.:
Probabilistic polynomial-time semantics for a protocol security
logic. In: Proceedings of ICALP, pp. 16–29. Springer LNCS 3580
(2005)

35. Datta, A., Derek, A., Mitchell, J., Warinschi, B.: Key exchange
protocols: Security definition, proof method, and applications. In:
Proceedings of the IEEE CSFW-19, Venice, Italy, 2006. IEEE Press
(2006)

36. De Clercq, J., Balladelli, M.: Windows 2000 authentication. http://
www.windowsitlibrary.com/Content/617/06/6.html, 2001. Digital
Press (2001)

37. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE
Trans. Inf. Theory 2(29), 198–208 (1983)

38. Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.-R., Schwenk, J.:
Universally Composable Security Analysis of TLS. In: Proceed-
ings of the 2nd International Conference on Provable Security
(ProvSec 2008), Lecture Notes in Computer Science, vol. 5324,
pp. 313–327. Springer (2008)

39. Goldreich, O., Micali, S., Wigderson, A.: How to play any men-
tal game—or—a completeness theorem for protocols with honest
majority. In: Proceedings of STOC, pp. 218–229 (1987)

40. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput.
Syst. Sci. 28, 270–299 (1984)

123

http://www.avispa-project.org
http://www.eprint.iacr.org/
http://www.infsec.uni-trier.de/fcc2009/
http://www.eprint.iacr.org/
http://www.windowsitlibrary.com/Content/617/06/6.html
http://www.windowsitlibrary.com/Content/617/06/6.html

134 M. Backes et al.

41. Guttman, J.D., Thayer Fabrega, F.J., Zuck, L.: The faithfulness of
abstract protocol analysis: message authentication. In: Proceedings
of CCS-8, pp. 186–195 (2001)

42. He, C., Mitchell, J.C.: Security analysis and improvements for
IEEE 802.11i. In: Proceedings of NDSS’05 (2005)

43. Herzog, J., Liskov, M., Micali, S.: Plaintext awareness via key
registration. In: Proceedings of CRYPTO, pp. 548–564. Springer
LNCS 2729 (2003)

44. IETF. Public Key Cryptography for Initial Authentication in Kerb-
eros, 1996–2006. Sequence of Internet drafts available from http://
www.tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/

45. Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryp-
tographic constructions. In: Proceedings of FOCS, pp. 372–381
(2003)

46. Laud, P.: Semantics and program analysis of computationally
secure information flow. In: Proceedings of ESOP, pp. 77–91
(2001)

47. Laud, P.: Symmetric encryption in automatic analyses for confiden-
tiality against active adversaries. In: Proceedings of the Symposium
Security and Privacy, pp. 71–85 (2004)

48. Meadows, C.: Analysis of the internet key exchange protocol using
the NRL Protocol Analyzer. In: Proceedings of the IEEE Sympo-
sium Security and Privacy, pp. 216–231 (1999)

49. Micciancio, D., Warinschi, B.: Soundness of formal encryption
in the presence of active adversaries. In: Proceedings of TCC,
pp. 133–151. Springer LNCS 2951 (2004)

50. Microsoft. Security Bulletin MS05-042. http://www.microsoft.
com/technet/security/bulletin/MS05-042.mspx, August 2005

51. Mitchell, J., Mitchell, M., Scedrov, A.: A linguistic characteriza-
tion of bounded oracle computation and probabilistic polynomial
time. In: Proceedings of FOCS, pp. 725–733 (1998)

52. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.: A probabi-
listic polynomial-time process calculus for the analysis of crypto-
graphic protocols. Theor. Comput. Sci. 353(1–3) (2006)

53. Neuman, C., Ts’o, T.: Kerberos: An authentication service for com-
puter networks. IEEE Commun. 32(9), 33–38 (1994)

54. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Net-
work Authentication Service (V5), July 2005. http://www.ietf.org/
rfc/rfc4120

55. Pfitzmann, B., Waidner, M.: A model for asynchronous reac-
tive systems and its application to secure message transmission.
In: Proceedings of the S&P, pp. 184–200 (2001)

56. Roy, A., Datta, A., Derek, A., Mitchell, J.C.: Inductive proofs
of computational secrecy. In: Biskup, J., Lopez, J. (Eds.), ESO-
RICS, Lecture Notes in Computer Science, vol. 4734, pp. 219–234.
Springer (2007)

57. Roy, A., Datta, A., Mitchell, J.C.: Formal proofs of crypto-
graphic security of Diffie–Hellman-based protocols. In: Barthe, G.,
Fournet, C., (Eds.), TGC, Lecture Notes in Computer Science,
vol. 4912, pp. 312–329. Springer (2007)

58. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.:
Cryptographically sound theorem proving. In: Computer Security
Foundations Workshop (CSFW06), pp. 153–166. IEEE Computer
Society, July 2006

59. Sprenger, C., Basin, D.: Cryptographically-sound protocol-model
abstractions. In: Computer Security Foundations (CSF ’08). IEEE
Computer Society (2008)

60. The Internet Engineering Task Force. http://www.ietf.org
61. Zhu, L., Tung, B.: Public Key Cryptography for Initial Authenti-

cation in Kerberos (PKINIT), June 2006. http://www.ietf.org/rfc/
rfc4556

123

http://www.tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
http://www.tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-042.mspx
http://www.ietf.org/rfc/rfc4120
http://www.ietf.org/rfc/rfc4120
http://www.ietf.org
http://www.ietf.org/rfc/rfc4556
http://www.ietf.org/rfc/rfc4556

	Cryptographically sound security proofs for basic and public-key Kerberos
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Structure of the paper

	2 Kerberos 5 and its public-key extension
	3 The BPW model
	3.1 Review of the BPW model
	3.2 Kerberos in the BPW model

	4 Formal results
	4.1 Security in the symbolic setting
	4.2 Security in the cryptographic setting

	5 Conclusions and future work
	Acknowledgments
	Appendix A: Additional proofs
	A.1 Conventions
	A.2 Auxiliary properties for basic Kerberos
	A.3 Proof of Theorem 1, basic Kerberos part

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

