
Model Checking Languages of Data Words?

Benedikt Bollig1, Aiswarya Cyriac1, Paul Gastin1, and K. Narayan Kumar2

1 LSV, ENS Cachan, CNRS & INRIA, France
{bollig,cyriac,gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. We consider the model-checking problem for data multi-
pushdown automata (DMPA). DMPA generate data words, i.e, strings
enriched with values from an infinite domain. The latter can be used
to represent an unbounded number of process identifiers so that DMPA
are suitable to model concurrent programs with dynamic process cre-
ation. To specify properties of data words, we use monadic second-order
(MSO) logic, which comes with a predicate to test two word positions for
data equality. While satisfiability for MSO logic is undecidable (even for
weaker fragments such as first-order logic), our main result states that
one can decide if all words generated by a DMPA satisfy a given formula
from the full MSO logic.

1 Introduction

In recent years, there has been an increasing interest in data words and data
trees, i.e., structures over an infinite alphabet. Data trees may serve as a model
of XML documents where the data part refers to attribute values or text con-
tents [3]. Data words, on the other hand, are suitable to model the behavior of
concurrent programs where an unbounded number of processes communicate via
message passing [4, 5].

Naturally, a variety of formalisms have been considered to specify sets of data
words in the context of verification. A considerable amount of work has gone into
the study of temporal and monadic second-order (MSO) logic, mainly focusing
on the satisfiability problem [2, 8, 9, 19]. MSO logic over data words allows us
to check data values of two word positions for equality. However, the logic is
so complex that only severely restricted fragments preserve its decidability. A
remarkable result due to Bojańczyk et al. states that satisfiability is decidable
for first-order logic when it is restricted to two variables [2], albeit of very high
complexity, as it is equivalent to reachability for Petri nets. Elementary upper
bounds were only obtained by restricting the logic further [8,19]. Anyway, decid-
ability crucially relies on the fact that there is only one data value per position,
which is clearly not sufficient to model executions of concurrent message-passing
programs. Indeed, the lack of expressiveness and extensibility of those logics
limits their use for verification.

? Supported by LIA InForMel, ARCUS, and DIGITEO LoCoReP.

In this paper, we consider the model-checking problem, which has not re-
ceived as much attention in the context of data words as satisfiability, and we
adopt the orthogonal approach of restricting the domain of data words instead of
pruning the logic. More precisely, we introduce data multi-pushdown automata
(DMPA), which may, for example, represent the behavior of a concurrent pro-
gram. Requirements specifications for such languages can then be written in the
full MSO logic. Our main result is that the model-checking problem is decidable:
Do all data words accepted by a DMPA satisfy a given MSO formula?

Like automata over finite alphabets, a DMPA uses standard building blocks
such as states and stack symbols. Moreover, it has (finitely many) registers, which
can store concrete data values in a run. Unlike a simple pushdown automaton,
a DMPA is equipped with several stacks and can define non-context free behav-
iors. However, while multi-pushdown automata over a finite alphabet are often
used for the verification of concurrent recursive programs [15, 16], modeling re-
cursion is not our primary goal. Rather, in the context of an unbounded number
of processes, context-sensitive rewriting is necessary to describe distributed pro-
tocols, as they typically operate in several phases. For example, DMPA are able
to model a token-based leader election protocol where the number of processes
is unknown. Though such a protocol can be implemented locally in terms of
finite-state processes, their global, observable behavior is not context-free.

Our decidability proof relies on the following idea: A tree-like structure in
terms of (multiply) nested words over a finite alphabet is built on top of a data
word and is used to recover word positions that carry the same data value.
Nested words naturally appear as runs of DMPA. To preserve decidability of
MSO model checking, as we deal with several stacks, we have to impose a bound
on the number of switches from one stack to another. Model checking DMPA can
then be reduced to satisfiability of MSO logic over nested words with a bounded
number of phases, which is decidable due to [15].

At first glance, DMPA produce data words, which are linearly ordered and
of course suitable to describe sequential behaviors. One important aspect of
MSO logic, however, is that it can easily define causal dependencies between
events that go beyond the linear order induced by a data word. Our approach is,
therefore, not restricted to sequential systems, but allows us to model complex
dynamic concurrent programs and protocols from mobile computing. Our hope
is that this will help to bring data words closer to applications in verification.

Related work. A wide range of automata over data words have been intro-
duced in the literature [2, 6, 12–14, 20]. For all of them, MSO model checking is
undecidable. Moreover, none of them is suited to represent distributed protocols:
they either run on one-dimensional data words, process a data word in several
passes, or do not support concurrency. An automaton model that captures the
interplay of communicating processes is due to [4]. Its modeling power, however,
comes at the price of an undecidable emptiness problem.

Model checking of counter machines against freeze LTL was considered in
[10,11]. That setting is quite different from ours, as formulas are interpreted over
runs, which contain counter evaluations as data values. Moreover, the temporal

2

logic, which can be embedded into MSO logic, has to be restricted further to
obtain decidability results.

Our approach of introducing DMPA as a model of programs and using unre-
stricted MSO as requirements-specification language is partly inspired by [17].
There, Leucker et al. consider dynamic message sequence graphs as a model of
dynamic communicating systems where an unbounded number of processes com-
municate through message exchange. No link with data words was established,
though, and rules are context-free so that a leader election protocol cannot be
described. Thus, we provide a more general, but conceptually simple, framework
with a generic proof of decidability of MSO model checking.

Outline. In Section 2, we introduce data words and DMPA. Section 3 presents
MSO logic to specify properties over data words. In Section 4, we establish
decidability of the model-checking problem. We conclude in Section 5.

2 Data Words and Data Multi-Pushdown Automata

By N = {0, 1, 2, . . .}, we denote the set of natural numbers. For n ∈ N, we let [n]
denote the set {1, . . . , n}. A ranked alphabet is a non-empty set Σ where every
letter a ∈ Σ has an arity, denoted arityΣ(a) ∈ N. We sometimes write arity(a)
instead of arityΣ(a) when Σ is clear from the context. For any set D, we let
ΣD = {a(d1, . . . , dm) | a ∈ Σ, m = arity(a), and d1, . . . , dm ∈ D}.

Henceforth, we fix a finite ranked alphabet Σ (of labels) and an infinite set
D (of data values). The elements of ΣD are called actions. A data word is a
sequence of actions, i.e., an element from Σ∗D. Given a data word w = w1 . . . wn
of length n, we denote by dom(w) its domain {1, . . . , n}, i.e., its set of positions.
For i ∈ dom(w) with wi = a(d1, . . . , dm), we let label(i) refer to a and datak(i) to
dk, for all k ∈ {1, . . . ,m}. Moreover, we set arity(i) = m. For example, if D = N

and Σ = {a, b} with arity(a) = 1 and arity(b) = 2, then a(4) b(7, 9) a(6) b(10, 7)
is a data word from Σ∗D. We have label(3) = a and data2(4) = 7.

To represent systems whose executions are data words, we use data multi-
pushdown automata (DMPA). Basically, a DMPA is a multi-pushdown automa-
ton with h ≥ 1 stacks over some finite alphabet. In addition, it has k ≥ 0 global
registers, R = {r1, . . . , rk}, which can store data values. Data values can also
be stored on stacks along with a stack symbol from a finite ranked alphabet
Z. To refer to these data values, we use parameters from the infinite supply
P = {p1, p2, . . .}. A transition of a DMPA depends on the current state of the
automaton, the data values that are stored in the registers, and the top sym-
bol of the stack chosen by the transition as well as its associated data values.
The data values that are stored along with A ∈ Z can be accessed by means
of the parameters PA = {p1, . . . , parity(A)} ⊆ P . Now, a transition is controlled
by a guard that allows us to compare data values stored in registers with data
values from the target stack. A guard (wrt. A) is generated by the grammar
Φ ::= true | π1 = π2 | Φ ∧ Φ | ¬Φ where π1, π2 ∈ R ∪ PA. For example, guard
r1 = r2 ∧ ¬(r1 = p3) requires that the contents of register r1 equals the data

3

value held in r2, but is different from the third data value stored on top of the
target stack. If the guard is satisfied, the automaton outputs one or several ac-
tions that may use the data values represented by R ∪ PA. They may also use
fresh data values, and we will use the parameters Q = {q1, q2, . . .} as place-
holders for them. Finally, the transition updates the current state, the register
contents, and the stacks. Register and stack updates are allowed to use stored
data values as well as fresh ones. More precisely, an update (wrt. A) is a tuple
upd = (π1, . . . , πk, u1, . . . , uh). For i ∈ [k], πi ∈ R ∪ PA ∪Q determines the new
data value stored in ri. For example, if πi = p1, then ri obtains the first value
stored on top of the the target stack; if πi = ri, then ri is left unchanged; if
πi = qj , then ri will get some fresh data value. For t ∈ [h], ut is a string over
ZR∪PA∪Q, which, instantiated with data values, is pushed onto stack t. Again,
this string may use data values stored in registers (R) or the target stack (PA),
as well as fresh data values (Q). Let us formally define DMPA.

Definition 1 (data multi-pushdown automaton). Let k ≥ 0 and h ≥ 1.
A (k-register, h-stack) data multi-pushdown automaton (DMPA) over (Σ,D) is
a 6-tuple A = (S,Z, s0, Z, F,∆) where S is a finite set of states, Z is a finite
ranked alphabet of stack symbols, s0 ∈ S is the initial state, Z ∈ Z is the start
symbol with arity(Z) = 0, and F ⊆ S is the set of final states. Moreover, ∆ is
a finite set of transitions. A transition δ is of the form

t:A, s
Φ,u,upd−−−−−→ s′

where s, s′ ∈ S are states, t ∈ [h] is a stack, A ∈ Z, Φ is a guard wrt. A,
u ∈ (ΣR∪PA∪Q)∗, and upd is an update wrt. A. We let Πδ = R ∪ PA ∪ Qδ with
Qδ the set of parameters from Q occurring in u or upd.

We let ConfA := S×Dk× 2D × (Z∗D)h denote the set of configurations of A.
Configuration γ = [s, r, U, w1, . . . , wh] with r = (d1, . . . , dk) says that the current
state is s, the content of register ri is di, the data values from U have already
been used, and the stack contents are w1, . . . , wh where we assume that the

topmost symbol is written last. Now, consider a transition δ = t:A, s
Φ,u,upd−−−−−→ s′

with upd = (π1, . . . , πk, u1, . . . , uh), which we call a t-transition since it pops
A from stack t. It is enabled at γ if wt = w′tA(d′1, . . . , d

′
m) and σ |= Φ where

σ : R ∪ PA → D is the interpretation defined by σ(ri) = di for i ∈ [k] and
σ(pj) = d′j for j ∈ [m]. In this case, for any extension of σ to Πδ (still denoted
σ) assigning to parameters in Qδ pairwise distinct fresh values from D \U , there

is a concrete transition γ
σ(u)
=⇒σ,δ γ

′ where σ(u) is the data word obtained from u
by replacing any parameter π ∈ Πδ occuring in u by σ(π) ∈ D, and

γ′ = [s′, (σ(π1), . . . , σ(πk)), U ∪ σ(Qδ), w1σ(u1), . . . , w′tσ(ut), . . . , whσ(uh)] .

A configuration of the form [s0, (d1, . . . , dk), {d1, . . . , dk}, Z, ε, . . . , ε] with the
data values d1, . . . , dk pairwise distinct is called initial, and a configuration
[s, r, U, w1, . . . , wh] such that s ∈ F is called final. A run of A on w ∈ Σ∗D

4

1

2

3

4

5

c

c

c

c

m

m

e

e

e

e

a

a

a

a

5

5

3

3 3

3

3

3

c c c c m m e e e e a a a a

1 2 3 4 5 1 5 4 3 2 1 2 3 4

2 3 4 5 1 5 4 3 2 1 2 3 4 5

5 5 3 3 3 3 3 3

Fig. 1. A data word generated by the leader election protocol

is a sequence γ0
w1=⇒σ1,δ1 γ1

w2=⇒σ2,δ2 . . .
wn=⇒σn,δn γn such that w = w1 · · ·wn

and γ0 is initial. The run is accepting if γn is final. We let L(A) := {w ∈ Σ∗D |
there is an accepting run of A on w} be the language of A. Note that L(A) is
closed under permutation of data values.

It is easy to see that DMPA have an undecidable emptiness problem, even
when we assume only two stacks as well as labels and stack symbols with arity
0. Therefore, we will restrict the number of phases, a notion that goes back to
La Torre et al. who introduced it for multi-stack pushdown automata [15]. In
one phase, one can only pop from one particular stack. Formally, for ` ≥ 1, a run
γ0

w1=⇒σ1,δ1 γ1
w2=⇒σ2,δ2 . . .

wn=⇒σn,δn γn is an `-phase run if the sequence δ1 . . . δn
can be split into ` blocks, each block using only t-transitions for some t ∈ [h]. By
L`(A), we then denote the restriction of L(A) to data words that are accepted
by `-phase runs.

Remark 2. A DMPA that does not use its stacks (i.e., it never replaces the
start symbol Z) corresponds to a restriction of fresh-register automata [20]. The
restriction consists in allowing the automaton to read only data values that are
either fresh or stored in the registers. In the terminology of [20], local -freshness
transitions are discarded, while global -freshness transitions are permitted.

Example 3. We will specify a 1-register 2-stack DMPA that models the commu-
nication flow of a token-based leader election protocol. One possible behavior of
the protocol is captured by the data word from Figure 1. The underlying alpha-
bet of labels is Σ = {c,m, e, a}. The labels c and m have arity 2, and the labels
e and a have arity 3. Data values from D = N will be used to model process
identifiers (pids).

In the figure, a root process with pid 1 initiates a cascade of process spawns.
It first executes action c(1, 2), which creates a new process with pid 2. Process
2 then executes c(2, 3) to create a new process 3, and so on. The number of pro-
cesses created is not fixed apriori. The creation phase is followed by a message
exchange between the very last process and the root, whereupon the former ini-
tiates the election phase. In the election phase, a process d non-deterministically
chooses either the pid received from d+ 1 or its own identity, and forwards it to

5

s stack Φ action upd s′

lep1 s0 1:Z() true ε q1 Z()C(q1) Y () s1

lep2 s1 1:C(p1) true c(p1, q1) r1 X(p1)E(q1, p1)C(q1) ε s1

lep3 s1 1:C(p1) true m(p1, r1)m(r1, p1) p1 ε ε s2

lep4 s2 1:E(p1, p2) true e(p1, p2, r1) r1 ε A(p2, p1) s2

lep5 s2 1:X(p1) true ε r1 ε ε s2

lep6 s2 1:X(p1) true ε p1 ε ε s2

lep7 s2 1:Z() true ε r1 ε ε s3

lep8 s3 2:A(p1, p2) true a(p1, p2, r1) r1 ε ε s3

lep9 s3 2:Y () true ε r1 ε ε s4

Fig. 2. A DMPA for the leader election protocol

d − 1 by executing e(d, d − 1, `). In the following announcement phase, the pid
` of the elected leader is forwarded to all the processes, by executing actions of
the form a(d, d + 1, `). The figure depicted on top of the data word illustrates
the creation, election, and announcement phases and the processes involved in
their actions. Recall that data values have no meaning and may only be checked
for equality, and we could have assumed any possible permutation of pids.

Figure 2 depicts a 1-register 2-stack DMPA Alep = (S,Z, s0, Z, F,∆) for
the leader election protocol. Hereby, S = {s0, . . . , s4}, F = {s4}, and Z =
{Z, Y,X,C,E,A} where arity(Z) = arity(Y) = 0, arity(X) = arity(C) = 1,
and arity(E) = arity(A) = 2. Moreover, ∆ contains 9 transitions, lep1, . . . , lep9.

A run of Alep involving four processes is given in Figure 3 (we omit the
renamings involved in transitions). The transitions lep1, lep2, lep3 put up the
creation phase, represented by the upper part of the figure. For every action
c(d, d+ 1) that is produced, X(d)E(d+ 1, d) is written onto the first stack to be
used in the election phase. Simultaneously, the topmost stack symbol C(d + 1)
stores the process d + 1 that has to perform the following action. During the
creation phase, the register stores the identity 1 so that it can later execute
m(4, 1)m(1, 4). The election phase is performed by transitions lep4 to lep6. Here,
the register stores the current leader ` which is sent to the next process in lep4

with action e(d+ 1, d, `). Moreover, A(d, d+ 1) is written onto the second stack
to prepare the announcement phase. Then, process d chooses either to preserve
the current leader in lep5 or to switch the leader to itself in lep6. Transition
lep7 triggers the announcement phase which is performed by lep8 where the final
leader ` stored in the register is sent to all processes with a(d, d + 1, `). Note
that, lep8 causes the only control change, from the first to the second stack. We
actually have L(Alep) = L2(Alep). ut

6

[s0 0 {0} Z() ε]
ε

===⇒lep1 [s1 1 {0, 1} Z()C(1) Y ()]
c(1,2)
===⇒lep2 [s1 1 {0, 1, 2} Z()X(1)E(2, 1)C(2) Y ()]
c(2,3)
===⇒lep2 [s1 1 {0, . . . , 3} Z()X(1)E(2, 1)X(2)E(3, 2)C(3) Y ()]
c(3,4)
===⇒lep2 [s1 1 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3)E(4, 3)C(4) Y ()]

m(4,1)m(1,4)
=======⇒lep3 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3)E(4, 3) Y ()]

e(4,3,4)
====⇒lep4 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3) Y ()A(3, 4)]

ε
===⇒lep5 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2) Y ()A(3, 4)]

e(3,2,4)
====⇒lep4 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2) Y ()A(3, 4)A(2, 3)]

ε
===⇒lep6 [s2 2 {0, . . . , 4} Z()X(1)E(2, 1) Y ()A(3, 4)A(2, 3)]

e(2,1,2)
====⇒lep4 [s2 2 {0, . . . , 4} Z()X(1) Y ()A(3, 4)A(2, 3)A(1, 2)]

ε
===⇒lep5 [s2 2 {0, . . . , 4} Z() Y ()A(3, 4)A(2, 3)A(1, 2)]

ε
===⇒lep7 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)A(2, 3)A(1, 2)]

a(1,2,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)A(2, 3)]
a(2,3,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)]
a(3,4,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()]

ε
===⇒lep9 [s4 2 {0, . . . , 4} ε ε]

Fig. 3. A run of the leader election protocol

3 Monadic Second-Order Logic

While DMPA serve as system models, we use monadic second-order logic to
specify properties of data words. We assume countably infinite supplies of first-
order and second-order variables. We let x, y, . . . denote first-order variables,
which vary over word positions, and we use X,Y, . . . to denote second-order
variables, which vary over sets of positions.

Definition 4 (MSO logic over data words). The class MSOd-word(Σ,D) of
monadic second-order (MSO) formulas over data words is given by the following
grammar, where a ranges over Σ, and 1 ≤ k, l ≤ max(arity(Σ)):

ϕ ::= a(x) | dk(x) = dl(y) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

Formula a(x) holds in a data word w ∈ Σ∗D if label(i) = a when x is
interpreted as i ∈ dom(w). Formula dk(x) = dl(y) is satisfied wrt. interpre-
tations i and j of x and y, respectively, if k ≤ arity(i), l ≤ arity(j), and
datak(i) = data l(j). Formula x ≤ y, the boolean connectives, and quantifiers
are self-explanatory. We also use the usual abbreviations x < y, ∀xϕ, ϕ→ ψ . . .

For a data word w and a formula ϕ(x1, . . . , xn, X1, . . . , Xm) with free vari-
ables in {x1, . . . , xn, X1, . . . , Xm}, we write w, i1, . . . , in, I1, . . . , Im |= ϕ if ϕ eval-
uates to true when interpreting the first-order variables by i1, . . . , in ∈ dom(w)
and the second-order variables by I1, . . . , Im ⊆ dom(w), respectively.

If ϕ is a sentence, i.e., it does not have any free variable, then we set L(ϕ)
to be the set of data words w such that w |= ϕ.

7

Example 5. We define a property satisfied by the 1-register 2-stack DMPA Alep

from Example 3 modeling the leader election protocol. To express that every new
process will eventually receive an announcement containing a unique leader pid,
we write ϕ = ∃z ∀x (c(x) → ∃y (a(y) ∧ x ≤ y ∧ d2(x) = d2(y) ∧ d1(z) = d3(y))).
We have L(Alep) = L2(Alep) ⊆ L(ϕ). ut

Example 6. This example will show that MSO logic can be used to abstract from
the linear order of a data word to model partially ordered behaviors.

We model concurrent programs where processes can fork other processes
and exchange messages via send and receive primitives. Unlike in the leader
election protocol, we will model sends and receives separately, which allows us
a finer treatment when we formulate MSO properties. Again, processes have
unique pids, which are modeled as data values. We let D = N be the pids and
Σ = {s, f, !, ?} be the labels. Label s takes one pid d, and s(d) ∈ ΣD indicates
that d has just started its execution. Labels f, !, and ? each take two arguments,
one for the executing (i.e., forking, sending, receiving) process, and one for the
communication partner (i.e., the new, receiving, sending process, respectively).
In particular, f(c, d) is matched by s(d), and !(c, d) is matched by ?(d, c). Figure 4
shows two data words, w1 and w2. The graphs above them illustrate their in-
terpretation as the execution of a concurrent program, connecting a fork with a
corresponding start action and a send with a matching receive. This connection
will, in the following, be formalized in terms of MSO logic.

Rather than the linear order of the data word, we are interested in the causal
dependencies in the underlying concurrent execution modeled by this data word,
and these can be captured via MSO formulas. Let x <proc y be a shorthand for
x < y ∧ d1(x) = d1(y), which denotes that there is a process that executes
first x and later y (we may say that a word position is “executed”, as it is
considered as a system event). In Figure 4, the relation induced by x <proc y
is given in terms of the transitive closure of the horizontal edges. For example,
w1, 1, 2 |= x <proc y and w1, 1, 6 |= x <proc y. Now, consider formula x <m y,
which stands for !(x)∧ ?(y)∧ x < y ∧ d1(x) = d2(y)∧ d2(x) = d1(y). We assume
a bound 1 on the channel capacities. To say that x and y form a message, we
let x <msg y abbreviate x <m y ∧ ¬∃z (x < z < y ∧ (x <m z ∨ z <m y)). For
example, we have w1, 6, 7 |= x <msg y. Let us relate a fork position with the
first position executed by the new process: x <fork y stands for f(x) ∧ s(y) ∧
d2(x) = d1(y). For example, w1, 4, 5 |= x <fork y. To define causal dependencies
between positions of a data word, we let <causal denote the transitive closure
of the relation <proc ∪ <msg ∪ <fork. It corresponds to the transitive closure
of the edge relation depicted in Figure 4. Note that the transitive closure of
an MSO definable binary relation is indeed MSO definable [7]. For example,
w1, 1, 7 |= x <causal y, but w1, 4, 6 6|= x <causal y and w1, 6, 4 6|= x <causal y.

Like in the leader election protocol, we assume a system architecture that
allows us to pass pids along messages or process forks. When we consider concrete
implementations of such concurrent programs, it is crucial that a process sending
a message to another knows the pid of the receiving process. We will determine an
MSO formula ϕrealizable that checks a system for such consistency (realizability in

8

1

2

3

s f

s f

s

!

?

s f

s f

s

!

?

!

?

!

?

w1 =

s f s f s ! ?

1 1 2 2 3 1 3

2 3 3 1

w2 =

s f s f s ! ? ! ? ! ?

1 1 2 2 3 2 1 2 3 1 3

2 3 1 2 3 2 3 1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11

Fig. 4. Two data words

the terminology of [5]). It uses a formula knows(x, y), which holds if the process
executing x, right before performing the action, knows the pid of the process
executing y. Regarding Figure 4, we would like to have w1, 6, 7 6|= knows(x, y),
as there is no way to communicate pid 3 to the process with pid 1. On the other
hand, we will have w2, 10, 11 |= knows(x, y) as pid 3 can be communicated to
process 1 along the message from 2 (which spawned 3) to 1. We first describe a
formula x <flow y, which intuitively says that there is some flow of information
from position x to position y. In other words, pids can be passed from the process
executing x to the process executing y. We set <flow to be the transitive closure of
<causal ∪ <−1

fork. For example, w1, 3, 6 |= x <flow y, but w1, 4, 6 6|= x <flow y. Now,
we set knows(x, y) to be ∃y′ (y′ <proc y ∧ flow(y′, x)). Finally, we consider our
system to be realizable if it satisfies ϕrealizable := ∀x∀y (x <msg y → knows(x, y)).
We have w1 6|= ϕrealizable but w2 |= ϕrealizable .

In a communicating system, one would like to avoid races. A race occurs
when two receives of the same process are ordered in some way while their send
events (from different processes) are independent. This may be seen as a design
error. Formally, a data word has a race if it satisfies ϕrace := ∃x, y, x′, y′ (x <msg

y∧x′ <msg y
′∧y <proc y

′∧¬(x <causal x
′)). We have w1 6|= ϕrace but w2 |= ϕrace .

ut

4 Model Checking DMPA

We now present our main result, decidability of the model-checking problem for
(bounded control change) DMPA wrt. MSO logic:

Theorem 7. For a DMPA A over (Σ,D), a natural number ` ≥ 1, and a
sentence ϕ ∈ MSOd-word(Σ,D), one can decide if L`(A) ⊆ L(ϕ).

The rest of this section is devoted to the proof of Theorem 7, which we out-
line in the following. First, we represent a run ρ of a DMPA as a (multiply)
nested data word. The nested data word associated with ρ is the concatenation
of the instantiations of transitions used in ρ. In addition, it has nesting edges
from a pushed stack symbol to the position where it is popped. There is a precise
correspondence between (`-phase) runs and (certain `-phase) nested data words.

9

Moreover, the data word generated by ρ will be exactly the word projection
(without nesting edges) of its nested word onto the alphabet ΣD. Next, we look
at abstract nested words, which, instead of data values, contain the parameters
used in the run. We, therefore, deal with nested words over a finite alphabet.
A nested data word and the abstract version corresponding to a run are de-
picted in Figure 5. The trick is now that we can, using the nesting edges, define
MSO formulas over abstract nested words that recover equality of data values
in the concrete version. As the set of abstract nested words that correspond to
accepting runs of the DMPA is also definable in MSO logic, we reduce, in this
way, the model-checking problem for a DMPA to a satisfiability problem over
abstract nested words. Satisfiability of MSO formulas over `-phase nested words
is decidable due to [15] so that the theorem follows.

Nested Words. Let h ≥ 1. An h-stack alphabet is a (possibly infinite) al-
phabet Γ together with mappings stack : Γ → {0, 1, . . . ,h} and type : Γ →
{push, pop, int} such that, for all a ∈ Γ , we have type(a) = int iff stack(a) = 0.
Given w = a1 . . . an ∈ Γ ∗ and i ∈ dom(w), we let stack(i) = stack(ai) and
type(i) = type(ai). For t ∈ [h], we call w ∈ Γ ∗ t-well-nested if it can be gener-
ated by the context-free grammar A ::= aAb | AA | ε | c where a, b, c ∈ Γ are
such that stack(a) = stack(b) = t 6= stack(c), type(a) = push, and type(b) = pop.

A nested word over Γ is a pair W = (w,y) where w ∈ Γ ∗ and y ⊆
dom(w) × dom(w) is the binary matching relation, which is uniquely determined
as follows: for all i, j ∈ dom(w), i y j iff i < j and there is t ∈ [h] such that
stack(i) = stack(j) = t, type(i) = push, type(j) = pop, and ai+1 . . . aj−1 is t-
well-nested. Note that there might be push or pop positions that are not matched
wrt. y. The set of nested words over Γ is denoted by Nested(Γ).

Let ` ≥ 1. A nested word (w,y) is an `-phase nested word if w can be written
as w1 . . . w` with wi ∈ Γ ∗ where, for all i ∈ {1, . . . , `}, there is t ∈ [h] such that,
for each letter a ∈ Γ that occurs in wi, type(a) = pop implies stack(a) = t.

The class MSOnw(Γ) of MSO formulas over nested words is given by the
following grammar, where a ranges over Γ :

ϕ ::= a(x) | xy y | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

The atomic predicates are interpreted over a nested word W = (a1 . . . an,y) as
follows: W, i |= a(x) if ai = a, W, i, j |= x y y if i y j, and W, i, j |= x ≤ y if
i ≤ j. The other connectives are as expected.

Theorem 8 (La Torre et al. [15]). Given a finite h-stack alphabet Γ , ` ≥ 1,
and a sentence ϕ ∈ MSOnw(Γ), one can decide if there is an `-phase nested word
W over Γ such that W |= ϕ.

Nested Data Words. Next, we define nested words carrying data values.
Let Γ be a finite ranked h-stack alphabet, i.e., every letter a ∈ Γ has some
arityΓ (a) ∈ N. We can interpret ΓD as an infinite h-stack alphabet in the obvi-
ous manner. A nested data word over (Γ,D) is a nested word over ΓD. Notions

10

from data words such as dom(w) and datak(i) can be transferred to nested data
words W = (w,y) by applying them to the w-component.

The set MSOd-nw(Γ,D) of MSO formulas over nested data words is given by
the following grammar, where a ranges over Γ , and 1 ≤ k, l ≤ max(arity(Γ)):

ϕ ::= a(x) | dk(x) = dl(y) | xy y | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ

We omit the definition of the semantics, which is as expected.
Suppose Σ ⊆ Γ . Given a nested data word W over (Γ,D), we denote by

ProjΣ(W) the data word from Σ∗D obtained by restricting (or projecting) W to
ΣD and discarding y. Using a simple relativization, we obtain:

Proposition 9. Let Σ ⊆ Γ and ϕ ∈ MSOd-word(Σ,D) be a sentence. We can
effectively construct a sentence ϕ̃ ∈ MSOd-nw(Γ,D) such that, for all W ∈
Nested(ΓD), we have W |= ϕ̃ iff ProjΣ(W) |= ϕ.

Parse Words. Let ` ≥ 1 and A = (S,Z, s0, Z, F,∆) be a (k-register, h-stack)
DMPA over (Σ,D). Without loss of generality, we assume that there is a map-
ping stack : Z → [h] such that each stack symbol A ∈ Z is written on/removed
from stack(A) only. We assume stack(Z) = 1. We define a finite ranked h-stack
alphabet Γ = Σ] Z] Z] S] S where Z = {A | A ∈ Z} and S = {s | s ∈ S}
contain a marked copy of every letter from Z and S, respectively. We retain the
arities defined by the alphabets Σ and Z. We let arityΓ (s) = arityΓ (s) = k for
all s ∈ S and arityΓ (A) = arityΓ (A) for all A ∈ Z. Moreover, type(a) = int
and stack(a) = 0 for all a ∈ Σ ∪ S ∪ S. Finally, stack(A) = stack(A),
type(A) = push, and type(A) = pop for all A ∈ Z.

Let O ⊂ Π denote the finite set of parameters occurring in A. Recall that,
by ΓO, we denote the (finite) h-stack alphabet {a(π1, . . . , πm) | a ∈ Γ , m =
arityΓ (a), and π1, . . . , πm ∈ O}. For b = a(π1, . . . , πm) ∈ ΓO and 1 ≤ k ≤ m, we
denote by park(b), its k-th parameter πk.

We are now ready to define the (abstract and concrete) parse words of A.

Consider a transition δ = t:A, s
Φ,u,upd−−−−−→ s′ with upd = (π1, . . . , πk, u1, . . . , uh).

Note that t = stack(A) by assumption. Let m = arity(A). We define the string
of δ as string(δ) := s(r1, . . . , rk)A(p1, . . . , pm)uu1 . . . uhs

′(π1, . . . , πk) ∈ Γ ∗O . For
instance, for the DMPA Alep from Example 3, we have

string(lep1) = s0(r1)Z()Z()C(q1)Y ()s1(q1)

string(lep2) = s1(r1)C(p1)c(p1, q1)X(p1)E(q1, p1)C(q1)s1(r1)

For an interpretation σ : O → D, we define similarly the string of the concrete
transition σ(δ) with data values σ(π) substituted for parameters π ∈ O. It
is denoted string(σ(δ)). Note that the string of a transition does not consider
guards. Guards are taken into account later, in Proposition 14.

Consider a run ρ of A of the form

γ0
w1=⇒σ1,δ1 γ1

w2=⇒σ2,δ2 . . .
wn=⇒σn,δn γn

11

1
abstract 2

3

1
concrete 2

3

Trans:

Block:

Z s0
r1

0

0

s0 Z Z C Y s1
r1 q1 q1

0 1 1

lep1
1

s1 C c X E C s1
r1 p1 p1 p1 q1 q1 r1

q1 p1

1 1 1 1 2 2 1
2 1

lep2
2

s1 C c X E C s1
r1 p1 p1 p1 q1 q1 r1

q1 p1

1 2 2 2 3 3 1
3 2

lep2
3

s1 C m m s2
r1 p1 p1 r1 p1

r1 p1

1 3 3 1 3
1 3

lep3
4

s2 E e A s2
r1 p1 p1 p2 r1
p2 p2 p1
r1

3 3 3 2 3
2 2 3

3

lep4
5

s2 X s2
r1 p1 p1

3 2 2

lep6
6

s2 E e A s2
r1 p1 p1 p2 r1
p2 p2 p1
r1

2 2 2 1 2
1 1 2

2

lep4
7

s2 X s2
r1 p1 r1

2 1 2

lep5
8

s2 Z s3
r1 r1

2 2

lep7
9

s3 A a s3
r1 p1 p1 r1
p2 p2
r1

2 1 1 2
2 2

2

lep8
10

s3 A a s3
r1 p1 p1 r1
p2 p2
r1

2 2 2 2
3 3

2

lep8
11

s2 Y s4
r1 r1

2 2

lep9
12

Fig. 5. An abstract and a concrete parse word (split over two lines)

The nested word (w,y) with w = Z()s0(r1, . . . , rk)string(δ1) . . . string(δn) ∈ Γ ∗O
is the abstract parse word of ρ and denoted apwρ. The nested data word (w′,y)
with w′ = Z()s0(σ1(r1), . . . , σ1(rk))string(σ1(δ1)) . . . string(σn(δn)) ∈ Γ ∗D is the
concrete parse word of ρ denoted pwρ. Notice that dom(pwρ) = dom(apwρ).
Moreover, ρ is `-phase iff pwρ is `-phase iff apwρ is `-phase.

Figure 5 illustrates an abstract parse word and a concrete parse word of the
run lep1lep2lep2lep3lep4lep6lep4lep5lep7lep8lep8lep9 of DMPA Alep from Exam-
ple 3. The curved lines depict the nesting relation y (straight lines for stack 1,
dotted lines for stack 2).

The data word σ(u) generated by a concrete transition σ(δ) is precisely
the Σ-projection of string(σ(δ)). Hence, the data word generated by a run ρ
is ProjΣ(pwρ). The data words accepted by A with `-phase runs are the Σ-
projections of the concrete parse words of these runs:

Proposition 10. We have L`(A) = {ProjΣ(pwρ) ∈ Σ∗D | ρ is an `-phase ac-
cepting run of A}.

An abstract parse word is an abstraction of several concrete parse words. Our
aim is to recover from an abstract parse word all data equalities that hold in the
concrete parse word. To do so, we will define formulas ϕk,l(x, y) ∈ MSOnw(ΓO)

12

for all 1 ≤ k, l ≤ max(arity(Γ)), with free variables x and y. Intuitively, ϕk,l(x, y)
will hold in an abstract parse word iff dk(x) = dl(y) holds in any corresponding
concrete parse word.

We first give some definitions and macros. Block 0 of an abstract parse word
consists of the first two positions, which are labelled Z() and s0(r1, . . . , rk) re-
spectively. Then, we find a concatenation of blocks of the form string(δ) =
s(r1, . . . , rk)A(p1, . . . , pm)vs′(π1, . . . , πk) for some transition δ (see Figure 5). For
any position x, we denote by Block(x) the block of x. We use Block(x) = Block(y)
to state that x and y belong to the same block, which can be expressed by the
following first-order formula: x, y ≤ 2 ∨ ∃x′, y′ (x′ ≤ x, y ≤ y′ ∧

∨
s∈SO

s(x′) ∧∨
s∈SO

s(y′) ∧ ∀z ((z < y′ ∧
∨
s∈SO

s(z)) → z ≤ x′)). Moreover, we will use the
macro Block(x) ≤ Block(y) := x ≤ y ∨ Block(x) = Block(y).

Let park(x) denote the k-th parameter of position x of the abstract parse
word. The macro park(x) = parl(y) says that x and y carry the same parameter
at indices k and l, respectively. It is the disjunction of formulas b(x) ∧ b′(y)
where b, b′ ∈ ΓO are such that park(b) = parl(b

′). We also let existspark(x) be the
disjunction of formulas b(x) where b ∈ ΓO is such that arity(b) ≥ k.

Let us see how to propagate a data value to a later block. Clearly, we have
dk(x) = dl(y) in the concrete parse word if in the abstract parse word the formula

ψk,l(x, y) :=

 Block(x) = Block(y) ∧ park(x) = parl(y)
∨ Block(x) 6= Block(y) ∧ x+ 1 = y ∧ k = l ≤ k

∨ xy y ∧
∨
a=A(...)∈ZO

(a(x) ∧ k = l ≤ arity(A))

holds. Note that ψk,l(x, y) implies Block(x) ≤ Block(y) and that ψk,k(x, x) is
equivalent to existspark(x). Data equality is also ensured if we can reach y from
x using a sequence of ψi,j steps. It is well-known that such a “transitive closure”
can be defined in MSO: we let m = max(arity(Γ)) and define x k l y by

existspark(x) ∧ ∀X1, . . . , Xm(
x ∈ Xk ∧

∧
1≤i,j≤m

∀z1, z2 (z1 ∈ Xi ∧ ψi,j(z1, z2))→ z2 ∈ Xj

)
→ y ∈ Xl

so that we have apwρ, i, j |= x k l y iff for some n > 0, there are sequences
i = i0, i1, . . . , in = j and k = k0, k1, . . . , kn = l such that apwρ, ip, ip+1 |=
ψkp,kp+1(x, y) for all 0 ≤ p < n. Therefore, x k l y in the abstract parse word
implies dk(x) = dl(y) in the concrete parse word.

For the general case, we will prove that dk(x) = dl(y) in the concrete parse
word iff there exists a position z such that the i-th value of z was propagated to
x as its k-th value and to y as its l-th value. So we define

ϕk,l(x, y) := ∃z
∨
i
z i k x ∧ z i l y

Example 11. We will see how the formulas defined above retrieve data equality
on the abstract parse word from Figure 5. Let us check whether the data at the
third component of e in Block 5 is same as the data at the second component of

13

a in Block 11, i.e., whether r1 in Block 5 and p2 of Block 11 hold the same value.
First, p2 in Block 11 equals p1 in Block 5, which equals q1 in Block 3, which is
fresh. Similarly, r1 in Block 5 is the same as p1 in Block 4, which equals q1 in
Block 3, which is fresh. Hence, from q1 of Block 3, we can reach both r1 in Block
5 and p2 in Block 11 by , thus concluding they hold the same data value. ut

We can prove that the formulas ϕk,l(x, y) defined above are indeed correct.

Proposition 12. For all runs ρ of A and all positions i, j ∈ dom(pwρ), we have
pwρ, i, j |= dk(x) = dl(y) iff apwρ, i, j |= ϕk,l(x, y).

Proof. Fix a run ρ and let i, j ∈ dom(pwρ).

First, we assume that pwρ, i, j |= dk(x) = dl(y), i.e., datak(i) = data l(j). We
show apwρ, i, j |= ϕk,l(x, y). The proof is by induction on the sum Block(i) +
Block(j). If Block(i) = Block(j) = 0 then we must have i = j = 2 and k = l ≤ k.
We deduce that apwρ, i, j |= ψk,l(x, y) and we are done.

Assume now that Block(i) + Block(j) > 0. Without loss of generality, we
assume that Block(i) ≤ Block(j). There are three cases to consider.

1. Suppose the l-th parameter of position j is some register rn with n ≤ k. Let
j′ ≤ j be the first position of Block(j). By definition, the n-th parameter of j′

is rn and apwρ, j
′, j |= ψn,l(x, y). Next, j′−1 is the last position of Block(j)−1

and we have apwρ, j
′ − 1, j′ |= ψn,n(x, y). We deduce that datan(j′ − 1) =

datan(j′) = data l(j), hence also datak(i) = datan(j′ − 1). By induction, we
obtain apwρ, i, j

′ − 1 |= ϕk,n(x, y), which implies apwρ, i, j |= ϕk,l(x, y).

2. Suppose the l-th parameter of position j is some pn ∈ P . Let j′ ≤ j be the
second position of Block(j). By definition, the n-th parameter of j′ is pn and
apwρ, j

′, j |= ψn,l(x, y). Next, let j′′ be such that j′′ y j′ so that we have
apwρ, j

′′, j′ |= ψn,n(x, y). We deduce that datan(j′′) = datan(j′) = data l(j),
hence also datak(i) = datan(j′′). By induction, we obtain apwρ, i, j

′′ |=
ϕk,n(x, y), which implies apwρ, i, j |= ϕk,l(x, y).

3. Suppose the l-th parameter of position j is some q ∈ Q. Then, data l(j) is
fresh and never occured in a previous block. Since datak(i) = data l(j), we
deduce that Block(i) = Block(j). Moreover, the k-th parameter at position i
cannot be in R∪P since otherwise, by the previous cases, the value datak(i)
would have occurred in a previous block. Since different parameters from Q
always get distinct values, we deduce that the k-th parameter at position i
must be q, which implies apwρ, i, j |= ϕk,l(x, y).

Conversely, we assume that apwρ, i, j |= ϕk,l(x, y). We show that datak(i) =
data l(j). Since data equality is transitive, we may assume without loss of gen-
erality that apwρ, i, j |= x k l y. Hence, we find n > 0 and two sequences
i = i0, i1, . . . , in = j and k = k0, k1, . . . , kn = l such that for all 0 ≤ p < n we
have apwρ, ip, ip+1 |= ψkp,kp+1

(x, y). We deduce datakp(ip) = datakp+1
(ip+1) for

all 0 ≤ p < n and we are done. ut

14

Corollary 13. For every sentence ξ ∈ MSOd-nw(Γ,D), we can effectively con-

struct a sentence ξ̂ ∈ MSOnw(ΓO) such that, for all runs ρ of A, we have pwρ |= ξ

iff apwρ |= ξ̂.

Proof. We obtain ξ̂ by replacing every occurrence of dk(x) = dl(y) in ξ with
ϕk,l(x, y), and every occurrence of a(x) with the disjunction of formulas b(x)
where b = a(π1, . . . , πm) ∈ ΓO. The result then follows from Proposition 12. ut

The last proposition needed for our proof says that the set of abstract parse
words of `-phase accepting runs of A is MSO definable.

Proposition 14. There is ψ ∈ MSOnw(ΓO) such that L(ψ) = {apwρ | ρ is an
`-phase accepting run of A}.

Proof. First observe that, given A, the set StrA = {string(δ) | δ is a transition of
A} is finite. The formula ψ ∈ MSOnw(ΓO) is the conjunction of formulas saying
the following:

– The word projection of a nested word is in Z()s0(r1, . . . , rk) · {StrA}∗.
– The k-phase restriction is respected.

– The transitions should respect the state. This can be ensured by saying that
if the parse nested word admits a factor s1(π1, . . . , πk)s2(r1, . . . , rk) with
s1, s2 ∈ S, then s1 = s2.

– There is an assignment of blocks to guards that comply with the transition
relation. The guards have to be satisfied, which is checked using the formulas
ϕk,l(x, y).

– A transition of the form t:A, s
Φ,u,upd−−−−−→ s′ can be fired only if the top symbol

of t has label A. To take care of this, we say that every pop position with
label A has a y-matched push position with label A.

– The last position is labelled with an accepting state.

With this, we have L(ψ) = {apwρ | ρ is an `-phase accepting run of A} as
required. ut

We are now ready to prove our main result:

Proof (of Theorem 7). Let ϕ ∈ MSOd-word(Σ,D). We consider the formulẫϕ ∈ MSOnw(ΓO) obtained from Proposition 9 and Corollary 13. We show that

L`(A) ⊆ L(ϕ) iff the formula ψ → ̂̃ϕ is valid over Nested(ΓO) where ψ is from
Proposition 14. This validity is decidable due to Theorem 8.
=⇒: Assume L`(A) ⊆ L(ϕ). Let W ∈ Nested(ΓO) be such that W |= ψ. By
Proposition 14, there is an `-phase accepting run ρ of A such that W = apwρ.
By Proposition 10, we get ProjΣ(pwρ) ∈ L`(A). Hence ProjΣ(pwρ) |= ϕ and, by

Proposition 9, we get pwρ |= ϕ̃. Finally, Corollary 13 implies W = apwρ |= ̂̃ϕ.

⇐=: Assume that ψ → ̂̃ϕ is valid. Let w ∈ L`(A). By Proposition 10, there is an
`-phase accepting run ρ of A such that w = ProjΣ(pwρ). By Proposition 14, we

have apwρ |= ψ and since ψ → ̂̃ϕ is valid we get apwρ |= ̂̃ϕ. We obtain pwρ |= ϕ̃
by Corollary 13 and, finally, w = ProjΣ(pwρ) |= ϕ by Proposition 9. ut

15

5 Conclusion

In this paper, we introduced DMPA and showed that their model-checking prob-
lem is decidable wrt. the full MSO logic over data words. Note that this con-
tributes to the area of parametrized verification [1], as model checking can prove
that a property holds for any number of processes.

An important next step is to bridge the gap between DMPA specifications
and concrete implementations, for example in terms of automata with pid-
passing capabilities [4, 5]. Recall that the leader election protocol requires a
context-sensitive specification when we define its behavior globally. However, it
can be implemented as a finite-state system when we assume several local copies
of processes that can send and receive messages as well as process identities. It
remains to identify classes of DMPA that can be implemented in this way.

Recall that our main result relies on Theorem 8, whose proof [15, 18] essen-
tially shows that `-phase nested words have bounded tree width. It would be
worthwhile to study if one can reduce our model-checking problem to a satisfi-
ability problem for MSO logic over some class of graphs of bounded tree width
or bounded clique width.

References

1. P. A. Abdulla. Forcing monotonicity in parameterized verification: From multisets
to words. In J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe,
editors, SOFSEM’10, volume 5901 of LNCS, pages 1–15. Springer, 2010.

2. M. Bojańczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

3. M. Bojańczyk, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-variable logic
on data trees and applications to XML reasoning. J. ACM, 56(3), 2009.

4. B. Bollig. An automaton over data words that captures EMSO logic. In J.-P.
Katoen and B. König, editors, CONCUR’11, volume 6901 of LNCS, pages 171–
186. Springer, 2011.

5. B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In F. M.
Ablayev and E. W. Mayr, editors, CSR’10, volume 6072 of LNCS, pages 48–59,
2010.

6. E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets.
Acta Inf., 35(3):245–267, 1998.

7. B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of
theoretical computer science (vol. B), pages 193–242. MIT Press, 1990.

8. C. David, L. Libkin, and T. Tan. On the satisfiability of two-variable logic over
data words. In C. G. Fermüller and A. Voronkov, editors, LPAR 2010, LNCS,
pages 248–262. Springer, 2010.

9. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), 2009.

10. S. Demri, R. Lazić, and A. Sangnier. Model checking freeze LTL over one-counter
automata. In R. M. Amadio, editor, FoSSaCS’08, volume 4962 of LNCS, pages
490–504. Springer, 2008.

16

11. S. Demri and A. Sangnier. When model-checking freeze LTL over counter machines
becomes decidable. In C.-H. L. Ong, editor, FoSSaCS’10, volume 6014 of LNCS.
Springer, 2010.

12. O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite
alphabets. In A. H. Dediu, H. Fernau, and C. Mart́ın-Vide, editors, LATA’10,
volume 6031 of LNCS, pages 561–572. Springer, 2010.

13. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

14. M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic
reassignment. Int. J. Found. Comput. Sci., 21(5):741–760, 2010.

15. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS’07, pages 161–170. IEEE Computer Society Press, 2007.

16. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of con-
current queue systems. In C. R. Ramakrishnan and J. Rehof, editors, TACAS’08,
LNCS, pages 299–314. Springer, 2008.

17. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence
charts. In FSTTCS’02, volume 2556 of LNCS, pages 253–264. Springer, 2002.

18. P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In Th. Ball
and M. Sagiv, editors, POPL ’11, pages 283–294. ACM, 2011.

19. M. Niewerth and T. Schwentick. Two-variable logic and key constraints on data
words. In T. Milo, editor, ICDT’11, pages 138–149. ACM, 2011.

20. N. Tzevelekos. Fresh-register automata. In Th. Ball and M. Sagiv, editors,
POPL’11, pages 295–306. ACM, 2011.

17

	Model Checking Languages of Data Words

