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ABSTRACT:

Currently,  Web services  give  place to  active  research  and  this  is  due  both to  industrial  and 
theoretical factors. On one hand, Web services are essential as the design model of applications 
dedicated to the electronic business.  On the other hand, this model aims to become one of the 
major  formalisms  for  the  design  of  distributed  and  cooperative  applications  in  an  open 
environment (the Internet). 

In this paper, we will focus on two features of Web services. The first one concerns the 
interaction problem: given the interaction protocol of a Web service described in BPEL, how to 
generate  the  appropriate  client?  Our  approach is  based on a  formal  semantics  for  BPEL via 
process algebra and yields an algorithm which decides whether such a client exists and synthetize 
the description of this client as a (timed) automaton. The second one concerns the design process 
of  a  service.  We propose a  method which proceeds by two successive refinements:  first  the 
service is described via UML, then refined in a BPEL model and finally enlarged with JAVA code 
using JCSWL, a new language that we introduce here. Our solutions are integrated in a service 
development framework that will be presented in a synthetic way.
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INTRODUCTION
At the hour of fusions, reorganizations of companies, Information Systems (IS) must have the 
capacity to take into account these economic constraints. What results is a need for flexibility, 
adaptability, opening and even for interoperability between remote and/or heterogeneous IS, i.e. 
based on different technical bases. Interoperability supposes that the applications are able to be 
located, to be identified,  to expose the functionalities (services) which they offer, and finally, to 
exchange data. The Web services arise today as the most suitable solution in order to connect 
remote IS, eventually heterogeneous ones.

Indeed,  Service  Oriented  Architectures  Services  (SOA),  initially  based  on  the 
components and their capacity to communicate through their interfaces, quickly showed their 
limits in terms of weak coupling (necessary to meet the needs for flexibility and adaptability) and 
of interoperability.  The Web services bring these properties to the SOA which were precisely 
lacking  with  the  component  based  architectures.  The  Web  services  lie  on  standards  for  the 
information exchange as well as on protocols for their transport.
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Web  services  are  “self  contained,  self-describing  modular  applications  that  can  be 
published, located, and invoked across the Web” (Tidwell,  2000). They are based on a set of 
independent  open  platform  standards  to  reach  a  high  level  of  acceptance.  Web  services 
framework is divided into three areas - communication protocol, service description, and service 
discovery -  and specifications  are  being developed for  each one:  the  “Simple  Object  Access 
Protocol”  (SOAP)  (Gudgin,  2000),  which  enables  communication  among  Web  Services,  the 
“Universal Description, Discovery and Integration” (UDDI) (Bellwood, 2002), which is a registry 
of  Web  Services  descriptions  and  the  “Web  Services  Description  Language”  (WSDL) 
(Christensen, 2001), which provides a formal,  computer-readable description of Web services. 
The latter describes such software components by an interface listing the collection of operations 
that  are  network  accessible  through  standard  XML  messaging.  This  description  contains  all 
information  that  an  application  needs  to  invoke  such  as  the  message  structure,  the  response 
structure and some binding information like the transport protocol, the port address, etc.

However,  simple  operation  invocation  is  not  sufficient  for  some  kind  of  composite 
services. They also require a long-running interaction derived by an explicit process model. This 
kind of services may often be encountered in two cases. First, when a Web service is developed 
as an agent, it is composed of a set of accessible operations and a process model which schedules 
the invocation to a correct use of the service. Secondly, facing to the capability limits of Web 
services, composite services may be obtained by aggregating existing Web services in order to 
create more sophisticated services (and this in a recursive way).

In order to deal with the behavioural aspects of complex services, some industrial and 
academic  specifications  languages  have  been  introduced.  Among  them,  Business  Process  
Execution Language for Web Services (BPEL4WS or more succinctly BPEL) has been proposed 
by leading actors of industry (BEA, IBM, and Microsoft) and has quickly become a standard 
(Alves,  2007).  BPEL  supports  two  different  types  of  business  processes  (Juric,  2005).  (i) 
Executable processes specify the exact details of business processes. They can be executed by an 
orchestration  engine.  (ii)  Abstract  business  protocols specify  the  public  message  exchange 
between the client and the service. They do not include the internal details of process flows but 
are required in order, for the client, to correctly interact with the service.

Given the description of an executable process, its associated abstract protocol is obtained by 
an abstraction mechanism (which masks all the internal operations of the service). However, the 
issues raised by these two types of processes are very different. On the one hand, the specification 
of  an  executable  process  is  close  to  the  definition  of  a  program  and  naturally  yields  the 
expressivity problem: how generic, rich and concise are the constructions of the language? On the 
other hand, the specification of an interaction protocol mainly raises the synthesis problem: how 
to synthesize a client which will correctly handle the interaction with the service?

The  expressivity  problem. Whereas  BPEL is  appropriate  for  composing  Web  services  into 
business  processes,  it  does  not  have  all  the  features  of  a  programming  language  like  Java. 
Therefore, different works aim at extending BPEL by combining it with Java. The two prominent 
approaches  are  BPELJ  for  Java (BPELJ)  (Blow,  2004)  and  the  Web  Services  Invocation 
Framework (WSIF) (Duftler, 2001). BPELJ provides the possibility to include Java code (which 
is called Java snippets) in BPEL process definitions. WSIF follows another idea: use the same 
syntax in BPEL to invoke any resource (or service) and describe it using WSDL even if it is a 
Java resource that does not communicate through SOAP (the applicative communication protocol 
of Web services). With both approaches, the design of a service is a two-step process:  first one 
models the service with a BPEL program, then one refines it by developing Java code for the 
local treatments and exchanging values between the Java and the BPEL parts. However, due to 
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the verbose and declarative style of BPEL, when the logic of the application is complex, this 
process leads to a program which is almost impossible to manage. In order to design a composite 
service  whose  application  logics  is  the  main  complexity  factor,  we  propose  an  alternative 
solution: enhancing Java with BPEL features. So, our first contribution is the definition of the 
language Java Complex Web Service Language (JCWSL). Furthermore, starting from a JCSWL 
program, we automatically produce both the associated BPEL interaction protocol and a code 
which can be invoked through a Web server.

The synthesis problem. By construction, the external behaviour of a service is non deterministic 
due to its internal choices. It is then a priori unclear whether a client, i.e. a deterministic program, 
can  be  designed  to  interact  with  it.  Furthermore,  the  specification  often  includes  timing 
constraints (e.g. implicit detection of the withdrawal of an interaction by the client) implying that 
these  timing  constraints  must  also  be  taken  into  account  by  the  client.  However,  since  no 
semantics of the interaction process is given for BPEL (not to be confused with the semantics of 
the service execution), this problem could not be formally stated. Thus, we have addressed this 
problem and proposed a solution based on a formal semantics (Melliti, 2003; Haddad, 2004).

First, we specify what an external behaviour is, i.e. we give an operational semantics to 
an abstract BPEL specification in terms of a timed transition system. The semantics is obtained 
by a set of rules in a modular way. Given a constructor of the language and the behaviour of some 
components, a rule specifies a possible transition of a service built via this constructor applied on 
these components. As previously discussed, the transition system is generally non deterministic.

Then, we define a relation between two communicating systems which formalizes the 
concept of a correct interaction. There are standard relations between dynamic systems like the 
language equivalence and the bisimulation equivalence but  none of them matches  our needs. 
Thus,  we  introduce  the  interaction  relation  which  can  be  viewed  as  a  bisimulation  relation 
modified in order to capture the nature of the events (i.e. the sending of a message is an action 
whereas the reception is a reaction).

Afterwards, we focus on the synthesis of a client which is in an interaction relation with 
the transition system corresponding to the system. The client we look for must be implementable, 
in  other  words  it  should  be  a  deterministic  automaton.  It  has  appeared  that  some  BPEL 
specifications do not admit such a client i.e. they are inherently ambiguous. Thus, the algorithm 
we have developed either detects the ambiguity of the Web service or generates a deterministic 
automaton  satisfying  the  interaction  relation.  The  core  of  our  algorithm  is  a  kind  of 
determinisation of the transition system of the service.

This paper is organized as follows. “Web Services” section points out the principles of 
the Web services and details the BPEL constructions. Then, in the “client synthesis” section, we 
propose a formal semantics of this language, we define the interoperability between a client and a 
service and we describe the client synthesis algorithm. We introduce JCSWL, our extension of 
BPEL in section “JCWSL: a design language for Web services”. In the “Web service design 
framework”section,  we  give  an  overview of  the  architecture  of  our  environment.  Finally,  in 
“related work” section, we review related work before concluding.

WEB SERVICES
The Web services  are  an  instantiation model  of  software  architecture  called  service  oriented 
architecture. We first describe the intrinsic characteristics of this model. Then, we detail the Web 
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services  principles while insisting on the  dynamic  aspects.  Finally,  we present  BPEL and its 
major syntactic constructions, the design language of Web services Web (the current standard).

Service Oriented Architecture Characteristics

A service oriented architecture consists in structuring an application, an applicative block even an 
Information System (IS), in contracted services in order to answer the following stakes: (i) the 
implementation of global services between applicative blocksby an interoperability policy ; (ii) 
the seek of re-using inside an applicative block or an application, in particular on the service 
infrastructure level or the business service unit, by a re-use policy.

The re-use takes all its importance especially at two levels. (1) On the service infrastructure 
level, which are without a business value but that each application must inevitably implement for 
its own needs (safety, exchanges, etc). (2) On the fine granularity business service level, that it is 
of the re-use of software components within an application (for example,  a software layer of 
common services for the “batch” chains) or about the invocation of a transverse Web Service of 
“adress validation” type. The re-use of such services avoids the duplication of code between the 
applications or the modules of an application. On the other hand, for the business service coarse 
grain, which exposes the value of an information system outside its borders,  the stake relates 
more to the capacity of these services to interoperate with other IS blocks being its clients.

A  service  oriented  architecture  must  guarantee  technological  neutrality,  weak  coupling, 
transparency with respect to their accessibility, message orientation, composition and autonomy. 
Today, Web services are the best technological solution adapted to answer these objectives.

From Service Oriented Applications To Web Services

Web  service  is  a  specific  type  of  service  identified  by  a  URI  and  showing  the  following 
characteristics:  (i)  it  exposes  its  functionalities  through Internet  using  standards  and  Internet 
protocols ; (ii) it is implemented via a self-descriptive interface based on an Internet standard.

The concept of Web Service is currently articulated around the following three acronyms:  (i) 
SOAP  (“Simple  Object  Access  Protocol”)  is  an  exchange  protocol  between  independent 
applications  of  any  platform,  based  on  the  XML  language  ;  (ii)  WSDL  (“Web  Services 
Description Language”) gives a Web service description in a XML format while specifying the 
called methods, their signature and the access point (URL, port, etc) ; (iii) UDDI (“Universal 
Description,  Discovery  and  Integration”)  standardizes  a  solution  of  distributed  Web  service 
directory, allowing simultaneously the publication and the exploration. UDDI behaves as a Web 
service where its methods are called via the SOAP protocol. The Web service provider publishes 
its service interface in WSDL format. The client searches the Web service according to a set of 
characteristics  defined by the  UDDI directory.  The directory finds  the  service  and sends the 
localization of the server hosting the service. The client asks the server for the suggested contract 
of the service. The server replies with a call format in WSDL. The client invokes the service with 
a SOAP message and the server replies by providing a result.

Current  standardization  around  Web  services  is  a  vast  work  that  aims  to  define  a  true 
distributed infrastructure, which is able to satisfy the application's needs, as well as in term of 
exchange standardization as in term of transverse services. These standards were specified by an 
organization  gathering  the  industrialists,  major  actors  of  the  market:  the  WS-I 
(http://www.ws-i.org/). 
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BPEL

BPEL primarily lies on WSDL to deal with the information relating to the localization of the 
service  and the data  format  of  the  messages.  Here,  we limit  the presentation to  the business 
process  components  while  breaking  them up into  two catégories:  elementary  operations  and 
constructors. We do not take into account the exact (verbose) BPEL syntax in this part. BPEL 
makes it possible to handle variables and types. Notice that we mask some important features of 
BPEL  as  the  compensation  mechanism  which  do  not  have  significant  impact  on  the 
interoperability.

Elementary operations 
• the receive primitive  receive corresponds the reception of a message (coming from a 

client or another service). BPEL offers the possibility of synchronous or asynchronous 
communication. We chose to study only the asynchronous mode because it is easy to 
simulate  a synchronous communication using this  mode,  whereas opposite simulation 
requires the creation of some auxiliary processes. Moreover, in the composite service 
framework,  the asynchronous mode is more suitable for the long transactions and the 
weak coupling.

• the primitive invoke relates to the sending of a message (to a client or another service). 
Contrary  to  the  reception  of  a  message  which  suspends  the  service  if  the  required 
message is not present in the buffer, the process continues its activity after the emission.

• the primitive  raiseproc makes it possible for a process to give up an execution context 
while signaling a fault. The corresponding fault is treated by the current context or is 
transmitted to the global context. If the fault is not cached by any context, it causes the 
end of the process.

• the  primitive  terminate makes  it  possible  for  a  process  to  stop  the  service.  One  can 
compare it to an untreated fault; we will study it only in the case of a process which 
completes normally its treatment. 

The introduced constructors can be seen as processes built from sub-processes and elementary 
operations.

Constructors
• Process  empty (as its name indicates it)  does nothing. It  is introduced into BPEL to 

specify the lack of treatment in some branches of a conditional execution.
• Process sequence executes sequentially the corresponding processes.
• Process  switch consists  of  sub-processes  where  their  execution  is  conditioned  by  a 

Boolean expression of internal variables (thus unknown of the client) and executes the 
first branch of which the condition is satisfied. In an optional way, the last branch can not 
be conditioned by a test.

• Process  while carries  out  repeatedly  a  sub-process  as  long  as  a  Boolean  expression 
(similar to those appearing in switchproc) is satisfied.

• Process scope defines an execution context of a sub-process in the following way. This 
process can be given up on reception of a message whose type belongs to a given set, on 
reaching a deadline which begins with context activation or on a fault signal. In all cases, 
a process is linked to each one of these events.

• Process pick waits for a message whose type belongs to a given set in order to execute a 
process corresponding to each message type. In an optional way, a delay can control this 
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waiting. It is easy to simulate a pickproc process using a contextproc process. Again we 
will not study it explicitly.

• Process  flow begins  a  parallel  execution of  the  corresponding  processes  and finishes 
when all these processes finish. These processes can be synchronized in the execution. 
Since this synchronization is not perceived by the client of the service, we will not model 
it. It is obviously a simplification which we will remove in a future work.

CLIENT SYNTHESIS
One of the contributions of the Web services is that potential  clients discover,  at the time of  
invocation, the service specification. However, that raises for the client the problem of leading, in 
a correct way,  the interaction with the service given the flow of exchanged messages. In this 
section, we develop a formal approach which provides a client synthesis, i.e., an implementable 
description of an entity interacting with the Web service defined with BPEL (named “the service” 
in the sequel). The method breaks up into three levels.

We initially define the formal  semantics of  a BPEL (abstract)  process.  Since time  is 
explicit in the BPEL language, this semantics is given by a (dense) Timed Automaton (TA). Due 
to the BPEL language itself, we use a Process Algebra like approach to build the TA associated 
with every BPEL process.

We then define a suitable interaction relation between a service and its potential client. 
Since this relation must take into account the various timed behaviours of the processes, it should 
be based on the  timed executions  of  the  service  and its  client.  So,  we define the interaction 
relation in the context of Timed (labelled) Transition Systems (TTS), the standard semantics of 
TA.

Finally, and this the most difficult step, we build when this is feasible, a deterministic 
client  TA,  by  means  of  a  specific  synthesis  algorithm.  This  TA  interacts  with  the  server 
automaton underlying the service process according to the interaction relation.

A Semantic Approach for Web Service Behaviour

To  be  able  to  generate  and  run  a  dynamically  built  composed  service  from  Web  services 
described with BPEL, it is first necessary to give a precise semantics to BPEL. BPEL provides a 
set of operators describing in a modular way the observable behaviour of an abstract process. As 
shown in (Staab, 2003), this kind of process description is close to the Process Algebra paradigm 
illustrated for instance by CCS (Milner, 1989), CSP (Hoare, 1985) and ACP (Bergstra, 1984). A 
Process Algebra is a model of behaviours of active entities called processes. Each process may 
execute elementary actions belonging to a given set. Processes may also be combined by means 
of a set of operators, like sequencing, parallel execution, choice between several processes, etc. 
With a set of elementary actions and a set of operators, we can describe more complex processes, 
and new operators as we do in the mathematical framework of algebraic structures (groups, rings, 
etc.). Since time is explicitly present in some of the BPEL constructors (the operators of a Process 
Algebra), we must extend the standard Process Algebra semantics with time. Several models have 
been defined for Timed Process Algebras (see (Nicollin, 1991) for underlying problems), like 
(Baeten, 1991) for timed ACP, (Nicollin, 1994) for ATP,  (Schneider, 1995; Leonard, 1997) for 
timed CSP and timed LOTOS. However, as we try to  construct the timed model of an adapted 
executable client  of  a BPEL service,  we associate directly a Timed Automaton with a BPEL 
process.
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So, we define the semantics of a BPEL process in two steps: first we review how the 
constructors of the BPEL language can evolve (operational rules) when executing actions; then 
we construct a TA for each BPEL process.

Timed Automata A Timed Automaton is an automaton extended with time specification. Time is 
introduced through  clocks, invariants, guards and clock reset. Let us denote by  C(X) the set of 
constraints  over  a  set  X of  variables,  conjunctions  of  elementary  constraints  x c  with 

0, ≥∈∈ ΘχΞξ and  <  { }≥><≤∈ ,,, .

Figure 1: A Timed Automaton with two clocks.

Definition 3.1 (Timed Automaton (Alur, 1994)) A Timed Automaton (TA) is a tuple (L, Aτ  , X, 
E , I, L0, Lf) where:

• L is the set of locations;
• Aτ  = A{τ} is the set of actions and τ ∉  A is the silent action;
• X is the set of positive real-valued clocks; 
• E ⊆  L x C(X) x Aτ x P(X) x L is the set of edges: an edge e is a tuple (s,g,a,R,d) with s  

the source location,  g a guard,  a an action,  R a subset  of  clocks to reset  and d the  
destination location. 

• I ∈  C(X)L assigns an invariant to any location. Elementary constraint operators in  
invariants are restricted to < and ≤.

• L0 is the set of  initial locations.

An execution of a TA is a sequence of transitions and time elapsing between states of the TA. A 
state is composed of a location of the automaton and a value v(x)  per clock x (called the clock 
valuation).  Transitions  are  either  continuous  (time  passing)  or  discrete  (actions  from  Aτ).  A 
continuous transition is (l,v)  → t  (l',v') with l' = l and v' = v + t (where this sum means that t is 
added to the valuation of every clock) provided that  truetvlItt =+≤≤∀ )')((,'0  (l invariant 
remains  true).  A  discrete  transition  is  (l,v)   → a {a}  (l',v')  iff  ∃  (l,g,a,R,l')  ∈ E  such  that 
g(v)=true (guard), v'(x)=v(x) x ∉  R, and v'(x)=0 for x ∈  R (clocks reset). For instance, a possible 
execution of the TA given in figure 2 is: (l0, 0, 0)  → 2,1  (l0, 1.2, 1.2)  → a  (l1, 0, 1.2)  → 7.0  
(l1, 0.7, 1.9)  → b  (l2, 0.7, 0)  → 1.0  (l2, 0.8, 0.1)  → 1.0  (l2, 0.9, 0.2)

Let  us explain how we build the TA of a BPEL process  P.  Locations of  the TA are 
exactly the processes derived from P: these processes correspond to the possible evolutions of P 
when executing BPEL operators. Evolutions are given by a set of so called semantics rules, in the 
line of Structured Operational Semantics (Plotkin, 1981) for Process Algebras. A rule defines 
partially a set of edges in the TA. Actions of the TA model the activities of the processes. Each 
edge is complemented with timing annotations (guard and clocks to reset). Finally, invariants are 
added  to  locations  based  on  the  time  semantics  of  the  BPEL  operators  (like  scope).  We 
successively describe actions of the TA, rules of the BPEL language, handling of the clocks and 
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definition of the guards and invariants of a BPEL process. As usual, we denote by 0 the “process” 
which does nothing, corresponding to the final state of a previously active process.

Actions From the definition of BPEL, four kinds of actions are possible:
• Immediate actions correspond to logical actions such as selection of an alternative or 

throwing an exception. They are not visible to the client and are denoted by τ, the silent 
action. We denote by Ex the set of exceptions which appear in the semantic rules.

• Expiration of a delay is denoted by to.
• Reception and sending of messages are basic Web service interactions. Note that we do 

not model the timing of message transfers. The set of message types is noted by M. A 
sending is denoted by !m and a reception by ?m with m ∈ M. We also introduce !M= {!m|
m ∈  M} and ?M={?m|m ∈  M }. Finally, the generic character ∗  represents either ! or ?.

• In  order  to  check that  the  client  detects  the  end  of  the  service,  we  introduce  √,  the 
termination event. This action simplifies the definition of some rules.

Rules  For each constructor  op of BPEL involving processes  Pi for  i ∈ I, a rule describes the 
possible transformations of the process P= op(P1, P2, ...) according to the actions executed by the 
processes Pi. A generic rule, presented in a standard form has the following structure ({ui} stands 
for {ui | i ∈ I}):

op: 
}){P,(

}){(
'
i

}){(

'

i PNP
PPB

L
ii

i

 →
 →

α

α

 if }){( iαG

The components of a rule are:
• a  Boolean  expression  relative  to  the  potential  transitions  of  some  components  of  P:

}){( '
ii PPB i → α ;

• this condition is supplemented by a second condition, called the guard of the rule, on the 
labels appearing in the transitions, denoted by }){( iαG .

• If the two conditions are met, then a transition is possible for P whose label L({αi}) is an 
expression depending on the transition labels of the subprocesses. If there is no B nor G 
expression, the upper part and the line in the rule are omitted.

• the new process is an expression N(P, {P'i}) which depends of the running process and 
the new subprocesses.

Note  that  if  the  processes  Pi and  op do  not  involve  immediate  actions,  time  passing  is  not 
explicitly modelled in the rules.We present below rules corresponding to each BPEL constructor,
beginning with the elementary processes empty, ?o{m}, !o{m} and throw. Observe also that since 
the invoke process calls a subprocess operation, corresponding message exchanges are “silent” 
actions from the point of view of the client; hence we do not need to model this constructor in our 
perspective of server-client interaction.

The empty process: empty is a basic element, which can only terminate; hence, it is the last action 
that a process can execute:

empty  → √  0.

The ?o{m} and !o{m} processes: the process ?o{m}, which corresponds to the input operation of
WSDL, consists in receiving a message of type m. The process !o{m} (the notification operation 
of WSDL), consists in sending a message of type m:

∗ o{m}  → ∗ m empty ∗ ∈{?, \}.
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The throw process: the throw process r[e] simply raises an exception e which must be handled in 
some way (see below the scope process):

∀ e ∈ E, r[e]  → e  0.

The sequence process (;): the process P;Q executes the process P then the process Q. Since the 
operator  “;”  is  associative,  we  safely restrict  the  number  of  operands  to  two processes.  The 
sequence  process  acts  as  its  first  subprocess  as  long  as  this  process  does  not  indicate  its 
termination. In the latter case, the sequance process becomes the second process in a silent way:

∀ a ≠ π, 
QPQP

PP a

;';
'

 →
 →

 and ∀a, 
';

'
QQP

QQandP
a

a

 →
 → → √

Note that if there is an action a ≠ π such that 'PP a → , then  → √P cannot arise.

The switch process: the process switch[{Pi | i ∈ I}] chooses to behave as one process among the 
set  {Pi}.  Each  branch  of  its  execution  is  guarded  by  an  internal condition.  Conditions  are 
evaluated w.r.t. the order of their appearance in the description. However since the client has no 
way to predict the choice of the service, this order is irrelevant. The main consequence is that 
from the point of view of the client, this choice is non deterministic.The switch process becomes 
one of its subprocesses in a silent way. Let us note that we have implicitly supposed that at least
one condition is fulfilled. In the other case, it is enough to add the process empty as one of the 
subprocesses: 

∀ i ∈ I , switch[{Pi | i ∈ I}]  → τ  Pi.

The while process: the process while[P] iterates an inner process as long as an internal condition 
is satisfied. Like switch, while evaluates in a silent way its condition (because it's an internal 
choice of the process, we do not know what appends exactly). Thus we have two rules depending 
on this internal evaluation.

while[P]  → τ  P ; while[P] and while[P]  → τ  empty

The flow process: the process flow[{Pi | i ∈ I}] simultaneously activates a set of processes {Pi}. 
In the present work, we do not model synchronization primitives associated with flow introduced 
in BPEL4WS and not defined in XLANG. 

This parallel execution is similar to a “fork-join” in the sense that the combined process 
ends its interaction when all subprocesses have completed their execution. Subprocesses of a flow 
process act independently except for one action: they simultaneously indicate their termination.

• Individual actions:
Immediate actions of any process  Pi occurs without delay,  and the flow process is maintained 
between new subprocesses:

∀ a ∈ ExU {τ}, }]{}}{\|{[}]|{[
,

'

'

ji
a

i

j
a

j

PjIiPflowIiPflow
PPIj

U∈ →∈
 →∈∃

Message exchanges are proceeded by the processes Pi and the flow process is maintained between 
new subprocesses:

∀ m∈ M, }]{}}{\|{[}]|{[
)(,},{,,

'*

'*

ji
m

i

a
ixj

m
j

PjIiPflowIiPflow
PIinotEajiandPPIj

U

U

∈ →∈
 →∈∃∈∀≠∀ →∈∃ τ

• Common timeout
The rule about  to describes the case where a subset  J of processes execute simultaneously a  to 
action:
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• Common termination
When all processes terminate, the flow process becomes the null process:
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The scope process: scope(P,E) with 
E def=  [{(mi,Pi) | i ∈ I }, (d,Q), {(ej,Rj)| j ∈ J } ]

may evolve due to P evolution, reception of a message mi, expiration of the timeout with duration 
d or occurrence of an exception ej. We define MI={mi | i ∈ I} and EJ={ej | j ∈ J}.

• P actions
If  P ends then scope also ends. If  P may execute an action a (but not the termination nor an 
exception handling nor a mi message receiving) then scope executes a:

0),(  →
 →

√

√

EPscope
P

     and    ∀a ∉{π} Ex MI , ),'(),(
'

EPscopeEPscope
PP

a

a

 →
 →

• Receiving a message mi

If a mi message is received, then scope(P,E) becomes Pi:

∀i∈I,
i

m

a

PEPscope
P
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 →√∈∀

?
x

),(
)(not  }, ,{Ea τ

• Timeout occurrence
If P does not end, nor handle an exception nor execute a silent action, then the process scope may 
ends with a timeout:

∀a∈{τ,π} Ex, QEPscope
P

to

a

 →
 →
),(

)(not 

• Exception handling
Expected exceptions ej lead to associated processes Rj whereas other exceptions are transmitted to 
the upper level. This last derivation allows detection of an exception e never cached at any level 
including the topmost one, which is an erroneous service definition:

∀j ∈ J,
j

e

REPscope
P j

 →
 →

τ),(       and      ∀e ∉ Ej, 0),(  →
 →

e

e

EPscope
P

The pick process: pick is a special case of the scope process: a scope with a main process P being 
empty:

pick[E] = scope(empty,E).

Locations of  the timed automaton  Initially,  there  is  only one location (the  initial  location) 
corresponding to the studied process. After the construction of a new edge from the automaton, 
using a semantic rule, a new process is computed. If this process does not already label a location 
of  the  automaton,  a  new location is  created.  Because of  the  definition of  the  semantic  rules 
described above, the number of derived processes is finite (and consequently the number of the 
automaton locations). Each location is completed with an invariant (see below).

Clocks,  guards  and  invariants  of  the  timed  automaton  We  associate  a  clock  with  each 
subprocess scope of the process and a particular clock (xim) to manage immediate actions. Given a 
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process, we determine by a downward analysis which clocks are active, i.e. which subprocesses 
scope are in the course of execution. 

The invariant of a location depends on the possibility of an immediate action. In such a 
case, the invariant is xim =0; if this is not the case, the invariant is the conjunction of elementary 
conditions x ≤  d with x, an active clock and d the time defined in the subprocess corresponding 
to x.

For a given edge, the clocks to reset are the inactive clocks of the source process which 
become active in the destination process. xim is always reset.

From each location which contains active clocks, we apply the common timeout rule to 
every subset of active clocks which may reach their temporal bound, giving a set of edges. For 
such an edge, the guard specifies that the clocks of the subset reached their limit while the other 
active clocks did not. Edges outgoing from locations without active clocks have a true guard.

Construction of the Timed Automaton The algorithm building the TA of a BPEL process can 
be summarized as follows:

• It maintains a set of processes to be examined and a partially built automaton. It starts 
with the process and an automaton reduced to only one location.

• When analyzing a process,  it  initially builds the edges corresponding to the semantic 
rules and it inserts each destination process, not yet present in the automaton, in the set of 
the processes to be examined.

• Then, it determines the set of active clocks of the process. From this information and 
already built  edges, it  deduces the location invariant.  Finally,  it  generates the timeout 
edges.

• The Computation of the subset of clocks to reset on an edge is carried out either at the 
construction time of the edge if the destination process was already examined, or during 
the (later) examination of this process.

(1) start
(2) ?Start; scope (while
(!Question) ; !End, …)

(3) [H1<=2]scope (while
(!Question) ; !end, …)

(4) [H1<=2]scope 
(!Question ; …, …)

(5) [H1<=2]scope 
(!End, …)

(6) 
!Evt

(7) 
!TimeOut

[H1:=0]
?Start

[H1<2]
!Question

[H1=2]
TO

[H1<2]
?Evt

[H1<2]
!End DONE

TAU

TAU

(8) 
empty

(9) 
null

!TimeOut

!Evt

[H1=2]
TO

Figure 2: TA of process ?Start;scope(while[!Question];!End,[{(?Evt, !Evt)}, (H1:2, !TimeOut), {}]))

Example  of  the Timed Automaton  of  a  BPEL process  Let  us  apply our  algorithm to the 
process

?Start;scope(while[!Question];!End,[{(?Evt, !Evt)}, (H1:2, !TimeOut), {}]))
This server process receives a  Start message,  then it  starts a scope process associated with a 
timeout event (this timeout can occur after 2 units of time) and also associated with a reception 
event called here Evt. The core of this scope process is a loop while that can send Question zero, 
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one or more times. When the loop terminates, the server sends a message End and derives on the 
0 (null) process. Our algorithm builds the TA of figure 3.

Client-Service interaction relation

Clearly, the built TA is a compact representation of the observable behaviour of a BPEL abstract 
process. However, since we try to construct a model of a client adapted to a given service we 
must study the interaction between these processes at the level of their timed executions. Timed 
executions define exactly the semantics of a TA. The formal model of the set of these executions 
and their relations is a Timed (labelled) Transition System (TTS). A TTS is a tuple (S, S0, A, →) 
with S the set of states, S0 ⊆ S the set of initial states, A a finite set of actions and → ⊆ S × (A 
ℝ≥0) × S the set of transitions. We also write q  → e q' if (q, e, q') ∈→. A transition q  → t  q' 
with  t ∈ ℝ≥0 corresponds to  t units time passing. The states of a TTS associated with a TA are 
naturally its states (pairs (l,v)) and the transitions of the TTS are either the discrete transitions (e 
∈ Aτ) or time passing in a location.

First of all, we describe, in an informal way, what should be a correct interaction between 
two TTS. It is defined as a relation between states of the TTS, like the classical bisimulation 
relation  between  Labelled  Transition  Systems  (LTS).  Obviously,  pairs  of  initial  states  must 
belong to the relation. 

Moreover,  a  pair  of  related  states  must  have  a  coherent  vision  of  the  forthcoming 
interaction. This implies that the relation must take into account mutually observable transitions 
only, i.e., discarding τ actions. Hence, we define the observable transitions of a TTS  by s ⇒

a  s' 

iff s  →
∗∗ ττ a s', s ⇒

ε  s' iff s  →
∗τ  s' and s ⇒

d  s' iff s  → ndd ττ ...1  s' with ∑ = dd i .

Then, we could require that (in a similar way to bisimulation), when a state  s of a pair 
(s,s') can evolve by an observable transition to a state s1, s' should have a transition with the same 
label leading to a state s'1 composing with s1 another pair of consistent states.

However, we must be careful. First, if a TTS sends a message then the other TTS must be 
able to receive it. So, it is necessary to introduce the concept of complementary actions m? =!m, 

m! =?m and ∀ a ∉ {!m}m∈M U {?m}m∈M aa = and to require that the “synchronized” evolution 
be carried out by complementary actions.

But such a definition is too strong because it does not distinguish between the different 
nature of sending and receiving messages: sending a message is an action whereas receiving a 
message is a reaction and cannot spontaneously occur. Consequently, in a more suitable way, the 
interaction relation requires that, if in a state s of a pair (s,s'), a TTS can receive a message m, 
then  (1)  there  is  a  state  s'' of  the  other  TTS  not  distinguishable  of  s' from the  observable 
transitions point of view which can send  m and, (2) in  s' the other TTS can send a message 
(possibly different from  m). The first condition reflects the fact that the first TTS is not over-
specified while the second implies that it will not indefinitely wait a message.

These considerations lead to the following definition.
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Definition 2 (Interaction relation) Let  T1 = (S, {s01}, A,  →1) and T2 = (S, {s02}, A,  →2) be two 
TTS. Then T1 and T2 interact correctly iff ∃ ∼ ⊆ S1× S2 such that s01 ∼ s02 and ∀ (s1 , s2) such that s1 

∼ s2:
• Let a ∉ {?m | m ∈ M }:

o if ∃ s1 1⇒
α

 s’1, then ∃ s2 2⇒
α '

2s  with s’1 ∼ s’2 and 

o if ∃ s2 2⇒
α

s’2, then ∃ s1 1⇒
α

 '
1s  with s’1 ∼ '

2s

• Let m ∈ M: if s1 1

?

⇒
µ '

1s  then 

o ∃ 2s
2⇒

ω
s2, ∃ 2s

2⇒
ω +

2s , ∃ +
2s 2

!

⇒
µ '

2s  with s1 ∼ +
2s  and '

1s ∼ '
2s  where w is a word 

on A\{τ};
o ∃ 2s

2

'!

⇒
µ '

2s

•      Let m ∈ M: if s2 2

?

⇒
µ '

2s  then 

o ∃ 1s
1⇒

ω
 s1, ∃ 1s

1⇒
ω +

1s , ∃ +
1s 1

!

⇒
µ '

1s  with +
1s ∼ s2 and '

1s ∼ '
2s  where w is a word 

on A\{τ};
o ∃ 1s

1

'!

⇒
µ '

1s

Figure 3: Subset of service locations (left) -- associated client location (right)

Synthesis Algorithm

We are now in position to present the synthesis algorithm of the client. First of all, the client must 
be implementable, which means that its behaviour must  be deterministic.  In addition, since it 
must take into account the clocks of the service, and has to interact with the service as explained 
above, its behaviour must be expressed with a TTS. This leads us to construct a client's model as 
a deterministic TA having an interaction relation with the service automaton.

Before describing this algorithm, let us notice that some BPEL processes do not admit a 
client  able  to  correctly  interact  with  them.  For  example,  the  process   switch[?o[m],?o[m']] 
chooses, in an internal way, to receive either a message m or a message m'. Hence a deterministic 
client must send either m, or m'. However, once its choice is carried out, the service waits only for 
one of the two messages. In other words, the corresponding two states of the TTS cannot be in an 
interaction relation. Note that, in contrast, the process switch[!o[m],!o[m']] admits a deterministic 
interacting client which waits for either the message  m or the message  m'. The same problem 
arises with the service process  while{!a} since a client does not know how many messages to 
receive before leaving the loop.  Clocks are another cause of ambiguity (temporal  ambiguity) 
which  will  be  explained  latter.  We  say  that  a  process  is  ambiguous if  it  does  not  admit  a 
deterministic TA which is in interaction relation with him.
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The  general  approach  of  our  algorithm is  similar  to  a  determinization  procedure:  a 
location of a client TA corresponds to a subset of locations of the service TA linked with edges 
labelled with τ (figure 4). However, determinization of TA is known to be undecidable in the 
general case (Alur, 1994). So, similarly to approaches which determinize subclasses of TAb(Alur, 
1999), our algorithm seeks a TA with the same clocks only as the service TA.

The algorithm builds the client automaton AC, processing potential client locations it has 
previously defined and pushed on a stack.  Building of AC stops either when an ambiguity is 
detected (returning “fail”)  or  when the stack is empty,  returning the client  automaton.  Let us 
detail the algorithm for a given client potential location lC.

A step of the algorithm Let  LS(lC) be the set of service locations temporary associated with  lC 

(the initial location l0,C is associated with the initial location of the service automaton AS. We have 
the following steps:

• Creation of a new client location: we compute the ε-closure of  LS(lC),  i.e. all reachable 
locations from LS(lC) by sequences of τ LS-actions. If this subset (say L’S(lC)) is already 
associated  with  a  location  l'C of  the  client,  then  edges  of  the  client  TA which  have 
generated lC (i.e with destination lC) are redirected to l'C and we are done with the step. 
Otherwise, a new client location is created.

• Check for temporal ambiguity: we compute the subset L”S(lC) of L’S(lC) with no τ labelled 
outgoing edge and we check if all locations of L”S(lC) have the same set of clocks. If this 
is not the case we say that the service is temporally ambiguous and the algorithm returns 
fail.

• Check for interaction relation: we verify that the interaction between lS and lC is satisfied 
(see below). The algorithm returns fail if this is not true.

• Creation of new edges and new potential client locations: each outgoing edge of L’S(lC) 
not labelled with τ (visible service actions) gives rise to an outgoing edge from lC (the 
associated client action) labelled with its complementary action. Destination locations of 
these edges provide new potential client locations, pushed on the stack.

• Guards and invariants definition: we copy to  AC,  clock guards of the edges and clock 
invariants of the locations of AS.

Interaction verification  To verify the interaction relation,  we compute  and then analyze the 
Terminal  Strongly Connected Components (TSCC) of the server locations set L’S(lC) with respect 
to τ actions. Client and server interact correctly iff the following properties hold:

• If one of the TSCC does not send any message, then none of the server locations can send 
a message,

• otherwise,  each TSCC must  send a message.  The set  of  messages  sent  by the server 
locations is the set of messages sent by all the TSCC.

• The set of messages received by the server locations must exactly be the same as the set 
of messages received by any of the TSCC.

• If any TSCC may execute √ (termination) then any TSCC must also be able to perform it, 
and so the server locations set can do it.

Example  Figure  5  gives  the  synthetis  client  TA  of  the  server  TA  ?Start;  scope  (while  [!
Question] ; !End, [{(?Evt, !Evt)}, (H1:2, !TimeOut), {} ]) shown in figure 3. Observe that some 
locations are “merged” in the client TA. Location labelled (2) in the server is present in the client 
with the same label (2) but its outgoing edge receives the message Start, whereas the client sends 
this message. Location (3) in the client is more involved. The ε-closure L'S(3) of LS(3) is the set 
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{(3), (4), (5)} of server locations. Although these locations are important in the server behaviour, 
the client could not know whether the server is in location (3), (4) or (5). Hence, the algorithm 
“merges” these three locations in the client location (3). The different outgoing edges of L'S(3) are 
adapted to the client merging. Other locations are generated in nearly the same way as the client 
location (2).

(1) start (2) (3) [H1<=2]

(4)

(5)

(6) (7)
[H1:=0]
!Start

[H1<2]
?Question

[H1=2]
TO

[H1<2]
!Evt

[H1<2]
?End

DONE

?TimeOut

?Evt

Figure 4: Client Timed Automaton for the server Timed Automaton of figure 3

Dense versus discrete time 

We have chosen a dense time model for our formal semantics of BPEL process behaviours. In a 
previous work (Haddad, 1994), the discrete time semantics was preferred for simplicity reasons. 

The discrete time approach has the following drawbacks. First, the passing of a unit of 
time  is  modelled  by an  explicit  transition (χ)  in  the  transition  system which means  that  the 
compact  representation  of  timing  constraints  by values  is  now hidden in  the  model  by their 
combination with logical transitions. In other words, whereas handling correctly the interaction 
with the service, the client automaton is hardly understandable by a user. Moreover if two timing 
constraints are not of the same order, the time unit must be chosen w.r.t. the shorter one leading to 
a combinatory explosion of the automaton due to the “translation” of the longer one.

Figure 5: False ambiguity detection for process switch(!o[c],scope(!o[a],[{(b,empty)},(4,empty),{}])

Conversely, the derivation of the client TA from the operational rules is more intricate 
than in the discrete time context since, on the one hand, the values of the timing constraints are 
handled symbolically with the help of clocks and, on the other hand, given some expression, we 
must determine which clocks are active and how they govern the guards of the edges. Moreover, 
our  algorithm tries  to  synthetize  a  client  TA with  the  same  clocks  as  the  server  TA.  This 
restriction,  due  to  the  fact  that  non  deterministic  TA  are  strictly  more  expressive  than  the 
deterministic  ones  may lead  to  false  ambiguity  detection.  For  instance,  consider  the  process 
(figure 6) switch: one branch of this switch starts with a scope process and another branch does 
not  activate  a  timing  constraint.  Our  algorithm detects  this  process  as  an  ambiguous  service 
although it may be that a client TA (with a different set of clocks) exists: in one branch there is an 
active clock whereas in the other one there is none and the client cannot decide which edge to 
follow. In a discrete time  framework,  the previous (complete)  method produces a client.  We 
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implicitly work at a (discrete) TTS level. In the dense time framework, we work at a higher level 
(the TA one). This incompleteness of the algorithm is the price to pay in order to obtain a more 
compact  representation  of  the  client  but  we  consider  that  this  restriction  on  the  clocks  is 
reasonable  because  such  false  temporal  ambiguity  detections  correspond to  unrealistic  BPEL 
processes.

JCWSL: a design language for Web services 
JAVA Complex Web Service Language (JCWSL) is a  JAVA script language extended with the 
BPEL4WS constructors. The main goal is to design the CWS using the  JAVA language and to 
define,  in the same time,  the service behaviour using BPEL4WS constructors.  The choice of 
JAVA is essentially due to its popularity in the Web services community. The BPEL constructors 
are defined and implemented with respect to the semantics defined by the description language.
JCWSL offers the following properties:

• High expressivity level. It supports JAVA language, and therefore offers a high level of 
expressivity in order to define and design a complex Web service.

• Transparency.  Local  and/or  distant  Web  services  orchestration  is  integrated  in  the 
language in a transparent way.

• Flexibility. It offers two types of operation's invocation: visible  or  invisible  invocation. 
A visible invocation appears in the service behaviour, while an invisible one executes the 
invocation without appearing in the service behaviour.

• Strong coupling.  JCWSL extends in an elegant  and natural way the  JAVA language. 
Thus, the operations and messages manipulation are  visible  and  accessible  in 
both parts of the program i.e.the implementation (JAVA) and the behaviour (BPEL) parts. 

UML modelling

The Unified  Model  Language  (UML) is  widely  used  in  the  development  of  object  oriented 
software  and  has  also  been  used  for  business  process  modelling  and  system design.  In  the 
literature, there is different works that propose to map UML modelling to BPEL (Baresi, 2003; 
Skogan,  2004;  Gronmo,  2006;  Gardner,  2003;  Cambronero  2007}.  Among  all  this  papers, 
Cambronero  2007 seems  to  be,  in  our  sense,  the  most  exhaustive  since it  proposes  different 
stereotypes  and  covers  the  main  orchestration  constructors  essentially  those  concerning  time 
constraints.  In  the  sequel,  we use  their  profile  in  order to model  our example.  Due to  space 
reasons, we restrict our UML modeling of our example to the sequence diagram.

Example 

We present, in this section, the development in JCWSL of a CWS (Example 1) implementing an 
advanced  quiz  game  based  on  an  existing  BWS.  The  BWS,  located  at 
www.hlrs.de/quiz/quiz.wsdl, implements a simple quiz game consisting of the invocation of a set 
of questions with different difficulty levels,  and checking the correctness of the answer. This 
example presents a new game where the goal is to answer a fixed number of questions within a 
fixed delay.  The difficulty level of any question can be chosen randomly or specified by the 
player. Here are the different steps of the application:

• The player requests to start the game by specifying the number of questions 
(nbQuestion).

• The player asks for a question with a given difficulty level or a random one.
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• The player has to answer nbQuestion questions.
• The player must answer within a fixed delay otherwise the service skip to the next 

question.
• At the end, the final score, computed according to the number of correct answers and 

their difficulty level, is sent to the player.

The Sequence diagram of the example is presented in the figure 7. Note that we use only 
The <<RTAction>> stereotype form (Cambronero 2007) to model the time out on the player 
answer. 
 

The CWS uses the BWS cited earlier to implement this game. The BWS implements the 
following operations:

• randomQuestion returns a question of any level;
• randomQuestionByDifficulty returns a question of a specified level;
• checkCorrectAnswer checks the correctness of a user answer for a given question.

Thus, the CWS includes in the  import block, the importation of the BWS to be able to 
invoke  its  operations.  It  also needs  to  include the  input/output  JAVA package for  displaying 
purposes (lines 3 and 4). 

After the import block, the definition block includes a declaration block and a main block. 
In the declaration block, operations and messages used later must be declared here. Here, five 
types of messages are defined (lines 9 to 30):

• Answer: is the answer on a given question and it includes the question and its answer;
• Level : defines the difficulty level of a question;
• ChoiceMode: represents a notification message;
• Questions: represents the number of questions;
• Score: represents the final score;

and the following operations:
• beginPlay: is an input output operation which allows  to begin the game;
• randomLevel: is an input operation which allows player to choose random level;
• checkAnswer: is an input operation which receives the answer on a specified question;
• difficultyLevel: is an input operation which allows player to choose a difficulty level;
• getScore: is an input operation which allows to get the score;
• finalScore: is an output operation which sends the final score;
• displayQuestion: is an input operation which allows to display a question;

Several  messages  and operations defined earlier  are instantiated.  There are either defined 
from the imported BWS ''squiz'' types or in the CWS (lines 35 to 45). 

The implementation of the CWS begins with the main method (line 34). In addition to the 
instantition of messages, the main method is composed of a behaviour block identified by one of 
the BPEL constructors and/or an  implementation block identified by the  JAVACODE keyword. 
These two blocs may be nested and, all the variables declared in the JAVACODE section can be 
accessed by the BPEL constructors. 
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In  this  example,  we  first  define  the  CWS  behaviour  using  the  different  BPEL 
constructors. The sequence constructor specifies that the execution of the following instructions 
must be performed sequentially. 
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The definition of this example in JCWSL is as follows:

1
2
3
4
5
6
7

// Importation block 
import java.io.*;
importBWS squiz = "http://www.hlrs.de/quiz/quiz.wsdl";
 
public CWSDefinition jeuxQuiz{
// Declaration block

19

Figure 6: The sequence Diagram of the composite Quiz sercvice.
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8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

public DefMessage Answer{String choice;}
public DefMessage Level{String l;}
public DefMessage ChoiceMode{String message;}
public DefMessage Questions {int nb;}
public DefMessage Score{int value;}
public DefOperation beginPlay(Input/Output: Questions q,ChoiceMode 
mychoice) {
        JAVACODE{ mychoice.message="Choose a Mode (Random or 
                  specified level): ";
        return mychoice;}
public DefOperation randomLevel(Input: Level lv) {}
public DefOperation checkAnswer(Input: Answer a) {}  
public DefOperation clientLevel(Input: Level lv) {}
public DefOperation getScore(Input: Score s) {}
public DefOperation finalScore(Output: Score s) 
        {JAVACODE{return s;}}
public DefOperation displayQuestion(
        Output:squiz.GetRandomQuestion0Out m) { JAVACODE{return m;}} 

// Main block 
 
void main { 
 Variables{
  Variable(vQuestions,Questions);
  Variable(vScore,Score);
  Variable(currentQuestion, squiz.GetRandomQuestion0Out);
  Variable(currentAnswer,squiz.CheckCorrectAnswerByIdIn);
  Variable(questionAnswer,squiz.CheckCorrectAnswerByIdOut);
  Variable(clientAnswer, Answer);
  Variable(vLevel, Level);
 }//Variables
 Sequence{
  JAVACODE{
   int nbQuestion=0;
   vScore.value=0;
  }//JAVACODE
 Receive(beginPlay,vQuestions);
  While{JAVACODE{nbQuestion<vQuestions.nb},
   Sequence{
    Pick{
     OnMessage(randomLevel,vLevel) {
      Sequence{
       Invoke(squiz.randomQuestion, ,currentQuestion);
      }//Sequence
     }//OnMessage
     OnMessage(clientLevel, vLevel) {
      Sequence{
       Invoke(squiz.randomQuestionByDifficultyLevel,
              vLevel.l,currentQuestion);
      }//Sequence
     }//OnMessage
    }//pick
   Reply(displayQuestion,currentQuestion);
   Pick{ 
    OnMessage(checkAnswer,clientAnswer){
     JAVACODE{
       currentAnswer.setId(currentQuestion.getId());
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       currentAnswer.setGuessedAnswer(clientAnswer.choice);
      }//JAVACODE
      Invoke(squiz.checkCorrectAnswerById,
             currentAnswer,questionAnswer);

JAVACODE{
  if((questionAnswer!=null)
          &&(questionAnswer.getResult()==true)) {

     vSore.value =
             vScore.value+currentQuestion.getDifficultyLevel();

 }//IF
}//JAVACODE

     }//OnMessage
     OnAlarm(For="5"){JAVACODE{;}
     }//Pick
    }//Sequence
    nbQuestion++;
    currentQuestion=null;
    currentAnswer=null;
    questionAnswer=null;
    clientAnswer=null;
   } // end of sequence for while
  } // end of while 
  Receive(getScore,vScore);
  Reply(finalScore, vScore);
 } // end sequence for main
 } // end of main
}// end of CWSDefinition

Example 1: Quiz game example

There  are  two  types  of  function  for  calling  an  operation:  execute  or  invoke.  Both 
functions  allow the assignment of an input, output or input/output messages. The main difference 
between these two functions is the external visibility. In this example, we call the invoke function 
which takes an input and output messages (“modeChoice” and “mode” respectively) and which is 
visible for the outside (i.e. it is part of the CWS behaviour).

The pick constructor is then used to wait, a given time, for a player's answer. The CWS 
switches then according to the chosen mode in order to send a question of the appropriate level. 
After sending a question, the service will also use the pick constructor to implement a deadline 
after which it will go to the next question. In fact, it waits for 5 units of time the reception of the 
answer before going to the next question. At the end, the CWS returns the final score computed 
according to the received answers (line 95).

JCWSL Description

The development  of  a CWS with JCWSL is divided into two sections:  an importation block 
importBlock and a definition block  defBloc.  The definition block represents the body of the 
complex service. 

CWSLanguage ::≡ ( <importBloc> <defBloc> )+
Importation block:  importBlock: is composed of two importation types,  JAVA packages and 
Web service  importations.  Since our  language is  an extension of  the  JAVA language,  JAVA 
packages needed by a CWS are imported exactly as in any JAVA program. 

importBloc ::≡ ("importBWS" <ID> = <STRING>";"| "import" <ID> (.<ID>)* ";")*
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Web  service  importation  allows  to  include  in  the  complex  Web  service  the  required  Web 
services. An imported Web service is identified by a unique name mapped with its URL, and 
which acts as a namespace for the service. Inside the definition block, a service data structure can 
be  accessed  exactly  the  same  way  as  any  JAVA package.  In  fact,  an  imported  service  is 
considered as a package composed of a set of classes representing the messages, the operations 
and the types declared in the WSDL file. Each service library is composed of a set of classes: a 
class for each complex type defined in the types section in the WSDL file, a class per message 
and a set of stub classes representing a client for each binding type.

Stub classes have the same name as the binding element in the WSDL file and are composed of 
the list  of service operations accessible via the link.  importBloc may contain zero or several 
import instructions. 

Definition block represents the body of the CWS. It contains the definition and the behaviour of 
the complex Web service. It is composed of two blocs: a declaration block declaration and a 
main block main.

defBlock ::≡ "public" "CWSDefinition" <ID> (<declaration> <main>)+

Declaration block is composed of local operations declaration and/or messages declaration. This 
block is optional, no messages or operations needs to be declared.

declaration ::≡ (<opdeclaration> | <messDeclaration>)*

An operation is identified by a name and one or two messages depending on its type. There are 
three types of operations : input, output, and input/output. The operations defined in this section 
are appended to those defined by the imported Web services. An operation may also include a 
body composed of JAVA code. 
opDeclaration ((( "public defOperation" <operationName>

"(" "input" ":" <messageType> <ID> | "output" ":" <messageType> <ID>
| "input" ":" <messageType> <ID> "," "output" ":" <messageType> <ID>

")" "{"<operationBody>"}"

operationBody is the main part of the operation. It is composed of either a set of JAVA 
instructions  JAVAInstructions  or  the  BPEL  constructor  execute,  or  both. 
JAVAInstructions is preceeded by the JAVACODE keyword.

operationBody ((( (<java> | <execute>)* <java> ((( "JAVACODE" {(<javaInstructions>)+}

A message is identified by its name and is composed of one or several variables. Message 
declaration does not contain methods. Automatically, while developing the CWS, a set of 
management  methods  are  created.  These  methods  have  the  following  form: 
get<variableName> and set<variableName>.

messDeclaration ((( "public defMessage" <messageName>
"{"(<variableType> <variableName>";")+"}"

Main block The second part of defBlock is the main block. It contains the definition and 
the behaviour of the CWS. It is composed of the service activities and of JAVA code. 
Service activities are defined using BPEL constructors, whereas the service definition is 
written in JAVA. Those two types are not overlapped in our language, but may be nested. 
However, the visibility of the JAVA variables is preserved outside the JAVACode bloc 
and can be used in the activity blocs. In the activity bloc, only constructors imbrication 
and operation invocation are allowed.
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main ::≡ "void" "main" "{"(<process>|<java>)* "}"

process represents CWS behaviour and is composed of the following constructors:

process ::≡ <pick> | <switch> | <opCall> | <sequence> | <while> | <wait>

pick is an event handler to catch the cited events. An event is either the triggering of an alarm or 
a message reception. It suspends the execution until the occurrence of an event, and then executes 
the appropriate code.

<pick> ::≡ "pick" "{" (<evt>)+ [<delayfor>] "}"

<evt> ::≡ "eventhandler" "{" <invoke> "}" "{" (<process>)* "}"

<delayfor> ::≡ "delayfor" "(" <integer_literal> ")" "{" (<process>)* "}"

switch is a conditional statment. It is used to perform different actions depending on the value of 
the associated condition.

switch ::≡ Switch ( "{" "JAVACODE" "{"<condExpr> "}" "}" "{ <process> "}")

opCall allows to call an operation in a visible or invisible way. Therefore, it is composed of two 
constructors  invoke and  execute.  In  both  cases,  the  operation  type  is  either  one  way  or 
request/reply.  invoke and execute are executed exactly the same way, the only difference is the 
external visibility of the operation.   invoke allows to invoke an operation in a transparent way. 
The invocation is visible from outside the CWS and is taken into consideration while defining the 
CWS behaviour. Whereas, execute allows to invoke an operation internally, i.e. the invocation is 
not visible from the outside and is not taken into account when defining the CWS behaviour. In 
both cases, inputVariable and outputVariable represent messages.

 opCall ::≡ (<invoke> | <execute>)

 invoke ::≡ "invoke" "(" <operationName> [,<inputVariable> | 
     (<inputVariable>, <outputVariable>) ] ")"

execute ::≡ "execute" "(" <operationName> [,<inputVariable>|
    (<inputVariable>, <outputVariable>) ] ")"

sequence defines a block of  instructions to be executed sequentially.

sequence  ::≡ "sequence" "{" <process> "}"

while is a loop statement. It executes the block of instructions as long as the condition is satisfied.

while ::≡ "while" "{" "JAVACODE" "{"<conditionalExpr> "}" "}"  "{"<process>"}"

wait suspends the  process  execution for  the  specified duration or  until  the  expiration of  the 
deadline.

wait ::≡ "Wait" ("for"=<duration-expr> | "until"=<deadline-expr>)

WEB SERVICE DESIGN FRAMEWORK

Platform Architecture

The platform allows to build CWS from BWS. It  offers different modules in order to define, 
compile and deploy CWS. It is composed of four modules: search module, aggregation interface, 
compiler, and deployment module Figure 7 illustrates the different modules of the platform as 
well as their different interactions.
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Figure 7: Platform Architecture

Search module. This module is a UDDI client which allows to explore and search the UDDI 
registry in order to locate basic Web services. It is used by the generator to locate and upload 
BWS and consequently communicates with the UDDI registry.

Aggregation interface. It is a CWS development environment. It allows to define CWS from 
BWS operation's aggregation. The environment is based on JCWSL.

Compiler module. The generator takes in entry the description of the CWS written in JCWSL 
and generates the corresponding code and behaviour in BPEL. It is composed of an analyzer and 
a generator.

• The analyzer applies syntactic and semantic analysis.
o During  syntactic  analysis,  the  analyzer  checks  the  file  conformity  with  the 

language grammar and the validity of each BWS, constructs for each BWS its 
library <<package>>, and generates the syntactic tree of the CWS.

o The semantic analyzer  ensures that  the CWS fulfills  some properties.  In fact, 
giving the semantic tree and an abstraction algorithm, it generates the observable 
description of the service and its TA in order to check service ambiguity.

• The generator takes as input the TA and the syntactic tree generated earlier, and generates 
the CWS Java code.

Deployment  module. It  generates  the  Web application which hosts  the  Web service.  It  also 
defines an implementation of the service communication model. In fact, information about the 
service communication is used in order to define the binding part of the service description.

Publication module. It allows to publish, in a UDDI register, the BPEL4WS file of the service. 
The platform provides, in addition to the utilities necessary for the design and the development of 
complex services, a module named generic client, which generates a client for a complex service 
(see section Client Synthesis).

Client module. It allows to generate automatically a client to interact correctly with the service if 
the service is not ambiguous, or an error otherwise. The generic customer is composed of two 
submodules: a synthesis module and an execution module. The synthesis module recovers, from 
the  UDDI  directory,  the  service  specifications  in  BPEL,  analyses  and  then  produces  the 
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corresponding timed automaton.  The execution module is a middleware which, at  the service 
invocation time, loads the corresponding timed automaton in order to manage the client/service 
interaction.

An Application Life Cycle

This section describes, in detail, the various stages of a complex Web service installation using 
our platform: the service design, automatic generation of the service including the publication and 
the deployment, and finally the generation of the corresponding client.

Complex Web service design. The developer has a framework in order to describe its complex 
Web service (CWS). A module, in relation with the UDDI registry, can be used to locate existing 
Web services. The description of the service is made using the JCWSL language which makes it 
possible  to  describe  at  the  same  time  the  observable  behaviour  of  the  service  with  BPEL 
constructors and the service implementation with the JAVA language.

CWS generation, publishing and deployment. The second step deals with the deployment of 
the CWS and includes the CWS generation, the behaviour generation and publishing, and the 
CWS deployment. From the file “.jcwsl”, the compiler generates the CWS behaviour in BPEL 
and the Web application in JAVA. The publication of the complex service is carried out exactly 
the same way as for a basic service. Then, the deployment of a complex service consists of the 
creation of a JAXM servlet which plays the role of a proxy between the client and the service. 
When  the  servlet  receives  a  message  corresponding  to  the  activation  of  an  object  (the  first 
message in the protocol of the service), it creates an instance of the corresponding class of the 
complex service, initializes the correlation attributes (according to the message value), adds it in 
the queue and carries out its behaviour (i.e. starts the corresponding thread). The servlet URI 
corresponds to the address of the complex service. Each received message is redirected towards 
the instance of the corresponding class according to the object and the attributes values of the 
correlation instance.

Service invocation. The last stage is the client generation starting from the service description in 
order  to  allow  a  correct  interaction  with  the  service.  It  consists  of  the  generation  and  the 
deployment of a JAXM servlet which acts as an input/output interface of the client instance of a 
given  service.  The  servlet  acts  as  a  dispatcher  which,  at  the  reception of  a  SOAP message, 
redirects it towards the corresponding client instance. The initialization of an interaction creates a 
new automaton and links it to the servlet. The servlet URI address is used by all the clients.

Implementation

Parser Generation The choice of JAVACC (JAVA Compiler Compiler) to describe our language 
grammar is the natural choice since it extends  JAVA.  Once the description of the grammar is 
finished, it is written in a notation similar to BNF. In fact, JAVACC works with a .jj file. When 
the  JAVACC is run against the .jj file, it generates a number of  JAVA source files. One is the 
primary parsing code, Parser_1.JAVA, which you will invoke from your application when you 
have an expression to parse.  JAVACC also creates six other auxiliary files that are used by the 
parser. Three files are specific to this particular grammar; the last four are generic helpers that are 
always generated no matter what the grammar looks like. Once  JAVACC has generated these 
seven JAVA sources, they can be compiled and linked into a JAVA application. The new parser 
can be used to parse the description file for a CWS written in JCWSL. It produces a BPEL4WS 
describing the behaviour of the corresponding CWS.
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Internal  Structure  While  parsing  the  CWS  definition  file,  an  internal  representation  is 
automatically created. This representation is a set of objects representing the different element of 
the service. Thus, an instance of the object called definition is created. Then, the other elements 
of the CWS are added i.e. the local messages, local operations, imported Web services. In order 
to  do so,  each time  the  parser  meets  an element  of  the  service,  it  creates  the  corresponding 
element. An object called import containing the set of imported services is built. A CWS may 
declare local messages and operations. A message class is created for the set of local messages as 
well as an  operation class is created for the set of local operations. A portype class is created in 
order to be able to invoke the declared operations. In a portType, it is possible to gather several 
operations. Operation class is always linked with the message class, since an operation handles 
messages (one or two). As for the behaviour block, it is represented as a set of activities which 
defines the behaviour orchestration of the CWS. Those activities are defined in the definition 
class.  All  the previously cited classes are designed using the  JAVA API.  JAVA,  associated to 
XML allow a simple and rapid development of CWS. These classes are represented in XML 
format validated with XML Schema Language.

Related Work
The composite Web service adds two dimensions by comparison to the simple ones; they are 
statefull  and  they  obey to  an  operational  behaviour  (interaction  protocol).  This  raises  many 
theoretical and practical issues which are part of ongoing research (Nakajima, 2002). Due to the 
lack of a formal semantic to BPEL (its semantic is defined using English prose), it is hard to 
define formal tools and methods that can validate and verify behavioural properties by acting 
directly  on  BPEL  expressions.  The  main  approach,  followed  by  most  of  the  state-of-the-art 
works, is to translate a service behaviour (BPEL process) into a mathematically well-founded 
model, considering just the semantical elements that are relevant for the property to be verified. 
Then,  model-checking methods can be applied to the  formal  representation of  the composite 
service behaviour. There are three major formalisms which were successfully applied: finite state 
Machines (FSM), process algebras (PA) and Petri Nets (PN). A great number of works therein 
aims to verify specific properties of a BPEL process.

In (Breugel, 2005), the authors translate a given BPEL process into a process algebraic 
expression in order to verify its  control  flow. Based on this  work,  they provide an in-depth-
analysis  of  BPELs  Dead-Path-Elimination  by  formal  means.  In  (Ferrara,  2004),  a  similar 
approach is given and which translates to LOTOS. In previous works, we give an operational 
semantic to Xlang (ancestor of BPEL) in order to verify the ambiguity (non usability) of a Web 
service behaviour (not  deadlock-free)  (Melliti,  2003;  Haddad,  2004).  In (Schlingloff,  2005) a 
similar  work  is  done  using  Petri  Net.  In  (Stahl,  2004;  Ouyang,  2005;  Hamadi,  2003)  and 
(Schmidt, 2004), the authors propose a pattern-based translation of activities into Petri Nets, and 
then they use Petri Net properties to check properties.

Most  of  these  works  try  to  verify  properties  related  to  a  single  BPEL  process  (the 
coordinator). In this paper, we begin by giving an observable operational semantic to abstract 
BPEL.  We consider  it  as  a  grammar  of  timed  process  algebra  and we define  its  operational 
semantic according to its informal definition. This step allows us to model the partners behaviour 
using a TTS (by applying operational rules) with regard to their interaction.

Conclusion
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The  approach  developed  in  this  paper  emphasizes  a  new  interest  of  formal  semantics. 
Traditionally,  equipping a  language of  a  formal  semantics  has  two main  goals:  allowing the 
programmer to understand the language constructors in order to write correct applications and 
ensuring that the execution of a program is independent of the compiler and the target machine. 
In our case, the search of a semantic for complex Web services led us to raise an ignored problem 
of the experts:  the service ambiguity.

Moreover,  our  approach  (partially)  answers  to  the  service  dynamicity  since  a  client 
discovering a new service (or  an existing but  modified service) generates a timed automaton 
whose execution makes it possible to correctly interact with the service. Finally, this semantic 
decreases  the  cost  of  software  development  since  the  interface  generation  and  the  service 
deployment shares many components.

Our second contribution aims at unifying the design and the implementation process by 
providing a language that mixes BPEL with JAVA. In our environment, the designer starts from a 
UML description then transforms it in a BPEL specification and enlarges it (when necessary) in a 
JCSWL program that will translated in JAVA and deployed on the server.

Our future work will  exploit  this semantics in order to solve the service composition 
problem, namely how to guarantee that composed service does not block itself, never finishes, 
etc. In a complementary manner, we carry our efforts on the integration of the orientation aspect 
concepts in Web services. The weaving is obviously an activity related to the execution and thus 
lends itself naturally to our approach.
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