Alpaga: A Tool for Solving Parity Games
with Imperfect Information

Dietmar Berwanger, Krishnendu Chatterj@eMartin De Wulf,
Laurent Doyef, and Thomas A. Henzinger

! LSV, ENS Cachan and CNRS, France
2 CE, University of California, Santa Cruz, U.S.A.
3 Université Libre de Bruxelles (ULB), Belgium
4 Ecole Polytechnique Fédérale de Lausanne (EPFL), Sthdtmd

Abstract. Alpaga is a solver for parity games with imperfect inforroatiGiven
the description of a game, it determines whether the firstgplaan ensure to
win and, if so, it constructs a winning strategy. The toolvyides a symbolic
implementation of a recent algorithm based on antichains.

1 Introduction

Alpaga is a tool for solving parity games with imperfect infation. These are games
played on a graph by two players; the first player has impeifiéacrmation about the
current state of the play. We consider objectives over itgfipaths specified by parity
conditions that can express safety, reachability, livenfsrness, and most properties
commonly used in verification. Given the description of a gathe tool determines
whether the first player has a winning strategy for the patifgctive and, if this is the
case, it constructs such a winning strategy.

The Alpagaimplementation is based on a recent techniqugastichaingor solv-
ing games with imperfect information efficiently [2], and fepresenting the strategies
compactly [1]. To the best of our knowledge, this is the fispiementation of a tool
for solving parity games with imperfect information.

In this paper, we outline the antichain technique which &eloleon fixed-point com-
putations using a compact representation of sets. Ouritiigoessentially iterates a
controllable predecessaperator that returns the states from which a player careforc
the play into a given target set in one round. For computirgyperator, no polynomial
algorithms is known. We propose a hew symbolic implementiatiased on BDDs to
avoid the naive enumerative procedure.

Imperfect-information games arise in several importapliaptions related to ver-
ification and synthesis of reactive systems. The followirgysome key applications:
(a) synthesis of controllers for plants with unobservataasitions; (b) distributed syn-
thesis of processes with private variables not visible tepprocesses; (c) synthesis
of robust controllers; (d) synthesis of automata specificatwhere only observations
of automata are visible, and (e) the decision and simulgtiablem of quantitative
specification languages. We believe that the tool Alpagbmélke imperfect informa-
tion games a useful framework for designers in the abovaagimns. In the appendix,

we present a concrete example of distributed-system sgisth®long the lines of [3],

we consider the design of a mutual-exclusion protocol far processes. The tool Al-
paga is able to synthesize a winning strategy for a requinéofanutual exclusion and
starvation freedom which corresponds to Peterson’s pohtoc

2 Games and Algorithms

Let X be a finite alphabet of actions and |[Etbe a finite alphabet of observations.
A game structure with imperfect informationer X andI" is a tupleG = (L, ly, A,),
where

— L is afinite set of locations (or states),
— lp € Lis the initial location,

— A C LxXx Lisasetof labelled transitions such that forfaét L and alla € X,
there exist?’ € L such thai¢,a, (') € A, i.e., the transition relation is total,

-~ : I — 2L\ @ is an observability function that maps each observationgeta
of locations such that the s¢ty(0) | o € I'} partitionsL. For each? € L, let
obs(¢) = o be the unique observation such tliat (o).

The game orG is played in rounds. Initially, a token is placed in locatign In
every round, Playet first chooses an actiane X', and then Playe2 moves the token
to ana-successof’ of the current locatiod, i.e., such that/, a, ¢') € A. Playerl does
not see the current locatidrof the token, but only the observatiohs(¢) associated to
it. A strategyfor Playerl in G is a functiono : I'™ — X, The set of possibleutcomes
of a in G is the setOutcome(G, o) of sequences = /145 ... such that; = [, and
(4;, o(obs(?y ... 4;)),4iv1) € Aforalli > 1. A visible parity conditioron G is defined
by a functionp : I" — N that maps each observation to a non-negative integer fyriori
We say that a strategy for Playerl is winningif for all 7 € Outcome(G, «), the least
priority that appears infinitely often in is even.

To decide whether Playdris winning in a game~, the basic approach consists
in tracing theknowledgeof Player1, represented a set of locations calleded. The
initial knowledge is the cels, = {l,}. After each round, the knowledgeof Playerl
is updated according to the actiarshe played and the observatioshe receives, to
s’ = post, (s) Ny(o) wherepost,(s) ={¢' e L | € s: ({,a,l') € A}

Antichain algorithm.The antichain algorithm is based on ttmntrollable predecessor
operatotCPre : 2° — 29 which, given a set of cellg, computes the set of celf$ from
which Playerl can force the game into a cell @in one round:

CPre(q) ={s CL|3ac X -VoeI:post,(s)N~y(o) € q}. (1)

The key of the algorithm relies on the fact tiidre(-) preserves downward-closedness.
A setq of cells isdownward-closedf, for all s € ¢, every subset’ C s is also ing.
Downward-closed setgcan be represented succinctly by their maximal elemerts
[q] = {s€q|Vs €q:s ¢ s}, which form anantichain With this representation,
the controllable predecessor operator is defined by

CPre(r)=[{sCL|3a€X -VoeI'-3s' €r:post,(s)Nv(o) Cs'}]. (2)

Strategy constructionThe implementation of the strategy construction is basdd pn
The algorithm of [1] employs antichains to compute winnitrigtggies for imperfect-
information parity games in an efficient and compact waypiteeedure is similar to the
classical algorithm of McNaughton [4] and Zielonka [6] farfect-information parity
games, but, to preserve downwards closure, it avoids thelernentation operation
of the classical algorithms by recurring into subgames witfobjective obtained as a
boolean combination of reachability, safety, and redu@etypobjectives.

Strategy simplificationA strategy in a game with imperfect information can be repre-
sented by a sell = {(s1,ranky,a1),...,(sn,ranky,a,)} of triples(s;, rank;, ar) €
2L x N x X wheres; is a cell, andy; is an action. Such a triple assigns actigro every
cell s C s;; since a celk may be contained in many, we take the triple with minimal
value ofrank;. Formally, given the current knowledgeof Playerl, let (s;, rank;, a;)
be atriple with minimal rank id7 such that C s; (such a triple exists i is a winning
cell); the strategy represented Byplays the actiom; in s.

Our implementation applies the following rules to simplifye strategies and obtain
a compact representation of winning strategies in paritgegwith imperfect informa-
tion.

(Rule1) In a strategyll, retain only elements that are maximal with respect to the
following order: (s, rank,a) = (s’,rank’,a’) if rank < rank’ ands’ C s. Intuitively,
the rule specifies that we can delété rank’, a’) whenever all cells contained i are
also contained is; sincerank < rank’, the strategy can always chogserank, a) and
playa.

(Rule 2) In a strategyll, delete all triples(s;, rank;,a;) such that there exists
(sj,rank;,a;) € II (i # j)with a; = a;, s; C s; (and henceank; < rank; by Rulel),
such that for all(s, ranky, ar) € I1, if rank; < rank; < rank; ands; N s; # 0, then
a; = ag. Intuitively, the rule specifies that we can delétg, rank;, a;) whenever all
cells contained i; are also contained iy, and the actiom; is the same as the action
a;. Moreover, if a cells C s; is also contained in, with rank; < rank; < rank;, then
the action played by the strategy is al§o= a; = a;.

3 Implementation

ComputingCPre(+) is likely to require time exponential in the number of obsgions
(a natural decision problem involving@Pre(-) is NP-hard [1]). Therefore, it is natural
to let the BDD machinery evaluate the universal quantificativer observations in (2).
We present a BDD-based algorithm to compURee(-).

Let L = {¢,...,¢,} be the state space of the gaiie A cell s C L can be
represented by a valuatienof the boolean variables = x4, ..., z, such that; € s
iff v(x;) = true, foralll <i <n.ABDD overzy,...,z, is called dinear encoding
it encodes a set of cells. A callC L can also be represented by a BDD over boolean
variablesy = y1, ...,y With m = [log, n]. This is called dogarithmic encodingit
encodes a single cell.

We represent the transition relation @fby then - |X| BDDs T,(¢;) (¢ € X,

1 < i < n) with logarithmic encoding oveg. So, T, (¢;) represents the sgt’; |

(¢;,a,l;) € A}. The observation$’ = {01, ...,0,} are encoded bylog, p| boolean
variableshg, by, . .. in the BDD B defined by

Br= A b=[jla— Cin(®)

0<j<p—1
where[j]. is the binary encoding of andC1, . .., C,, are BDDs that represent the sets
v(01), .. .,7v(op) in logarithmic encoding.

Given the antichaig = {s1,...,s:}, let Sk (1 < k < t) be the BDDs that encode
the setsy, in logarithmic encoding ovey. For eachu € X', we compute the BDILP,
in linear encoding ovet as follows:

CPo=Vb- \/ A xi— [v§- (Tult;) ABr) — Skl.

1<k<t 1<i<n

Then, we defin€P = \/,_, CP,(q), and we extract the maximal elementsGR(z)
as follows, withw a BDD that encodes the relation of (strict) set inclusian

w(z,z') = (/TL\;LZ —>x;) A (\TL/;LZ 7&1;),
i=1 =1

CPmin(j:) = CP(i‘) A =37 .w(.f, j‘/) A CP(.f’)

Finally, we construct the antichaliPre(q) as the following set of BDDs in logarithmic
encodingCPre(q) = {s | Jv € CP™" : s = {¢; | v(x;) = true}}.

Features of the tool.The input of the tool is a file describing the transitions abd o
servations of the game graph. The output is the set of maxivimaling cells, and a
winning strategy in compact representation. We have algdeimented a simulator to
let the user play against the strategy computed by the td@.uBer has to provides an
observation in each round (or may let the tool choose oneorahg. The web page of
the toolisht t p: / / www. ant i chai ns. be/ al paga. We provide the source code,
the executable, an online demo, and several examples.|Petdhe tool features and
usage are given in the appendix.

References

1. D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinged & Raje. Strategy construction
for parity games with imperfect information. Technical REpMTC-REPORT-2008-005,
http://infoscience.epfl.ch/record/125011, EPFL, 2008.

2. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskhigorithms for omega-regular
games of incomplete informatioh.ogical Methods in Computer Scien@$3:4), 2007.

3. K. Chatterjee and T. A. Henzinger. Assume-guaranteehsegig. InProc. of TACASLNCS
4424, pages 261-275. Springer, 2007.

4. R. McNaughton. Infinite games played on finite graphsnals of Pure and Applied Logic
65(2):149-184, 1993.

5. Fabio Somenzi. Cudd: Cu decision diagram package. Mgi:¢olorado.edu/fabio/CUDD/.

6. W. Zielonka. Infinite games on finitely coloured graphshwapplications to automata on
infinite trees.Theoretical Computer Scienc200:135-183, 1998.

Details of Tool Features

4 Practical implementation

In this section we describe the implementation details efttiol Alpaga.

4.1 Programming Language

Alpaga is written in Python, except for the BDD package whighvritten in C. We
use the CUDD BDD library [5], with its PYCUDD Python bindinghere is some
performance overhead in using Python, but we chose it foarcdd readability and to
make the code easy to change. We believe this is importaheindntext of academic
research, as we expect other researchers to experimertheitbol, tweak the existing
algorithms and add their own.

Alpaga is available for download at t p: / / ww. ant i chai ns. be/ al paga
for Linux stations. For convenience, the tool can also betethrough a web interface
(see Fig. 1 for a glimpse to this interface).

4.2 Code architecture

The code consists of four main classes:

1. Gane is the main class of Alpaga. It encompasses all necessasymiation de-
scribing a game: BDDs for initial sets, target sets, obs@ma, transition relations.
The class offers two implementations of the controllabledecessors operator:
(a) the*enumerativeCPre implementation which closely follows the definition of
the CPre operator (enumerating labels, states and sets of the aimtglcomput-
ing desired antichain intersections and unions as it pssg® and (b) th&Pre
implementation following the BDD technique explained irc&en 3.

Furthermore, the class offers a large set of utility funesito compute, for exam-
ple, the successors of a set of states, its controllableepesdors, and to manipulate
antichains of sets of states of the game. At a higher levelcliss offers methods
to compute strategies for specific kinds of objectives (R&acd Safe: solving con-
junction of reachability and safety objectives, and Rea@a#te: solving disjunc-
tion of reachability and safety objectives). Finally it indes the implementation
of the algorithm of [1] using all previous functions.

2. Par ser produces an instance of the cl&se from an input file. The parser also
offers a good amount of consistency checking (it checksexample, that every
state belongs to one and only one observation).

3. Str at egy is the class with data structure for strategy represemtafioe descrip-
tion of a strategy is based on the notionrafik (similar to rank of u-calculus
formulas), and a strategy maps a cell with a rank to a labebaggll with smaller
rank.

4. Strat egyPl ayer is the class implementing the interactive mode of Alpaga. It
takes as argument a game and a strategy and allows the uspagBXo replay the
strategy interactively (see below).

Test Apaga Online

Enter your input in the text area here under or choose a fike to load.

] Enumerstive CPRE [Show computation times
[rum ot totalization of trarsition ekation [verbose mods

ALPHABET : a
STATES : 1. 2.3
SAFE : 1,2.3
TARGET : 2
TRAHS :

1L, 1. a

1.2, a
. 3, a
. J.a
ES :

WNHSWN
SHH®

Submit

Some Games You Can Use to Test the Tool

[mutex-full.gii | % | [Load the ile.

Fig. 1. Alpaga web interface.

4.3 User Manual

In this section we describe the syntax of the input file, howead the output, the
various options of the tool, and finally we describe the mtéve use of the tool.

Input. The syntax of the tool is straightforward and follows thenfiat description of
imperfect information parity games as described in SecBo®ur algorithm solves
games with objectives that are of the following form: padtyjectives in conjunction
with a safety objective, along with the disjunction with achability objective. The
parity objective can be obtained as a special case when thesstis the full set of
states, and the target set for reachability objective istgnhip the description below,
we have the safe and target set for the safety and reackattijgctives, respectively.
We present the following example:

ALPHABET : a
STATES : 1, 2,3
INNT @ 1

SAFE : 1

The input file describing a parity game with imperfect infation is constructed as
follows:

— the sets of labels, states, initial states, safe statesaagel states are all specified
on a single line introduced by the corresponding keyword AABET, STATES,
INIT, SAFE or TARGET. The name of the states and labels camlyestting ac-
cepted by Python that does not include a blank space or tharaatier (which is
used for comments). However, the keyword SINK is reserved below).

— the transition relation is defined on a sequence of linesdhiced by the keyword
TRANS on a single line. After the TRANS keyword, each linedfies on a single
line a transition, by giving the initial state, the destioatstate and the label of the
transition, all separated by commas.

— Finally, the observations and corresponding prioritiessgrecified in a similar fash-
ion. They are introduced by the keyword OBS on a single lirreerTfollows the
specification of the observations. Each observation isiipgéon a single line as a
set of comma-separated states, followed by its priorityogitive integer number)
which must be preceded by a colon.

— Blank lines are allowed anywhere as empty comments. Noneogohments start
with the character # and extend to the end of the line.

Output. The tool output for our example is in Fig. 2. The winning stpt computed
by the tool is represented by a list of triplgs rank, s) € ¥ x N x 2 wherea is an
action, ands is a cell. The strategy is represented in the compact forar aftplying
Rule 1 and Rule 2 for simplification of strategies. The stfgteepresentation can be
used to find the action to play, given the current knowledgef Playerl as follows:
play the actioru such thafa, rank, s) is a triple in the list with minimal rank such that
s’ C s (such atriple must exist i’ is a winning cell).

Tool options.We now describe the various options with which the tool candes.

al paga. py [options] file

The possible options are the following:
— -h Shows an help message and exits.

— -i After computing a strategy, launches the interactivatsyy player which allows
to see how the strategy computed by the tools executes iratine.gn this mode,
the tool shows which move is played by the strategy, givercthieent knowledge
(i.e., a set of states in which the player can be sure that @neegs - the initial
knowledge is the set of initial states). Then the tool alléavshoose the next ob-
servations among the observations that are compatibletiétburrent knowledge.

— -e Uses the enumerati&re in all computations. There are two different imple-
mentations for the controllable predecessor oper&Brd), one temporarily using
a linear encoding of the resulting antichain for the timeh&f tomputation, and an
enumerative algorithm following closely the definition b&tCPre operator.

— -n Turns off the totalization of the transition relation. Bgfault, Alpaga completes
the transition relation so that it becomes total, which nsetfyat a transition of
every label exists from each state. Therefore, Alpaga fitds @ state named SINK
with priority 1 (corresponding to a new observation), fromigh every label loops
back to SINK, and then adds a transition

s, SINK, lab

for each pair (s, lab) such that there does not exist a tiangibm state s on label
lab. Note that the name SINK is reserved.

— -r Turns on the display of stack traces in case of error.
— -s Turns off the simplification of the strategies before ligp

— -t Displays computation times, which includes time for ragshe file (and con-
structing the initial BDDs), time for initializing the liree encoding, for computing
a strategy, and for simplifying that strategy.

— -v Turns on the display of warnings, which mainly list thens@ions added by the
totalization procedure.

Interactive mode After computing a strategy for a parity game, the tool cartawio
interactive mode, where the user can “replay” the stratieggheck that the modeliza-
tion was correct. The user of Alpaga plays the role of Pl&yehoosing the observation
among the compatible observations available, and gettiagdsulting knowledge of
player 1 and which move she will play.

Practically, in interactive mode, type help for the list @ihtmands: the standard
way for playing a strategy is the following: launch alpag#waption -i, type go at the
interactive prompt, type the number of an observation, gmer twice, repeat. Fig. 3
shows an interactive Alpaga session.

5 Example: mutual-exclusion protocol

We demonstrate the use of games with imperfect informatiosyhthesize reactive
programs in distributed systems. We consider the desigmuftaal-exclusion protocol

S ewH@madew

File Edit VWiew Terminal Tabs Help

madewdif@nadewdif—desktop:~fworkspaceféibaga$ éibaga.py -v -t examhiés;parityﬁ'améi.gii

Parsing Time : 0.08803383718567 s
Initialization Time : ©8.008717878341675 s
Solving Time : 0.0134789943695 s
Simplifying Time : 9.41753387451e-05
Total Time : 0.0223240852356 s

Winning Cells :

{
{3, 2}

}

Strategy :

(a, 1) : {3, 21}
The initial set is not winning
madewul f@madewulf-desktop:~/workspace/alpaga$ l

Il

Fig. 2. Output of Alpaga.

madewnl Hiemad ewll i=d eSKEop = workKspacefalpaga

File Edit Wiew Terminal Tabs Help

The initial set is winning

Alpaga interactive mode

Available commands : go , exit, reinit, help, summary
=>SUmmary

Winning Cells :

{

{1, 3, 2, 4}
}
Strategy :

fa, 1) : {1, 3, 2, 4}
Current Knowledge :

{11}

>>00

The Strategy plays : a
Current Knowledge :

{3, 2}
The possible next observations are :
1 : {2}
2 : {3}

Pick a number (keep blank for random) : 1
Current Knowledge :

{2}

=

The Strategy plays : a

Current Knowledge :

{41}

The possible next observations are :

1 : {47}

Pick a number (keep blank for random) : l

Fig. 3. Interactive strategy player of Alpaga.

do { do {

unbounded_wai t; unbounded_wai t;
flag[1l]:=true; flag[2]:=true;
turn: =2; turn: =1;
whil e(flag[1]) nop; (Cl) while(flag[1l] & turn=1) nop;
whil e(flag[2]) nop; (c2)
whi | e(turn=1) nop; (X3)
whi | e(turn=2) nop; ()

while(flag[1l] & turn=1) nop; (C6)
while(flag[2] & turn=1) nop; (C7)

I
I
|
| while(flag[1l] & turn=2) nop; (C5)
|
| while(flag[2] & turn=2) nop; (C8)

fin_wait; // Critical section fin_wait; // Critical section
flag[1]: =fal se; flag[2]:=fal se;
} while(true) } while(true)

Fig. 4. Mutual-exclusion protocol synthesis.

for two processes, following the lines of [3]. We assume tireg process (on the right
in Fig. 4) is completely specified. The second process (olethi Fig. 4) has freedom
of choice in line4. It can use one o8 possible condition§€1-C8 to guard the entry
to its critical section in linés. The boolean variableglag[1] andflag[2] are used to
place a request to enter the critical section. They are histhle to each process. The
variableturn is visible and can be written by the two processes. Thusaaihbiles are
visible to the left process, except the program counterefight process.

There is also some nondeterminism in the length of the detalses1 and5 of
the two processes. The processes are free to request oeraittbal section and thus
may wait for an arbitrary amount of time in lirle(as indicated byinbounded wait),
but they have to leave the critical section within a finite amtof time (as indicated by
fin_wait). In the game model, the length of the delay is chosen by theradry.

Finally, each computation step is assigned to one of the twogsses by ached-
uler. We require that the scheduler is fair, i.e. it assigns cdatfan steps to both pro-
cesses infinitely often. In our game model, we encode allsigtiedulers by allowing
each process to execute an arbitrary finite number of stegisrébreleasing the turn
to the other process. Again, the actual number of computatieps assigned to each
process is chosen by the adversary.

The mutual exclusion requirement (that the processes aex sanultaneously in
their critical section) and the starvation freedom requieat (that whenever the left
process requests to enter the critical section, then iteviéintually enter it) can be
encoded using three priorities.

When solving this game with our tool, we find that Playes winning, and that
choosingCy is a winning strategy.

10

