
A Concurrency-Preserving Translation
from Time Petri Nets to Networks of Timed Automata

Sandie Balaguer, Thomas Chatain, Stefan Haar
LSV, ENS de Cachan/INRIA/CNRS

Cachan, France
{balaguer, chatain, haar}@lsv.ens-cachan.fr

Abstract—Real-time distributed systems may be modeled
in different formalisms such as time Petri nets (TPN) and
networks of timed automata (NTA). This paper focuses on
translating a 1-bounded TPN into an NTA and considers an
equivalence which takes the distribution of actions into account.
This translation is extensible to bounded TPNs. We first use
S-invariants to decompose the net into components that give
the structure of the automata, then we add clocks to provide
the timing information. Although we have to use an extended
syntax in the timed automata, this is a novel approach since
the other transformations and comparisons of these models did
not consider the preservation of concurrency.

Keywords-concurrency; timed traces; time Petri nets; net-
works of timed automata; concurrency-preserving translation

I. INTRODUCTION

Techniques that aim at improving reliability and safety
of automated systems have dramatically improved during
the last thirty years (synthesis, model-checking, test. . .).
Studying a complex system generally requires the use of
multiple techniques and tools. Consequently the system must
be translated from one formalism to another. The difficulty is
to show that the different representations are equivalent. This
work proposes a translation between two popular formalisms
that describe timed concurrent systems: 1-bounded time Petri
nets (TPN) [17] and networks of timed automata (NTA) [3].
These formalisms have different histories but they were both
designed to model real-time, distributed systems. Moreover
they both handle urgency, which is a key feature without
which most real-time systems cannot be modeled correctly.

Because these two formalisms are used by different ver-
ification tools, transformations have been proposed, and we
remark the following. (i) The transformations mainly rely on
natural structural equivalences between the basic elements of
the formalisms. For instance, the location of an automaton
corresponds to a place of a Petri net, a transition of a Petri
net corresponds to a tuple of synchronized transitions of an
NTA, and the timed interval associated to a transition of
a Petri net becomes a pair guard-invariant in a timed au-
tomaton. (ii) Beyond these natural equivalences, limitations
for more general models are not clear. Indeed, the natural
transformations tend to preserve concurrency. But when the

transformations become less immediate, one uses tricks that
unfortunately destroy concurrency.

Therefore it is not surprising that the first works about
formal comparisons of the expressiveness of these models do
not consider preservation of concurrency. In [7], a structural
transformation from TPN to NTA is defined. This transfor-
mation builds a timed automaton per transition of the TPN
and preserves weak timed bisimilarity. In the other direction,
[5] shows that there exist timed automata that are not weakly
timed bisimilar to any TPN. In [6], the authors propose
a translation from bounded timed-arc Petri nets (another
variant of Petri nets extended with time) to NTA, based
on the decomposition of the net in sequential components
that communicate through handshake synchronizations (in
the UPPAAL style). In [19], another timed extension of Petri
nets with intervals on arcs is considered. For a matter of
compositional properties (which is close to our problem),
their Petri nets are translated to timed automata enriched
with an ad-hoc mechanism of deadlines, which hides the
communications between components that would be neces-
sary to implement it.

Here we focus on the preservation of concurrency. Since
both TPNs and NTA were designed to model distributed
systems, we consider that not only their sequential behavior
as timed transition systems is relevant, but also their dis-
tributed behavior. For that reason, we take into account the
distribution of actions over a set of processes, each process
representing a component which has its own alphabet of
actions. When an action belongs to several processes, it
represents a synchronization, otherwise it is a local action.
In the untimed context, Mazurkiewicz traces [10] are defined
using an independence relation that arises naturally from this
distribution of actions.

However, in the presence of time such relation would
have less nice properties because even actions that occur
in two totally independent processes may be ordered by
their occurrence time. These orders induced by causality
and by the time stamping of events appear in [1], where
timed MSCs (Message Sequence Charts) and MSCs with
timing constraints are considered and in [2] where the
authors consider distributed timed automata with indepen-
dently evolving clocks. In [16], [18], an independence re-

lation is defined among the actions of a timed automaton
using a diamond property that takes time into account. This
relation is used to define partial order reduction techniques
that avoid the combinatorial explosion in the analysis of
timed automata. Anyway the time constraints make this
independence relation very restrictive. Therefore it cannot
be seen as a general concurrency relation for timed systems.

In this article, we propose to study the distribution of
actions as a first step towards the understanding of what
concurrency means in timed systems. For this purpose, we
define a notion of timed traces as a partial order represen-
tation of executions of our models for real-time distributed
systems. We will use them as an alternative to timed words,
to represent the executions of either an NTA or a TPN where
processes have been identified.

Then we propose a structural transformation from 1-
bounded TPNs to NTA which preserves the distribution of
actions. That is we require that if the TPN represents the
product of several components (called processes), then each
process should have its counterpart as one timed automaton
in the resulting NTA. To this end, we first discuss how
to identify processes in a TPN; then the structure of each
process gives a natural transformation into an automaton,
and we show how to equip this automaton with timed
constraints so that the resulting NTA preserves the timed
traces. We show that this transformation is possible in
general only if we allow the automata to read the states of
their neighbors, which we interpret as a dependency between
the processes, that was hidden in the TPN.

This paper is organized as follows. Section II presents
centralized timed systems, and Sect. III presents distributed
timed systems and introduces timed traces. In Sect. IV, we
recall how to identify the processes in a Petri net. Lastly, in
Sect. V, we propose a translation from a TPN to a timed
bisimilar NTA with the same distribution of actions.

A long version of this paper can be found in [4].

II. CENTRALIZED TIMED SYSTEMS

Timed automata are a popular formalism for modeling
centralized timed systems. Their runs can be described by
timed words, and their semantics can be expressed as a timed
transition system.

A. Basics
Definition 1 (Timed Words). A timed word w over a
finite alphabet Σ is a finite or infinite sequence w =
(a0, d0)(a1, d1) . . . (an, dn) . . . s.t. for each i ≥ 0, ai ∈ Σ,
di ∈ R≥0 and di+1 ≥ di (the di’s are absolute dates). 4

A timed language over Σ is a set of timed words over Σ.

Definition 2 (Timed Transition System). A timed transition
system (TTS) is a tuple S = (Q, q0, A,→) where Q is a
set of states, q0 ∈ Q is the initial state, A is a finite set of
actions disjoint from R≥0, and → ⊆ Q× (A∪R≥0)×Q is
a set of edges. 4

If (q, e, q′) ∈ →, we also write q e→ q′.
An initial path of a TTS is a possibly infinite sequence of

transitions ρ = q0
τ0−→ q′0

a0−→ . . . qn
τn−→ q′n

an−→ The
timed word w = (a0, d0)(a1, d1) . . . (an, dn) . . . is said to
be accepted by the TTS if there exists an initial path ρ such
that di =

∑i
j=0 τj for every 1 ≤ i ≤ k.

Definition 3 (Timed Bisimulation). Let S1 = (Q1, q
0
1 , A,

→1) and S2 = (Q2, q
0
2 , A,→2) be two TTS and ≈ be a

binary relation over Q1 ×Q2. We write q ≈ q′ for (q, q′) ∈
≈. ≈ is a timed bisimulation relation between S1 and S2 if:
• q0

1 ≈ q0
2 ,

• if q1
a→1 q′1 with a ∈ A ∪ R≥0 and q1 ≈ q2, then

∃q2
a→2 q

′
2 such that q′1 ≈ q′2; conversely if q2

a→2 q
′
2

with a ∈ A ∪ R≥0 and q1 ≈ q2, then ∃q1
a→1 q

′
1 such

that q′1 ≈ q′2. 4
B. Timed automata

The set B(C) of clock constraints over the set of clocks
C is defined by the abstract syntax g ::= x ./ k | g ∧ g,
where x ∈ C, k ∈ N and ./ ∈ {<,≤,=,≥, >}. Invariants
are clock constraints of the form g ::= x ≤ k | x < k | g∧g.

Definition 4 (Timed automaton [3]). A timed automaton
(TA) is a tuple A = (L, `0, C,Σ, E, Inv) where L is a finite
set of locations, `0 ∈ L is the initial location, C is a finite
set of clocks, Σ is a finite set of actions, E ⊆ L× B(C)×
Σ× 2C ×L is a set of edges, and Inv : L→ B(C) assigns
invariants to locations. 4

If (`, g, a, r, `′) ∈ E, we also write `
g,a,r−→ `′. For such

an edge, ` is called the source location, g the guard, a
the action, r the set of clocks to be reset and `′ the target
location.

Semantics: We denote by (`, v) a state of a TA, where
` ∈ L is the current location and v : C → R≥0 is a clock
valuation that maps each clock to its current value. The pair
(`, v) is a legal state for the timed automaton only if the
valuation v satisfies the invariant of location `, denoted by
v |= Inv(`). The initial state is (`0, v0), where v0 maps
each clock to 0. For each set of clocks r ⊆ C, the valuation
v[r] is defined by v[r](x) = 0 if x ∈ r and v[r](x) = v(x)
otherwise. For each d ∈ R≥0, the valuation v+ d is defined
by (v + d)(x) = v(x) + d for each x ∈ C.

Let A = (L, `0, C,Σ, E, Inv) be a TA. We define the
TTS generated by A as T (A) = (S, s0,Σ,→), where:
• S = {(`, v) ∈ L× (C → R≥0) | v |= Inv(`)},
• s0 = (`0, v0),
• → ∈ S × (Σ ∪ R≥0)× S is defined by

– Action step: (`, v)
a→ (`′, v′) iff ∃(` g,a,r−→ `′) ∈ E,

v |= g, v′ = v[r] and v′ |= Inv(`′),
– Time delay step: ∀d ∈ R≥0, (`, v)

d→ (`, v + d) iff
∀d′ ∈ [0, d], v + d′ |= Inv(`).

A run of a TA A is a path in T (A) starting in s0 where
continuous and discrete transitions alternate. A timed word
is accepted by A if it is accepted by T (A).

`0

`1x ≤ 4

`2 y ≤ 1

`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1
dc

{y}

Figure 1. A network of timed automata.

III. DISTRIBUTED TIMED SYSTEMS

Distributed timed systems are systems with several com-
ponents (or processes) that may perform local actions or
synchronize with each other. We focus on two models
for such systems: networks of timed automata and one
of the variants of Petri nets extended with time, called
time Petri nets, introduced in [17]. We first present the
sequential semantics of these systems, as it is usually done.
Then we define a partial order semantics which reflects the
distribution of actions, as an alternative to timed words.

A. Networks of timed automata

A network of timed automata (NTA) is a parallel com-
position of n timed automata (A1, . . . ,An), with Ai =
(Li, `

0
i , Ci,Σi, Ei, Invi) (see Fig. 1). We denote by C =⋃

i Ci the set of clocks and Σ =
⋃
i Σi the set of action

names. Clocks and action names may be shared.
Sequential semantics: The set of synchronizations

Sync is defined as the set of (e1, . . . , en) ∈ (E1 ∪ {•}) ×
· · · × (En ∪ {•}) \ {(•, . . . , •)} such that the same label
a is attached to all the edges ei 6= •, and for all i such
that ei = •, a /∈ Σi. For any s = (e1, . . . , en) ∈ Sync,
Is = {i ∈ [1..n] | ei 6= •} denotes the indices of the
automata that are concerned by the synchronization.

We denote by (~̀, v) a state of an NTA, where ~̀ ∈ L1 ×
· · · × Ln is the vector of current locations and v is a clock
valuation. The semantics of the NTA (A1, . . . ,An) can be
described as the timed transition system (S, s0,Σ,→) such
that:
• S = {(~̀, v) ∈ (L1 × · · · × Ln) × (C → R≥0) | v |=∧

i Invi(`i)},
• s0 = (~̀0, v0) with ∀x ∈ C, v0(x) = 0,
• → ∈ S × (Σ ∪ R≥0)× S is defined by

– Action step: (~̀, v)
a→ (~̀′, v′) iff

∗ ∃s = (e1, . . . , en) ∈ Sync s.t. ∀i ≤ n, if
a /∈ Σi, `

′
i = `i and ei = •, otherwise

ei = (`i, gi, a, ri, `
′
i)

∗ v |=
∧
i∈Is gi, v

′ = v[
⋃
i∈Is ri], and v′ |=∧

i Invi(`
′
i)

– Time delay step: ∀d ∈ R≥0, (~̀, v)
d→ (~̀, v + d) iff

∀d′ ∈ [0, d], v + d′ |=
∧
i Invi(`i).

Local and extended syntaxes: We call local syntax the
common syntax in which clocks are local i.e. can be read
and reset by only one automaton. Thus, invariants are of the
form g ::= x ≤ k | x < k | g ∧ g, as defined in II-B.

We define an extended syntax (that will be used in Sec. V)
in which clocks can be read by any automaton, and invariants
are of the form g ::= x ≤ k | x < k | g ∧ g | ` | g ∨ g. The
two last constructors are not standard. In an invariant, “`” is
true if ` is a current location, that is, invariants are evaluated
according to the state of the system (current locations and
valuation) and not only to the valuation. We denote by
B(C,L) the set of such constraints over the set of clocks
C and the set of locations L.

Other operators that do not extend the expressiveness of
g can be used, such as the negation of a location: ¬`i ≡∨
`∈Li\{`i} `, the implication: `⇒ (x ≤ k) ≡ ¬`∨ (x ≤ k),

and the minimum of a set of clocks: mini∈I(xi) ≤ k ≡∨
i∈I(xi ≤ k).
This extended syntax does not change the expressiveness

w.r.t. the sequential semantics. But we will show in Sect.
V that, if we consider the distributed timed language (see
subsection III-C), the extended syntax improves the expres-
siveness of the NTA.

B. Time Petri nets

Definition 5 (Petri Net). A Petri net is a tuple (P, T, F,M0)
where P and T are two disjoint sets, called set of places and
set of transitions, F ⊆ (P ×T)∪ (T ×P) is the set of arcs
connecting places and transitions such that ∀t ∈ T, ∃p ∈ P
s.t. (p, t) ∈ F , and M0 ⊆ P is the initial marking. 4

Definition 6 (Time Petri Net [17]). A time Petri net (TPN) is
a tuple (P, T, F,M0, efd , lfd) where (P, T, F,M0) is a Petri
net and efd : T → R and lfd : T → R ∪ {∞} associate an
earliest firing delay efd(t) and a latest firing delay lfd(t)
with each transition t. 4

For x ∈ P ∪ T , we define the pre-set of x as •x = {y |
(y, x) ∈ F} and the post-set of x as x• = {y | (x, y) ∈ F}.
Given a set X ⊆ P ∪ T , we define •X =

⋃
x∈X

•x and
X• =

⋃
x∈X x

•.
Sequential semantics: A marking M of a TPN is a

subset of P (we consider 1-bounded TPNs). A state of a
TPN is given by (M,ν) where M is a marking and ν :
T → R≥0 is a valuation such that each value ν(t) is the
elapsed time since the last time transition t was enabled. ν0

is the initial valuation with ∀t ∈ T, ν0(t) = 0. A transition
t is enabled in a marking M iff •t ⊆ M . For 1-bounded
TPNs, if a transition t is enabled in a reachable state (M,ν),
then t• ∩ (M \ •t) = ∅.

A transition t′ is newly enabled by the firing of t from
marking M if it is not enabled by M\•t (intermediate
marking) and it is enabled by M ′ = (M\•t) ∪ t• (reached

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

Figure 2. A time Petri net. Places are represented by circles and transitions
are represented by boxes.

p0, p2

xa ≤ ∞∧ xc ≤ 2

p1, p2

xd ≤ 2 ∧ xc ≤ 2

p4, p2

xc ≤ 2

p0, p3

xa ≤ ∞

p1, p3

xd ≤ 2 ∧ xb ≤ 0

p4, p3

xa ≥ 0
a

{xd}

xc ≥ 1, c

xc ≥ 1, c, {xb}

xa ≥ 0
a
{xb, xd}

xd ≥ 2
d

xb ≥ 0
b, {xa, xc}

xd ≥ 2
d

xc ≥ 1, c

Figure 3. The semantics of the TPN of Fig. 2 as a timed automaton.

marking). Formally:

↑enabled(t′,M, t)⇔ (•t′ ⊆M ′) ∧
(•t′ 6⊆ (M\•t)

)
For the firing delays of a transition, we use the strong

semantics: t can fire if it is enabled and ν(t) ≥ efd(t) and
has to fire before ν(t) overtakes lfd(t).

With these rules, we are able to define the semantics of the
TPN (P, T, F,M0, efd , lfd) as the TA (L, `0, C,Σ, E, Inv),
called marking TA and introduced in [11], such that:
• L ⊆ 2P is the set of all reachable markings,
• `0 = M0 is the initial marking,
• C is a finite set of clocks s.t. each clock xt is associated

to one transition t,
• Σ = T is the finite set of actions,
• E =

{
(M, g, t, r,M ′) | M ′ = (M\•t) ∪ t•, g ≡ xt ≥

efd(t), r = {xt′ | ↑enabled(t′,M, t)}
}

is the set of

edges,
• Inv : L → B(C) assigns invariants to markings s.t.
Inv(M) =

∧
•t⊆M (xt ≤ lfd(t)).

A timed word is accepted by a TPN iff it is accepted by its
marking TA. Figure 3 shows the marking TA of the TPN
presented in Fig. 2. We note that concurrency is not explicit
in this automaton, although we can observe a diamond that
shows the possible interleavings between actions a and c.

This interpretation of a TPN as a TA gives naturally its
sequential semantics.

A sequential semantics is not adapted to describe dis-
tributed systems because the information about the distri-
bution of actions is lost. We aim at identifying processes in
such systems, and defining their semantics with new notions
such as timed traces and distributed timed languages that
reflect the distribution of actions. In an NTA, it is clear that
a process is an automaton and we can also identify processes
in a TPN (see Sect. IV).

C. Timed traces
Once processes have been identified, we can describe the

runs of distributed timed systems as timed traces, where each
action is associated with the processes that have performed
it. Actions may be local or shared (synchronizations).

Definition 7 (Timed Trace, Distributed Timed Language).
A timed trace over the alphabet Σ, and the set of processes
Π = (π1, . . . , πn) is a tuple W = (E,4, λ, t, proc) where:
• E is a set of events,
• 4 ⊆ (E × E) is a partial order over E,
• λ : E → Σ is a labeling function,
• t : E → R≥0 maps each event to a date and is such

that, if e1 4 e2, then t(e1) ≤ t(e2);
• proc : Σ→ 2Π maps each action to a subset of Π,

and such that for any i in [1..n], 4|πi
= 4 ∩ (Ei × Ei) is

a total order on Ei, where Ei = {e ∈ E | λ(e) ∈ Σi}, and
Σi = {σ ∈ Σ | πi ∈ proc(σ)} is the alphabet of πi.

A distributed timed language is a set of timed traces. 4
Figure 4 gives a representation of a timed trace. An event

e ∈ E is denoted by (λ(e), t(e)) and events are ordered
along one process from the top to the bottom of the line, but
two events on different processes may not be ordered. For
example, (a, 4) and (d, 1) are not ordered but (b, 4)4(d, 9)
because (c, 8) takes them apart by transitivity.

Given an accepted timed word w = (a1, d1) . . .
(an, dn) . . . and the distribution of actions proc over the
automata, we can build an accepted timed trace for an NTA:
E = {e1, . . . , en, . . . }, λ and t are such that, ∀i, λ(ei) = ai
and t(ei) = di, and 4 is the transitive closure of the
relation 4′ define as ei 4′ ej ⇔

(
i ≤ j ∧ proc(λ(ej)) ∩

proc(λ(ej)) 6= ∅
)
.

IV. S-SUBNETS AS PROCESSES FOR PETRI NETS

Identifying processes in a TPN is not as immediate as
in an NTA. But, in practice, when a system is modeled

(d, 9)

(d, 1)

(c, 8)
(b, 4)

(a, 4)

π1 π2

Figure 4. A timed trace representing an accepted run for the NTA of Fig. 1.
One possible associated timed word is (d, 1)(a, 4)(b, 4)(c, 8)(d, 9).

as a TPN, the designer knows its physical structure and
builds the TPN as a composition of components that model
the subsystems. Anyway, if a TPN is given without its
decomposition, these components can be identified.

We first define S-subnets as the processes of a Petri net,
and the decomposition of a Petri net in S-subnets. Then we
show how we can find this decomposition. We borrow the
main definitions from [9], where the authors give a method
(introduced in [12]) to decompose a live and bounded free-
choice net in such components and we adapt this method to
decompose more general nets.

A. Decomposition in S-subnets

Since the notion of process involves only the structure and
does not depend on any time property, in this section, we
consider only the structure of a Petri net: a net is denoted
by (P, T, F) where P is the set of places, T is the set of
transitions, and F ⊆ (P × T) ∪ (T × P) is the set of arcs.

A net (P, T, F) is an S-net if ∀t ∈ T , |•t| = |t•| = 1.
An S-net is an automaton where locations are places and

edges are transitions. We want to decompose a net N in
S-nets that cover the net. To do so, we introduce the notion
of S-subnet.

A net (P ′, T ′, F ′) is a subnet of the net (P, T, F) if P ′ ⊆
P , T ′ ⊆ T and F ′ = F ∩

(
(P ′ × T ′) ∪ (T ′ × P ′)

)
.

We say that the subnet (P ′, T ′, F ′) of N is P-closed if
T ′ = •P ′∪P ′•. That is, any transition connected to a place
which is in the subnet is also in the subnet. The subnet of
N generated by a set of places P ′ is the P-closed subnet
(P ′, T ′, F ′) of N .

Definition 8 (S-subnet). An S-subnet of a net N is a P-
closed subnet N ′ = (P ′, T ′, F ′) of N such that N ′ is an
S-net. 4

The net N = (P, T, F) is decomposable in S-subnets iff
there exists a set of S-subnets {N1, . . . , Nn} with Ni =
(Pi, Ti, Fi), such that

⋃
i Pi = P . In this case, the set of

S-subnets is called a cover of N (and
⋃
i Ti = T because

the S-subnets are P-closed).
Note that the notion of S-subnet generalizes the notion

of S-component presented in [9] because we do not impose

that the subnet is strongly connected.

Definition 9 (Incidence matrix). Let N be the net (P,
T, F). The incidence matrix N : (P × T) → {−1, 0, 1}
of N is defined by

N(p, t) =

 −1 if (p, t) ∈ F and (t, p) /∈ F
1 if (p, t) /∈ F and (t, p) ∈ F
0 otherwise

4
The entry N(p, t) corresponds to the change of the mark-

ing of the place p caused by the occurrence of transition t.
Hence, if t is fired from marking M , the new marking is
M ′ = M + t, where t is the column vector of N associated
to t.

Definition 10 (S-invariant [15]). An S-invariant of a net N
is an integer-valued solution of the equation X ·N = 0. 4

Proposition 11. A Petri net (P, T, F) is decomposable in
S-subnets iff there exists a set of S-invariants {X1, . . . Xn}
such that,
• ∀i ∈ [1..n], Xi : P → {0, 1} (set of places), (1)
• ∀i ∈ [1..n],∀t ∈ T,

∑
p∈•t

Xi(p) = 1
(
=
∑
p∈t•

Xi(p)
)
, (2)

• ∀p ∈ P,
∑
i

Xi(p) ≥ 1 (the set covers the net), (3)

Note that, if N is connected, every Xi is minimal (w.r.t.
set inclusion). When the net is decomposable, there exists
a set {I1, . . . Ik} of minimal S-invariants that covers the
net and such that for each 1 ≤ i ≤ k, if Ii is removed
from the set, then the net is no longer covered (the set is
minimal). This set gives a decomposition of the net in the
S-subnets generated by the minimal S-invariants. Note that
this decomposition is not unique and that a place may be
shared by several S-subnets.

The number of tokens in an S-subnet is constant. Thus,
an S-subnet initially marked with one token represents an
automaton where the active location is the marked place.
Such subnet is called a process. If the S-subnet is initially
marked with m tokens, then it corresponds to m processes
with the same structure but not necessarily starting in the
same place, and these processes do not synchronize with
each others. To simplify, we only consider 1-bounded TPNs.

B. An example of decomposition

We want to decompose the net shown in Fig. 5. To this
purpose, we determine its S-invariants that satisfy conditions
1 and 2. If they cover the net (condition 3), then the net is
decomposable.

We obtain the following S-invariants: X1 = [1 1 0 0 0 0 0],
X2 = [0 0 1 1 0 1 1], and X3 = [0 0 1 1 1 0 0]. These
S-invariants satisfy the three conditions of Prop. 11, they are
minimal and they form a minimal set. Therefore the net is
decomposable in the three S-subnets generated by the sets
of places {p1, p2}, {p3, p4, p6, p7}, and {p3, p4, p5}, see Fig.
5.

p1

t1

p2

t2

p3

p4

t5

p5

t3

p6

p7

t4

p1

t1

p2

t2

p3

t2

p4

t5

t3

p6

p7

t4

p3

t2

p4

t5

p5

t3

Figure 5. A net which is decomposable in S-subnets, and its decomposi-
tion.

C. Algorithms and size of the decomposition

Some algorithms for the computation of minimal S-
invariants can be found in [8] where they are called p-
semiflows.

The number of places in the decomposition is equal to∑
i |Pi| and is at most |P |2 because a place may be shared

by several components and no more than |P | components
are needed to cover the net. And the number of transitions
is
∑
i |Ti| and is at most |T | × |P | for the same reason.

But these upper bounds are pessimistic since generally there
are fewer components and few places and transitions are
duplicated in all components.

V. TRANSLATION FROM TIME PETRI NET TO NETWORK
OF TIMED AUTOMATA

A TPN can be translated in a TA which accepts the same
timed words (see Fig. 3). But we would like to translate
it in an NTA which accepts the same timed traces. In this
section, we propose a structural translation from a TPN to
an NTA, based on the decomposition in processes.

A. Procedure

We first look at the untimed net to determine the processes
and we check that each subnet is initially marked with one
token. We get the subnets shown in Fig. 6. This translation
involves three more steps:

1) Each subnet is translated in an automaton preserving
its structure (places become locations and transitions
become edges). Each edge is labeled with the name
of the corresponding transition.

2) Time is added by providing each automaton with a
clock xi. This clock is reset on each edge. The idea
is that the value of xi gives the time elapsed in the
current location. On each edge, if [a, b] is the firing
interval of the corresponding transition, we add a

•p0

a

p1

d

p4

b b

•p2

c

p3

Figure 6. The processes of the TPN of Fig. 2.

`0x1 ≤ ∞

`1x1 ≤ 2∧Inv(`1, b)

`4

`2x2 ≤ 2

`3Inv(`3, b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(`1, b) ≡ ¬`3 ∨ x1 ≤ 0 ∨ x2 ≤ 0
Inv(`3, b) ≡ ¬`1 ∨ x1 ≤ 0 ∨ x2 ≤ 0

Figure 7. The resulting NTA.

guard xi ≥ a, and if the transition is not shared, we
add an invariant xi ≤ b on the source location.

3) Then, we have to deal with the synchronizations
(transitions with several input places). Such transitions
have to fire if they are enabled and their latest firing
delay is reached. On our example, see Fig. 7, we can
stay in ~̀= (`1, `3) as long as min(v(x1), v(x2)) ≤ 0
(because min(v(x1), v(x2)) is the elapsed time since
b was enabled and lfd(b) = 0). Thus, we add
Inv(`1, b) ≡ `3 ⇒ (x1 ≤ 0 ∨ x2 ≤ 0) ≡ ¬`3 ∨ (x1 ≤
0 ∨ x2 ≤ 0) and Inv(`3, b) ≡ `1 ⇒ (x1 ≤ 0 ∨ x2 ≤
0) ≡ ¬`1 ∨ (x1 ≤ 0 ∨ x2 ≤ 0) in the invariants of
`1 and `3 (actually we only need to add this “global”
invariant to the invariant of one of the source locations
concerned by the synchronization).

Formally, a TPN N = (P, T, F,M0, efd , lfd) with n
processes can be translated in the NTA (A1, . . . ,An) with
∀i ∈ [1..n],Ai = (Pi, `

0
i , C,Σi, Ei, Invi) such that:

• Pi (places of the ith subnet) is the set of locations,
• `0i s.t. {`0i } = Pi ∩M0 is the initial location,
• C = {x1, . . . , xn} is the set of clocks,
• Σi = Ti (transitions of the ith subnet) is the set of

actions,
• Ei ⊂ (Pi × B(C) × Ti × 2C × Pi) such that Ei =

{
(p, g, t, r, p′) | p ∈ •t ∧ p′ ∈ t•, g ≡ xi ≥ efd(t), r =
{xi}

}
is the set of edges,

• Invi : Pi → B(C,P) assigns invariants to locations
s.t. ∀p ∈ Pi, Invi(p) ≡

∧
t∈p•

Inv(t),

where Inv(t) ≡ (
∧

p′∈•t
p′) ⇒ min

k∈It
(xk) ≤ lfd(t) with

It = {i ∈ [1..n] | t ∈ Ti} the set of indices of the
subnets that contain t.

Here, we use the extended syntax (see subsection III-A):
automaton Ai can read the clocks of the other automata, but
does not reset them and it can also read the current location
of the other automata in its invariants. Invi(p) makes sure
that we cannot overtake the latest firing delay of an enabled
transition which is in the post-set of p.

B. Size of the network of timed automata

Once the decomposition is computed, we directly have the
structure of the timed automata. Thus the NTA has at most
|P |2 locations and |T | × |P | edges (see Subsection IV-C).
The number of edges is exactly

∑
t∈T |It|.

Then, the timing information is provided by as many
clocks as processes, that is at most |P | clocks. There is
one clock comparison on each edge, because the guards are
of the form xi ≥ lfd(t). Moreover, each Inv(t) contains
|It| clock comparisons (because the min ranges over |It|
clocks). Inv(t) can be attached only to one of the input
places of t because a state is legal as long as the valuation
satisfies all the invariants of the current locations, thus, if t
is enabled and one of its input places carries Inv(t), lfd(t)
cannot be overtaken. Therefore, if we attach each Inv(t)
to only one of the input places of t, we have

∑
t∈T |It|

clock comparisons in the invariants. To conclude, the size
of the timing information given by the clock comparisons is
proportional to the number of edges.

Proposition 12. The initial 1-bounded time Petri net, N
and the network of timed automata S which results from the
translation have the same distributed timed language (are
timed bisimilar with the same distributions of actions).

C. Know thy neighbor!

Our translation produces a network of timed automata
which accepts the same distributed timed language (and
which is timed bisimilar). But we use an extended syntax
(see subsection III-A) in which each automaton can read the
state (location and clock) of the other automata. We show
that the use of this extended syntax is necessary.

Proposition 13. Given a TPN N with its processes, in
general, there does not exist any NTA S using the local
syntax such that N and S have the same distributed timed
language.

For example, Fig. 8 shows two timed traces W and W ′
representing the beginning of two possible runs, without

(d, 2)

(a, 0)

(c, 2)

π1 π2

W

(c, 1)

π1 π2

W ′

(d, 2)

(a, 0)
(c, 1)

π1 π2

W|π1
‖W ′|π2

Figure 8. Two accepted timed traces and one non accepted timed trace
for the TPN of Fig. 2.

synchronization, for the TPN N of Fig. 2. Any NTA S
using the local syntax and accepting W and W ′ would also
accept the timed trace built by composing the projection of
W onto π1 and the projection of W ′ onto π2 (see Fig. 8).
But this timed trace is not accepted by N .

VI. LOOSE ENDS AND FUTURE WORKS

A. TPNs with good decompositional properties

There are some simple cases when it is possible to
translate a TPN in an NTA which uses the local syntax. For
example, assume that for any transition t, there exists a place
p in •t which is always the last place to be marked among
•t. Then, we chose to add Inv(t) only in Invi(p) (this can
be done, as explained in the third step of the translation). By
construction, Inv(t) ≡

(
(
∧
p′∈•t p

′) ⇒ min
k∈It

(xk) ≤ lfd(t)
)
.

In this case, (
∧
p′∈•t p

′) is always true in Invi(p) – because
if p is marked, then all places in •t are marked – and
min
k∈It

(v(xk)) = v(xi) = ν(t). Therefore, for any i in [1..n]

and for any place p in Pi, Invi(p) can be expressed with
the local syntax.

But these cases are restrictive, and it would be interesting
to give a general characterization of these nets.

B. Reverse translation

We can consider a reverse translation, from an NTA to a
TPN. There exist translations, for example in [5] from a TA
into a weak timed bisimilar TPN, but we want to preserve
the distributed timed language, that is, when we translate an
NTA into a TPN, we want to preserve the processes. This
implies that we should be able to translate each automaton in
a TPN which is an S-net with one token and then compose
the obtained nets.

A time S-net with one token is less expressive than a TA
with one clock because it can be translated in a TA with
one clock which accepts the same timed language. Thus, it

is less expressive than a TA with two clocks, according to
[13]. We can even strengthen this by proving that some TA
with one clock cannot be translated in finite time S-net with
one token. . Therefore, only a very small class of TA can
be translated.

C. Usability in practice

We have translated some example time Petri nets with
the translation proposed in [7] and with our translation, and
we have used UPPAAL (see [14]) to check a reachability
property on the resulting networks of timed automata.

Although our translation only works for bounded TPNs
and does not always give a model in the UPPAAL style (with
handshake synchronizations), it generally produces networks
with fewer automata, because their translation produces n+1
automata for an initial net with n transitions. And we think
that our translation gives an NTA which is more readable.

Regarding the number of clocks, we also generally have
fewer clocks because we have one clock by process instead
of one clock by transition. But as mentioned in [7], UPPAAL
only considers the active clocks during the verification. In
our case, in a given state, all clocks are active and with the
translation of [7], the number of active clocks is equal to the
number of enabled transitions in the corresponding marking
(Theorem 3 in [7]). Therefore, we can have fewer active
clocks if there are some conflicts.

D. Towards identification of concurrency in timed systems

This work is a starting point for a more advanced study of
concurrency in timed systems. Indeed, concurrency in timed
systems involves both causality and the time stamping of
events. Transitions that appear as concurrent in an untimed
model may not remain independent when time constraints
are added. First, time constraints may easily force a temporal
ordering between them. But, even worse, the occurrence of a
transition may have consequences on apparently concurrent
transitions due to time constraints: this is what happens
in our TPN of Fig. 2 where firing c after delay 1 from
marking {p1, p2} prevents d from firing (because it forces
b to fire earlier). In our translation, the necessity to allow
the automata to read the states of their neighbors highlights
these complex dependences between different processes.

ACKNOWLEDGMENT

This work is partially supported by the FARMAN project
EMoTiCon and the French ANR project DOTS.

REFERENCES

[1] S. Akshay, B. Bollig, and P. Gastin, “Automata and logics for
timed message sequence charts,” in FSTTCS’07, ser. LNCS,
vol. 4855. New Delhi, India: Springer, 2007, pp. 290–302.

[2] S. Akshay, B. Bollig, P. Gastin, M. Mukund, and
K. Narayan Kumar, “Distributed timed automata with inde-
pendently evolving clocks,” in CONCUR’08, ser. LNCS, vol.
5201. Toronto, Canada: Springer, 2008, pp. 82–97.

[3] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical Computer Science, vol. 126, no. 2, pp. 183–235,
1994.

[4] S. Balaguer, T. Chatain, and S. Haar, “A concurrency-
preserving translation from time Petri nets to networks of
timed automata,” INRIA Saclay – Île-de-France, Tech. Rep.,
2010.

[5] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux,
“When are timed automata weakly timed bisimilar to time
Petri nets?” Theoretical Computer Science, vol. 403, no. 2-3,
pp. 202–220, 2008.

[6] J. Byg, K. Joergensen, and J. Srba, “An efficient translation
of timed-arc Petri nets to networks of timed automata,” in
ICFEM’09, ser. LNCS, vol. 5885. Springer-Verlag, 2009,
pp. 698–716.

[7] F. Cassez and O. H. Roux, “Structural translation from
time Petri nets to timed automata,” Journal of Systems and
Software, 2006.

[8] J. M. Colom and M. Silva, “Convex geometry and semiflows
in P/T nets. A comparative study of algorithms for compu-
tation of minimal p-semiflows,” in Proceedings of the 10th
International Conference on Applications and Theory of Petri
Nets. London, UK: Springer-Verlag, 1991, pp. 79–112.

[9] J. Desel and J. Esparza, Free choice Petri nets. New York,
USA: Cambridge University Press, 1995.

[10] V. Diekert, The Book of Traces, G. Rozenberg, Ed. River
Edge, NJ, USA: World Scientific Publishing Co., Inc., 1995.

[11] G. Gardey, O. H. Roux, and O. F. Roux, “State space
computation and analysis of time Petri nets,” Theory Pract.
Log. Program., vol. 6, no. 3, pp. 301–320, 2006.

[12] M. Hack, “Analysis of production schemata by Petri nets,”
Cambridge, USA, 1972.

[13] T. A. Henzinger, P. W. Kopke, and H. Wong-Toi, “The
expressive power of clocks,” in ICALP, 1995, pp. 417–428.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
STTT, vol. 1, no. 1-2, pp. 134–152, 1997.

[15] K. Lautenbach, “Liveness in Petri nets,” G.M.D., Bonn,
Germany, Tech. Rep., July 1975.

[16] D. Lugiez, P. Niebert, and S. Zennou, “A partial order
semantics approach to the clock explosion problem of timed
automata,” Theor. Comput. Sci., vol. 345, no. 1, pp. 27–59,
2005.

[17] P. M. Merlin, “A study of the recoverability of computing
systems,” Ph.D. dissertation, University of California, Irvine,
1974.

[18] P. Niebert and H. Qu, “Adding invariants to event zone
automata,” in FORMATS, ser. LNCS, vol. 4202. Springer,
2006, pp. 290–305.

[19] J. Sifakis and S. Yovine, “Compositional specification of
timed systems (extended abstract),” in STACS’96. London,
UK: Springer-Verlag, 1996, pp. 347–359.

