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Abstract In this paper, we study algorithmic problems for quantitative models that are mo-
tivated by the applications in modeling embedded systems. We consider two-player games
played on a weighted graph with mean-payoff objective and with energy constraints. We
present a new pseudopolynomial algorithm for solving such games, improving the best
known worst-case complexity for pseudopolynomial mean-payoff algorithms. Our algo-
rithm can also be combined with the procedure by Andersson and Vorobyov to obtain a
randomized algorithm with currently the best expected time complexity. The proposed solu-
tion relies on a simple fixpoint iteration to solve the log-space equivalent problem of decid-
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ing the winner of energy games. Our results imply also that energy games and mean-payoff
games can be reduced to safety games in pseudopolynomial time.

Keywords Quantitative models · (Quantitative) model checking · Embedded systems ·
Synthesis of controllers · Quantitative games · Mean-payoff objectives · Energy
constraints · Algorithms & complexity upper bounds

1 Introduction

Quantitative models Recently, several research efforts have been put in studying quantita-
tive extensions of formalisms like automata and games for modeling quantitative aspects of
systems like embedded systems. Quantities may represent, for example, the power usage of
an embedded component, or the buffer size of a networking element [4].

In this context, Henzinger et al. have studied resource interfaces [4], and more recently,
Bouyer et al. have studied weighted (timed) automata and games [3]. In the two papers, the
authors consider models where accumulated weight along runs are subject to constraints. For
one important variant of those models, the so-called energy games (with lower bound con-
straints), they have proved log-space equivalence to classical mean-payoff games. This log-
space equivalence allows to reuse the existing algorithms for solving mean-payoff games.

In this paper, we propose a direct algorithm for solving energy games. Furthermore, using
the log-space reduction from mean-payoff games to energy games, we show how our new
algorithm for energy games can be used to improve on the existing algorithmic solutions to
solve mean-payoff games. In addition to improving the worst-case complexity for solving
energy games and mean-payoff games, we believe that our algorithmic solution, which is a
fixed point computation, has the potential to be efficiently implemented. We believe that our
algorithm is an important step into making the tool support for those quantitative models
available and efficient.

Mean-payoff games and energy games Two-player mean-payoff games are played on
weighted graphs (in which every edge has an integer weight) with two types of vertices:
in player-0 vertices, player 0 chooses the successor vertex from the set of outgoing edges; in
player-1 vertices, player 1 chooses the successor vertex from the set of outgoing edges. The
game results in an infinite path through the graph. The long-run average of the edge-weights
along this path, called the value of the play, is won by player 0 and lost by player 1.

The decision problem for mean-payoff games asks, given a vertex v and an integer ν ∈ Z,
if player 0 has a strategy to win a value at least ν when the game starts in v. The associated
strategy synthesis problem is to construct a strategy for player 0 that ensures a value at
least ν, if there exists one. The three-way partition problem asks, given a threshold ν ∈ Z,
to partition the set of vertices of the game into the sets 〈V<ν,V=ν,V>ν〉, where V<ν is the
subset of vertices from which player 0 can only achieve a value less than ν, V=ν is the subset
of vertices where player 0 can achieve ν but not more, and V>ν is the subset where player 0
can achieve more than ν. The value problem consists in computing the maximal (rational)
value that player 0 can achieve from each vertex v of the game. Finally the (optimal) strategy
synthesis problem is to construct a strategy for player 0 that secures the maximal value.

Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [9] where it
is shown that memoryless (or positional) strategies suffice to achieve the optimal value. This
result entails that the decision problem for these games lies in NP ∩ coNP [15, 23], and it
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was later shown to belong to1 UP ∩ coUP [13]. Despite many efforts [2, 6, 7, 12, 17, 20, 23],
no polynomial-time algorithm for the mean-payoff game problems is known so far. Beside
such a theoretically engaging complexity status, mean-payoff games have plenty of appli-
cations, especially in the synthesis, analysis and verification of reactive (non-terminating)
systems. Many natural models of such systems include quantitative information, and the
corresponding question requires the solution of quantitative games, like mean-payoff games.
Concrete examples of applications include various kinds of scheduling, finite-window on-
line string matching, or more generally, analysis of online problems and algorithms, as well
as selection with limited storage [23]. Mean-payoff games can even be used for solving the
max-plus algebra Ax = Bx problem, which in turn has further applications [7]. Beside their
applicability to the modeling of quantitative problems, mean-payoff games have tight con-
nections with important problems in game theory and logic. For instance, parity games [11]
and the model-checking problem for the modal mu-calculus [16] are poly-time reducible
to mean-payoff games [10], and it is a long-standing open question to know whether these
problems are in P.

In this paper, we present new algorithmic solutions to the mean-payoff game problems
listed above, improving the known upper bounds in terms of worst-case complexity. Our
algorithms rely on a reduction to so-called energy games [3, 4] that are log-space equivalent
to mean-payoff games. In an energy game, given an initial credit c∗, the objective of player 0
is to maintain the sum of the weights (the energy level) positive. The decision problem for
energy games asks, given a weighted game graph and vertex v, if there exists an initial
credit for which player 0 wins from v. It is known that memoryless strategies are sufficient
for energy games, and that player 0 essentially needs to ensure that all cycles that can be
formed by player 1 have nonnegative weight. We show that energy games can be solved
elegantly and efficiently using a notion of progress measure. Progress measures for weighted
graphs are functions that impose local conditions to ensure global properties of the graph.
A notion of parity progress measure [22] was exploited in [14] for the algorithmic analysis
of parity games. In this paper, we introduce so called energy progress measures to witness
that all cycles in a graph are nonnegative. We show how to transfer this notion from graphs
to games, and we provide an efficient fixpoint algorithm to synthesize a progress measure
when it exists. Since energy games are log-space equivalent to mean-payoff games, this also
defines a new mean-payoff algorithm which is more elegant and conceptually simpler than
the previously known algorithmic solutions.

As we will see below, our procedure to solve the mean-payoff games decision problem
achieves a better worst-case complexity than the corresponding best known deterministic
pseudopolynomial algorithm due to Zwick and Paterson [23]. Moreover, (optimal) strategies
can be synthesized as a (free) byproduct of our algorithm, while [23] requires further com-
putation. Our solution of the mean-payoff value problem is also better than [23] when the
maximum weight W in the graph is subexponential, which is the relevant case for compar-
ing pseudopolynomial procedures. Finally, we can combine our deterministic mean-payoff
value algorithm with the randomized procedure proposed in [1] to obtain an algorithm with
currently the best expected complexity (for all W ). We note that in typical applications,
where the edge-weights represent, for example, the energy consumption of a physical de-
vice, W is usually small in comparison with |V |, in which case our deterministic algorithm
significantly outperforms—by a linear factor—the previous state-of-the-art solutions, with-
out any use of randomization.

1The complexity class UP is the class of problems recognizable by unambiguous polynomial time nondeter-
ministic Turing machines [19]. Obviously P⊆ UP ∩ coUP ⊆ NP ∩ coNP.
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Related works and main results All previous deterministic algorithms for mean-payoff
games are either pseudopolynomial (i.e., polynomial in the number of vertices |V |, the
number of edges |E|, and the maximal absolute weight W , rather than in the binary rep-
resentation of W ) or exponential [12, 17, 20, 21, 23].

In the late eighties, Gurvich, Karzanov, Khachiyan and Lebedev [12, 15] provided the
first (exponential) algorithms for mean-payoff games. Their method, based on the notion
of rational price function, was later extended by Pisaruk [20], who considered games with
mean-payoff objectives in a slightly more general setting than the one originally proposed
by Eherenfeucht and Mycielski [9], and provides a pseudopolynomial upper bound.

The best pseudopolynomial deterministic algorithm for mean-payoff games known so far
was designed in 1996 by Zwick and Paterson [23]. They provide a value-iteration algorithm
with time complexity �(|E| · |V |3 · W) for the value problem, and �(|E| · |V |2 · W) for
the decision problem and the three-way partition problem. They also consider the optimal
strategy synthesis problem, defining a corresponding �(|E| · |V |4 ·W · log |E|

|V | ) pseudopoly-
nomial algorithm.

The best deterministic exponential algorithm for solving mean-payoff games is due to
Lifshits and Pavlov [17], who provide a graph decomposition procedure with complexity
O(|E| · |V | · 2|V |) for the decision problem, and O(|E| · |V | · 2|V | · logW) for the value
problem.

In 2007, Björklund and Vorobyov [2] define a randomized algorithm which is both
subexponential and pseudopolynomial. Their algorithm solves the decision problem,
the three-way partition problem, and the winning strategy synthesis in expected time
min(O(|E| · |V |2 · W),2O(

√|V |·log|V |)). For the value problem and the optimal strategy
synthesis, the time complexity of their solution is bounded by min(O(|E| · |V |3 · W ·
(log|V | + logW)),2O(

√|V |·log|V |) · logW). In particular, the pseudopolynomial terms in the
upper bounds given by [2] do not require randomization and improve on [23] for the (op-
timal) strategy synthesis problem, since winning strategies are obtained as a byproduct
of the overall computation. In [1], Andersson and Vorobyov proposed a subexponential
randomized solution for discounted payoff games, with application to mean-payoff objec-
tives. In particular, [1] solves the value problem for mean-payoff games in expected time

O(|V |2 · |E| · e2·
√

|V |·ln(|E|/√|V |)+O(
√|V |+ln|E|)), which improves [2] for large W .

The (deterministic) algorithms proposed in this work to solve mean-payoff games give
new pseudopolynomial upper bounds for all problems considered above. In particular, we
provide O(|E| · |V | · W) algorithms for the decision problem and the three-way partition
problem, achieving a linear improvement in |V | of the corresponding previous upper bound.
We define an algorithm for the value problem with a complexity O(|E| · |V |2 ·W · (log|V |+
logW)) while the value-iteration algorithm by Zwick and Paterson has complexity O(|E| ·
|V |3 · W). Thus, our procedure performs better when W is polynomial in |V |. When W is
exponential in |V |, the complexity of both algorithms is outperformed by the O(|E| · |V | ·
2|V | · logW) algorithm in [17]. Finally, our algorithmic solution for the (optimal) strategy
synthesis has complexity O(|E| · |V | · W) (resp. O(|E| · |V |2 · W(log|V | + logW))), also
improving on previous upper bounds in [2].

Tables 1 and 2 summarize the results obtained in this paper and compare them with the
main algorithms in the literature.

Structure of the paper The rest of this paper is organized as follows. In Sect. 2, we provide
basic definitions and notations. In Sect. 3, we develop energy progress measures to be used
in Sect. 4 for solving energy game problems. In Sect. 5, we build up on the new algorithm to
improve the state-of-the-art pseudopolynomial time upper bounds for mean-payoff games.
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Table 1 Complexity of the main algorithms to solve the mean-payoff game problems 1–3 considered in
Sect. 2

Problems

Algorithms Decision Problem Strategy Synthesis Note

3-Way Partition Problem

This paper O(|E| · |V| · W) O(|E| · |V| · W) Deterministic

[23] �(|E| · |V|2 · W) �(|E| · |V|3 · W · log |E|
|V| ) Deterministic

[17] O(|E| · |V| · 2|V|) – Deterministic

[2] min(O(|E| · |V|2 · W), min(O(|E| · |V|2 · W)), Randomized

2O(
√|V|·log|V|)) 2O(

√|V|·log|V|))

Table 2 Complexity of the main algorithms to solve the mean-payoff game problems 4–5 considered in
Sect. 2

Problems

Algorithms Value Optimal Note

Problem Strategy

Synthesis

This paper O(|E| · |V|2 · W · (log|V| + log W)) O(|E| · |V|2 · W · (log|V| + log W)) Det.

[23] �(|E| · |V|3 · W) �(|E| · |V|4 · W · log |E|
|V| ) Det.

[17] O(|E| · |V| · 2|V| · log W) – Det.

[2] min(O(|E| · |V|3 · W · (log V + log W)), min(O(|E| · |V|3 · W · (log|V| + log W)), Rand.

2O(
√|V|·log|V|) · log W) 2O(

√|V|·log|V|) · log W)

[1] O(|V|2 · |E| · e2·
√

|V|·ln(|E|/√|V|)+O(
√|V|+ln|E|)) – Rand.

2 Preliminaries

Weighted graphs Let Z (resp. N) denote the set of integer (resp. nonnegative integer) num-
bers. A weighted graph G = (V ,E,w) consists of a finite set V of vertices, a set E ⊆ V ×V

of edges, and a weight function w : E → Z, assigning integer weights to edges. Given
w : E → Z and ν ∈ Z, we denote by w − ν the function that assigns to each edge e ∈ E

the weight w(e) − ν. We assume that weighted graphs are total, i.e. for all v ∈ V , there ex-
ists v′ ∈ V such that (v, v′) ∈ E. Given U ⊆ V , we denote E � U the restriction of E to U ,
i.e. E � U = E ∩ U × U . Given a function f ranging over V , f : V → cod(f ), and U ⊆ V ,
we denote by f � U the restriction of f to U , i.e. f � U : U → cod(f ) maps each u ∈ U to
f � U(u) = f (u). Given U ⊆ V such that for all v ∈ U , there exists v′ ∈ U with (v, v′) ∈ E,
we denote by G � U = (V ′,E′,w′) the weighted subgraph where V ′ = U , E′ = E � V ′,
and w′ = w � V ′. Note that weighted subgraphs are total. A finite path p is a nonempty
sequence of vertices v0v1 . . . vn such that (vi, vi+1) ∈ E for all 0 ≤ i < n. A cycle is a finite
path p = v0v1 . . . vn such that n ≥ 1 and v0 = vn. A cycle v0v1 . . . vn is reachable from v

in G if there exists a path u0u1 . . . um in G such that u0 = v and um = v0. The average
weight of a cycle v0 . . . vn is equal to 1

n
· ∑n−1

i=0 w(vi, vi+1). A path v0v1 . . . vn is acyclic if
vi = vj for all 0 ≤ i < j ≤ n. We say that a cycle in a weighted graph is negative (resp.
nonnegative) if the sum of its edge weights is less than 0 (resp. not less than 0). Given a
set of vertices U ⊆ V , we denote by pre(U) the set of vertices having a successor in U , i.e.
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pre(U) = {v | ∃v′ ∈ U : (v, v′) ∈ E}, and by post(U) the set of successors of vertices in U ,
i.e. post(U) = {v | ∃v′ ∈ U : (v′, v) ∈ E}.

Game graphs A game graph is a tuple � = (V ,E,w, 〈V0,V1〉) where G� = (V ,E,w) is a
weighted graph and 〈V0,V1〉 is a partition of V into the set V0 of player-0 vertices and the set
V1 of player-1 vertices. An infinite game on � is played for infinitely many rounds by two
players moving a pebble along the edges of the weighted graph G� . In the first round, the
pebble is on some vertex v ∈ V . In each round, if the pebble is on a vertex v ∈ Vi (i = 0,1),
then player i chooses an edge (v, v′) ∈ E and the next round starts with the pebble on v′.
A play in the game graph � is an infinite sequence p = v0v1 . . . vn . . . such that (vi, vi+1) ∈ E

for all i ≥ 0. A strategy for player i (i = 0,1) is a function σ : V ∗ · Vi → V , such that for
all finite paths v0v1 . . . vn with vn ∈ Vi , we have (vn, σ (v0v1 . . . vn)) ∈ E. We denote by
�i (i = 0,1) the set of strategies for player i. A strategy σ for player i is memoryless
if σ(p) = σ(p′) for all sequences p = v0v1 . . . vn and p′ = v′

0v
′
1 . . . v′

m such that vn = v′
m.

We denote by �M
i the set of memoryless strategies of player i. A play v0v1 . . . vn . . . is

consistent with a strategy σ for player i if vj+1 = σ(v0v1 . . . vj ) for all positions j ≥ 0
such that vj ∈ Vi . Given an initial vertex v ∈ V , the outcome of two strategies σ1 ∈ �1 and
σ2 ∈ �2 in v is the (unique) play outcome�(v, σ0, σ1) that starts in v and is consistent with
both σ0 and σ1. Given a memoryless strategy πi for player i in the game �, we denote by
G�(πi) = (V ,Eπi

,w) the weighted graph obtained by removing from G� all edges (v, v′)
such that v ∈ Vi and v′ = πi(v).

Mean-Payoff Games [9] A mean-payoff game (MPG) is an infinite game played on a game
graph � where player 0 wins a payoff value defined as the long-run average weights of the
play, while player 1 loses that value. Formally, the payoff value of a play v0v1 . . . vn . . . in
� is

MP(v0v1 . . . vn . . . ) = lim inf
n→∞

1

n
·

n−1∑

i=0

w(vi, vi+1).

The value secured by a strategy σ0 ∈ �0 in a vertex v is

valσ0(v) = inf
σ1∈�1

MP(outcome�(v, σ0, σ1))

and the (optimal) value of a vertex v in a mean-payoff game � is

val�(v) = sup
σ0∈�0

inf
σ1∈�1

MP(outcome�(v, σ0, σ1)).

We say that σ0 is optimal if valσ0(v) = val�(v) for all v ∈ V . Secured value and optimality
are defined analogously for strategies of player 1. Ehrenfeucht and Mycielski [9] show that
mean-payoff games are memoryless determined, i.e., memoryless strategies are sufficient for
optimality and the optimal (maximum) value that player 0 can secure is equal to the optimal
(minimum) value that player 1 can achieve.

Theorem 1 ([9]) For all MPG � = (V ,E,w, 〈V0,V1〉) and all vertices v ∈ V , we have

val�(v) = sup
σ0∈�0

inf
σ1∈�1

MP(outcome�(v, σ0, σ1)) = inf
σ1∈�1

sup
σ0∈�0

MP(outcome�(v, σ0, σ1)),
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and there exist memoryless strategies π0 ∈ �M
0 and π1 ∈ �M

1 such that

val�(v) = valπ0(v) = valπ1(v).

Moreover, uniform optimal strategies exist for both players, i.e., a unique memoryless
strategy can be used to secure the optimal values, independently of the initial vertex [9].

The next lemmas follow from memoryless determinacy of mean-payoff games.

Lemma 1 ([2, 9]) Let � = (V ,E,w, 〈V0,V1〉) be an MPG. For all ν ∈ R, for all memoryless
strategies π0 ∈ �M

0 for player 0, and for all vertices v ∈ V , the value valπ0(v) secured by π0

in v is greater than ν if and only if all cycles reachable from v in the graph G�(π0) have
average weight greater than ν.

Lemma 2 ([9, 17]) Let � = (V ,E,w, 〈V0,V1〉) be a MPG and let W = max(v,v′)∈E |w(v, v′)|.
For each vertex v ∈ V , the optimal value val�(v) is a rational number n

d
such that

1 ≤ d ≤ |V | and |n| ≤ d · W .

We consider the following five classical problems [2, 23] for a MPG � = (V ,E,w,

〈V0,V1〉):
1. Decision Problem. Given a threshold ν ∈ Z and a vertex v ∈ V , decide if val�(v) ≥ ν.
2. Strategy Synthesis. Given a vertex v ∈ V and a threshold ν ∈ Z such that ν ≤ val�(v),

construct a memoryless strategy π0 ∈ �M
0 for player 0 such that valπ0(v) ≥ ν.

3. Three-way Partition Problem. Given a integer threshold ν ∈ Z, partition the set V into
subsets V>ν,V<ν,V=ν of vertices from which player 0 can secure a payoff greater than
ν, less than ν, and equal to ν respectively.

4. Value Problem. Compute for each vertex v ∈ V the value2 val�(v).
5. Optimal Strategy Synthesis. Given a vertex v, construct an optimal strategy from v for

player 0.

Energy Games [3, 4] An energy game (EG) is an infinite game on the game graph �, where
the goal of player 0 is to construct an infinite play v0v1 . . . vn . . . such that for some initial
credit c ∈ N:

c +
j∑

i=0

w(vi, vi+1) ≥ 0 for all j ≥ 0. (1)

The quantity c + ∑j−1
i=0 w(vi, vi+1) is called the energy level of the play prefix v0v1 . . . vj .

Given a credit c, a play p = v0v1 . . . is winning for player 0 if it satisfies (1), otherwise it is
winning for player 1. A vertex v ∈ V is winning for player i if there exists an initial credit
c and a winning strategy for player i from v for credit c. In the sequel, we denote by Wi

the set of winning states for player i. Energy games are memoryless determined [3], i.e. for
all v ∈ V , either v is winning for player 0, or v is winning for player 1, and memoryless
strategies are sufficient.

Theorem 2 ([3]) Let � = (V ,E,w, 〈V0,V1〉) be an EG, for all v ∈ V , the following four
statements are equivalent:

2Note that by Lemma 2, this value is a rational number.
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Fig. 1 Solving an instance of the
MPG decision problem by means
of EG, illustrated in Example 1

– ∃σ0 ∈ �0 · ∀σ1 ∈ �1 · outcome�(v, σ0, σ1) is winning for player 0;
– ∀σ1 ∈ �1 · ∃σ0 ∈ �0 · outcome�(v, σ0, σ1) is winning for player 0;
– ∃π0 ∈ �M

0 · ∀π1 ∈ �M
1 · outcome�(v,π0,π1) is winning for player 0;

– ∀π1 ∈ �M
1 · ∃π0 ∈ �M

0 · outcome�(v,π0,π1) is winning for player 0.

Using the memoryless determinacy of energy games, we can derive the next lemma.

Lemma 3 ([9, 17]) Let � = (V ,E,w, 〈V0,V1〉) be an EG, for all vertices v ∈ V , for all
memoryless strategies π0 ∈ �M

0 for player 0, the strategy π0 is winning from v if and only if
all cycles reachable from v in the weighted graph G�(π0) are nonnegative.

We consider the following problems for an energy game � = (V ,E,w, 〈V0,V1〉):
1. Decision Problem. Given v ∈ V , decide if v is winning for player 0.
2. Strategy Synthesis. Given v ∈ V , if v is winning for player i (i = 0,1), construct a corre-

sponding winning strategy for player i from v.
3. Partition Problem. Construct the sets of vertices Wi (i = 0,1) of winning vertices for

player i.
4. Minimum Credit Problem. For each vertex v ∈ W0, compute the minimum initial credit

c∗(v) such that there exists a winning strategy σ0 for player 0.

Using Lemmas 1 and 3, we can relate the decision problems for MPG and EG as follows.

Theorem 3 ([3]) Let � = (V ,E,w, 〈V0,V1〉) be a game graph. For all thresholds ν ∈ Z,
for all vertices v ∈ V , player 0 has a strategy in the MPG � = (V ,E,w, 〈V0,V1〉) that
secures value at least ν from v if and only if player 0 has a winning strategy in the EG
� = (V ,E,w − ν, 〈V0,V1〉) from v.

Example 1 Consider the mean-payoff game � = (V ,E,w, 〈V0,V1〉) illustrated on the left
of Fig. 1, where player 0 (resp. player 1) controls the square (resp. round) vertices. Assume
that player 0 wants to ensure a payoff ν ≥ 1 from v. To solve such a mean-payoff decision
problem we can consider the energy game �′ = (V ,E,w − 1, 〈V0,V1〉), on the right of
Fig. 1, where the weights of all edges are decreased by 1. By construction, each cycle c in
the EG �′ is nonnegative if and only if c has mean-payoff ν ≥ 1 in �. In particular, player 0
has a strategy to confine the play into the nonnegative cycle (zwz) and win the EG �′ from
v (with initial credit 6). Therefore, player 0 has a strategy to confine the play into the cycle
(zwz) having mean-payoff ν ≥ 1 in the MPG �.

3 A small energy progress measure

Progress measures are functions f : V → N, defined locally on the set of vertices of a
weighted graph, that allow to infer global properties of the graph. In this section, we in-
troduce a notion of progress measure called energy progress measure, which is tailored to
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witness the absence of negative cycles in a weighted graph G. Intuitively, the value f (v0)

of a vertex v0 is a sufficient credit to ensure that all paths v0 . . . vn can be traversed while
maintaining a nonnegative level.

Definition 1 (Energy Progress Measure) Let G = 〈V,E,w〉 be a weighted graph. An energy
progress measure for G is a function f : V → N such that for all (v, v′) ∈ E:

f (v) ≥ f (v′) − w(v, v′).

Lemma 4 Let G = (V ,E,w) be a weighted graph. If G admits an energy progress measure,
then:

1. all cycles of G are nonnegative, and
2. for all paths v0v1 . . . vn in G it holds:

f (v0) +
n−1∑

i=0

w(vi, vi+1) ≥ 0.

Proof Let G = (V ,E,w) be a weighted graph and f be an energy progress measure for G.
Consider an arbitrary path p = v0v1 . . . vn in G. By definition of energy progress measure,
we have:

f (v0) ≥ f (v1) − w(v0, v1) ≥ · · · ≥ f (vn) −
n−1∑

i=0

w(vi, vi+1). (2)

This leads to f (v0) + ∑n−1
i=0 w(vi, vi+1) ≥ f (vn) ≥ 0, which proves item 2. In the par-

ticular case where p is a cycle (i.e., v0 = vn) Inequality (2) can also be developed into∑n−1
i=0 w(vi, vi+1) ≥ 0 which proves item 1. �

The next lemma shows that if all cycles of G are nonnegative, then G admits an en-
ergy progress measure whose codomain has a pseudopolynomial upper bound (in the size
of G). Hence, we refer to our progress measure as a small energy progress measure. Given
a weighted graph G = (V ,E,w), define:

MG =
∑

v∈V

max({0} ∪ {−w(v, v′) | (v, v′) ∈ E}).

Note that, if W = maxe∈E |w(e)| is the maximal absolute value of the edge-weights in G,
then MG ≤ |V | · W .

Lemma 5 For all weighted graphs G = (V ,E,w), if all cycles of G are nonnegative, then
there exists an energy progress measure f : V → {0, . . . , MG} for G.

Proof Given v ∈ V , let AcyclicPath(v) be the set of (possibly trivial3) acyclic paths in G =
(V ,E,w) starting in v:

3For each v ∈ V , there is a trivial acyclic path v in G.
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AcyclicPath(v) = {v0v1 . . . vn | v0 = v ∧ ∀0 ≤ i < n : (vi, vi+1) ∈ E

∧ ∀0 ≤ i, j ≤ n : i = j → vi = vj }.
Given p = v0v1 . . . vn ∈ AcyclicPath(v), we denote by w(p), the sum of the weights in p:

w(p) =
{

0 if n = 0,
∑n−1

i=0 w(vi, vi+1) otherwise.

Consider the function f : V → {0, . . . , MG} defined by:

f (v) = max{−w(p) | p ∈ AcyclicPath(v)}
for all v ∈ V . Note that by definition of w(p), we have f (v) ≥ 0. We claim that f is an
energy progress measure for G. Towards contradiction, assume that there exists an edge
(v, v′) for which:

f (v) < f (v′) − w(v, v′). (3)

There are two cases to consider, depending on whether v is equal to v′ or not. In the first case
(v = v′), Inequality (3) immediately yields the contradiction that (v, v) is a negative cycle
in G. In the second case (v = v′), let pv′ = v0v1 . . . vn be an acyclic path in G from v′ (i.e.
v0 = v′) such that f (v′) = −w(pv′). If pv′ does not contain v, then by definition of f we get
f (v) ≥ −w(pv′) − w(v, v′) which contradicts Inequality (3). Otherwise, let 0 < i ≤ n such
that vi = v, and let w1 = w(v0v1 . . . vi) and w2 = w(pv′) − w1. By Inequality 3, we have
w(v, v′) + w1 + w2 < −f (v). Since all cycles of G are nonnegative, we have w(v, v′) +
w1 ≥ 0, and thus w2 < −f (v), i.e. f (v) < −w2. This is again in contradiction with the
definition of f since w2 is the weight of a (possibly trivial) acyclic path from the vertex v. �

4 Solving the energy game problems

In this section, we devise efficient algorithms for the EG problems stated in Sect. 2. To this
purpose, we extend the notion of small progress measure from graphs to games, taking into
account the partition of vertices between the two players. Let � = (V ,E,w, 〈V0,V1〉) be a
game graph and consider the set:

C� = {n ∈ N | n ≤ MG� } ∪ {�}.
We denote by � the total order on C� defined by x � y if and only if either y = � or
x ≤ y ≤ MG� . Moreover, we define the operator � : C� × Z → C� such that, for all a ∈ C�

and b ∈ Z:

a � b =
{

max(0, a − b) if a = � and a − b ≤ MG� ,

� otherwise.

Intuitively, a small energy progress measure for the game � = (V ,E,w, 〈V0,V1〉) is a map-
ping from V to C� tailored to witness wether a vertex v is winning for player 0. In particular,
if the small energy progress measure function f assumes a value f (v) = � on the vertex v,
then player 0 has a winning strategy from v, provided an initial credit f (v).

Definition 2 Let � = (V ,E,w, 〈V0,V1〉) be an EG. A function f : V → C� is a small
energy progress measure for � if and only if the following conditions hold:
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– if v ∈ V0, then f (v) � f (v′) � w(v, v′) for some (v, v′) ∈ E;
– if v ∈ V1, then f (v) � f (v′) � w(v, v′) for all (v, v′) ∈ E.

Note that Definition 2 can be derived by the corresponding Definition 1 (on graphs) by
means of the following two extensions. First, specialize the local conditions constraining
the (small) energy progress measure on each node v ∈ V by taking into account wether
v ∈ V0 or v ∈ V1. Second, introduce the special value � in the codomain of the small energy
progress measure4 f , f : V �→ C� = {0, . . . , MG�

} ∪ {�}, ensuring that all games admit a
small energy progress measure.

Given a small energy progress measure f for the game graph � = (V ,E,w, 〈V0,V1〉), we
denote by Vf the set of states Vf = {v | f (v) = �}. A (memoryless) strategy π

f

0 : V0 → V

for player 0 is called compatible with f whenever for all v ∈ V0, if π
f

0 (v) = v′ then
f (v) � f (v′) � w(v, v′). Note that compatible strategies always exist by definition of
progress measure. The next lemma establishes that if π

f

0 is a strategy for player 0 com-
patible with the energy progress measure f , then π

f

0 is a winning strategy for player 0 from
all vertices in Vf .

Lemma 6 Let � = (V ,E,w, 〈V0,V1〉) be an EG. For all small energy progress measures f

for �, if π
f

0 is a strategy for player 0 compatible with f , then π
f

0 is a winning strategy for
player 0 from all vertices v ∈ Vf , i.e. Vf ⊆ W0. Moreover, � admits a small energy progress
measure f such that Vf = W0.

Proof Let f be a small energy progress measure for � and consider a memoryless strategy
π

f

0 for player 0 which is compatible with f . For the sake of contradiction, suppose that π
f

0

is not winning for player 0 from the vertex v ∈ Vf . Then, by Lemma 3, G�(π
f

0 ) admits
a negative cycle from v. Let v0v1 . . . vi . . . vn with v0 = v be the path in G�(π

f

0 ) from v

with a negative cycle vi . . . vn (i.e., vi = vn). We show that vj ∈ Vf for all 0 ≤ j ≤ n, using
an inductive argument on j . The base case is obvious since v0 = v ∈ Vf by hypothesis.
Let j > 0. By inductive hypothesis we have that vj−1 ∈ Vf . By definition of small energy
progress measure on �, if vj−1 ∈ V0 (resp. vj−1 ∈ V1), then there exists a successor (resp.
for all successors) v′ of vj−1:

f (vj−1) � f (v′) � w(vj−1, v
′). (4)

By Inequality (4) and by definition of π
f

0 we obtain f (vj ) = �, i.e. vj ∈ Vf .
Hence, for each vertex vj , i ≤ j ≤ n, on the negative cycle vi . . . vn = vi reachable from

v, f (vj ) = �. Thus, by definition of f and π
f

0 we obtain:

f (vi) ≥ f (vi+1) − w(vi, vi+1) ≥ · · · ≥ f (vn) −
n−1∑

j=i

w(vj , vj+1)

which is a contradiction with our hypothesis that vi . . . vn is a negative cycle.
We conclude by showing that there exists a small energy progress measure f on � such

that Vf = W0. Let π0 be a memoryless strategy winning for player 0 from any vertex v ∈ W0.
By Lemma 3, G�(π0) � W0 does not contain any negative cycle. Hence, G�(π0) � W0 admits

4And appropriately define the operator � : C� ×Z �→ C� in order to cast the minus operator to range over C� .
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an energy progress measure f by Lemma 5. The function f can immediately be extended
to an energy progress measure on the game � by setting f (v) = � for each v /∈ W0. �

For a game graph � = (V ,E,w, 〈V0,V1〉), let F be the set of functions f : V → C� .
The partial order �⊆ F × F is defined as f � g iff for all v ∈ V , f (v) � g(v). Note that
for all functions f and g, if f (v) � f (v′) � w(v, v′) and g(v) � g(v′) � w(v, v′), then
min{f (v), g(v)} � min{f (v′), g(v′)} � w(v, v′). Therefore, if f and g are small energy
progress measures, then so is the function h = min{f,g} (where min is taken pointwise).
We use (F ,�) to refer to F as a complete partial order. Given any set F ⊆ F , we denote by
�F the greatest lower bound of F . As F is a complete partial order, we know that �F ∈ F .
We can now state the following two important properties.

Proposition 1 Let � = (V ,E,w, 〈V0,V1〉) be an EG, (i) if f and g are small energy
progress measures for � such that f � g, then Vg ⊆ Vf , and (ii) if f = �{g ∈ F |
g is a small energy progress measure for �}, then f is a small energy progress measure and
Vf = W0.

Proof The first item is immediate by definition of Vf and �. The second item follows from
Lemma 6, item 1 and from the fact that if f and g are small energy progress measures, then
so is the function h = min{f,g} (where min is taken pointwise). �

By Lemma 6 and Proposition 1, the problem of determining the least energy progress
measure for the energy game � = (V ,E,w, 〈V0,V1〉) subsumes the decision problem for �.
Hence, we present here an efficient algorithm (Algorithm 1) to compute the least energy
progress measure f : V → C� . Our algorithm initializes f to the constant function 0 and
relies on the following operator.

Definition 3 Given v ∈ V , the lifting operator δ(·, v) : [V → C�] → [V → C�] is defined
by δ(f, v) = g where:

g(u) =
⎧
⎨

⎩

f (u) if u = v,

min{f (v′) � w(v, v′) | (v, v′) ∈ E} if u = v ∈ V0,

max{f (v′) � w(v, v′) | (v, v′) ∈ E} if u = v ∈ V1.

The operator δ(·, v) can be computed in time O(|post(v)|), and is �-monotone.

Lemma 7 For each v ∈ V , the operator δ(·, v) is monotone, i.e. δ(f, v) � δ(g, v) for all
f � g.

Proof Immediate from Definition 3. �

Given a function f : V → C� , we say that f is inconsistent in v if:

– v ∈ V0 and for all v′ such that (v, v′) ∈ E it holds f (v) ≺ f (v′) � w(v, v′);
– v ∈ V1 and there exists v′ such that (v, v′) ∈ E and f (v) ≺ f (v′) � w(v, v′).

Algorithm 1 maintains a list L of vertices that witness an inconsistency of f . Initially, v ∈
V0 ∩ L if and only if all outgoing edges from v are negative, while v ∈ V1 ∩ L if and only if
v is the source of a negative edge. As long as the list L is nonempty, the algorithm picks a
vertex u from L and performs the following operations:
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Fig. 2 EG algorithm applied on a concrete game graph, illustrated in Example 2

1. apply to f the lifting operator δ(f, v) in order to solve the inconsistency of f in v;
2. insert into the list L the set of vertices witnessing a new inconsistency, due to the increase

of f (v).

The update of L following a lifting operation δ(f, v) requires O(|pre(v)|) time. In fact,
a vertex v′ can witness a new inconsistency because of the incrementing of f (v) only if
v′ ∈ pre(v). In particular, checking if v′ ∈ pre(v)∩V1 witnesses a new inconsistency simply
amounts at checking whether f (v′) ≺ f (v)�w(v′, v). Some more attention needs to be paid
for vertices in pre(v) ∩ V0. Indeed, for such vertices the condition f (v′) ≺ f (v) � w(v′, v)

may not be sufficient to witness a new inconsistency in v′, due to the existence of another
successor v′′ of v′ such that f (v′) � f (v′′) � w(v′, v′′). In order to efficiently determine
if v′ needs to be inserted in L, we maintain a counter function count : V0 → N such that
count(v) = 0 for all v ∈ V0 ∩ L, and count(v) is the number of successors v′ of v such that
f (v) � f (v′) � w(v, v′) for v ∈ V0 \ L. Initially, count(v) � 1 for all v ∈ V0 \ L. When
the value f (v) is updated, we compute the new value of count(v) (with cost O(|post(v)|)),
and we decrement the value count(v′) of all predecessors v′ of v such that f (v′) ≺ f (v) �
w(v′, v). Those predecessors v′ for which count(v′) is now 0 are inserted in L. The algorithm
terminates when the list L is empty. Example 2 illustrates our EG algorithm on a concrete
game graph.

Example 2 Consider the game graph � = (V ,E,w, 〈V0,V1〉) illustrated in Fig. 2(a), where
player 0 (resp. player 1) controls the square (resp. round) vertices. Algorithm 1 initializes
the energy progress measure f to the constant function 0, and the list L with the only
node w. Figure 2(b) shows the result of the execution of the main while-loop at line 7, upon
the extraction of the vertex w. In particular, f (w) is updated to 4 leading to the insertion
of the nodes z, v into L, within the innermost for-loop. Figure 2(c) illustrates the energy
progress measure computed by the second iteration of the while-loop at line 7, when z is
taken from L. In this case, the new value 3 of f (z) does not lead to any new insertion
into L. In fact, at this point of the computation, the values f (x), f (y), f (z) are fixed, and
only f (w) and f (v) continue to increase until reaching the maximal value encoded as �.
Figure 2(e) and (f) show the last steps of the algorithm, and the corresponding winning
strategy for player 0.
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Algorithm 1: Value-iteration algorithm for energy games
Input : A game graph � = (V ,E,w, 〈V0,V1〉).
Output: A small energy progress measure f : V → C� for �.
begin

1 L ← {v ∈ V0 | ∀(v, v′) ∈ E : w(v, v′) < 0}
2 L ← L ∪ {v ∈ V1 | ∃(v, v′) ∈ E : w(v, v′) < 0}
3 foreach v ∈ V do
4 f (v) ← 0
5 if v ∈ V0 ∩ L then count(v) ← 0
6 if v ∈ V0 \ L then count(v) ← |{v′ ∈ post(v) | f (v) � f (v′) � w(v, v′)}|
7 while L = ∅ do
8 Pick v ∈ L

9 L ← L \ {v}; old ← f (v)

10 f ← δ(f, v)

11 if v ∈ V0 then count(v) ← |{v′ ∈ post(v) | f (v) � f (v′) � w(v, v′)}|
12 foreach v′ ∈ pre(v) such that f (v′) ≺ f (v) � w(v′, v) do
13 if v′ ∈ V0 then
14 if f (v′) � old � w(v′, v) then count(v′) ← count(v′) − 1
15 if count(v′) ≤ 0 then L ← L ∪ {v′}
16 if v′ ∈ V1 then L ← L ∪ {v′}
17 return f

end

Note that, once a small energy progress measure f has been computed and W0 = Vf has
been determined, a (memoryless) winning strategy σ0 for player 0 on W0 can be immediately
derived in time O(|E|), as follows: For each vertex v ∈ V0, set σ0(v) = v′, where (v, v′) ∈ E

and f (v′) = min{f (v′) � w(v, v′) | (v, v′) ∈ E}. Such a strategy could also be computed
online throughout the execution of Algorithm 1, rather than as a post-processing operation.

The correctness of the algorithm is established by Theorem 4 on the ground of Lemmas 7
and 8, applying the Knaster-Tarski fixpoint theorem to our lifting operator in (F ,�). In
particular, the function f computed by Algorithm 1 is a simultaneous least fixpoint of the
operators δ(·, v) for all v ∈ V . Thus, the function f is the least energy progress measure for
� (since f is the least fixpoint of δ(·, v) for all v ∈ V ) such that Vf = W0 (since f is a least
fixpoint of δ(·, v) for all v ∈ V ).

Lemma 8 The following is an invariant of the while-loop of Algorithm 1 (line 7): for all
vertices v ∈ V \ L, (i) δ(f, v) = f and (ii) if v ∈ V0, then count(v) = |{v′ ∈ V | f (v) �
f (v′) � w(v, v′)}|.

Proof First, we show that the invariant holds after line 6. Consider an arbitrary vertex
v ∈ V \ L. If v ∈ V0, then there exists (v, v′) ∈ E such that w(v, v′) ≥ 0 (line 1 of Algo-
rithm 1). Since f (v′) = 0, we get f (v′) � w(v, v′) = 0 = f (v), showing that δ(f, v)(v) =
0 = f (v) by Definition 3. It is obvious that δ(f, v)(v′) = f (v′) for all v′ = v, and thus
δ(f, v) = f . The proof of part (ii) of the invariant is straightforward. The case v ∈ V1 is
proven analogously.
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Second, assume that the invariant holds before executing the loop, and let v be the vertex
selected at line 8. Consider the case where (v, v) ∈ E. Let f ′ = δ(f, v) (see also line 10).
Note that f ′ differs from f only in the value assigned to vertex v, i.e. f ′(v′) = f (v′) for
all v′ = v. Therefore, the value count(v′) needs to be updated only for the predecessors
v′ ∈ pre(v) of v, and this can be done as in line 14. Now, since we assumed that v ∈ pre(v),
the vertex v is not inserted back in the list L in the loop of line 12, and thus we need to show
that δ(f ′, v) = f ′. It is easy to see that δ(f ′, v)(v′) = f ′(v′) for all v′ = v, while for v′ = v,
this follows from the fact that f ′ and f agree on the value of all successors of v.

Finally, it is easy to see that the list L is correctly updated in lines 12–16: for v′ ∈ pre(v)∩
V1, if f (v′) � f (v) � w(v′, v) (i.e. v′ is not inserted in the list), then δ(f ′, v′) = f ′; for
v′ ∈ pre(v) ∩ V0, if the value count(v′) is positive (i.e. v′ is not inserted in the list), then
δ(f ′, v′) = f ′.

The case where (v, v) ∈ E is proven analogously. �

Theorem 4 (Correctness) Let � = (V ,E,w, 〈V0,V1〉) be an EG. Algorithm 1 computes a
small energy progress measure f on � such that Vf = W0 is the set of winning vertices for
player 0.

Proof By Lemmas 7, 8, and the Knaster-Tarski theorem, the function computed f returned
by Algorithm 1 is the unique least fixpoint of simultaneously all operators δ(·, v) for all
v ∈ V . Therefore, the set Vf is the set of winning vertices for player 0 according to Lemma 6.

Termination of Algorithm 1 is enforced by the fact that every update of line 10 strictly
increases the value of f in one vertex v, and the fact that the codomain of energy progress
measures is finite. �

Theorem 5 characterizes the small energy progress measure computed by Algorithm 1,
putting it into relation with the minimum credit problem, and Theorem 6 establishes the
complexity of Algorithm 1.

Theorem 5 (Minimal credit) Let � = (V ,E,w, 〈V0,V1〉) be an EG. The small energy
progress measure f computed by Algorithm 1 is such that: (i) if v ∈ W0 (v is winning for
player 0), then c∗(v) = f (v), where c∗(v) is the minimum initial credit to build a winning
play for player 0 from v. (ii) if v ∈ W1 (v is winning for player 1), then f (v) = �.

Proof By Theorem 4, the function f is a small energy progress measure on � such that
Vf = W0. Hence, for each v /∈ W0, f (v) = �, which establishes the second item of our
claim.

In order to show that for each v ∈ W0, f (v) = c∗(v), we start proving that f is an energy
progress measure on the graph G�(π

f

0 ) � Vf . This will immediately imply that f (v) ≥ c∗(v)

for all v ∈ W0 by Lemma 4. Let (v, v′) be an edge in the graph G�(π
f

0 ) � Vf . Then f (v) =
�, f (v′) = �, and by definition of f we immediately obtain that f (v) ≥ f (v′) − w(v, v′),
which yields our claim. We finally get to the result by showing that for each v ∈ W0, the
relation

f (v) ≤ c∗(v) (5)

is an invariant of Algorithm 1. By contradiction, let v ∈ W0 be the first node for which (5)
is falsified within the execution of Algorithm 1. Since f (v) is initialized to the constant 0,
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such a violation needs to occur immediately after f (v) gets updated, at line (10), to the
value f (v′) − w(v, v′), for some successor v′ of v. Then:

f (v′) − w(v, v′) = f (v) > c∗(v) ≥ c∗(v′) − w(v, v′). (6)

Equation (6) implies f (v′) > c∗(v′), which contradicts the fact that v was the first node
witnessing a violation of (5). �

Theorem 6 (Complexity) The worst-case complexity of Algorithm 1 is O(|E| · MG� ).

Proof The initialization phase (lines (1)–(6)) costs O(
∑

v∈V (|post(v)|)) = O(|E|). Each
iteration of the while-loop at line 7 (corresponding to a lift operation of f via v, followed
by an update of the list L) costs O(|post(v)|+|pre(v)|). Since the value f (v) for each vertex
v can increase at most MG� + 1 times, the global cost of Algorithm 1 is:

O

(
∑

v∈V

(|post(v)| + |pre(v)|) · MG�

)

= O(|E| · MG� ).
�

We are now ready to state the following theorem, relative to the complexity of the energy
games problems introduced in Sect. 2.

Theorem 7 Let � = (V ,E,w, 〈V0,V1〉) be an EG. The decision problem, the strategy syn-
thesis problem, the partition problem, and the minimum credit problem on � can be solved
in time O(|E| · MG� ).

Proof It follows immediately from Lemma 6, Theorem 4, Theorem 5, and Theorem 6. �

Remark 1 Note that it is also possible to use the results in Sects. 3 and 4 (and in partic-
ular Lemmas 5 and 6) to derive an algorithm that solves the decision problem for EG by
reducing it to the decision problem for safety games [18]. A safety game is simple 2-player
game played on an un-weighted arena, where the vertices are partitioned into allowed and
forbidden positions. The goal of player 0 is that of building a play that never enters any
forbidden position. It is well known that safety games can be solved in time linear w.r.t. the
size of the corresponding arenas. On the ground of Lemmas 5 and 6, the decision problem
for an EG � = (V ,E,w, 〈V0,V1〉) can be reduced to the decision problem for a safety game
�′ in time and space O(|E| · MG� ), i.e. pseudopolynomial w.r.t. the size of �. In fact, given
the EG � = (V ,E,w, 〈V0,V1〉), we can build a safety game �′ played on an arena having
set of position V × {0, . . . , MG� } ∪ {�}. Given a vertex (v, k) in �′, v represents a position
in the original EG and k corresponds to a level of energy. The set of forbidden positions in
the safety game �′ is B = {(v,�) | v ∈ V }. The encoding safety game �′ contains the edge
((v, k), (v′, k′)) iff:

(v, v′) ∈ E ∧ k = � ∧ (k + w(v, v′) = k′ ≤ MG� ∨ (k + w(v, v′) > MG� ∧ k′ = �)).

It is easy to see that player 0 has a winning strategy from (v, k) in the encoding safety game
�′ (i.e. she can avoid to reach a (forbidden) position with global energy level �) iff player 0
has a winning strategy from the vertex v with credit k in the original EG �.

Algorithm 1 can be also seen as a space-efficient counterpart of the above procedure
of reduction from energy games to safety games where, rather than maintaining explicitly
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the whole space of possible energy values, we efficiently update online a set of energy-
counters. This allows to use a space linear w.r.t. the size of the arena of the EG, rather than
pseudopolynomial.

5 Solving the mean-payoff game problems

In this section we provide new efficient pseudopolynomial algorithms for the MPG problems
stated in Sect. 2, featuring a better worst-case complexity than the corresponding state-of-
the-art pseudopolynomial procedures by Zwick and Paterson [23]. Our new solutions for
those problems build up on the notion of small energy progress measure and use Algorithm 1
as a basic step.

5.1 Decision problem, strategy synthesis, and three-way partition

First, we consider the decision problem and the strategy synthesis problem for MPG. Let
� = (V ,E,w, 〈V0,V1〉) be a MPG where w : V → {−W, . . . ,W }, and let ν ∈ Z. Consider
the problem to decide if the value of a given vertex v ∈ V is greater than or equal to ν.
If |ν| > W , then according to Lemma 2 we can immediately provide an answer to this
decision problem (YES if ν < −W , NO if ν > W ). Otherwise, consider the game �−ν =
(V ,E,w − ν, 〈V0,V1〉), this game can be used to solve our original problems as stated in
the following lemma.

Lemma 9 Given a MPG � = (V ,E,w, 〈V0,V1〉) and a threshold ν ∈ Z, let f be a small
energy progress measure for �−ν = (V ,E,w − ν, 〈V0,V1〉). All strategies π

f

0 of player 0
compatible with f secure a payoff at least ν from all v ∈ Vf in the MPG �.

Proof Towards contradiction, assume that v ∈ Vf is a vertex such that the payoff that
player 0 can secure from v is less than ν. By Lemma 1, the graph G�(π

f

0 ) admits a
path p = v0v1 . . . vi . . . vn from v = v0 to a cycle vi . . . vn (vi = vn) having average weight

1
n−i

∑n−1
j=i w(vj , vj+1) < ν, which implies:

n−1∑

j=i

(w − ν)(vj , vj+1) < (n − i)ν − (n − i)ν = 0.

Since v ∈ Vf , the inductive application of the definition of f for 0 ≤ j ≤ n yields vj ∈ Vf

for all 0 ≤ j ≤ n. Hence, the graph G�−ν
(π

f

0 ) � Vf admits a path v0 . . . vi . . . vn from v to a
negative cycle. This contradicts Lemma 4, since f � Vf is an energy progress measure on
G�−ν

(π
f

0 ) � Vf . �

We now turn to the three-way partition problem, and we show how this problem can
also be solved in time O(|E| · MG� ) using Algorithm 1 as a basic ingredient. In fact,
consider the MPG � = (V ,E,w, 〈V0,V1〉) where w : V → [−W, . . . ,0, . . . ,+W ], and de-
fine V∗ := V0,V

∗ := V1. Given ν ∈ Z, |ν| ≤ W , we can construct the two game graphs
�′ = (V ,E,w − ν, 〈V0 := V∗,V1 := V ∗〉) and �′′ = (V ,E,−w + ν, 〈V0 := V ∗,V1 := V∗〉).
Running Algorithm 1 on �′ yields the partition on V into V≥ν (for vertices securing player 0
a payoff at least ν in �) and V<ν . Running Algorithm 1 on �′′ yields the partition on V into
V≤ν and V>ν . The desired three-way partition can be immediately extracted from the above
two partitions. Thus, we obtain:
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Theorem 8 Let � = (V ,E,w, 〈V0,V1〉) be a MPG. The decision problem, the strat-
egy synthesis problem, and the three-way partition problem on � can be solved in time
O(|E| · |V | · W).

Proof For the decision problem and the strategy synthesis problem, the result immediately
follows from Lemmas 2, 9, and Theorems 4, 6.

For the three-way partition problem, let � be a MPG with weight function w, and ν ∈ Z.
Consider the game �′ obtained as a copy of � with weight function w − ν, and the game
�′′ obtained by exchanging the role of the players in � and with value function −w + ν.
By Theorem 1, Lemma 9, and Theorem 4, running Algorithm 1 on �′ yields the partition
V≥ν (for vertices from which player 0 secures a payoff at least ν in �) and V<ν , while on
�′′, it yields the partition on V into V≤ν and V>ν . Hence the three-way partition of V into
〈V<ν,V=ν = V≤ν ∩V≥ν,V>ν〉 can be hence obtained in time O(|E| · MG� ), by Theorem 6. �

5.2 Value problem and optimal strategy synthesis

We finally consider the value problem. Let � = (V ,E,w, 〈V0,V1〉) be a MPG. By Lemma 2,
for each vertex v ∈ V , the value val�(v) is contained in the following set of rationals:

S =
{

p

m

∣
∣
∣
∣ p,m ∈ Z,1 ≤ m ≤ |V | ∧ −m · W ≤ p ≤ m · W

}

.

Thus, a conceptually simple algorithm for computing the value of each vertex v ∈ V

would be to perform |V | dichotomic searches in the set S. In particular, given v ∈ V and
p

m
∈ S, the application of Algorithm 1 on �′ = (V ,E,m · w − p, 〈V0,V1〉) allows to decide

whether val�(v) ≥ p

m
. The global cost of such an algorithm is O(|E| · |V |3 ·W · log(|V | ·W),

since S has size O(|V |2 · W) and Algorithm 1 is called on a reweighted version of �, where
the maximal (absolute) weight is 2 · |V | · W . In the sequel, we build on the ideas described
above to design an O(|V |2 · |E| ·W · log(|V | ·W)) algorithm to compute the values of a MPG.

Instead of performing a dichotomic search in S to assign the value val�(v) to each vertex
v ∈ V individually, Algorithm 2 combines the dichotomic search with recursive calls. Each
branch of the (binary) recursive tree for Algorithm 2 builds a sequence � = �0, . . . ,�n

of game subgraphs of �, coupled with a decreasing sequence S = S0 ⊇ S1 ⊇ · · · ⊇ Sn of
subsets of S such that:

– for all 0 ≤ i ≤ n, the values of the vertexes in �i are included in Si

– for all 0 ≤ i < n, it holds max(Si+1) − min(Si+1) ≤ 1
2 (max(Si) − min(Si))

In particular, the second item above ensures that the length of each branch in the tree of
recursive calls in Algorithm 2 is at most O(log(V · W)), since the difference between two
values in S is at most 2W and at least 1

V 2 . Each recursive call to Algorithm 2 on �i, Si ,
where Si is represented by its extreme values ri = min(Si), si = max(Si), performs the fol-
lowing operations. First, it determines the largest element a1 of Si less than or equal to
ri+si

2 , and the smallest element a2 of Si greater than or equal to5 ri+si
2 (e.g. by simply enu-

merating on the fly the elements in Si ). Then, Algorithm 1 is used to determine the partition
〈V i

<a1
,V i=a1

,V i=a2
,V i

>a2
〉 over the set of vertices Vi of the game subgraph �i . Finally, Algo-

rithm 2 is recursively called on the disjoint subgames �i � V i
<a1

,�i � V i
>a2

. The recursive

5Note that ri+si
2 is not guaranteed to be an element of Si , since its denominator may not belong to the range

1 . . . |V |.
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reduction of the problem to smaller and disjoint instances provides a linear (w.r.t. |V |) im-
provement of Algorithm 2 over the naive iterative procedure.

The correctness of Algorithm 2 is established in Theorem 9 using the following lemma.

Lemma 10 Given a MPG � = (V ,E,w, 〈V0,V1〉) and μ ∈ Q, consider �′ = � � V∼μ,
where ∼∈ {<,>}. If v ∈ V∼μ, then val�

′
(v) = val�(v).

Proof We start by showing that the relation E � V∼μ, where μ ∈ Q and ∼∈ {<,>}, is total6.
Let π0 (resp. π1) be an optimal memoryless strategy in � for player 0 (resp. player 1), and
consider the graph G�(π0,π1). Given v ∈ V∼μ, consider the maximal (i.e cyclic) path from
v in G�(π0,π1), v0, . . . , vn, v0 = v, vn = vk,0 ≤ k ≤ n. In such a path, the average weight
of the cycle vk, . . . , vn determines the payoff of each element vi,0 ≤ i ≤ n. Since π0 and π1

are optimal, for all 0 ≤ i ≤ n, val�(vi) equals the payoff from vi using π0 (resp. π1) against
π1 (resp. π0). Hence, the average weight of the cycle vk, . . . , vn is equal to val�(v) ∼ μ, and
for all 1 ≤ i ≤ n, val�(vi) ∼ μ. In particular, v1 is a successor of v having value ∼ μ, which
implies that E � V∼μ is total.

Given the above premise, the result follows from the fact that �′ is a mean-payoff game
and that for all memoryless optimal strategies πi ∈ �M

i of player i (i = 0,1), for all vertices
v ∈ Vi , we have val�(v) = val�(πi(v)). Therefore, all edges (v, v′) in � such that val�(v) =
val�(v′) are useless for optimality, and in particular, playing in � or in �′ does not change
the optimal value. �

Theorem 9 Let � = (V ,E,w, 〈V0,V1〉) be a mean-payoff game such that w : V →
{−W, . . . ,W }. Algorithm 2 applied to the input (�,−W,W) computes for each v ∈ V the
value val�(v).

Proof Given the mean-payoff game � = (V ,E,w, 〈V0,V1〉), let {val�(v) | v ∈ V } ⊆ U ⊆
S = { p

m
| 1 ≤ m ≤ |V | ∧ −W ≤ p

m
≤ W }. We prove that Algorithm 2(�,min(U),max(U))

terminates and computes the set of values in �. The termination is ensured by the fact that
Algorithm 2 performs a binary search over the (finite) set U ⊆ S, where |S| = O(|V |2 · W).
To complete the proof of our claim of correctness, we use an inductive argument on |U |.

For the base case, |U | = 1. Let p

q
be the only element of U such that for all v ∈ V ,

it holds val�(v) = p

q
. By Lemma 9 and by Theorem 4, the application of Algorithm 1 to

the game �′ = (V ,E,qw − p, 〈V0,V1〉) (resp. �′′ = (V ,E,−qw + p, 〈V1,V0〉)) at Lines
(5)–(6) yields the partition 〈V≥ p

q
= V,V<

p
q

= ∅〉 (resp. 〈V≤ p
q

= V,V>
p
q

= ∅〉 ) on V , where

V∼ p
q

= {v ∈ V | val�(v) ∼ p

q
},∼∈ <,≤,≥,>. Hence, Line (9) correctly assigns to each

node of V its value val�(v) = p

q
.

For the inductive step, suppose that |U | > 1. Let a1 = max{ q

l
| 1 ≤ l ≤ |V | ∧ min(U) ≤

q

l
≤ 1

2 (min(U) + max(U))}, a2 = min{ q

l
| 1 ≤ l ≤ |V | ∧ max(U) ≥ q

l
≥ 1

2 (min(U) +
max(U))}. By Lemma 9 and by Theorem 4, the application of Algorithm 1 Lines (5)–(10)

assign to each node in V=a1 (resp. V=a2 ) its value val�(v) = a1 (resp. val�(v) = a2). By in-
ductive hypothesis and by Lemma 10 Line (13) (resp. Line (14)) computes the value of the
nodes in V<a1 (resp. V>a2 ). �

6i.e. ∀v ∈ V∼μ∃u ∈ V∼μ((v,u) ∈ E � V∼μ).



116 Form Methods Syst Des (2011) 38: 97–118

Algorithm 2: Solving the value problem for mean-payoff games
Input : Mean-payoff game � = (V ,E,w : V → {−W, . . . ,W }, 〈V0,V1〉); lower and

upper bounds p1
m1

≤ p2
m2

on the values of the nodes in �, where −W ≤ p1
m1

≤
p2
m2

≤ W , p1,p2,m1,m2 ∈ N, and 1 ≤ m1 ≤ |V |,1 ≤ m2 ≤ |V |.
Output: For each u ∈ V , the value v�(u).
begin

1 if V = ∅ then
2 a1 ← q1

l1
← max{ q

l
| 1 ≤ l ≤ |V | ∧ p1

m1
≤ q

l
≤ 1

2 (
p1
m1

+ p2
m2

)}
3 a2 ← q2

l2
← min{ q

l
| 1 ≤ l ≤ |V | ∧ p2

m2
≥ q

l
≥ 1

2 (
p1
m1

+ p2
m2

)}
4

/* Use Algorithm 1 to determine V<a1 ,V=a1 ,V=a2 ,V>a2 */
5 f1 ← Algorithm 1(V ,E, l1w − q1, 〈V0,V1〉)
6 f2 ← Algorithm 1(V ,E,−l1w + q1, 〈V1,V0〉)
7 f3 ← Algorithm 1(V ,E, l2w − q2, 〈V0,V1〉)
8 f4 ← Algorithm 1(V ,E,−l2w + q2, 〈V1,V0〉)
9 foreach (u | f1(u) = � ∧ f2(u) = �) do v�(u) ← a1

10 foreach (u | f3(u) = � ∧ f4(u) = �) do v�(u) ← a2

11 V<a1 ← {u | f1(u) = �}; V>a2 ← {u | f4(u) = �}
12

/*Recursive Calls*/
13 Algorithm 2((V<a1 ,E � V<a1 ,w � V<a1 , 〈V0 ∩ V<a1 ,V1 ∩ V<a1〉), p1

m1
, a1)

14 Algorithm 2((V>a2 ,E � V>a2 ,w � V>a2 , 〈V0 ∩ V>a2 ,V1 ∩ V>a2〉), a2,
p2
m2

)

end

Lemma 11 proves that the height of the tree of recursive calls corresponding to Al-
gorithm 2 is asymptotically logarithmic w.r.t. |V |2 · W , and Lemma 12 states that the
cost of executing lines (1)–(11) in each recursive call of Algorithm 2 for the subgame
�′ = (V ′,E′,w, 〈V ′

0,V
′

1〉) is O(|E′| · |V ′|2 · W). Here, the quadratic dependence on |V ′|
comes from the need of applying Algorithm 1 (cf. Lines (5)–(8)) on a reweighted version
of �′, where all edge-weights are multiplied by a natural number of size at most |V ′|. The-
orem 10 then gives the complexity of Algorithm 2 for the value problem on mean-payoff
games.

Lemma 11 Let � = (V ,E,w, 〈V0,V1〉) be a MPG, where w : V → {−W, . . . ,W }. The
height of the tree of recursive calls corresponding to Algorithm 2 applied to (�,−W,W) is
O(log(|V | · W)).

Proof Let c1, . . . , ck be a branch of recursive calls in the tree of recursive calls corresponding
to Algorithm 2, and let d1, . . . , dk be the distances between the input parameters p1

m1
,

p2
m2

in

each recursive call c1, . . . , ck . Then, d1 = 2W and for all i = 1, . . . , k, di+1 ≤ di

2 . Since two
rational numbers with denominator at most |V | have distance at least 1

|V |2 , we obtain that

k ≤ log 2W

|V |−2 = log(2W |V |2). �

Lemma 12 The cost of executing lines (1)–(11) in a recursive call of Algorithm 2
on the subgame �′ = (V ′,E′,w, 〈V ′

0,V
′

1〉) of � = (V ,E,w, 〈V0,V1〉), where w : V →
{−W, . . . ,W }, is O(|E′| · |V ′|2 · W).
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Proof By assumption, 1 ≤ mi∈{1,2} ≤ |V ′|, and −|V ′| · W ≤ pi∈{1,2} ≤ |V ′| · W . Hence, the
codomain of the functions m1w − p1,−m1w + p1,m2w − p2,−m2w + p2 is the set of
integers {−2 · |V ′| · W, . . . ,2 · |V ′| · W }. By Theorem 6, Lines (5)–(8) can be executed in
time O(|E′| · |V ′|2 · W). Lines (9)–(11) cost O(|V ′|), while Lines (2)–(3) can be trivially
executed in time O(|V ′|2 · W) (e.g., by simply enumerating the elements of the set S = { p

m
|

1 ≤ m ≤ |V ′| ∧ −W ≤ p

m
≤ W }, where |S| = O(|V ′|2 · W)). �

Theorem 10 Let � = (V ,E,w, 〈V0,V1〉) be a MPG where w : V → {−W, . . . ,W }. Algo-
rithm 2 applied to (�,−W,W) solves the value problem and the optimal strategy synthesis
problem on � in time: O((log(|V |) + log(W)) · |E| · |V |2 · W).

Proof Let �〈	,1〉, . . . ,�〈	,k	〉 be the k	 subgames of � considered at level 	 of the tree
of recursive calls corresponding to Algorithm 2. Then, the corresponding set of vertices
V 〈	,1〉, . . . , V 〈	,k	〉 are such that V 〈	,i〉 ∩ V 〈	,j 〉 = ∅ for j = i,1 ≤ i, j,≤ k	, and V 〈	,1〉 ∪ · · · ∪
V 〈	,k	〉 ⊆ V . Hence, on the ground of Lemmas 11, 12 we obtain that the global complexity
of Algorithm 2 is:

O

(
log(2|V |2W)∑

	=1

|E| · |V 〈	,1〉|2 · W + · · · + |E| · |V 〈	,k	〉|2 · W
)

= O((log(|V |) + log(W)) · |E| · |V |2 · W)

since

|E| · |V 〈	,1〉|2 · W + · · · + |E| · |V 〈	,k	〉|2 · W ≤ |E| · W · (|V 〈	,1〉| + · · · + |V 〈	,k	〉|)2

≤ |E| · |W | · |V |2. �

Thus, our MPG value problem outperforms the corresponding deterministic procedure
in [23], when the maximum weight in the MPG graph is small (i.e. W is subexponential
w.r.t. |V |). To design a MPG value algorithm that outperforms previous solutions for all val-
ues of W , we can consider a randomized framework and combine our procedure with the
one proposed in [1]. In particular, the solution to the value problem proposed by [1] has

expected complexity |V |2 · |E| · e2·
√

|V |·ln(|E|/√|V |)+O(
√|V |+ln|E|). By interleaving our MPG

value algorithm with [1] and adding a stopping criterion which terminates the computation
when either of the two procedures finishes, we get a randomized algorithm for the MPG
value problem with expected complexity min(O(|V |2 · |E| · W · log(|V | · W)), |V |2 · |E| ·
e2·

√
|V |·ln(|E|/√|V |)+O(

√|V |+ln|E|)), which outperforms all previous solutions.

6 Conclusion

We designed simple and efficient deterministic algorithms for solving energy games and
mean-payoff games. Our algorithmic engine requires O(|E| · |V | · W) computational steps
to solve the MPG decision problem, outperforming the corresponding �(|E| · |V |2 · W)

pseudopolynomial procedure in [23]. Note that the algorithm in [23] requires always �(|E| ·
|V |2 · W), while our procedure is O(|E| · |V | · W) only in the worst case (it needs linear
time when, for example, all the weights are positive). The value problem can be solved in
time O(|E| · |V |2 · W(log|V | + logW)) using our framework, while [23] requires �(|E| ·
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|V |3 · W). As [2], our algorithm has also the advantage to produce as a byproduct (optimal)
winning strategies, while [23] needs further computation for strategy synthesis. Hence, the
winning strategy synthesis problem (resp. the optimal strategy synthesis problem) is solved
in time O(|E| · |V | · W) (resp. O(|E| · |V |2 · W(log|V | + logW))) using our procedures,
outperforming [2, 23]. In combination with the randomized algorithm of Andersson and
Vorobyov [1], our MPG value algorithm is a randomized procedure with currently the best
expected complexity, namely:

min(O(|V |2 · |E| · W · log(|V | · W)), |V |2 · |E| · e2·
√

|V |·ln(|E|/√|V |)+O(
√|V |+ln|E|)).
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