
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

A Concurrency-Preserving Translation
from Time Petri Nets to Networks of Timed Automata

Sandie Balaguer · Thomas Chatain · Stefan Haar

Received: date / Accepted: date

Abstract Several formalisms to model distributed real-time systems coexist in the litera-
ture. This naturally induces a need to compare their expressiveness and to translate mod-
els from one formalism to another when possible. The first formal comparisons of the ex-
pressiveness of these models focused on the preservation of the sequential behavior of the
models, using notions like timed language equivalence or timed bisimilarity. They do not
consider preservation of concurrency. In this paper we define timed traces as a partial order
representation of executions of our models for real-time distributed systems. Timed traces
provide an alternative to timed words, and take the distribution of actions into account.
We propose a translation between two popular formalisms that describe timed concurrent
systems: 1-bounded time Petri nets (TPN) and networks of timed automata (NTA). Our
translation preserves the distribution of actions, that is we require that if the TPN repre-
sents the product of several components (called processes), then each process should have
its counterpart as one timed automaton in the resulting NTA.

Keywords concurrency · timed traces · time Petri nets · networks of timed automata ·
concurrency-preserving translation

S. Balaguer
LSV, ENS Cachan & CNRS, 61 avenue du Président Wilson, 94230 Cachan, France
and INRIA Saclay – Île-de-France, Orsay, France
E-mail: balaguer@lsv.ens-cachan.fr

T. Chatain
LSV, ENS Cachan & CNRS, 61 avenue du Président Wilson, 94230 Cachan, France
E-mail: chatain@lsv.ens-cachan.fr

S. Haar
LSV, ENS Cachan & CNRS, 61 avenue du Président Wilson, 94230 Cachan, France
and INRIA Saclay – Île-de-France, Orsay, France
E-mail: haar@lsv.ens-cachan.fr

mailto:balaguer@lsv.ens-cachan.fr
mailto:chatain@lsv.ens-cachan.fr
mailto:haar@lsv.ens-cachan.fr

2 S. Balaguer, T. Chatain and S. Haar

1 Introduction

Techniques that aim at improving reliability and safety of automated systems have dramat-
ically improved during the last thirty years (synthesis, model-checking, test, etc.). Studying
a complex system generally requires the use of multiple techniques and tools. Consequently
the system must be translated from one formalism to another. The difficulty is to show
that the different representations are equivalent. This work proposes a translation between
two popular formalisms that describe timed concurrent systems: 1-bounded time Petri nets
(TPN) [25] and networks of timed automata (NTA) [3]. These formalisms have different
histories but were both designed to model real-time, distributed systems. Moreover they
both handle urgency, which is a key feature without which most real-time systems cannot
be modeled correctly.

Both formalisms are supported by a variety of simulation and verification tools, like
UPPAAL [21], EPSILON [11] and KRONOS [8] for (networks of) timed automata, and
ROMEO [15], TINA [7] and CPN TOOLS [19] for time Petri nets.

Because these tools have their specificities, several tools are often used for the design,
analysis or verification of a single system. This usually requires modeling the system in
several formalisms, typically TPN and NTA. Therefore several transformations have been
proposed; we observe the following. (i) The transformations mainly rely on natural structural
equivalences between the basic elements of the formalisms. For instance, the location of an
automaton corresponds to a place of a Petri net, a transition of a Petri net corresponds to
a tuple of synchronized transitions of an NTA, and the timed interval associated with a
transition of a Petri net becomes a pair (guard, invariant) in a timed automaton. (ii) Beyond
these natural equivalences, limitations for more general models are not clear. Indeed, the
natural transformations tend to preserve concurrency. But when the transformations become
less immediate, one uses tricks that unfortunately destroy concurrency.

Therefore it is not surprising that the first works about formal comparisons of the expres-
siveness of these models do not consider preservation of concurrency. In [10], a structural
transformation from TPN to NTA is defined. This transformation builds a timed automaton
per transition of the TPN and preserves weak timed bisimilarity. In the other direction, [5]
shows that there exist timed automata that are not weakly timed bisimilar to any TPN. In [9],
the authors propose a translation from bounded timed-arc Petri nets (another variant of Petri
nets extended with time) to NTA, based on the decomposition of the net in sequential compo-
nents that communicate through handshake synchronizations (in the UPPAAL style). In [27],
another timed extension of Petri nets with intervals on arcs is considered. In order to guaran-
tee compositional properties, their Petri nets are translated to timed automata enriched with
an ad-hoc mechanism of deadlines, which hides the communications between components
that would be necessary to implement it.

Here we focus on the preservation of concurrency. Since both TPNs and NTA were
designed to model distributed systems, we consider that not only their sequential behavior
as timed transition systems is relevant, but also their distributed behavior. This implies that,
if a model represents a system that involves several components, then the model should be
structured so that it is easy to identify each component, and a transformation should preserve
this structure.

Our motivation for this is twofold: first, a transformation is much more readable if it
preserves the components and yields a model that is closer to the real system; second, pre-
serving the components avoids combinatorial explosion of the size of the model and makes
it possible to use modular analysis based on the components or partial order techniques,
which are crucial when one analyzes large distributed systems.

Concurrency-Preserving Translation from TPN to NTA 3

In order to formalize preservation of concurrency in the context of real-time models, we
take into account the distribution of actions over a set of processes, each process representing
a component which has its own alphabet of actions. When an action belongs to several
processes, it represents a synchronization, otherwise it is a local action.

In the untimed context, Mazurkiewicz traces [14] are defined using an independence
relation that arises naturally from this distribution of actions. However, in the presence of
time such relation would have less nice properties because even actions that occur in two to-
tally independent processes may be ordered by their occurrence time. These orders induced
by causality and by time stamping of events appear in [1], where timed MSCs (Message
Sequence Charts) and MSCs with timing constraints are considered, and in [2] where the
authors consider distributed timed automata with independently evolving clocks. In [24,26],
an independence relation is defined among the actions of a timed automaton using a dia-
mond property that takes time into account. This relation is used to define partial order re-
duction techniques that avoid the combinatorial explosion in the analysis of timed automata.
However, the time constraints make this independence relation very restrictive. Therefore it
cannot be seen as a general concurrency relation for timed systems.

In this article, we define a notion of timed traces as a partial order representation of
executions of our models for real-time distributed systems. They generalize timed words
and represent the executions of either an NTA or a TPN on which processes have been
identified. Then we define a structural transformation from 1-bounded TPNs to NTA which
preserves timed traces. That is we require that if the TPN represents the product of several
components (called processes), then each process has its counterpart as one timed automaton
in the resulting NTA and the distribution of actions among the components is preserved.

To this end, we first discuss how to identify processes in a TPN. The structure of each
process gives a natural transformation into an automaton. Then we focus on the timed con-
straints and show how to equip the automata with clocks, guards and invariants so that the
resulting NTA preserves the timed traces. We show that this transformation is possible in
general only if we allow the automata to read the states of their neighbors, which we inter-
pret as a dependency between the processes, that was hidden in the TPN. Notice also that
the decomposition of a PN into components is not always possible. However, we believe
that most PNs that model real systems are decomposable. It is also known (see [13]) that
well-formed free-choice nets are decomposable in strongly connected components.

This paper is organized as follows. Section 2 presents centralized timed systems, and
Section 3 presents distributed timed systems and introduces timed traces. In Section 4, we
recall how to identify the processes in a Petri net. Lastly, in Section 5, we propose a transla-
tion from a 1-bounded TPN to a timed bisimilar NTA with the same distribution of actions.
Finally we discuss extensions and limitations of our translation, in particular we define con-
ditions under which our translation can be adapted to avoid using shared clocks. This article
is a revision and extension of the conference version of this work [4].

2 Centralized timed systems

Timed automata are a popular formalism for modeling centralized timed systems. Their runs
can be described by timed words, and their semantics can be expressed as a timed transition
system.

4 S. Balaguer, T. Chatain and S. Haar

2.1 Basics

Definition 1 (Timed Words) A timed word w over a finite alphabet Σ is a finite or infinite
sequence w= (a0,d0)(a1,d1) . . .(an,dn) . . . s.t. for each i≥ 0,ai ∈ Σ , di ∈R≥0 and di+1 ≥ di
(the di’s are absolute dates). 4

A timed language over Σ is a set of timed words over Σ .

Definition 2 (Timed Transition System) A timed transition system (TTS) is a tuple
(S,s0,Σ ,→) where

– S is a set of states,
– s0 ∈ S is the initial state,
– Σ is a finite set of actions disjoint from R≥0,
– →⊆ S× (Σ ∪R≥0)×S is a set of edges. 4

If (s,e,s′) ∈→, we also write s e→ s′.

An initial path of a TTS is a possibly infinite sequence of transitions ρ = s0
τ0→ s′0

a0→
·· ·sn

τn→ s′n
an→ ··· . The timed word w = (a0,d0) . . .(an,dn) . . . is said to be accepted by the

TTS if there exists an initial path ρ such that di = ∑
i
j=0 τ j for every i≥ 0.

Definition 3 (Timed Bisimulation) Let T1 = (S1,s0
1,Σ ,→1) and T2 = (S2,s0

2,Σ ,→2) be
two TTS and ≈ be a binary relation over S1× S2. We write s1 ≈ s2 for (s1,s2) ∈ ≈. ≈ is a
timed bisimulation relation between T1 and T2 if:

– s0
1 ≈ s0

2,
– if s1

a→1 s′1 with a ∈ Σ ∪R≥0 and s1 ≈ s2, then ∃s2
a→2 s′2 such that s′1 ≈ s′2; conversely

if s2
a→2 s′2 with a ∈ Σ ∪R≥0 and s1 ≈ s2, then ∃s1

a→1 s′1 such that s′1 ≈ s′2. 4

2.2 Timed automata

The set B(C) of clock constraints over the set of clocks C is defined by the abstract syn-
tax g ::= x ./ k | g∧ g, where x ∈ C, k ∈ N and ./ ∈ {<,≤,=,≥,>}. Invariants are clock
constraints of the form g ::= x≤ k | x < k | g∧g.

Definition 4 (Timed automaton [3]) A timed automaton (TA) is a tuple A =
(L, `0,C,Σ ,E, Inv) where

– L is a finite set of locations,
– `0 ∈ L is the initial location,
– C is a finite set of clocks,
– Σ is a finite set of actions,
– E ⊆ L×B(C)×Σ ×2C×L is a set of edges,
– Inv : L→B(C) assigns invariants to locations. 4

If (`,g,a,r, `′) ∈ E, we also write `
g,a,r−−→ `′. For such an edge, ` is called the source

location, g the guard, a the action, r the set of clocks to be reset and `′ the target location.

Concurrency-Preserving Translation from TPN to NTA 5

`0

`1x≤ 4

`2 y≤ 3

`3

x≥ 3
a
{x}

x = 4
c

b,{x}

y = 3
dc

{y}

Fig. 1 A network of timed automata (initial locations are indicated by an arrow that is not rooted in any
location)

Semantics. We denote by (`,v) a state of a TA, where ` ∈ L is the current location and
v : C→R≥0 is a clock valuation that maps each clock to its current value. The pair (`,v) is a
legal state for the timed automaton only if the valuation v satisfies the invariant of location `,
denoted by v |= Inv(`). The initial state is (`0,v0), where v0 maps each clock to 0. For each
set of clocks r ⊆ C, the valuation v[r] is defined by v[r](x) = 0 if x ∈ r and v[r](x) = v(x)
otherwise. For each d ∈R≥0, the valuation v+d is defined by (v+d)(x) = v(x)+d for each
x ∈C.

Let A = (L, `0,C,Σ ,E, Inv) be a TA. We define T (A), the TTS generated by A as
T (A) = (S,s0,Σ ,→), such that

– S = {(`,v) ∈ L× (C→ R≥0) | v |= Inv(`)},
– s0 = (`0,v0),
– →∈ S× (Σ ∪R≥0)×S is defined by

– Action step: (`,v) a−→ (`′,v′) iff ∃(` g,a,r−−→ `′) ∈ E, v |= g, v′ = v[r] and v′ |= Inv(`′),

– Time delay step: ∀d ∈ R≥0,(`,v)
d−→ (`,v+d) iff ∀d′ ∈ [0,d],v+d′ |= Inv(`).

A run of a TA A is a path in T (A) starting in s0 where time delay steps and action steps
alternate. A timed word is accepted by A if it is accepted by T (A).

3 Distributed timed systems

Distributed timed systems are systems with several components (or processes) that may
perform local actions or synchronize with each other. We focus on two models for such
systems: networks of timed automata and one of the variants of Petri nets extended with
time, called time Petri nets, introduced in [25]. We first present the sequential semantics of
these systems, as it is usually done. Then we define a partial order semantics which reflects
the distribution of actions over the processes, as an alternative to timed words.

3.1 Networks of timed automata

A network of timed automata (NTA) is a parallel composition of n timed automata
(A1, . . . ,An), with Ai = (Li, `

0
i ,Ci,Σi,Ei, Invi) (see Fig. 1). We denote by C =

⋃
i Ci the set

of clocks and Σ =
⋃

i Σi the set of action names. Clocks and action names may be shared.

6 S. Balaguer, T. Chatain and S. Haar

Sequential semantics. The set of synchronizations Sync is defined as the set of
(e1, . . . ,en) ∈ (E1∪{•})×·· ·× (En∪{•})\{(•, . . . ,•)} such that the same label a is at-
tached to all the edges ei 6= •, and for all i such that ei = •, a /∈ Σi. For any
s = (e1, . . . ,en) ∈ Sync, Is = {i ∈ [1..n] | ei 6= •} denotes the indices of the automata that
are concerned by the synchronization.

We denote by (~̀,v) a state of an NTA, where ~̀ ∈ L1×·· ·×Ln is the vector of current
locations and v is a clock valuation. The semantics of the NTA (A1, . . . ,An) can be described
as the timed transition system (S,s0,Σ ,→) such that

– S = {(~̀,v) ∈ (L1×·· ·×Ln)× (C→ R≥0) | v |=
∧

i Invi(`i)},
– s0 = (~̀0,v0) with ∀x ∈C,v0(x) = 0,
– →∈ S× (Σ ∪R≥0)×S is defined by

– Action step: (~̀,v) a→ (~̀′,v′) iff
• ∃s = (e1, . . . ,en) ∈ Sync s.t. ∀i ∈ [1..n], if a /∈ Σi, `

′
i = `i and ei = •,

otherwise ei = (`i,gi,a,ri, `
′
i)

• v |=
∧

i∈Is gi, v′ = v[
⋃

i∈Is ri], and v′ |=
∧

i∈[1..n] Invi(`
′
i)

– Time delay step: ∀d ∈ R≥0,(`,v)
d→ (`,v+d) iff ∀d′ ∈ [0,d],v+d′ |=

∧
i Invi(`i).

Local vs extended syntax. We call local syntax the common syntax in which clocks are
local, i.e. every clock can be read and reset by only one automaton. Thus, invariants are of
the form g ::= x≤ k | x < k | g∧g, as defined in Subsection 2.2.

We define an extended syntax (that will be used in Sect. 5) in which clocks can be read
by any automaton, and invariants are of the form g ::= x ≤ k | x < k | g∧ g | ` | g∨ g. The
two last constructors are not standard. In an invariant, “`” is true if ` is a current location,
that is, invariants are evaluated according to the state of the system (current locations and
valuation) and not only to the valuation. We denote by B(C,L) the set of such constraints
over the set of clocks C and the set of locations L.

Other operators that do not extend the expressiveness of g can be used, such as the
negation of a location: ¬`i ≡

∨
`∈Li\{`i} `, the implication: `⇒ (x ≤ k) ≡ ¬`∨ (x ≤ k), and

the minimum of a set of clocks: mini∈I(xi)≤ k ≡
∨

i∈I(xi ≤ k).
This extended syntax does not change the expressiveness w.r.t. the sequential seman-

tics. But we will show in Sect. 5 that, if we consider the distributed timed language (see
Subsection 3.3), the extended syntax enhances the expressiveness of the NTA.

Although it is not generally allowed to share active locations in timed automata, there
are several variants of timed automata that can handle such a feature. For example, timed
automata can be extended with shared variables as in UPPAAL [21] and a boolean variable
can be associated with each location and used to denote whether the location is enabled.
In [20], the authors propose another variant, Timed Cooperating Automata, a parallel com-
position of sequential automata where the edges can be guarded with timing constraints of
the form q = τ (location q is enabled for τ time units), q[τ] (location q is enabled for at least
τ time units), q{τ} (location q is disabled for at most τ time units) or boolean combinations
of these terms.

3.2 Time Petri nets

Definition 5 (Petri Net) A Petri net is a tuple (P,T,F,M0) where P and T are two disjoint
sets, called set of places and set of transitions, F ⊆ (P× T)∪ (T ×P) is the set of arcs

Concurrency-Preserving Translation from TPN to NTA 7

•p0

a[0,∞)

p1

d[2,2]

p4

b[0,0]

•p2

c[1,2]

p3

Fig. 2 A time Petri net (places are represented by circles and transitions are represented by boxes)

connecting places and transitions such that ∀t ∈ T,∃p ∈ P s.t. (p, t) ∈ F , and M0 ⊆ P is the
initial marking. 4

Definition 6 (Time Petri Net [25]) A time Petri net (TPN) is a tuple (P,T,F,M0,efd, lfd)
where (P,T,F,M0) is a Petri net and efd : T →R and lfd : T →R∪{∞} associate an earliest
firing delay efd(t) and a latest firing delay lfd(t) with each transition t. 4

For x ∈ P∪T , we define the pre-set of x as •x = {y | (y,x) ∈ F} and the post-set of x as
x• = {y | (x,y) ∈ F}. Given a set X ⊆ P∪T , we define the pre-set and the post-set of X as
•X =

⋃
x∈X

•x and X• =
⋃

x∈X x•.

Sequential semantics. A marking M of a TPN is a subset of P (we consider 1-bounded
TPNs). A state of a TPN is given by (M,ν) where M is a marking and ν : T → R≥0 is a
valuation such that each value ν(t) is the elapsed time since the last time transition t was
enabled. ν0 is the initial valuation with ∀t ∈ T,ν0(t) = 0. A transition t is enabled in a
marking M iff •t ⊆M. For 1-bounded TPNs, if a transition t is enabled in a reachable state
(M,ν), then t•∩ (M \ •t) = /0.

When defining newly enabled transitions, we use the most common semantics, called
intermediate semantics [6]: t ′ is newly enabled by the firing of t from marking M if it is
not enabled by M\•t (intermediate marking) and it is enabled by M′ = (M\•t)∪ t• (reached
marking). Formally, we define the predicate ↑enabled(t ′,M, t) as follows:

↑enabled(t ′,M, t) ⇐⇒ (•t ′ ⊆M′)∧
(•t ′ 6⊆ (M\•t)

)
Lastly, for the firing delays of a transition, we use the strong semantics: t can fire if it is

enabled and ν(t)≥ efd(t), and t has to fire before ν(t) overtakes lfd(t).
With these rules, we are able to define the semantics of a TPN as a TA called marking

TA and introduced in [16]. Indeed, the marking TA of the TPN (P,T,F,M0,efd, lfd) is the
TA (L, `0,C,Σ ,E, Inv) such that

– L⊆ 2P is the set of reachable markings,
– `0 = M0,
– each clock xt ∈C is associated with one transition t,
– Σ = T ,
– E =

{
(M,g, t,r,M′) |M′ = (M\•t)∪ t•,g≡ xt ≥ efd(t),r = {xt ′ | ↑enabled(t ′,M, t)}

}
,

– for each reachable marking M ∈ L, Inv(M)≡
∧
•t⊆M

(
xt ≤ lfd(t)

)
.

8 S. Balaguer, T. Chatain and S. Haar

p0, p2xa ≤ ∞∧ xc ≤ 2

p1, p2xd ≤ 2∧ xc ≤ 2

p4, p2xc ≤ 2

p0, p3 xa ≤ ∞

p1, p3 xd ≤ 2∧ xb ≤ 0

p4, p3

xa ≥ 0
a

{xd}

xc ≥ 1,c

xc ≥ 1,c,{xb}

xa ≥ 0
a
{xb,xd}

xd ≥ 2
d

xb ≥ 0
b
{xa,xc}

xd ≥ 2
d

xc ≥ 1,c

Fig. 3 The semantics of the TPN of Fig. 2 as a timed automaton

(d,11)

(d,3)

(c,8)
(b,4)

(a,3)

π1 π2

Fig. 4 A timed trace representing a run of the NTA of Fig. 1 (one possible associated timed word is
(d,3)(a,3)(b,4)(c,8)(d,11))

A timed word is accepted by a TPN iff it is accepted by its marking TA. Figure 3 shows the
marking TA of the TPN presented in Fig. 2. We note that concurrency is not explicit in this
automaton, as it naturally gives the sequential semantics of the TPN, even though we can ob-
serve a diamond (bold edges) that shows the possible interleavings between actions a and c.

3.3 Timed traces

A sequential semantics is not adapted to describe distributed systems because the infor-
mation about the distribution of actions over the different components is lost. We aim at
identifying the components, that we call processes, in such systems, and defining their se-
mantics with new notions such as timed traces and distributed timed languages that reflect
the distribution of actions. In an NTA, it is clear that each automaton is a process, and we
will see in Sect. 4 that it is also possible to identify processes in a TPN.

Once processes have been identified, we can describe the runs of distributed timed sys-
tems as timed traces. With this definition, each action is associated with a set of processes
that always perform it together and simultaneously, therefore it may be local or shared (syn-
chronizations). Events (action occurrences) are partially ordered since two events on disjoint
sets of processes may not be causally ordered.

Concurrency-Preserving Translation from TPN to NTA 9

Definition 7 (Timed Trace, Distributed Timed Language) A timed trace over the alpha-
bet Σ and the finite set of processes Π = (π1, . . . ,πn) is a tuple W = (E,4,λ ,δ ,proc) where

– E is a countable set of events,
– 4⊆ (E×E) is a partial order over E such that, for any event e, the set {e′ ∈ E | e′ 4 e}

is finite,
– λ : E→ Σ is a labeling function,
– δ : E→ R≥0 assigns a date to every event such that, if e1 4 e2, then δ (e1)≤ δ (e2);
– proc : Σ → 2Π is the distribution of actions that maps each action to a subset of Π ,

and such that, for any i in [1..n], 4|πi is a total order on Ei, with the following definitions:

– Σi = {a ∈ Σ | πi ∈ proc(a)} denotes the alphabet of process πi,
– Ei = {e ∈ E | λ (e) ∈ Σi} denotes the set of events that occur on process πi,
– 4|πi =4∩ (Ei×Ei).

A distributed timed language is a set of timed traces. 4

Figure 4 gives a representation of a timed trace. Each process is represented by a vertical
line, and each event is represented by a dot or dots connected by a horizontal line, depending
on whether it occurs on one process or on several processes. Each event e∈ E is also labeled
by the pair (λ (e),δ (e)). Moreover, events are ordered along each process from the top to
the bottom of the line, and we can see that events on different processes are not always
ordered. For example, (a,3)4(b,4), (b,4) and (d,3) are not ordered, and (b,4)4(d,11)
because (c,8) takes them apart by transitivity.

Given an accepted timed word w = (a0,d0) . . .(an,dn) . . . and the distribution of ac-
tions proc over the automata, we can build an accepted timed trace for an NTA. Namely,
E = {e0, . . . ,en, . . .}, λ and δ are such that, for each i ≥ 0, λ (ei) = ai and δ (ei) = di,
and 4 is the transitive closure of the relation 4′ defined as: for any events ei and e j,
ei 4′ e j ⇐⇒

(
i≤ j∧proc(λ (e j))∩proc(λ (e j)) 6= /0

)
.

4 S-subnets as processes for Petri nets

Identifying processes in a TPN is not as immediate as in an NTA. But, in practice, when a
system is modeled as a TPN, the designer knows its physical structure and builds the TPN as
a composition of components that model the subsystems. Anyway, if a TPN is given without
its decomposition, these components can be identified.

We first define S-subnets as the processes of a Petri net, and the decomposition of a
Petri net into S-subnets. Then we show how we can find this decomposition. We borrow
the main definitions from [13], where the authors give a method (introduced in [17]) to
decompose a live and bounded free-choice net into such components and we adapt this
method to decompose more general nets.

4.1 Decomposition into S-subnets

Since the notion of process involves only the structure and does not depend on any time
property, in this section, we consider only the structure of a Petri net: a net is denoted by
(P,T,F) where P is the set of places, T is the set of transitions, and F ⊆ (P×T)∪ (T ×P)
is the set of arcs.

10 S. Balaguer, T. Chatain and S. Haar

A net (P,T,F) is an S-net if ∀t ∈ T , |•t| = |t•| = 1. Thus, an S-net can be seen as an
automaton (places are locations and transitions are edges). We want to decompose a net N
in S-nets that cover the net. To do so, we introduce the notion of S-subnet.

A net (P′,T ′,F ′) is a subnet of a net N = (P,T,F) if P′ ⊆ P, T ′ ⊆ T and
F ′ = F ∩

(
(P′×T ′)∪ (T ′×P′)

)
.

We say that the subnet (P′,T ′,F ′) of N is P-closed if T ′ = •P′ ∪P′•. That is, any tran-
sition connected to a place which is in the subnet is also in the subnet. The subnet of N
generated by a set of places P′ is the P-closed subnet (P′,T ′,F ′) of N.

Definition 8 (S-subnet) An S-subnet of a net N is a P-closed subnet N′ = (P′,T ′,F ′) of N
such that N′ is an S-net.

A net N = (P,T,F) is decomposable in S-subnets iff there exists a set of S-subnets
{N1, . . . ,Nn} with Ni = (Pi,Ti,Fi), such that

⋃
i∈[1..n] Pi = P. In this case, the set of S-subnets

is called a cover of N (and
⋃

i∈[1..n] Ti = T because the S-subnets are P-closed). We are
looking for minimal S-subnets w.r.t. the set inclusion of their generating places, and we
notice that connected S-subnets are always minimal. We are also looking for minimal covers,
i.e. covers such that if one S-subnet is removed, then the net is no longer covered.

Note that the notion of S-subnet generalizes the notion of S-component presented in [13]
because we do not impose that the subnet is strongly connected.

Definition 9 (Incidence matrix) Let N be the net (P,T,F). The incidence matrix
N : (P×T)→{−1,0,1} of N is defined by

N(p, t) =

−1 if (p, t) ∈ F and (t, p) /∈ F

1 if (p, t) /∈ F and (t, p) ∈ F
0 otherwise.

An incidence matrix is given in Fig. 5(b). The entry N(p, t) corresponds to the change
of the marking of place p caused by the occurrence of transition t. Hence, if t is fired from
marking M, the new marking is M′ = M + t, where t is the column vector of N associated
with t.

Definition 10 (S-invariant [22]) An S-invariant of a net N is an integer-valued solution of
the equation X ·N = 0.

From the definition of incidence matrix it follows that a mapping I : P→ N is an S-
invariant iff for every transition t holds ∑p∈•t I(p) = ∑p∈t• I(p).

An S-invariant I of a net is called semi-positive if I ≥ 0 and I 6= 0. The support of a
semi-positive S-invariant I, denoted by 〈I〉, is the set of places p satisfying I(p)> 0. Every
semi-positive S-invariant I satisfies •〈I〉= 〈I〉•.

In the sequel, we consider S-invariants I such that I : P→ {0,1} (set of places). Notice
that the set of places of a minimal S-subnet is a minimal S-invariant, and conversely.

Proposition 1 A Petri net (P,T,F) is decomposable in S-subnets iff there exists a set of
S-invariants {X1, . . .Xn} such that

– ∀i ∈ [1..n],Xi : P→{0,1}, (1)
– ∀i ∈ [1..n],∀t ∈ T, ∑

p∈•t
Xi(p) ∈ {0,1} (2)

– ∀p ∈ P, ∑
i∈[1..n]

Xi(p)≥ 1 (the set covers the net). (3)

Concurrency-Preserving Translation from TPN to NTA 11

Proof (⇒) Assume P is decomposable in S-subnets, then there exists a set of n S-subnets
Ni =(Pi,Ti,Fi), with i∈ [1..n], such that

⋃
i Pi =P. We can choose n mappings Xi : P→{0,1}

such that for each place p, Xi(p) = 1 if p∈ Pi, and Xi(p) = 0 otherwise. Since Ni is an S-net,
for each transition t, |Pi ∩ •t| = |Pi ∩ t•| = 1 if t ∈ Ti and 0 otherwise. Therefore, for each
transition t, ∑p∈•t Xi(p) = ∑p∈t• Xi(p), which characterizes an S-invariant. Moreover, this
sum equals 0 or 1. Lastly, since each place is in at least one subset of places, for each place
p, ∑i∈[1..n] Xi(p)≥ 1.

(⇐) Assume now that there exists a set of S-invariants {X1, . . . ,Xn} which satisfies the
three conditions of Prop. 1. We show that the n subnets generated by each 〈Xi〉 with i in
[1..n], are S-subnets that cover N. We denote them by Ni = (Pi,Ti,Fi), with Pi = 〈Xi〉 and
Ti =

•〈Xi〉 = 〈Xi〉•. By construction, Ni is a P-closed subnet of N. Moreover, since for each
place p, Xi(p) ∈ {0,1}, p ∈ 〈Xi〉 implies that Xi(p) = 1, and p /∈ 〈Xi〉 implies that Xi(p) = 0.
That is, for each transition t, |•t ∩Pi| = |•t ∩ 〈Xi〉| = ∑p∈•t Xi(p) = 1 or 0, from (2). If t ∈
Ti = 〈Xi〉•, then •t ∩ 〈Xi〉 6= /0 and we must have |•t ∩ 〈Xi〉| = 1. In the same way, if t ∈ Ti,
|t• ∩Pi| = 1. Hence Ni is an S-net. Lastly, the n S-subnets cover the net because for each
place p, ∑i∈[1..n] Xi(p)≥ 1, which implies that there exists i in [1..n] such that p ∈ 〈Xi〉, that
is
⋃

i∈[1..n]〈Xi〉= P. ut

When the net is decomposable, there exists a set {I1, . . . Ik} of minimal S-invariants that
is a minimal cover of the net. Such a set gives a decomposition of the net in the S-subnets
generated by the minimal S-invariants. Note that this decomposition is not unique and that
a place may be shared by several S-subnets, as shown by the examples in Paragraph. 4.1
below.

The number of tokens in an S-subnet is constant. Thus, an S-subnet initially marked
with one token represents an automaton where the active location is the marked place. Such
subnet is called a process. If the S-subnet is initially marked with m tokens, then it cor-
responds to m processes with the same structure but not necessarily starting in the same
place, and these processes do not synchronize with each others. To simplify, we only con-
sider 1-bounded PNs, but we explain how the procedure can be extended to k-bounded PNs
in Subsection 6.1. Lastly, notice that the conservation of the number of tokens in each S-
subnet implies that unbounded PNs are not decomposable.

Decomposition algorithm. Some algorithms for the computation of minimal S-invariants
can be found in [12] where they are called p-semiflows. Therefore, it is possible to compute
the set X of minimal S-invariants with values in {0,1} from a given incidence matrix N.
Hence, Algorithm 1 below describes how a net can be decomposed.

Decomposition examples. Below are some examples of decomposition. In Example 1, the
net is decomposable, the decomposition is unique and some places belong to several compo-
nents. In Example 2, the net is decomposable, the decomposition is not unique, and places
belong to only one component. Lastly, in Example 3, the net is not decomposable.

Example 1 We want to decompose the net shown in Fig. 5(a). To this purpose, we determine
its minimal S-invariants with values in {0,1}.

With the incidence matrix given in Fig. 5(b), we obtain the following non-zero minimal
S-invariants: X1 = [1 1 0 0 0 0 0], X2 = [0 0 1 1 0 1 1], and X3 = [0 0 1 1 1 0 0]. These
S-invariants cover the net, therefore the net is decomposable. They also form a minimal
cover (if one S-invariant is removed, the net is no longer covered), therefore they give a
decomposition of the net. Hence the net is decomposable in the three S-subnets generated
by the sets of places {p1, p2} (X1), {p3, p4, p6, p7} (X2), and {p3, p4, p5} (X3), see Fig. 5(c).

12 S. Balaguer, T. Chatain and S. Haar

Data: incidence matrix N
Result: minimal set S of minimal S-subnets that covers the net if the net is decomposable,

empty set otherwise
begin

S← /0;
X← set of minimal S-invariants with values in {0,1}, computed from N;
if X does not cover the net then

return S;
end
while X is not a minimal cover do

foreach X in X do
if X\{X} covers the net then

X← X\{X};
break;

end
end

end
foreach X in X do

S← subnet generated by X ;
S← S∪{S};

end
return S;

end

Algorithm 1: Decomposition algorithm

p1

t1

p2

t2

p3

p4

t5

p5

t3

p6

p7

t4

(a) A decomposable net

t1 t2 t3 t4 t5
p1 1 −1 0 0 0
p2 −1 1 0 0 0
p3 0 −1 0 0 1
p4 0 1 −1 0 0
p5 0 0 1 0 −1
p6 0 0 0 1 −1
p7 0 0 1 −1 0

(b) Its incidence matrix

p1

t1

p2

t2

p3

t2

p4

t5

t3

p6

p7

t4

p3

t2

p4

t5

p5

t3

(c) Its decomposition

Fig. 5 A net which is decomposable in S-subnets, its incidence matrix, and its decomposition

Example 2 We want to decompose the net shown in Fig. 6(a). With the incidence matrix
given in Fig. 6(b), we obtain the following non-zero minimal S-invariants: X1 = [1 0 1 0 1 0],
X2 = [1 0 0 1 0 1], X3 = [0 1 1 0 1 0] and X4 = [0 1 0 1 0 1]. The net is covered, therefore
decomposable, and there are two minimal covers {X1,X4} and {X2,X3}, therefore two de-
compositions. The two components of the decomposition given by {X1,X4} are denoted in
Fig. 6(a) by different line types: the arcs of the S-subnet generated by {p1, p3, p5} (X1) are
represented by dashed lines, and those of the one generated by {p2, p4, p6} (X4) are repre-
sented by plain lines. In the second possible decomposition, p1 and p2 are switched.

Concurrency-Preserving Translation from TPN to NTA 13

p2

p1

t2

t1

p4

p3

t4

t3

p6

p5

(a) A decomposable net (the different line
types denote the arcs of the two different
components of one decomposition)

t1 t2 t3 t4
p1 −1 −1 0 0
p2 −1 −1 0 0
p3 1 0 −1 0
p4 0 1 0 −1
p5 0 1 1 0
p6 1 0 0 1

(b) Its incidence matrix

Fig. 6 A net which is decomposable in S-subnets and its incidence matrix

p1 t1 p2

t2

p3

Fig. 7 A non decomposable net

Example 3 Consider the net of Fig. 7. Any S-subnet N′ containing p2 must also contain its
input and output transitions t1 and t2. Then it must contain an input place for t1 and an output
place for t2, which are necessarily p1 and p3. This means that the only candidate for being a
S-subnet containing p2 is the entire net, but it is not an S-net since t2 has two input places.
This can also be seen by computing the S-invariants from the incidence matrix: there is no
non-zero solution with values in {0,1} (but there are some with values in N, for example
[1 1 2]). Therefore, this net is not decomposable.

4.2 Size of the decomposition.

Assume net N = (P,T,F) is decomposable in n S-subnets N1, . . . ,Nn, such that Ni =
(Pi,Ti,Fi) is the subnet generated by Pi. The number of places in the decomposition is equal
to ∑i∈[1..n] |Pi| and is at most |P|2 because a place may be shared by several components
and no more than |P| components are needed to cover the net. And the number of transi-
tions is ∑i∈[1..n] |Ti| and is at most |T |× |P| for the same reason. But these upper bounds are
pessimistic since generally there are fewer components and few places and transitions are
duplicated in all components.

5 Translation from time Petri net to network of timed automata

A TPN can be translated in a TA which accepts the same timed words (see Fig. 3). But we
would like to translate it in an NTA which accepts the same timed traces. In this section, we
propose a structural translation from a TPN to an NTA, based on the decomposition in pro-
cesses. Therefore, this translation deals with TPNs whose untimed support is decomposable.
Moreover, in this section, we consider only TPNs whose untimed support is 1-bounded, in
order to simplify the explanation, but the procedure can easily be extended to TPNs whose
untimed support is k-bounded and still decomposable, as explained in Subsection 6.1. In

14 S. Balaguer, T. Chatain and S. Haar

Subsection 6.2, we will discuss an extension to deal with bounded TPNs whose untimed
support is unbounded and therefore not decomposable.

5.1 Procedure

Our procedure translates a time Petri net N into a network of timed automata and relies on
a decomposition of the untimed support of N into S-subnets (that may be obtained using
Algorithm 1). Therefore, our procedure is not (at least directly) applicable if the net is not
decomposable. We also require that each S-subnet is initially marked with one token (we
discuss the case when S-subnets are not marked, or marked with more than one token in
Subsection 6.1). For our example of Fig. 2, we get the subnets shown in Fig. 8(a).

Each S-subnet determines a process in the time Petri net and will be translated into
a timed automaton. We focus now on the treatment of time constraints in order to get a
network of timed automata which has the same distributed timed language as N .

This involves three steps:

1. Each S-subnet is translated into an automaton preserving its structure (places become
locations and transitions become edges). Each edge is labeled with the name of the
corresponding transition.

2. Time is added by providing each automaton with a single clock xi. This clock is reset on
each edge. The idea is that the value of xi gives the time elapsed in the current location.
On each edge, if [a,b] is the firing interval of the corresponding transition, we add a
guard xi ≥ a, and if the transition is not shared, we add an invariant xi ≤ b on the source
location.

3. Then, we have to deal with the synchronizations (transitions with several input places).
Such transitions have to fire if they are enabled and their latest firing delay is reached.
On our example, see Fig. 8(b), we can stay in (`1, `3) as long as min(v(x1),v(x2)) ≤ 0
(because min(v(x1),v(x2)) is the elapsed time since b was enabled and lfd(b) = 0). Thus,
we add Inv(`1,b) ≡ `3⇒ (x1 ≤ 0∨ x2 ≤ 0) ≡ ¬`3 ∨ (x1 ≤ 0∨ x2 ≤ 0) and Inv(`3,b) ≡
`1⇒ (x1 ≤ 0∨ x2 ≤ 0)≡ ¬`1∨ (x1 ≤ 0∨ x2 ≤ 0) in the invariants of `1 and `3 (actually
we only need to add this “global” invariant to the invariant of one of the source locations
concerned by the synchronization).

Formally, a TPN N = (P,T,F,M0,efd, lfd) with n processes can be translated in the
NTA (A1, . . . ,An) with, for all i in [1..n], Ai = (Li, `

0
i ,C,Σi,Ei, Invi) where

– Li = Pi (places of the ith subnet),
– `0

i is s.t. {`0
i }= Pi∩M0,

– C = {x1, . . . ,xn},
– Σi = Ti (transitions of the ith subnet),
– Ei is the set of edges (p,g, t,r, p′) s.t. t ∈ Ti, {p}= •t∩Pi, {p′}= t•∩Pi, g≡ xi ≥ efd(t),

and r = {xi},
– Invi : Pi → B(C,P) assigns invariants to locations s.t. ∀p ∈ Pi, Invi(p) ≡

∧
t∈p•

Inv(t),

where Inv(t) ≡ (
∧

p′∈•t
p′)⇒ min

k∈It
(xk) ≤ lfd(t), with It = {i ∈ [1..n] | t ∈ Ti} the set of

indices of the subnets that contain t.

That is, Invi(p) ensures that we cannot overtake the latest firing delay of an enabled
transition which is in the post-set of p. Notice that Invi(p) uses the extended syntax (see

Concurrency-Preserving Translation from TPN to NTA 15

•p0

a

p1

d

p4

b b

•p2

c

p3

(a) Decomposition in processes

`0x1 ≤ ∞

`1x1 ≤ 2
∧ Inv(`1,b)

`4

`2x2 ≤ 2

`3Inv(`3,b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(`1,b)≡ ¬`3 ∨ x1 ≤ 0∨ x2 ≤ 0
Inv(`3,b)≡ ¬`1 ∨ x1 ≤ 0∨ x2 ≤ 0

(b) Resulting NTA

Fig. 8 Translation of the TPN of Fig. 2

Subsection 3.1): automaton Ai can read the clocks of the other automata, but does not reset
them and it can also read the current location of the other automata in its invariants.

In the rest of this section, we first prove that this translation is correct w.r.t. the preser-
vation of the distributed timed language and we discuss the size of the resulting NTA, then
we show that the use of the extended syntax is necessary and we identify some cases when
the local syntax is sufficient.

Proposition 2 The initial 1-bounded time Petri net N and the network of timed automata
S which results from the translation have the same distributed timed language (are timed
bisimilar with the same distributions of actions).

Proof A marking of N can be identified with a vector of current locations of S . A place
may correspond to several locations in the NTA, but in this case, if it is active in one au-
tomaton, then it is active in all the automata where it appears. Indeed, for any transition t,
any place in t• is in a component (because the net is covered) and t is also in this component
(because the components are P-closed). Therefore, the firing of t in N corresponds to a
synchronization on t in S .

For any i in [1..n], we note pi = M ∩Pi the current location of automaton Ai. We first
show the following equivalence:

v |=
∧

1≤i≤n

Invi(pi) ⇐⇒
(
∀t ∈ T,•t ⊆M =⇒ ν(t)≤ lfd(t)

)
(1)

Indeed, by construction, Invi(pi) ≡
∧

t∈pi•
(
(
∧

p∈•t p) ⇒ min
k∈It

(xk) ≤ lfd(t)
)
. Thus,

v |=
∧

1≤i≤n Invi(pi) is equivalent to ∀t ∈ T s.t. (•t∩M 6= /0)∧(•t ⊆M), min
k∈It

(
v(xk)

)
≤ lfd(t).

Then •t∩M 6= /0 can be removed, and by construction, when t is enabled, ν(t) =min
k∈It

(
v(xk)

)
.

Moreover the guard gi(t) associated with the edge labeled by t in automaton Ai, is built
so that gi(t)≡ xi ≥ efd(t), and again, when t is enabled, ν(t) = min

i∈It

(
v(xi)

)
, which gives:

∀t ∈ T,•t ⊆M =⇒

(
v |=

∧
i∈It

gi(t) ⇐⇒ ν(t)≥ efd(t)

)
(2)

16 S. Balaguer, T. Chatain and S. Haar

Then we define a relation R between states of S and states of N as follows:

(M,v) R (M,ν) ⇐⇒
(
∀t ∈ T,•t ⊆M =⇒ ν(t) = min

i∈It

(
v(xi)

))
Note that R is not a bijection because the clocks of the automata do not correspond to the
clocks of the transitions, and a state of N may correspond to several states of S . We want
to show that R is a timed bisimulation.

We first observe that (M0,v0) R (M0,ν0) and we show that, from any correspondent
states, (M,v) R (M,ν), the same executions are possible.

Delay step. Assume that there exists d ∈ R≥0 such that (M,v) d→ (M,v+ d). Then, ∀d′ ∈
[0,d],v+ d′ |=

∧
1≤i≤n Invi(pi). Equation (1) implies that ν + d′ is an admissible valuation

for marking M, and (M,v+d) R (M,ν +d).

Similarly, if there exists d ∈ R≥0 such that (M,ν)
d→ (M,ν +d), then, (M,v+d) is also

an admissible state for S and (M,v+d) R (M,ν +d).

Action step. Assume now that there exists an action t such that (M,v) t→ (M′,v′), and It
is the set of indices of the processes that perform t. Then, there exists e = (e1, . . . ,en) ∈
(E1∪{•})×·· ·× (En∪{•}) s.t. ∀i ∈ [1..n],

if i /∈ It , then ei = • and pi = p′i

otherwise, ei = (pi,gi, t,ri, p′i) s.t.

pi ∈ •t ∧ p′i ∈ t•,
gi ≡ xi ≥ efd(t),
ri = {xi}

and v |=
∧

i∈It gi, v′ = v[
⋃

i∈It ri], and v′ |=
∧

i Invi(p′i).
(M,v) R (M,ν) implies that transition t is firable from (M,ν), because it is

enabled (•t = {pi | i ∈ It}) and its firing delays are respected (because of (1)
and (2)). This transition leads to state (M′′,ν ′) s.t. M′′ = (M\•t) ∪ t• = M′, and

∀t ′ ∈ T,ν ′(t ′) =
{

0 if ↑enabled(t ′,M, t),
ν(t ′) otherwise.

By construction, ∀i ∈ [1..n],v′(xi) = 0 if i ∈ It , and v′(xi) = v(xi) otherwise. That is, for
each transition t ′, min

i∈It′

(
v′(xi)

)
= 0 if It ′ ∩ It 6= /0 and min

i∈It′

(
v′(xi)

)
= min

i∈It′

(
v(xi)

)
otherwise.

Then, for each enabled transition t ′, we distinguish two cases:

1. t ′ is newly enabled by the firing of t from marking M (↑enabled(t ′,M, t) holds). That
means that the last token to enable t ′ has been created by t, that is, It ′ ∩ It 6= /0. Therefore,
ν ′(t ′) = 0 = min

i∈It′

(
v′(xi)

)
.

2. t ′ was enabled before the firing of t. That implies It ′ ∩ It 6= /0 (because there is one token
by process and the tokens in •t ′ have not been moved by the firing of t). Therefore,
ν ′(t ′) = ν(t ′) = min

i∈I′t

(
v(xi)

)
= min

i∈It′

(
v′(xi)

)
.

Therefore, ν ′ is an admissible valuation for M′ and (M′,v′) R (M′,ν ′).
Similarly, if there exists t ∈ T such that (M,ν)

t→ (M′,ν ′) then, we can take synchro-
nization t: (M,v) t→ (M′,v′), such that this synchronization is shared by the automata whose
indices are in It , and for any i, v′(xi) = 0 if i ∈ It and v′(xi) = v(xi) otherwise. That is, for
any transition t ′, min

i∈It′

(
v′(xi)

)
= 0 if It ∩ It ′ 6= /0, and min

i∈It′

(
v′(xi)

)
= min

i∈It′

(
v(xi)

)
otherwise.

Therefore, if t ′ is enabled, min
i∈It′

(
v′(xi)

)
= ν ′(t ′), and (M′,v′) R (M′,ν ′).

Concurrency-Preserving Translation from TPN to NTA 17

We have shown that R is a timed bisimulation between the TTS of N and S . More-
over, there is a bijection between the processes of N and those of S and we have the same
distribution of actions between the processes. Therefore, N and S accept the same dis-
tributed timed language. ut

5.2 Size of the network of timed automata

Once the decomposition is computed, we directly have the structure of the timed automata.
Thus the NTA has at most |P|2 locations and |T |×|P| edges (see last paragraph of Sect. 4.2).
The number of edges is exactly ∑t∈T |It |.

Then, the timing information is provided by as many clocks as processes, that is at
most |P| clocks. There is one clock comparison on each edge, because the guards are of the
form xi ≥ lfd(t). Moreover, each Inv(t) contains |It | clock comparisons (because the min
ranges over |It | clocks). Inv(t) can be attached only to one of the input places of t because
a state is legal as long as the valuation satisfies all the invariants of the current locations,
thus, if t is enabled and one of its input places carries Inv(t), lfd(t) cannot be overtaken.
Therefore, if we attach each Inv(t) to only one of the input places of t, we have ∑t∈T |It |
clock comparisons in the invariants. To conclude, the size of the timing information given
by the clock comparisons is proportional to the number of edges.

5.3 Know thy neighbor!

Our translation produces a network of timed automata which accepts the same distributed
timed language (and which is timed bisimilar). But we use an extended syntax (see Sub-
section 3.1) in which each automaton can read the state (location and clock) of the other
automata. We show that the use of this extended syntax is necessary.

Proposition 3 Given a TPN N with its processes, in general, there does not exist any NTA
S using the local syntax such that N and S have the same distributed timed language.

For example, Fig. 9 shows two timed traces W and W ′ representing the beginning of two
possible runs, without synchronization, for the TPN N of Fig. 2. Any NTA S using the
local syntax and accepting W and W ′ would also accept the timed trace built by composing
the projection of W onto π1 and the projection of W ′ onto π2 (see Fig. 9). But this timed
trace is not accepted by N .

To prove Prop. 3, we first give some definitions about timed traces, and a lemma that
will be used in the proof.

Timed linearization and projection. A timed linearization of a timed trace is a possible
execution expressed as a timed word which respects both the causal order and the order
imposed by the time stamping.

A timed trace W can be defined as a tuple (w,proc) where w is a timed linearization of
W , see Fig. 4 and its caption that gives one timed linearization of the timed trace represented
in the figure.

The projection of a timed trace W onto process πi, denoted by W|πi is defined as the
projection of a linearization of W , w, onto Σi, denoted by w|Σi :

– if w = ε , then w|Σi = ε

18 S. Balaguer, T. Chatain and S. Haar

(d,2)

(a,0)

(c,2)

π1 π2

W

(c,1)

π1 π2

W ′

(d,2)

(a,0)
(c,1)

π1 π2

W|π1‖W
′
|π2

Fig. 9 Two accepted timed traces and one non accepted timed trace for the TPN of Fig. 2

– if w = (a,θ) ·w′, then w|Σi =

{
(a,θ) ·w′|Σi

if a ∈ Σi

w′|Σi
otherwise

Juxtaposition of timed words. The juxtaposition of n timed words, w1 ‖ w2 ‖ · · · ‖ wn is the
timed trace over n processes, W such that for each i in [1..n], if Σi denotes the set of actions
that appear in wi, then W|Σi = wi.

We denote by S a network of n timed automata (A1, . . . ,An), and by Rθ (S) the set of
all timed traces representing admissible runs of S , without synchronization, and stopping
at date θ .

Lemma 1 Let S be a network of n timed automata that do not read the state of the
other automata, then, for any timed traces W1, . . . ,Wn ∈ Rθ (S) (not necessarily different),
W1|π1 ‖ · · · ‖Wn|πn ∈ Rθ (S).

Proof (Lemma 1) In θ , the automata have not yet synchronized, that is their runs stopping
at date θ are independent, and they could have performed any other admissible sequence of
actions, stopping at date θ , without synchronization. ut

Proof (Prop. 3) Assume that the two automata corresponding to the two processes of the
TPN N of Fig. 2 are not able to read the current location and the clock of the other automa-
ton. Then, for any two timed traces W and W ′, representing two admissible runs without
synchronization, stopping at date θ , the timed trace W|π1 ‖W ′|π2

represents also an admissi-
ble run.

If we choose, as in Fig. 9, W = (w,proc) and W ′ = (w′,proc), with w =
(a,0)(d,2)(c,2), w′ = (c,1) and proc=

{
(a,π1),(b,{π1,π2}),(c,π2),(d,π1)

}
(with θ = 2),

then W|π1 ‖W ′|π2
=
(
(a,0)(c,1)(d,2),proc

)
(see Fig. 9) should represent an admissible run

for S and N . Which is false because as soon as c has been performed, b must be performed
immediately. Therefore, the local syntax (see Subsection 3.1) must be extended. ut

5.4 TPNs with good decompositional properties

Prop. 3 states that in general any NTA S having the same distributed timed language as a
given TPN N , uses the extended syntax defined in Subsection 3.1, i.e. the automata of S

Concurrency-Preserving Translation from TPN to NTA 19

have to read information about the state of the others. This creates a dependency between
the automata, which is not as strong as in the case of a synchronization on a common action,
since it is asymmetric: only one automaton reads. Still, we are interested in identifying the
cases where the automata do not need to read information about the state of their neighbours,
which we regard as a good decompositional property.

We did not find an algorithm that decides in general if TPN N has this property and we
do not know if it is decidable. However, we present a simple sufficient condition, which can
be detected by reachability analysis on the marking TA of N . We show how our construc-
tion can be easily adapted in this case, to avoid reading information about other automata.

A class of TPN with good decompositional properties.

Proposition 4 Let N be a 1-bounded TPN which is decomposable, and such that for any
transition t, there exists a place p in •t which is always the last place to be marked among
•t when t becomes enabled, then there exists an NTA S with the local syntax and with the
same distributed timed language as N .

Proof We use the same translation as before and choose to add Inv(t) only in Invi(p)
(this can be done, as explained in the third step of the translation). By construction,
Inv(t)≡

(
(
∧

p′∈•t p′)⇒min
k∈It

(xk)≤ lfd(t)
)
. In this case, (

∧
p′∈•t p′) is always true in Invi(p)

– because if p is marked, then all places in •t are marked – and min
k∈It

(v(xk)) = v(xi) = ν(t).

Therefore, for any i in [1..n] and for any place p in Pi, Invi(p) can be expressed with the
local syntax. ut

This property can be expressed in CTL and checked on the marking TA: for any tran-
sition t and for any place p ∈ •t we check whether the formula AG(p ∈ M ⇔ •t ⊆ M) is
satisfied (the formula has to hold for at least one place of •t).

For example, consider the TPN of Fig. 10(a). Without studying the timing constraints,
the translation gives the NTA of Fig. 10(b), where the invariants of locations `1 and `3 read
the state of the other automaton. But when we look at the timing constraints, we can see
that location `1 is always activated before location `3, i.e. `3 ⇒ `1, that is b is enabled as
soon as `3 is marked. Therefore, the invariant associated with b can be placed on `3 only
and simplified. Indeed, there is no need to read `1 since we know it is marked and no need
to read x1 since min(x1,x2) = x2. Eventually, we get the NTA of Fig. 10(c).

Some more complicated examples. We believe that the class of TPN with good decomposi-
tional properties that we described above captures most of the practical cases in which one
can avoid reading information about other components. The idea is that most often, when
there is a variable delay before several components synchronize on a common action, this
delay is due to one of the components (which may typically be waiting for some input),
while the other components are simply waiting; then the invariant that triggers the synchro-
nization can be associated to the component that is responsible for the delay, and it will not
need to read any information about the state of the others: it can assume that the others are
ready to synchronize.

On the other hand, if the delay is really due to several components, then it is very likely
that none of the components have enough information locally to be able to trigger the syn-
chronization without reading information about the state of the others. This observation is
not always verified: we now show an example for that, but we try to convince the reader that
this kind of examples is not very likely to occur in practice.

20 S. Balaguer, T. Chatain and S. Haar

•p0

a[0,4]

p1

b[0,3]

•p2

c[5,∞)

p3

(a) Initial TPN

`0x1 ≤ 4

`1

`2

`3

a
{x1}

b
{x1}

x2 ≥ 5
c
{x2}

b
{x2}

¬`3 ∨ x1 ≤ 3
∨x2 ≤ 3

¬`1 ∨ x1 ≤ 3
∨x2 ≤ 3

(b) Result of the procedure of Subsection 5.1

`0x1 ≤ 4

`1

`2

`3

x2 ≤ 3

a
{x1}

b
{x1}

x2 ≥ 5
c
{x2}

b
{x2}

(c) Result of the translation when observ-
ing that b is always enabled as soon as p3
is marked

Fig. 10 A TPN that can be translated in an NTA with the local syntax

Consider the example depicted in Fig. 11(a), where α and β are parameters for the val-
ues of the constants. This TPN can be decomposed into two components (see the example of
Fig. 6(a), which is very similar). These two components will be translated into two automata
A1 (plain lines in the figure), with clock x1, and A2 (dashed lines), with clock x2. Here, after
the occurrence of t ′, either a occurs or b occurs.

For the first example, we assume that α = β . Then, whatever transition occurs between
a and b, t will be enabled α time units after the firing of t ′. Therefore a clock x′ can be
added in one of the automata, reset when t ′ fires, and used in the invariant of one of the input
locations of t as the condition x′ ≤ α (see Fig. 11(b)).

Now, let us assume that α 6= β . If a occurs, then p2 is marked immediately, and p1 is
marked β time units later. In this case, p1 must be disabled immediately and p2 must be
disabled after β time units. If b occurs, then p1 is marked immediately, and p2 is marked α

time units later. In this case, p2 must be disabled immediately and p1 must be disabled after
α time units. Therefore, in order to respect the latest firing delay of t, when t is enabled, it
suffices to attach x2 ≤ β to p2 and x1 ≤ α to p1 (see Fig. 11(c)).

Concurrency-Preserving Translation from TPN to NTA 21

t ′[0,∞)

•

• a

[0,0]

b

[0,0]

t1

[β ,β]

t2

[α,α]

p1

p2

t [0,0]

(a) Initial TPN

x1 ≤ 0

x2 ≤ 0

x1 ≤ α

x2 ≤ α

p1

x′ ≤ α

p2

t ′,{x1,x′}

a,{x1}

b,{x1}

x1 ≥ α, t1

t

t ′,{x2} a,{x2}

b,{x2} x2 ≥ α, t2

t

(b) α = β . NTA with the local syntax but one more clock

x1 ≤ 0

x2 ≤ 0

x1 ≤ β

x2 ≤ α

p1

x1 ≤ α

p2

x2 ≤ β

t ′,{x1}

a,{x1}

b,{x1}

x1 ≥ β , t1,{x1}

t

t ′,{x2} a,{x2}

b,{x2} x2 ≥ α, t2,{x2}

t

(c) α 6= β . NTA with the local syntax

Fig. 11 A TPN that can be translated in an NTA with a local syntax. The arcs of the two components are
drawn differently

6 Discussion and examples

6.1 Dealing with decomposable TPNs whose untimed support is k-bounded

The translation procedure was given for TPNs whose untimed support is a decomposable
PN such that each S-subnet is initially marked with one token, but we mentioned the pos-
sibility to translate also TPNs whose untimed support is decomposable and such that the
S-subnets may not be marked or be marked with more than one token. Below, we describe
the procedure on an example.

Consider a net such that an S-subnet is initially marked with more than one token. The
untimed support of the TPN of Fig. 12(a) is decomposable into the two S-subnets generated
by {p1, p2, p3, p4} and {p5, p6}. Since one S-subnet is initially marked with two tokens, it
corresponds to two processes π1 and π2 with the same structure. Moreover, since a transition

22 S. Balaguer, T. Chatain and S. Haar

•p1 t1

[10,10]

p2 • p5

p6

t5 [0,∞)t2 [1,1]

• p3t3

[10,10]
p4

t4[1,1]

(a) Initial TPN with two S-subnets but three processes

`1,1

x1 ≤ 10

`2,1

x1 ≤ 1

`3,1

x1 ≤ 10

`4,1

x1 ≤ 1

x1 ≥ 10, t1,1

{x1}
x1 ≥ 1
t2,1
{x1}

x1 ≥ 10, t3,1

{x1}

x1 ≥ 1
t4,1
{x1}

`1,2

x2 ≤ 10

`2,2

x2 ≤ 1

`3,2

x2 ≤ 10

`4,2

x2 ≤ 1

x2 ≥ 10, t1,2

{x2}
x2 ≥ 1
t2,2
{x2}

x2 ≥ 10, t3,2

{x2}

x2 ≥ 1
t4,2
{x2}

`5

∨
(
(¬`2,1 ∨ x1 ≤ 1)∧ (¬`2,2 ∨ x2 ≤ 1)

)

`6

x3 ≤ 1

x3 ≥ 1
t2,2

{x3}

x3 ≥ 1
t2,1

{x3}

t5
{x3}

(b) Resulting NTA where two automata have the same structure but different initial locations

Fig. 12 A TPN whose support is a decomposable PN such that one S-subnet is initially marked with 2 tokens
and its translation into an NTA

needs only one token in each one of its input places to be enabled, π1 and π2 need not know
the state of each other. That is, each one of them will model the course of one token in the
net.

In Fig. 12(b), we labeled differently the actions in the first two automata, to denote that
they do not synchronize with each other. And since the third process synchronizes on t2,
the edge labeled by t2 in the associated automaton is duplicated to denote the two possible
synchronizations with t2,1 and t2,2.

Notice that this approach also applies to Petri nets such that an S-subnet Ni is not marked
initially (and hence will never be marked). There is no process corresponding to Ni and there
will be no corresponding TA. Moreover, for any other S-subnet N j that shares a transition
with Ni, this transition will never fires, and this is ensured by the fact that edges are du-
plicated in as many versions as possible synchronizations, and since there is no possible
synchronization, there will be no edge denoting this transition in the TA associated with N j.

6.2 Dealing with bounded TPNs whose untimed support is unbounded

The conservation of the weighted sum of the tokens in an S-invariant (see [13]) shows that
unbounded PN are not decomposable. Moreover, not all 1-bounded PNs are decomposable,
although we think that, most models of real systems are.

However, our method can be adapted to some temporally 1-bounded TPNs whose un-
timed support is unbounded. The idea is to modify the underlying unbounded net so that
it becomes decomposable and to adapt the timing information in the NTA to preserve the
semantics of the original TPN N . We use complementary places: for a place p, the comple-

Concurrency-Preserving Translation from TPN to NTA 23

mentary place p̄, is built such that • p̄ = p• \ •p, p̄• = •p \ p•, and p̄ is marked iff p is not.
For a place p, let the predicate NC(p) denote that p is not covered by any S-component, i.e.

NC(p) ⇐⇒
(
∀X : P→{0,1},X ·N = 0 =⇒ X(p) = 0

)
.

Then, we can transform the untimed unbounded PN Nuntimed = (P,T,F,M0) into a bounded
PN N ′

untimed = (P′,T,F ′,M′0) where

– P′ = P∪{ p̄ | NC(p)}, i.e. for each place p that is not covered by any S-component, a
complementary place p̄ is added,

– F ′ = F ∪{(p̄, t) | NC(p)∧ (t, p) ∈ F}∪{(t, p̄) | NC(p)∧ (p, t) ∈ F},
– M′0 = M0∪{ p̄ | NC(p)∧ p /∈M0}.

For example, consider the 1-bounded TPN N of Fig. 13(a) without the dashed items
(taken from [23]). Its untimed support is unbounded, but the timing constraints prevent there
being more that one token in ps. Even though the net is not decomposable without modi-
fication, in the structure of the net, we can identify three parts: the S-subnets generated by
{p1, p2}, and {p3, p4} and the subnet generated by {ps}which is not a valid component, be-
cause it is not an S-net. Therefore, we add a complementary place to ps to make the untimed
PN 1-bounded, by restricting the number of tokens in place ps to 1. With this new place, V
has to wait for the occurrence of P before occurring again. That is, the boundedness that was
ensured by the timing constraints in N , is now ensured in the untimed PN N ′

untimed by the
complementary places. Notice also that the following proposition holds.

Proposition 5 A timed run of N from which the occurrence dates are removed is a run of
N ′

untimed.

Proof We define a relation R which associates a (valid) state (M,ν) of N with a state M′

of N ′
untimed, and show that R is a simulation. Namely,

(M,ν) R M′ ⇐⇒ M = M′ \{p̄ | NC(p)∧ p /∈M}.

First, (M0,ν0) R M′0 holds. Second, assume that t is firable from state (M,ν) which is
R-related to state M′. Then t is also enabled in M′ = M∪{ p̄ | NC(p)∧ p /∈M}. Indeed, in
N ′

untimed, if there is a complementary place p̄ in the input places of t, then in N , p ∈ t• \ •t,
and since the TPN N is 1-bounded, p /∈M and p̄ ∈M′. When t fires in N , it leads to state
(M1,ν1) such that M1 = (M \•t)∪ t• (regardless of ν1). And when t fires in N ′

untimed, it leads
to marking M′1 such that
M′1 = (M′ \ •′t)∪ t•′

=
(
(M∪{ p̄ | NC(p)∧ p /∈M})\ (•t ∪{ p̄ | NC(p)∧ p ∈ t• \ •t})

)
∪ (t•∪{ p̄ | NC(p)∧ p ∈ •t \ t•}),

because by definition of N ′
untimed, p̄ ∈ •′t ⇔ p ∈ t• \ •t and p̄ ∈ t•′ ⇔ p ∈ •t \ t•. Since

{p̄ | NC(p)} is disjoint from M, •t and t•, this can be simplified in
M′1 =

(
(M \ •t)∪ t•

)
∪{ p̄ | NC(p)∧ p ∈

(
M \ (t• \ •t)

)
∪ (•t \ t•)}

and lastly, since
(
M \ (t• \ •t)

)
∪ (•t \ t•) = (M∪ •t)\ t• = (M \ •t)∪ t• = M1,

M′1 = M1∪{ p̄ | NC(p)∧ p /∈M1}. Therefore (M1,ν1) R M′1. ut

But if the timing delays of N are added to N ′
untimed, both TPNs will not have the same

timed semantics. For instance, on our example, the timed word (V,4)(t1,5)(P,7)(t2,8)(V,9)
is no longer accepted. However, the transformation is only used to find a decomposition of
the net and now our translation can be adapted.

24 S. Balaguer, T. Chatain and S. Haar

t1 [1,2]

•p1 p2

V [4,5]

•p̄s ps

P [3,4]

• p3p4

t2 [0,1]

(a) A temporally 1-bounded
TPN (without p̄s)

p1

x1 ≤ 5
p2 x1 ≤ 2

p̄s ps x2 ≤ 4

p4x3 ≤ 1 p3

x1 ≥ 4,V,{x1}

x1 ≥ 1, t1,{x1}

x2 ≥ 3,P

V,{x2}

(x3 ≥ 3),P,{x3}

(x3 ≥ 0), t2,({x3})

(b) Resulting NTA where information be-
tween parenthesis can be removed

Fig. 13 Translation of a structurally unbounded TPN

Proposition 6 Let N be a 1-bounded TPN whose untimed support is unbounded. If the net
N ′

untimed defined above is decomposable, then there exists an NTA with the same distributed
timed language as N .

Proof If N ′
untimed is decomposable, we choose a decomposition such that each {p, p̄} forms

a component. Then we adapt the translation: each component corresponds to an automaton
and the timing information is added in the same way as in Subsection 5.1, but without
considering the new places because the time spent in these places is not relevant for the
semantics of the TPN. That is, for each new place p̄, there is no clock reset in the ingoing
edges of p̄, no guard on the outgoing edges of p̄, no invariant on p̄, and p̄ appears in no
invariant. In this way, we get an NTA with the same distributed timed language as the initial
TPN. ut

In the context of our example, this results in the NTA of Fig. 13(b). We
decide to attach Inv(P) to ps, and since we notice that, in N , if ps is
marked, then p3 is also marked (i.e., in the NTA min(x2,x3) = x2), we sim-
plify this invariant: Inv(P)≡ (ps∧ p3)⇒min(x2,x3)≤ 4≡ ps⇒ x2 ≤ 4, and therefore
Inv(ps)≡ Inv(P)∧ ps ≡ x2 ≤ 4.

6.3 Reverse translation

Let us now consider the reverse translation, i.e. from an NTA to a TPN. There exist trans-
lations, for example in [5], from a TA into a weak timed bisimilar TPN, but we want to
preserve the distributed timed language, that is, when we translate an NTA into a TPN, we
want to preserve the mapping between the processes. This implies that we should be able to
translate each automaton in a TPN which is an S-net with one token and then compose the
obtained nets.

A time S-net with one token is less expressive than a TA with one clock because it can
be translated in a TA with one clock which accepts the same timed language. Thus, it is less
expressive than a TA with two clocks, according to [18]. We can even strengthen this by

Concurrency-Preserving Translation from TPN to NTA 25

x≤ 4
x≥ 1, a x≥ 4, b

Fig. 14 A TA that cannot be translated in a time S-net with one token

proving that some TA with one clock cannot be translated in finite time S-net with one token
(see Prop. 7). Therefore, only a very small class of TA can be translated.

Proposition 7 Time S-nets with one token are strictly less expressive than TA with one clock.

Proof Assume that the TA A of Fig. 14 can be translated in a finite time S-net with one token
which accepts the same timed language, called N . Then, in N , finitely many states can be
reached after having fired an a. We denote these states by si = ({pi},0) with i ∈ [1..n]. The
clocks of the enabled transitions have been reset.

Now, assume that we can reach si by firing a at some date θ1. Then, the only possible
continuation from si is to delay during d1 = 4− θ1 and fire b. That is, (a,θ1) is the only
possible way to reach si (otherwise, we would have another possible continuation from si).

Therefore, each state si can only be reached by executing a at one date θi, and from each
si only one continuation is possible. This implies that N has a finite number of admissible
runs whereas A has infinitely many. Thus, A cannot be translated in a time S-net with one
token. ut

If we impose for example that each TA has one clock which is reset on each edge, that
the invariant are of the form x ≤ n and that the guards are of the form x ≥ m, then the TAs
can be translated into time S-nets, but even in this simple case, the composition of these
components into a TPN with the same semantics as the initial NTA is not always possible.

6.4 Conclusion and outlook

Usability in practice. We have translated some example time Petri nets with the translation
proposed in [10] and with our translation, and we have used UPPAAL (see [21]) to check a
reachability property on the resulting networks of timed automata.

Although our translation only works for TPNs whose untimed support is bounded, and
does not always give a model in the UPPAAL style (with handshake synchronizations), it
generally produces networks with fewer automata, because their translation produces n+1
automata for an initial net with n transitions. And we think that our translation gives an
NTA which is more readable, since the components are clearly identified, and closer to the
original model.

Regarding the number of clocks, we also generally have fewer clocks because we have
one clock by process instead of one clock by transition. But as mentioned in [10], UPPAAL

only considers the active clocks during the verification. In our case, in a given state, all
clocks are active and with the translation of [10], the number of active clocks is equal to the
number of enabled transitions in the corresponding marking (Theorem 3 in [10]). Therefore,
we can have fewer active clocks if there are some conflicts.

Lastly, we have shown an extension of the translation procedure to deal with some
bounded TPNs whose support cannot be decomposed. Once we get the structure of the
automata, the method that assigns the time constraints can be applied with only some minor
modifications.

26 S. Balaguer, T. Chatain and S. Haar

Towards identification of concurrency in timed systems. This work is a starting point for a
more advanced study of concurrency in timed systems. Indeed, concurrency in timed sys-
tems involves both causality and the time stamping of events. Transitions that appear as
concurrent in an untimed model may not remain independent when time constraints are
added. First, time constraints may easily force a temporal ordering between them. But, even
worse, the occurrence of a transition may have consequences on apparently concurrent tran-
sitions due to time constraints: this is what happens in our TPN of Fig. 2 where firing c after
delay 1 from marking {p1, p2} prevents d from firing (because it forces b to fire earlier).
In our translation, the necessity to allow the automata to read the states of their neighbors
highlights these complex dependences between different processes.

Acknowledgements This work is partially supported by the FARMAN project EMoTiCon funded by ENS
Cachan and the French ANR projects DOTS and ImpRo.

References

1. Akshay, S., Bollig, B., Gastin, P.: Automata and logics for timed message sequence charts. In: Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS), LNCS, vol. 4855, pp.
290–302. Springer, New Delhi, India (2007)

2. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed timed automata with
independently evolving clocks. In: International Conference on Concurrency Theory (CONCUR), LNCS,
vol. 5201, pp. 82–97. Springer, Toronto, Canada (2008)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)
4. Balaguer, S., Chatain, Th., Haar, S.: A concurrency-preserving translation from time Petri nets to net-

works of timed automata. In: International Symposium on Temporal Representation and Reasoning
(TIME), pp. 77–84. IEEE Computer Society Press, Paris, France (2010)

5. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: When are timed automata weakly timed bisim-
ilar to time Petri nets? Theoretical Computer Science 403(2-3), 202–220 (2008)

6. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets.
IEEE Transactions on Software Engineering 17(3), 259–273 (1991)

7. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA – construction of abstract state spaces for Petri
nets and time Petri nets. International Journal of Production Research 42(14), 2741–2756 (2004)

8. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a model-checking tool
for real-time systems. In: International Conference on Computer Aided Verification (CAV), LNCS, vol.
1427, pp. 546–550 (1998)

9. Byg, J., Joergensen, K., Srba, J.: An efficient translation of timed-arc Petri nets to networks of timed
automata. In: International Conference on Formal Engineering Methods, LNCS, vol. 5885, pp. 698–716.
Springer-Verlag (2009)

10. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed automata. Journal of Systems
and Software (2006)

11. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and tools. In: International
Conference on Computer Aided Verification (CAV), LNCS, vol. 697, pp. 253–267. Springer (1993)

12. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. A comparative study of algorithms
for computation of minimal p-semiflows. In: Proceedings of the 10th International Conference on Ap-
plications and Theory of Petri Nets, pp. 79–112. Springer-Verlag, London, UK (1991)

13. Desel, J., Esparza, J.: Free choice Petri nets. Cambridge University Press, New York, USA (1995)
14. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co., Inc., River Edge, NJ,

USA (1995)
15. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: A tool for analyzing time Petri nets. In: Inter-

national Conference on Computer Aided Verification (CAV), LNCS, vol. 3576, pp. 418–423. Springer
(2005)

16. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time Petri nets. Theory
and Practice of Logic Programming 6(3), 301–320 (2006)

17. Hack, M.: Analysis of production schemata by Petri nets. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, USA (1972)

Concurrency-Preserving Translation from TPN to NTA 27

18. Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In: International Collo-
quium on Automata, Languages and Programming (ICALP), pp. 417–428 (1995)

19. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for modelling and validation
of concurrent systems. International Journal on Software Tools for Technology Transfer (STTT) 9(3-4),
213–254 (2007)

20. Lanotte, R., Maggiolo-Schettini, A., Peron, A.: Timed cooperating automata. Fundamenta Informaticae
43, 153–173 (2000)

21. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Software Tools for
Technology Transfer (STTT) 1(1-2), 134–152 (1997)

22. Lautenbach, K.: Liveness in Petri nets. Tech. rep., Gesellschaft fr Mathematik und Datenverarbeitung,
Bonn, Germany (1975)

23. Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class timed automaton. Journal
of Discrete Event Dynamic Systems (jDEDS) 16(2), 179–205 (2006)

24. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem
of timed automata. Theoretical Computer Science 345(1), 27–59 (2005)

25. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis, University of California,
Irvine (1974)

26. Niebert, P., Qu, H.: Adding invariants to event zone automata. In: International Conference on Formal
Modelling and Analysis of Timed Systems (FORMATS), LNCS, vol. 4202, pp. 290–305. Springer (2006)

27. Sifakis, J., Yovine, S.: Compositional specification of timed systems (extended abstract). In: Sympo-
sium on Theoretical Aspects of Computer Science (STACS), pp. 347–359. Springer-Verlag, London,
UK (1996)

	Introduction
	Centralized timed systems
	Distributed timed systems
	S-subnets as processes for Petri nets
	Translation from time Petri net to network of timed automata
	Discussion and examples

