
Attacking and Fixing PKCS#11 Security Tokens

Matteo Bortolozzo
Università Ca’ Foscari

Venezia, Italy
mbortolo@dsi.unive.it

Matteo Centenaro
Università Ca’ Foscari

Venezia, Italy
centenaro@dsi.unive.it

Riccardo Focardi
Università Ca’ Foscari

Venezia, Italy
focardi@dsi.unive.it

Graham Steel
LSV, INRIA & CNRS &

ENS-Cachan
Cachan, France

graham.steel@inria.fr

ABSTRACT
We show how to extract sensitive cryptographic keys from
a variety of commercially available tamper resistant cryp-
tographic security tokens, exploiting vulnerabilities in their
RSA PKCS#11 based APIs. The attacks are performed
by Tookan, an automated tool we have developed, which
reverse-engineers the particular token in use to deduce its
functionality, constructs a model of its API for a model
checker, and then executes any attack trace found by the
model checker directly on the token. We describe the op-
eration of Tookan and give results of testing the tool on 17
commercially available tokens: 9 were vulnerable to attack,
while the other 8 had severely restricted functionality. One
of the attacks found by the model checker has not previ-
ously appeared in the literature. We show how Tookan may
be used to verify patches to insecure devices, and give a se-
cure configuration that we have implemented in a patch to
a software token simulator. This is the first such configu-
ration to appear in the literature that does not require any
new cryptographic mechanisms to be added to the standard.
We comment on lessons for future key management APIs.

Categories and Subject Descriptors:
K.6.m [Miscellaneous]: Security

General Terms: Experimentation, Security, Verification

Keywords: Security APIs, key management, PKCS#11,
model checking

1. INTRODUCTION
Tamper-resistant cryptographic security tokens such as

smartcards and USB keys are an increasingly common com-
ponent of distributed systems deployed in insecure environ-
ments. They are designed, for example, to enable authenti-
cation, to protect cryptographic values from malware, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

to facilitate secure login for a variety of applications rang-
ing from door entry to online banking. In this paper, we
focus on tokens that achieve their goals by using internally
stored cryptographic values. A token must offer an API to
the outside world that allows the keys to be used for crypto-
graphic functions and permits key management operations.
This API is critical: it must be designed so that even if
the device comes into contact with malicious applications,
perhaps on a compromised host machine, the cryptographic
values stored remain secret. It is difficult to design such
an interface, and several key recovery attacks on so-called
‘security APIs’ have appeared in the literature [3, 5, 12].
The most commonly used standard for designing token in-
terfaces is RSA PKCS#11 [14]. The API described by this
standard, ‘Cryptoki’, is known to have vulnerabilities [6, 8],
but since different devices implement different subsets of the
standard, it was not previously known to what extent these
vulnerabilities affected real devices.

In this paper we describe Tookan1, an automated tool that
reverse engineers the particular functionality offered by a de-
vice, constructs a formal model of this functionality, calls a
model checker to search for possible attacks, and executes
any attack trace found directly on the device. Our model
is based on previous work by Delaune, Kremer and Steel,
[8], but enriched significantly to better match the function-
ality we found on real devices. We describe optimisations
to the model building process that result in models which
can be handled efficiently by the model checker. We also
contribute a meta-language for describing PKCS#11 con-
figurations, used by the reverse-engineering part of our tool.

The results of testing the tool on commercially available
devices are disquieting: every device that offered the func-
tionality necessary to import and export sensitive keys in an
encrypted form, a standard key management operation, did
so in an insecure way allowing the key value to be recovered
after a few calls to the API. Those not vulnerable to these
attacks have very limited functionality (e.g. just asymmetric
keypair generation and signing).

We then show how to use our tool to verify patched tokens.
We present CryptokiX, a fiXed variant of the openCryptoki
[13] software token simulator, which is configurable by se-
lectively enabling different patches. This has allowed us to
test our reverse-engineering framework on (simulated) de-
vices implementing various combinations of security patches.

1Tool for cryptoki analysis

Among its patches, CryptokiX includes the first secure con-
figuration to appear in the literature that does not require
any new cryptographic mechanisms to be added to the stan-
dard.

Finally, we comment on the lessons for the next genera-
tion of standards for cryptographic key management such
as IEEE 1619.3 and the OASIS Key Management Interop-
erability Protocol, currently in the draft stage.

The paper is organized as follows. We first briefly review
the PKCS#11 API and some of its known problems which
can lead to vulnerabilities (section 2). We then describe our
formal model of the API and show how our tool extracts in-
formation from the token to allow us to build the model for
a particular device (section 3). We give our experimental re-
sults on various commercially available devices in section 4.
We describe how to use the tool to find secure configura-
tions in section 5. We conclude with a discussion of open
problems and future key management APIs in section 6.

2. THE PKCS#11 API
RSA PKCS#11 describes its ‘Cryptoki’ API in just under

400 pages [14]. We only have room here for a brief descrip-
tion, and we will concentrate on the details that give rise
to the category of vulnerabilities found by our tool. In a
PKCS#11-based API, applications initiate a session with
the cryptographic token, by supplying a PIN. Note that if
malicious code is running on the host machine, then the
user PIN may easily be intercepted, e.g. by a keylogger or
by a tampered device driver, allowing an attacker to create
his own sessions with the device, a point conceded in the
security discussion in the standard [14, p. 31]. PKCS#11
is intended to protect its sensitive cryptographic keys even
when connected to a compromised host.

Once a session is initiated, the application may access the
objects stored on the token, such as keys and certificates.
However, access to the objects is controlled. Objects are
referenced in the API via handles, which can be thought
of as pointers to or names for the objects. In general, the
value of the handle, e.g. for a secret key, does not reveal
any information about the actual value of the key. Objects
have attributes, which may be bitstrings e.g. the value of
a key, or Boolean flags signalling properties of the object,
e.g. whether the key may be used for encryption, or for
encrypting other keys. New objects can be created by calling
a key generation command, or by ‘unwrapping’ an encrypted
key packet. In both cases a fresh handle is returned.

When a function in the token’s API is called with a ref-
erence to a particular object, the token first checks that the
attributes of the object allow it to be used for that function.
For example, if the encrypt function is called with the handle
for a particular key, that key must have its encrypt attribute
set. To protect a key from being revealed, the attribute sen-

sitive must be set to true. This means that requests to view
the object’s key value via the API will result in an error
message. Once the attribute sensitive has been set to true,
it cannot be reset to false. This gives us the principal secu-
rity property stated in the standard: attacks, even if they
involve compromising the host machine to obtain the PIN,
cannot“compromise keys marked ‘sensitive’, since a key that
is sensitive will always remain sensitive”, [14, p. 31]. Such
a key may be exported outside the device if it is encrypted
by another key, but only if its extractable attribute is set to
true. An object with an extractable attribute set to false may

Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The name n2 has the attributes wrap and
decrypt set whereas n1 has the attribute sensitive and
extractable set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2

SDecrypt: h(n2, k2), {|k1|}k2
→ k1

Figure 1: Wrap/Decrypt attack

not be read by the API, and additionally, once set to false,
the extractable attribute cannot be set to true. Protection
of the keys essentially relies on the sensitive and extractable

attributes.

Attacks on PCKS#11
A number of recent papers have shown attacks which com-
promise sensitive keys [6, 8, 11]. Many of these are ‘key
separation’ attacks, where the attributes of a key are set in
such a way as to give a key conflicting roles. Clulow gives
the example of a key with the attributes set for decryp-
tion of ciphertexts, and for ‘wrapping’, i.e. encryption of
other keys for secure transport [6]. To determine the value
of a sensitive key, the attacker simply wraps it and then
decrypts it, as shown in Figure 1. Here we introduce our
notation for PKCS#11 based APIs, defined more formally
in the next section: h(n1, k1) is a predicate stating that there
is a handle n1 for a key k1 stored on the device. The sym-
metric encryption of k1 under key k2 is represented by {|k1|}k2

.
Note also that according to the wrapping formats defined in
PKCS#11, the device cannot tell whether an arbitrary bit-
string is a cryptographic key or some other piece of plaintext.
Thus when it executes the decrypt command, it has no way
of telling that the packet it is decrypting contains a key.

Delaune, Kremer and Steel proposed a Dolev-Yao style ab-
stract model for PKCS#11 APIs, and showed how difficult
it is to prevent these kinds of attacks: the commands can
be restricted to prevent certain conflicting attributes from
being set on the same object, but still more attacks arise [8].
However, it was not known whether any real devices follow-
ing the standard actually implement key management like
this, since much of the functionality is optional. This was a
motivation for the tool we describe in this paper. Further-
more, no previous analysis of PKCS#11 gives a configura-
tion that is proven secure without adding new mechanisms
to the standard. This was another motivation for our work.

Note that our tool is focused on these attacks that involve
no cryptanalysis. There are further known vulnerabilities in
PKCS#11 APIs exploiting particular details of the crypto-
graphic algorithms supported [6]. Covering these remains as
further work for our tool development project.

3. MODEL
Our model follows the approach used by Delaune, Kre-

mer and Steel (DKS) [8]. The idea is to model the device
as being connected to a host under the complete control
of an intruder, representing a malicious piece of software.
The intruder can call the commands of the API in any or-
der he likes using any values that he knows. We abstract

away details of the cryptographic algorithms in use, follow-
ing the classical approach of Dolev and Yao [10]. Bitstrings
are modelled as terms in an abstract algebra and the rules
of the API and the abilities of an attacker are written as
deduction rules in the algebra. The intruder is assumed not
to be able to crack the encryption algorithm by brute-force
search or similar means, thus he can only read an encrypted
message if he has the correct key. We analyse security as
reachability, in the model, of attack states, i.e. states where
the intruder knows the value of a key stored on the device
with the sensitive attribute set to true, or the extractable

attribute set to false.

3.1 Basic Notions
We assume a given signature Σ, i.e. a finite set of func-

tion symbols, with an arity function ar : Σ → N, a (possibly
infinite) set of names N and a (possibly infinite) set of vari-
ables X . Names represent keys, data values, nonces, etc.
and function symbols model cryptographic primitives, e.g.
{|x|}y representing symmetric encryption of plaintext x under
key y, and {x}y representing public key encryption of x un-
der y. Function symbols of arity 0 are called constants. This
includes the Boolean constants true (⊤) and false (⊥). The
set of plain terms PT is defined by the following grammar:

t, ti := x x ∈ X
| n n ∈ N
| f(t1, . . . , tn) f ∈ Σ and ar(f) = n

We also consider a finite set F of predicate symbols, disjoint
from Σ, from which we derive a set of facts. The set of facts
is defined as

FT = {p(t, b) | p ∈ F , t ∈ PT , b ∈ {⊤,⊥}}

In this way, we can explicitly express the Boolean value b of
an attribute p on a term t by writing p(t, b). For example,
to state that the key referred to by n has the wrap attribute
set we write wrap(n,⊤). This is a difference in the syntax of
our model compared to DKS, where attributes are expressed
as literals (wrap(n) or ¬wrap(n)).

The description of a system is given as a finite set of rules
of the form

T ; L
new ñ
−−−→ T ′; L′

where T, T ′ ⊆ PT are sets of plain terms L, L′ ⊆ F are sets
of facts and ñ ⊆ N is a set of names. The intuitive meaning
of such a rule is the following. The rule can be fired if all
terms in T are in the intruder knowledge and if all the facts
in L hold in the current state. The effect of the rule is that
terms in T ′ are added to the intruder knowledge and the
valuation of the attributes is updated to satisfy L′. The
new ñ means that all the names in ñ need to be replaced by
fresh names in T ′ and L′. This allows us to model nonce
or key generation: if the rule is executed several times, the
effects are different as different names will be used each time.

Example The following rule models wrapping:

h(x1, y1), h(x2, y2); wrap(x1,⊤), extract(x2,⊤) → {|y2|}y1

Intuitively, h(x1, y1) is a handle x1 for key y1 while term {|y2|}y1

represents a key y2 wrapped with y1. Since the attribute
wrap for key y1 is set, noted as unwrap(x1,⊤), and key y2 is
extractable, written extract(x2,⊤), then we can wrap y2 with
y1, creating {|y2|}y1 .

Figure 2: Tookan system diagram

The semantics of the model is defined in a standard way
in terms of a transition system. Each state in the model
consists of a set of terms in the intruder’s knowledge, and
a set of global state predicates. The intruder’s knowledge
increases monotonically with each transition, but the global
state is non-monotonic. For a formal semantics, we refer to
the literature [8].

3.2 Modelling Real Tokens
The motivation for our work was to try to model the

PKCS#11 implementations of real tokens. Our experiments
on the tokens proceed following the system diagram in figure
2. First, Tookan extracts the capabilities of the token fol-
lowing a reverse engineering process (1). The results of this
task are written in a meta-language for PKCS#11 models,
described below. Tookan uses this information to generate a
model in the above described style (2), which is given as in-
put to the SATMC model checker [1]. Model checker output
(3) is sent to Tookan for testing on the token (4).

In table 1 we give the syntax for the model meta-language.
The language describes the functions and attributes sup-
ported by the token. It is also designed to capture the re-
strictions on functionality the token imposes. In table 2 we
give our model for PKCS#11 showing how it is parametrised
by the meta-model. We describe this relationship in more
detail below. Note that due to space constraints, the model
we give here is slightly simplified: in Tookan we construct
separate sets of Attribute_Restrictions and Templates

for asymmetric and symmetric keys, since many tokens im-
pose quite different policies for these two different types.
The full syntax and all the configurations derived during
our experiments on real tokens can be viewed online2.

Cryptographic Keys and Key Attributes
Tookan tests to see if a token supports the generation of
asymmetric or symmetric keys, and returns the results, re-
spectively, in the Booleans supports_symmetric_keys and
supports_asymmetric_keys. By trying successive key gen-
eration commands, Tookan extracts the list of attributes in
use for key objects and delivers these as the list attributes.
These are used throughout the construction of the model
and are noted as A in table 2. Note that as shown in the
BNF in table 1, we restrict attention at the moment to a
subset of PKCS#11 attributes. We do not consider signing
and verification capabilities for example.

Functions
Tookan returns a list of functions supported, including one
important function not modelled in the DKS work: Cre-

ateObject. This function allows the application to directly
set the value of a new key on the device. Only the functions
on the list are included in the final model.

2http://secgroup.ext.dsi.unive.it/pkcs11-security

PKCS11_CONFIG = Key_Types

Functions

Attributes

Attribute_Restrictions

Templates

Flags

Key_Types = supports_symmetric_keys(BOOL);

supports_asymmetric_keys(BOOL);

Functions = functions(FunctionList);

FunctionList = nil | Function, FunctionList

Function = wrap | unwrap | encrypt | decrypt | create_object

Attributes = attributes(AttributeList);

AttributeList = nil | Attribute, AttributeList

Attribute = sensitive | extract | always_sensitive |

never_extract | wrap | unwrap | encrypt | decrypt

Attribute_Restrictions = Sticky_On

Sticky_Off

Conflicts

Tied

Sticky_On = sticky_on(AttributeList);

Sticky_Off = sticky_off(AttributeList);

Conflicts = conflict(AttributePairList);

Tied = tied(AttributePairList);

AttributePairList = nil | (Attribute,Attribute) , AttributePairList

Templates = generate_templates(TemplateList);

create_templates(TemplateList);

unwrap_templates(TemplateList);

TemplateList = nil | (Template) , TemplateList

Template = nil | (Attribute , BOOL) , Template

Flags = sensitive_prevents_read(BOOL);

unextractable_prevents_read(BOOL);

BOOL = true | false

Table 1: Syntax of Meta-language for describing PKCS#11 configurations

KeyGenerate :
new n,k
−−−−→ h(n, k);A(n, B) (with B ∈ G)

KeyPairGenerate :
new n,s
−−−−→ h(n, s), pub(s);A(n, B) (with B ∈ G)

Wrap (sym/sym) : h(x1, y1), h(x2, y2); wrap(x1,⊤), extract(x2,⊤) → {|y2|}y1

Wrap (sym/asym) : h(x1, priv(z)), h(x2, y2); wrap(x1,⊤), extract(x2,⊤) → {y2}pub(z)

Wrap (asym/sym) : h(x1, y1), h(x2, priv(z)); wrap(x1,⊤), extract(x2,⊤) → {|priv(z)|}y1

Unwrap (sym/sym) : h(x, y2), {|y1|}y2 ; unwrap(x,⊤),
new n1−−−−→ h(n1, y1); A(n1, B)

(with B ∈ U)

Unwrap (sym/asym) : h(x, priv(z)), {y1}pub(z); unwrap(x,⊤),
new n1−−−−→ h(n1, y1); A(n1, B)

(with B ∈ U)

Unwrap (asym/sym) : h(x, y2), {|priv(z)|}y2 ; unwrap(x,⊤),
new n1−−−−→ h(n1, priv(z)); A(n1, B)

(with B ∈ U)

SEncrypt : h(x1, y1), y2; encrypt(x1,⊤) → {|y2|}y1

SDecrypt : h(x1, y1), {|y2|}y1 ; decrypt(x1,⊤) → y2

AEncrypt : h(x1, priv(z)), y1; encrypt(x1,⊤) → {y1}pub(z)

ADecrypt : h(x1, priv(z)), {y2}pub(z); decrypt(x1,⊤) → y2

SetAttribute : h(x1, y1); a(x1,⊥),Aconf(a)(x1,⊥) → ; a(x1,⊤),Atied(a)(x1,⊤)

(with a ∈ A \ sticky off attributes)

UnsetAttribute : h(x1, y1); a(x1,⊤) → ; a(x1,⊥),Atied(a)(x1,⊥)

(with a ∈ A \ sticky on attributes)

CreateObject : x;
new n
−−−→ h(n, x); A(n, B) (with B ∈ C)

GetAttribute : h(n, x); extract(n, be), sensitive(n, bs) → x
0

@

with be, bs ∈ {⊥,⊤} and
sensitive prevents read(⊤) ⇒ bs = ⊥ and
unextractable prevents read(⊤) ⇒ be = ⊤

1

A

Notation: - A = {a1, . . . , am} denotes the (ordered) set of attributes
- B = {b1, . . . , bm} denotes a template, i.e. a set of Boolean values for attributes A
- A(n, B) stands for a1(n, b1), . . . , am(n, bm) while A(n, b) stands for a1(n, b), . . . , am(n, b)
- B(n, B), with B = {aj1 , . . . , ajk} ⊆ A denotes aj1(n, bj1), . . . , ajk(n, bjk), i.e.,

the projection of A(n, B) on B
- Aconf(a) is the subset of attributes a′ ∈ A conflicting with a, i.e., such that conflict(a′, a)

- Atied(a) is the subset of attributes a′ ∈ A tied to a, i.e., such that tied(a′, a)

Table 2: PKCS#11 key management subset with side conditions from the meta-language of table 1

Key Generation Templates
A major difference between our model and the DKS model
is that we take into account key templates. In DKS, the key
generation commands create a key with all its attributes
unset [8, Fig. 2]. Attributes are then be enabled one by
one using the SetAttribute command. In our experiments
with real devices, we discovered that some tokens do not
allow attributes of a key to be changed. Instead, they use a
key template specifying settings for the attributes which are
given to freshly generated keys. Templates are used for the
import of encrypted keys (unwrapping), key creation using
CreateObject and key generation. The template to be used in
a specific command instance is specified as a parameter, and
must come from a set of valid templates, which we label G, C
and U for the valid templates for key generation, creation
and unwrapping respectively. Tookan can construct the set
of templates in two ways: the first, by exhaustively testing
the commands using templates for all possible combinations
of attribute settings, which may be very time consuming,
but is necessary if we aim to verify the security of a token.
The second method is to construct the set of templates that
should be allowed based on the reverse-engineered attribute
policy (see next paragraph). This is an approximate process,
but can be useful for quickly finding attacks. Indeed, in our
experiments, we found that these models reflected well the
operation of the token, i.e. the attacks found by the model
checker all executed on the tokens without any ‘template
invalid’ errors.

Attribute Policies
Most tokens we tested attempt to impose some restrictions
on the combinations of attributes that can be set on a key
and how these may be changed. Some restrictions are listed
as mandatory in the standard, though we found that not all
tokens actually implement them. In our meta-model lan-
guage, we describe four kinds of restriction that Tookan can
infer from its reverse engineering process:

Sticky_on These are attributes that once set, may not
be unset. The PKCS#11 standard lists some of these [14,
Table 15]: sensitive for secret keys, for example. As shown
in table 2, the UnsetAttribute rule is only included for at-
tributes which are not sticky on. To test if a device treats
an attribute as sticky on, Tookan attempts to create a key
with the attribute on, and then calls SetAttribute to change
the attribute to off.

Sticky_off These are attributes that once unset may not
be set. In the standard, extractable is listed as such an at-
tribute. As shown in table 2, the SetAttribute rule is only
included for attributes which are not sticky off. To test if
a device treats an attribute as sticky on, Tookan attempts
to create a key with the attribute off, and then calls SetAt-

tribute to change the attribute to on.

Conflicts Many tokens (appear to) disallow certain pairs
of attributes to be set, either in the template or when chang-
ing attributes on a live key. For example, some tokens do not
allow sensitive and extractable to be set on the same key. As
shown in table 2, the SetAttribute rule is adjusted to prevent
conflicting attributes from being set on an object or on the
template. When calculating the template sets C,G,U (see
above), we forbid templates which have both the conflicting
attributes set. To test if a device treats an attribute pair as
a conflict, Tookan attempts to generate a key with the the

pair of attributes set, then if no error is reported, it calls
GetAttribute to check that the token really has created a key
with the desired attributes set.

Tied Some tokens automatically set the value of some at-
tributes based on the value of others. For example, many
tokens set the value of always sensitive based on the value
of the attribute sensitive. As shown in table 2, the SetAt-

tribute and UnsetAttribute rules are adjusted to account for
tied attributes. The template sets C,G,U are also adjusted
accordingly. To test if a device treats an attribute pair as
tied, Tookan attempts to generate a key with some attribute
a on and all other attributes off. It then uses GetAttribute

to examine the key as it was actually created, and tests to
see if any other attributes were turned on.

Respecting the Standard
Tookan checks two vital aspects of the token’s behaviour:
footnote 7 in table 15 of the standard specifies that certain
attributes of an object may not be revealed via a GetAt-

tribute query if either the object’s sensitive attribute is set
to true, or the extractable attribute is set to false. We test
these conditions independently by attempting to read the
attribute giving the true value of a secret key. The results
are respectively stored in sensitive_prevents_read and
unextractable_prevents_read. Clearly if either of these
are false for a real token, we have a vulnerability, since
these are two of the critical security properties the token is
supposed to provide. Nevertheless, we include them in our
model since several of the tokens we tested fail to enforce
these restrictions.

Optimising the Template Set
For tokens which allow a large number of different templates,
the sets C,G,U can get very large, which creates a model that
is very slow to search. We apply some simple optimisations
to the template set that make a significant improvement to
performance. Specifically, we construct a set of attributes
A+ which only appear in the model set to true and do not
appear in any conflicts. It is easy to see that if there are
no rules that test this attribute is false, and it does not
affect the value of any other attributes, then we need only
construct templates where these attributes are set to true.
Likewise, we construct a set of attributes A− which only
appear in the model set to false. We need not construct
templates where this attribute is true.

Implementing Abstractions for Proving Security
In previous work [11], we proved that for models where at-
tributes are static (i.e. they are all both sticky on and sticky
off), we can make an over-approximation for the generation
of fresh handles and keys that allows us to prove security
for an unbounded number of handles and keys using a small
finite model. Intuitively, the idea is to generate one key
for each template, and to allocate one handle for each tem-
plate. If a template is used twice, the same handle is gen-
erated, even if the key is different. Tookan has an option
that builds a model following this abstraction. Since it is an
over approximation, the abstract model may suggest false
attacks. In this case, the user can switch back to the con-
crete, bounded model, where a user defined number of fresh
handles and keys are used.

3.3 Limitations of Reverse Engineering
Our reverse engineering process is not complete: it may

result in a model that is too restricted to find some attacks
possible on the token, and it may suggest false attacks which
cannot be executed on the token. This is because in the-
ory, no matter what the results of our finite test sequence,
the token may be running any software at all, perhaps even
behaving randomly. However, if a token implements its at-
tribute policy in the manner in which we can describe it, i.e.
as a combination of sticky on, sticky off, conflict and tied at-
tributes, then our process is complete in the sense that the
model built will reflect exactly what the token can do (mod-
ulo the usual Dolev-Yao abstractions for cryptography).

In our testing, the model performed very well: the Tookan

consistently found true attacks on flawed tokens, and we
were unable to find ‘by hand’ any attacks on tokens which
the model checker deemed secure. This suggests that real
devices do indeed implement their attribute policies in a
manner similar to our model.

4. RESULTS
In this section, we report experimental results from using

our tool to find attacks on commercially available devices.
We acquired as many tokens as we could subject to our
lab budgets, and the retail or loan availability of single to-
kens and cards. Tokens cost anything from 20 to 400 USD,
with the global market estimated at 5 billion USD3. We also
tested our tool on two software simulators, intended for de-
velopment purposes. Table 3 summarises the outcome of the
analysis. For each token, we give a summary of the configu-
ration information obtained from the token and a core subset
of the attacks we found. Our testing on tokens is ongoing.
Latest results can be viewed at the project website4.

4.1 Implemented functionality
Columns ‘sym’ and ‘asym’ respectively indicate whether

or not symmetric and asymmetric key cryptography are sup-
ported, i.e. the values of supports_symmetric_keys and
supports_asymmetric_keys from the extracted configura-
tion. We do not attempt to distinguish which particular
cryptographic algorithms are supported in our analysis, since
it is not relevant to the kinds of attacks we are looking for.
Both kinds of cryptography are available on all the devices
except three: the Eutron Crypto Identity ITSEC, Gemalto
Smart Enterprise Guardian and the Gemalto SafeSite Clas-
sic TPC IS V1, which only provide asymmetric key cryptog-
raphy. This last device should implement both symmetric
and asymmetric cryptography according to its specification,
but the one we tested could not generate and use symmetric
keys. This may be a hardware issue with the specific token
we possess.

Column ‘cobj’ refers to the possibility of inserting exter-
nal, unencrypted, keys on the device via C_CreateObject

PKCS#11 function, i.e. whether create_object is included
in the list of functions in the extracted configuration. This
is allowed by almost all of the analysed tokens. Although
this command does not directly violate a security property,
allowing known keys onto a device is generally a dangerous

3InfoSecurity Magazine February 2010, http:
//fanaticmedia.com/infosecurity/archive/Feb10/
AuthenticationTokensstory.htm
4http://secgroup.ext.dsi.unive.it/pkcs11-security

thing: an attacker might import an untrusted wrapping key
from outside and ask the device to wrap a sensitive internal
key with it [8].

The next column, ‘chan’, refers to the possibility of chang-
ing key attributes through C_SetAttributeValue. This func-
tionality can easily be abused if not limited in some way.
For example, it is clear (and stated in the standard) that it
should never be possible to make a sensitive key nonsensi-
tive. The behaviour of the C_SetAttributeValue command
for a particular token is reported to the model checker via the
sticky_on and sticky_off lists. A tick in this column indi-
cates that at least one attribute was found that was not both
sticky_on and sticky_off. The three Feitian devices cor-
rectly limit C_SetAttributeValue so that a sensitive key can
never be changed into nonsensitive. However, this is of no
use, since these tokens let any user directly access sensitive
and unextractable keys (see attacks a3 and a4), disregarding
the standard. The Sata and the Gemalto SafeSite Classic V2
devices are the only ones which allow the sensitive attribute
to be unset with no limitation; this is in a perverse sense
coherent, as just like the Feitian devices, they let any user
access sensitive/unextractable keys. An interesting case is
the Eracom HSM simulator, which allows attribute change,
but correctly implements the above mentioned policy, i.e.,
it disallows making a sensitive key nonsensitive, while also
making sensitive keys unreadable: in this way, once a key
is set as sensitive it will never become directly accessible.
Subtler attacks on the keys are still possible by exploiting
wrap/unwrap functions (see below attacks a1 and a2).

The following two columns, ‘w’ and ‘ws’, respectively in-
dicate whether the token permits wrapping of nonsensitive
and sensitive keys. It is discouraging to observe that every
device providing ‘ws’, i.e., the wrapping of sensitive keys,
is also vulnerable to attack. All the other devices avoid
attacks at the price of removing such functionality. Forbid-
ding the wrapping of sensitive keys is a quite limiting de-
sign choice since it compromises any proper management of
sensitive keys among different devices. Wrapping sensitive
keys is necessary in order to export/import those keys in a
secure way. Most of these ‘limited’ tokens simply remove
the whole wrapping functionality, i.e., both ‘w’ and ‘ws’.
There are however two devices which allow the wrapping of
nonsensitive keys only: SafeNet iKey and Siemens CardOS.
Although this choice is less restrictive than removing the
whole wrapping functionality, it seems difficult to think of
an application where this would be a useful functionality. As
we will discuss in the next section, it is indeed possible to
produce a secure token configuration which allows wrapping
(and unwrapping) of sensitive keys.

4.2 Attacks
Attack a1 is a wrap/decrypt attack as discussed in section

2. The attacker exploits a key k2 with attributes wrap and
decrypt and uses it to attack a sensitive key k1. Using our
notation from section 3:

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2

SDecrypt: h(n2, k2), {|k1|}k2
→ k1

As we have discussed above, the possibility of inserting new
keys in the token (column ‘cobj’) might simplify further the
attack. It is sufficient to add a known wrapping key:

CreateObject: k2
new n2−−−−→ h(n2, k2)

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2

Device Supported Functionality Attacks found
Company Model sym asym cobj chan w ws a1 a2 a3 a4 a5 mc

USB

Aladdin eToken PRO X X X X X X X X a1
Athena ASEKey X X X

Bull Trustway RCI X X X X X X X X a1
Eutron Crypto Id. ITSEC X X

Feitian StorePass2000 X X X X X X X X X a3
Feitian ePass2000 X X X X X X X X X a3
Feitian ePass3003Auto X X X X X X X X X a3
Gemalto Smart Enterprise Guardian X X

MXI Security Stealth MXP Bio X X X

SafeNet iKey 2032 X X X X

Sata DKey X X X X X X X X X X X a3

Card
ACS ACOS5 X X X X

Athena ASE Smartcard X X X

Gemalto Cyberflex V2 X X X X X X a2
Gemalto SafeSite Classic TPC IS V1 X X

Gemalto SafeSite Classic TPC IS V2 X X X X X X X X X X a3
Siemens CardOS V4.3 B X X X X X a4

Soft
Eracom HSM simulator X X X X X X X X a1
IBM opencryptoki 2.3.1 X X X X X X X X X a1

Acronym Description

Supported
functionality

sym symmetric-key cryptography
asym asymmetric-key cryptography
cobj inserting new keys via C_CreateObject

chan changing key attributes
w wrapping keys
ws wrapping sensitive keys

Attacks

a1 wrap/decrypt attack based on symmetric keys
a2 wrap/decrypt attack based on asymmetric keys
a3 sensitive keys are directly readable
a4 unextractable keys are directly readable (forbidden by the standard)
a5 sensitive/unextractable keys can be changed into nonsensitive/extractable
mc first attack found by Tookan

Table 3: Summary of results on devices

The attacker can then decrypt {|k1|}k2
since he knows key k2.

SATMC discovered this variant of the attack on vulnerable
tokens. We note that despite its apparent simplicity, this
attack has not appeared before in the PKCS#11 security
literature [6, 8].

Attack a2 is a variant of the previous ones in which the
wrapping key is a public key pub(z) and the decryption key
is the corresponding private key priv(z):

Wrap: h(n2, pub(z)), h(n1, k1) → {k1}pub(z)

ADecrypt: h(n2, priv(z)), {k1}k2
→ k1

In this case too, the possibility of importing key pairs simpli-
fies even more the attacker’s task by allowing him to import
a public wrapping key while knowing the corresponding pri-
vate key. Once the wrap of the sensitive key has been per-
formed, the attacker can decrypt the obtained ciphertext
using the private key.

Attack a3 is a clear flaw in the PKCS#11 implementation.
It is explicitly required that the value of sensitive keys should
never be communicated outside the token. In practice, when
the token is asked for the value of a sensitive key, it should
return some“value is sensitive”error code. Instead, we found

that some of the analysed devices just return the plain key
value, ignoring this basic policy. Attack a4 is similar to a3:
PKCS#11 requires that keys declared to be unextractable
should not be readable, even if they are nonsensitive. If they
are in fact readable, this is another violation of PKCS#11
security policy.

Finally, attack a5 refers to the possibility of changing sen-
sitive and unextractable keys respectively into nonsensitive
and extractable ones. Only the Sata and Gemalto SafeSite
Classic V2 tokens allow this operation. However, notice that
this attack is not adding any new flaw for such devices, given
that attacks a3 and a4 are already possible and sensitive or
unextractable keys are already accessible.

4.3 Model-checking results
Column ‘mc’ reports which of the attacks has been auto-

matically rediscovered via model-checking. SATMC termi-
nates once it has found an attack, hence we report the attack
that was found first. Run-times for finding the attacks vary
from a couple of seconds to just over 3 minutes. We evaluate
the performance of the model checker further in section 6.

5. FINDING SECURE CONFIGURATIONS
As we noted in the last section, none of the tokens we

tested are able to import and export sensitive keys in a
secure fashion. In particular, all the analysed tokens are
either insecure or have been drastically restricted in their
functionality, e.g. by completely disabling wrap and un-
wrap. Intermediate approaches are in fact possible: the
standard can be patched without necessarily removing the
wrapping functionality [9]. In this section, we present Cryp-
tokiX, a software (fiXed) implementation of a Cryptoki to-
ken, whose security is configurable by selectively enabling
different patches. As well as providing Tookan with test
data, this proof-of-concept of a secure token has also been
adopted for educational purposes in a security lab class at
the University of Venice, during which students are chal-
lenged to extract a sensitive key from a token which has
only a subset of the patches turned on, so as to be insecure
but not easy to attack [2].

Our starting point is openCryptoki [13], an open-source
PKCS#11 implementation for Linux including a software
token for testing. As shown in Table 3, the analysis of open-
Cryptoki software token has revealed that it is subject to all
the non-trivial attacks. This is in a sense expected, as it im-
plements the standard ‘as is’, i.e., with no security patches.
We have thus extended openCryptoki with:

Conflicting attributes. We have seen, for example, that
it is insecure to allow the same key to be used for wrapping
and decrypting. In CryptokiX it is possible to specify a set
of conflicting attributes.

Sticky attributes. We know that some attributes should
always be sticky, such as sensitive. This is also useful when
combined with the ‘conflicting attributes’ patch above: if
wrap and decrypt are conflicting, we certainly want to avoid
that the wrap attribute can be unset so as to allow the de-

crypt attribute to be set.

Wrapping formats. It has been shown that specifying a
non-conflicting attribute policy is not sufficient for security
[6, 8]. A wrapping format should also be used to correctly
bind key attributes to the key. This prevents attacks where
the key is unwrapped twice with conflicting attributes. Some
existing devices already include such wrapping formats; an
example is the Eracom ProtectServer [9].

Secure templates. We limit the set of admissible attribute
combinations for keys in order to avoid that they ever as-
sume conflicting roles at creation time. This is configurable
at the level of the specific PKCS#11 operation. For ex-
ample, we can define different secure templates for different
operations such as key generation and unwrapping.

A way to combine the first three patches with a wrapping
format that binds attributes to keys in order to create a
secure token has already been demonstrated [11]. Here we
show how the fourth patch works, as it is an original idea
for a configuration that has not yet appeared in the liter-
ature. This patch does not require any new cryptographic
mechanisms to be added to the standard, making it quite
simple and cheap to incorporate into existing devices. We
consider here a set of templates with attributes sensitive and
extractable always set. Other attributes wrap, unwrap, en-

crypt and decrypt are set as follows:

Key generation: we allow three possible templates:

1. wrap and unwrap, for exporting/importing other keys;

2. encrypt and decrypt, for cryptographic operations;

3. neither of the four attributes set, i.e. the default tem-
plate if none of the above is specified.

Key creation/import: we allow two possible templates
for any key created with CreateObject or imported with
Unwrap:

1. unwrap,encrypt set and wrap,decrypt unset;

2. none of the four attributes set.

The templates for key generation are rather intuitive and
correspond to a clear separation of key roles, which seems
a sound basis for a secure configuration. The rationale be-
hind the single template for key creation/import, however,
is less obvious and might appear rather restrictive. The idea
is to allow wrapping and unwrapping of keys while ‘halving’
the functionality of created/unwrapped keys: these latter
keys can only be used to unwrap other keys or to encrypt
data, wrapping and decrypting under such keys are forbid-
den. This, in a sense, offers an asymmetric usage of imported
keys: to achieve full-duplex encrypted communication two
devices will each have to wrap and send a freshly generated
key to the other device. Once the keys are unwrapped and
imported in the other devices they can be used to encrypt
outgoing data in the two directions. Notice that imported
keys can never be used to wrap sensitive keys. Note also that
we require that all attributes are sticky on and off, and that
we assume for bootstrapping that any two devices that may
at some point wish to communicate have a shared long term
symmetric key installed on them at personalisation time.
This need only be used once in each direction. Our solution
works well for pairwise communication, where the overhead
is just one extra key, but would be more cumbersome for
group key sharing applications.

We analysed the developed solution by extracting the
model using Tookan. A model for SATMC was constructed
using the abstraction option (see section 3.2). Given the
resulting model, SATMC terminates with no attacks in a
couple of seconds, allowing us to conclude the patch is safe
in our abstract model for unbounded numbers of fresh keys
and handles. Note that although no sensitive keys can be
extracted by an intruder, there is of course no integrity
check on the wrapped keys that are imported. Indeed, with-
out having an encryption mode with an integrity check this
would seem to be impossible. This means that one cannot
be sure that a key imported on to the device really corre-
sponds to a key held securely on the intended receipient’s
device. This limitation would have to be taken into account
when evaluating the suitability of this configuration for an
application. CryptokiX is available online5.

6. CONCLUSION
We conclude by evaluating the state of commercial se-

curity tokens, the performance of Tookan, and lessons for
future key management APIs.

The state of the art in PKCS#11 security tokens seems
rather poor. In our sample of 17 devices, we found 5 tokens
that trivially gave up their sensitive keys in complete disre-
gard of the standard, 3 that were vulnerable to a variety of

5http://secgroup.ext.dsi.unive.it/cryptokix

key separation attacks, and a further smartcard that allowed
unextractable keys to be read in breach of the standard.
The remainder provide no functionality for secure transport
of sensitive keys. We sent vulnerability reports to the man-
ufacturers concerned at least 5 months before publication.
Their responses can be viewed at the project website6.

The tokens we have encountered so far have not provided
much of a challenge for Tookan. At the start of the project,
we hoped to encounter tokens that were patched in an ef-
fort to mitigate the attacks. Instead we found tokens with
simple flaws or minimal functionality. Attacks were found
on all the vulnerable tokens, usually in just a few seconds.
The potential value of the tool is perhaps best indicated by
the work in section 5, where we implement patches on a
software token simulator obtaining a fully featured software
prototype of a secure (at least in our model) token, capable
of wrapping and unwrapping keys. The software token can
be reverse-engineered accurately by our automated frame-
work, indicating that Tookan is ready to analyse more so-
phisticated devices as soon as they become available on the
market. Our software token might be useful as a reference to
develop such next-generation devices. In future work we will
be extending our model to more cryptographic detail. We
would also like to try Tookan on PKCS#11 based devices
currently outside our budgets, such as Hardware Security
Modules (HSMs).

Finally, there are at least two new standards which ad-
dress key management currently at the draft stage: IEEE
1619.37 (for secure storage) and OASIS Key Management In-
teroperability Protocol (KMIP)8. Although neither is aimed
at cryptographic tokens, it is clear there is a move towards
better standards for key management in general. Given the
apparent difficulty of constructing a secure interface based
on PKCS#11, this seems a timely intervention. Our conclu-
sions based on the research in this paper are that the new
standards should:

• Specify clearly what security properties an interface
complying to the standard should uphold. Our ex-
perimental evidence suggests that the security goals in
PKCS#11, i.e. protection of sensitive or unextractable
keys, are apparently too well hidden for some imple-
menters to notice. A clear set of security properties
would make life substantially easier for application de-
velopers as well.

• Include a format for key wrapping that securely pre-
serves key metadata (i.e. attributes etc.). This has
already been noted by recent proposals for secure in-
terfaces [4, 7].

• Treat explicitly the problem of key roles, and give guid-
ance to avoid conflicting roles. Again this issue has
been treated by recent proposals for APIs in the aca-
demic literature [4, 7].

• Make provision for compliance testing, to weed out
poorly implemented tokens, and make testing results
publicly available.

6http://secgroup.ext.dsi.unive.it/pkcs11-security
7https://siswg.net
8http://www.oasis-open.org/committees/kmip/

7. REFERENCES
[1] A. Armando and L. Compagna. SAT-based

model-checking for security protocols analysis. Int. J.
Inf. Sec., 7(1):3–32, 2008. Software available at
http://www.ai-lab.it/satmc. Currently developed
under the AVANTSSAR project,
http://www.avantssar.eu.

[2] L. Baloci and A. Vianello. Un sistema per lo studio
della sicurezza. Baccalaureate Thesis, University of
Venice, Italy, April 2010.

[3] M. Bond. Attacks on cryptoprocessor transaction sets.
In Proceedings of the 3rd International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES’01), volume 2162 of LNCS, pages 220–234,
Paris, France, 2001. Springer.

[4] C. Cachin and N. Chandran. A secure cryptographic
token interface. In Computer Security Foundations
(CSF-22), pages 141–153, Long Island, New York,
2009. IEEE Computer Society Press.

[5] R. Clayton and M. Bond. Experience using a low-cost
FPGA design to crack DES keys. In Cryptographic
Hardware and Embedded System - CHES 2002, pages
579–592, 2002.

[6] J. Clulow. On the security of PKCS#11. In 5th
International Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2003), pages 411–425,
2003.

[7] V. Cortier and G. Steel. A generic security API for
symmetric key management on cryptographic devices.
In M. Backes and P. Ning, editors, Proceedings of the
14th European Symposium on Research in Computer
Security (ESORICS’09), volume 5789 of Lecture Notes
in Computer Science, pages 605–620, Saint Malo,
France, Sept. 2009. Springer.

[8] S. Delaune, S. Kremer, and G. Steel. Formal analysis
of PKCS#11. In Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF’08),
pages 331–344, Pittsburgh, PA, USA, June 2008.
IEEE Computer Society Press.

[9] S. Delaune, S. Kremer, and G. Steel. Formal analysis
of PKCS#11 and proprietary extensions. Journal of
Computer Security, 2009. To appear.

[10] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions in Information Theory,
2(29):198–208, March 1983.

[11] S. Fröschle and G. Steel. Analysing PKCS#11 key
management APIs with unbounded fresh data. In
P. Degano and L. Viganò, editors, Revised Selected
Papaers of the Joint Workshop on Automated
Reasoning for Security Protocol Analysis and Issues in
the Theory of Security (ARSPA-WITS’09), volume
5511 of Lecture Notes in Computer Science, pages
92–106, York, UK, Aug. 2009. Springer.

[12] D. Longley and S. Rigby. An automatic search for
security flaws in key management schemes. Computers
and Security, 11(1):75–89, March 1992.

[13] openCryptoki.
http://sourceforge.net/projects/opencryptoki/.

[14] RSA Security Inc., v2.20. PKCS #11: Cryptographic
Token Interface Standard., June 2004.

