
YAPA: A generic tool for computing intruder
knowledge

Mathieu Baudet

MLstate, France

Véronique Cortier

LORIA - CNRS, France

Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Ile-de-France, France

Reasoning about the knowledge of an attacker is a necessary step in many formal analyses of

security protocols. In the framework of the applied pi calculus, as in similar languages based
on equational logics, knowledge is typically expressed by two relations: deducibility and static

equivalence. Several decision procedures have been proposed for these relations under a variety

of equational theories. However, each theory has its particular algorithm, and none has been
implemented so far.

We provide a generic procedure for deducibility and static equivalence that takes as input
any convergent rewrite system. We show that our algorithm covers most of the existing decision

procedures for convergent theories. We also provide an efficient implementation, and compare it

briefly with the tools ProVerif and KiSs.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Verifying and
Reasoning about Programs

General Terms: Security

Additional Key Words and Phrases: formal proofs, security protocols, verification, deduction,
static equivalence

1. INTRODUCTION

Understanding security protocols often requires reasoning about the information
accessible to an on-line attacker. Accordingly, many formal approaches to secu-
rity rely on a notion of deducibility [Lowe 1996; Millen and Shmatikov 2001] that
models whether a piece of data, typically a secret, is retrievable from a finite set of
messages. Deducibility, however, does not always suffice to reflect the knowledge of

Author’s address: S. Delaune, Laboratoire Spécification & Vérification - 61, avenue du président

Wilson - 94 230 Cachan.

The research leading to these results has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865, project ProSecure, and the ANR project JCJC VIP no 11 JS02 006 01. A

large part of it was done while the first author was working at the ANSSI.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–36.

2 · Mathieu Baudet et al.

an attacker. Consider for instance a protocol sending an encrypted Boolean value,
say, a vote in an electronic voting protocol. Rather than deducibility, the key idea
to express confidentiality of the plaintext is that an attacker should not be able to
distinguish between the sequences of messages corresponding to each possible value.
(Such security considerations typically motivate the use of randomized encryption.)

In the framework of the applied pi-calculus [Abadi and Fournet 2001], as in sim-
ilar languages based on equational logics [Blanchet et al. 2008], indistinguishability
corresponds to a relation called static equivalence: roughly, two sequences of mes-
sages are statically equivalent when they satisfy the same algebraic relations from
the attacker’s point of view. Static equivalence plays an important role in the study
of guessing attacks (e.g. [Corin et al. 2004; Baudet 2005; Abadi et al. 2006]), as
well as for anonymity properties and electronic voting protocols (e.g. [Delaune et al.
2009]). Static equivalence is also used for specifying privacy in the context of RFID
protocols [Arapinis et al. 2009]. In several cases, this notion has also been shown
to imply the more complex and precise notion of cryptographic indistinguishabil-
ity [Baudet et al. 2005; Abadi et al. 2006], related to probabilistic polynomial-time
Turing machines. Two sequences of messages are cryptographically indistinguish-
able when their corresponding bit-string implementations are indistinguishable to
any probabilistic polynomial-time Turing machine.

We emphasize that both deducibility and static equivalence apply to observations
on finite sets of messages, and do not take into account the dynamic behavior of
protocols. (This justifies the expression static equivalence.) Nevertheless, deducibil-
ity is used as a subroutine by many general decision procedures [Comon-Lundh
and Shmatikov 2003a; Chevalier et al. 2003b]. Besides, it has been shown that
observational equivalence in the applied pi-calculus coincides with labeled bisimu-
lation [Abadi and Fournet 2001], that is, corresponds to checking an infinite family
of static equivalences and some standard bisimulation conditions.

Deducibility and static equivalence rely on an underlying equational theory for
axiomatizing the properties of cryptographic functions. Many decision procedures
[Abadi and Cortier 2006; Cortier and Delaune 2007] have been proposed to compute
these relations under a variety of equational theories, including symmetric and
asymmetric encryptions, signatures, exclusive OR, and homomorphic operators.
However, except for the class of subterm convergent theories [Abadi and Cortier
2006], which covers the standard flavors of encryption and signature, each of these
decision results introduces a new procedure, devoted to a particular theory. Even
in the case of the general decidability criterion given in [Abadi and Cortier 2006],
we note that the algorithm underlying the proof has to be adapted for each theory,
depending on how the criterion is fulfilled.

Perhaps as a consequence of this fact, none of these decision procedures has been
implemented so far. When we began this work, the only tool able to verify static
equivalence was ProVerif [Blanchet 2001; Blanchet et al. 2008]. This general tool
can handle various equational theories and analyze security protocols under active
adversaries. However termination of the verifier is not guaranteed in general, and
protocols are subject to (safe) approximations. Since then, a new tool, called KiSs,
has been developed [Ciobâcă et al. 2009]. The procedure implemented in KiSs has
many concepts in common with a preliminary version of this work [Baudet et al.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 3

2009] but targets a different class of equational theories.

The present work aims to fill this gap between theory and implementation and
propose an efficient tool for deciding deducibility and static equivalence in a uniform
way. It is initially inspired from a procedure for solving more general constraint
systems related to active adversaries and equivalence of finite processes, presented
in [Baudet 2005], with corrected version in [Baudet 2007] (in French). However,
due to the complexity of the constraint systems, this decision procedure was only
studied for subterm convergent theories, and remains too complex to enable an
efficient implementation.

Our Contributions. In this paper, we provide and study a generic procedure for
checking deducibility and static equivalence, taking as input any convergent theory
(that is, any equational theory described by a finite convergent rewrite system).
We prove the algorithm sound and complete, up to explicit failure cases. Note
that (unfailing) termination cannot be guaranteed in general since the problem
of checking deducibility and static equivalence is undecidable, even for convergent
theories [Abadi and Cortier 2006]. To address this issue and turn our algorithm
into a decision procedure for a given convergent theory, we provide two criteria.
First, we define a syntactic criterion on the rewrite rules that ensures that the
algorithm never fails. This criterion is enjoyed in particular by any convergent sub-
term theory, as well as the theories of blind signature and homomorphic encryption.
Termination often follows from a simple analysis of the rules of the algorithm: as
a proof of concept, we obtain a new decidability result for static equivalence for
the prefix theory, representing encryption in CBC mode. Moreover, we obtain that
our algorithm can decide deducibility and static equivalence for all the convergent
theories shown to be decidable in [Abadi and Cortier 2006]. Second, we provide
a termination criterion based on deducibility: provided that failure cannot occur,
termination on a given input is equivalent to the existence of some natural finite
representation of deducible terms.

Our second contribution is an efficient implementation of this generic procedure,
called YAPA. After describing the main features of the implementation, we report
several experiments suggesting that our tool computes static equivalence faster
and for more convergent theories than the general tool ProVerif [Blanchet 2001;
Blanchet et al. 2008]. We also outline the main differences between YAPA and the
recent tool KiSs.

Related work. Static equivalence is a key notion for equivalence-based properties
such as anonymity and other privacy-like properties. To our knowledge, the tools
YAPA, KiSs, and ProVerif are the only ones for checking static equivalence for
various equational theories. There are however several tools for deciding various
trace-based properties (e.g. secrecy and authentication), against active adversaries.
Several of these tools are surveyed in [Comon and Shmatikov 2002; Cremers et al.
2009]. We briefly describe here tools that can handle algebraic properties. CL-
Atse [Turuani 2006], integrated to the AVISPA platform [Armando et al. 2005],
can take into account XOR or several properties of modular exponentiation. The
Open-Source Fixed-Point Model Checker (formally named OFMC) [Mödersheim
and Viganò 2009] allows one to analyze security protocols with respect to the alge-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 · Mathieu Baudet et al.

braic theory of the employed cryptographic operators, provided they can be speci-
fied as part of the input, i.e. using some kind of deduction system. TA4SP [Boichut
et al. 2006] enables to analyse protocols for an unbounded number of sessions,
over-approximating algebraic properties. The Maude-NRL Protocol Analyzer can
reason on various algebraic properties of the functions used in a protocol such
as the associativity of the pair, one-time pads and Diffie-Hellman [Escobar et al.
2008]. [Goubault-Larrecq et al. 2004] describes an automatic tool for analysing
Diffie-Hellman-like protocols. While ProVerif can handle a wide range of algebraic
properties, it does not perform very well on non convergent theories, in particular
in the case of the XOR operator. Küsters and Truderung have designed and im-
plemented an algorithm for checking trace properties on protocols using the XOR
operator [Küsters and Truderung 2010]. This tool takes as input Horn clauses with
XOR (modeling the protocols and the security property) and translates them into
Horn clauses (without XOR) that can be better handled by ProVerif.

More generally, many decision procedures have been proposed for analysing se-
curity protocols in the presence of algebraic properties, without necessarily an im-
plementation. For example, secrecy has been shown decidable for the exclusive or,
for a bounded number of sessions [Comon-Lundh and Shmatikov 2003b; Chevalier
et al. 2003b] and for an unbounded number of sessions, for particular classes of pro-
tocols [Comon-Lundh and Cortier 2003; Verma 2003; Cortier et al. 2007; Seidl and
Verma 2009]. In the context of a bounded number of sessions, similar results have
been obtained for modular exponentiation and also for the prefix theory [Chevalier
et al. 2003b; 2003a; Shmatikov 2004]. A more exhaustive description of the results
can be found in [Cortier et al. 2006a].

Outline. We introduce our setting in Section 2, in particular the notion of term
algebra and equational theory, that are used to model cryptographic primitives.
Deducibility and static equivalence are defined in Section 3. We describe our pro-
cedure in Section 4 and prove its correctness and completeness in Section 5. We
provide criteria for preventing failure in Section 6 and for ensuring termination in
Section 7. The implementation of our procedure is discussed in Section 8. Some
concluding remarks and perspectives can be found in Section 9. A number of tech-
nical proofs have been postponed to the appendix to ease the presentation.

2. PRELIMINARIES

2.1 Term algebra

We start by introducing the necessary notions to describe cryptographic messages
in a symbolic way. For modeling cryptographic primitives, we assume given a set
of function symbols F together with an arity function ar : F → N. Symbols in F
of arity 0 are called constants. We will denote these constants by a, b, . . . , k,
We consider a set of variables X (denoted by x, x1, x2, . . . , y, z, . . .) and a set of
additional constantsW called parameters and denoted by w,w1,w2, . . . The (usual,
first-order) term algebra generated by F over W and X is written F [W ∪X] with
elements denoted by T,U, T1 . . . More generally, we write F ′[A] for the least set of
terms containing a set A and stable by application of symbols in F ′ ⊆ F .

We write var(T) (resp. par(T)) for the set of variables (resp. parameters) that
occur in a term T . These notations are extended to tuples and sets of terms in the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 5

usual way. The set of positions of a term T is written pos(T) ⊆ N∗, and its set of
subterms st(T). The subterm of T at position p ∈ pos(T) is written T |p. The term
obtained by replacing T |p with a term U in T is denoted T [U]p.

A (finite, partial) substitution σ is a mapping from a finite subset of variables,
called its domain and written dom(σ), to terms. The image of a substitution is
its image as a mapping im(σ) = {σ(x) | x ∈ dom(σ)}. Substitutions are extended
to endomorphisms of F [X ∪ W] as usual. We use a postfix notation for their
application. A term T (resp. a substitution σ) is ground if var(T) = ∅ (resp.
var(im(σ)) = ∅).

For our cryptographic purposes, it is useful to distinguish a subset Fpub of F ,
made of public function symbols, that is, intuitively, the symbols made available to
the attacker. The other symbols in F r Fpub are private symbols that can not be
used by the attacker. This is useful for instance to model a private key constructor
in a public key encryption scheme. A recipe (or second-order term) M , N , M1. . . is
a term in Fpub[W ∪X], that is, a term containing no private (non-public) function
symbols. A plain term (or first-order term) t, r, s, t1. . . is a term in F [X],
that is, containing no parameters. A (public, ground, non-necessarily linear) n-ary
context C is a recipe in Fpub[w1, . . . ,wn], where we assume a fixed countable subset
of parameters {w1, . . . ,wn, . . .} ⊆ W. If C is a n-ary context, C[T1, . . . , Tn] denotes
the term obtained by replacing each occurrence of wi with Ti in C.

2.2 Rewriting

A rewrite system R is a finite set of rewrite rules l→ r where l, r ∈ F [X] and such
that var(r) ⊆ var(l). A term S rewrites to T by R, denoted S →R T , if there exist
l→ r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ and T = S[rσ]p.
We write →+

R for the transitive closure of →R, →∗R for its reflexive and transitive
closure, and =R for its reflexive, symmetric and transitive closure.

A rewrite system R is convergent if it is:

—terminating, i.e. there is no infinite chain T1 →R T2 →R . . .; and

—confluent, i.e. for every terms S, T such that S =R T , there exists U such that
S →∗R U and T →∗R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗R S
and S is R-reduced then S is a R-reduced form of T . When this reduced form is
unique (in particular if R is convergent), we write S = T↓R (or simply T↓ when R
is clear from the context).

2.3 Equational theories

We equip the signature F with an equational theory represented by a set of equa-
tions E of the form s = t with s, t ∈ F [X]. The equational theory E generated by E
is the least set of equations containing E that is stable under the axioms of congru-
ence (reflexivity, symmetry, transitivity, application of function symbols) and under
application of substitutions. We write =E for the corresponding relation on terms.
Equational theories have proved very useful for modeling algebraic properties of
cryptographic primitives (see e.g. [Cortier et al. 2006b] for a survey).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 · Mathieu Baudet et al.

We are particularly interested in theories E that can be represented by a con-
vergent rewrite system R, i.e. theories for which there exists a convergent rewrite
system R such that the two relations =R and =E coincide. The rewrite system R
—and by extension the equational theory E— is weakly subterm convergent if, in
addition, we have that for every rule l→ r ∈ R, r is either a subterm of l or a
ground R-reduced term. This class encompasses the class of subterm convergent
theories used in [Abadi and Cortier 2006] (for every rule l → r ∈ R, r is a sub-
term of l or a constant), the class of dwindling theories used in [Anantharaman
et al. 2007], and the class of public-collapsing theories introduced in [Delaune and
Jacquemard 2004].

Example 2.1. Consider the signature Fenc = {dec, enc, 〈 , 〉, proj1, proj2}. The
symbols dec, enc and 〈 , 〉 are functional symbols of arity 2 that represent respec-
tively the decryption, encryption and pairing functions, whereas proj1 and proj2
are functional symbols of arity 1 that represent the projection function on the first
and the second component of a pair, respectively. The equational theory of pair-
ing and symmetric (deterministic) encryption, denoted by Eenc, is generated by the
equations

Eenc = {dec(enc(x, y), y) = x, proj1(〈x, y〉) = x, proj2(〈x, y〉) = y}.

Motivated by the modeling of the ECB mode of encryption, we may also consider
an encryption symbol that is homomorphic with respect to pairing:

Ehom = Eenc ∪
{

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

}
.

If we orient the equations from left to right, we obtain two rewrite systems Renc

and Rhom that represent respectively the theories Eenc and Ehom, i.e. =Renc and =Eenc

(resp. =Rhom
and =Ehom

) coincide. Both rewrite systems are convergent, only Renc is
(weakly) subterm convergent. Other examples of subterm convergent theories can
be found in [Abadi and Cortier 2006].

From now on, we assume given an equational theory E represented by a con-
vergent rewrite system R. A symbol f is free if f does not occur in R. In order
to model (an unbounded number of) random values possibly generated by the at-
tacker, we assume that Fpub contains infinitely many free public constants. We will
use free private constants to model secrets, for instance the secret keys used to en-
crypt a message. Private (resp. public) free constants are closely related to bound
(resp. free) names in the framework of the applied pi calculus [Abadi and Fournet
2001]. Our formalism also allows one to consider non-constant private symbols.

3. DEDUCIBILITY AND STATIC EQUIVALENCE

In order to describe the cryptographic messages observed or inferred by an attacker,
we introduce the following notions of deduction facts and frames.

A deduction fact is a pair, written M � t, made of a recipe M ∈ Fpub[W ∪ X]
and a plain term t ∈ F [X]. Such a deduction fact is ground if var(M, t) = ∅. A
frame, denoted by letters ϕ, Φ, Φ0. . . , is a finite set of ground deduction facts. The

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 7

image of a frame is defined by im(Φ) = {t | M � t ∈ Φ}. A frame Φ is one-to-one
if M1 � t, M2 � t ∈ Φ implies M1 = M2.

A frame ϕ is initial if it is of the form ϕ = {w1 � t1, . . . , w` � t`} for some
distinct parameters w1, . . . , w` ∈ W. The parameters wi can be seen as labels that
refer to the messages observed by an attacker. Initial frames are closely related
to the notion of frames in the applied pi-calculus [Abadi and Fournet 2001]. The
only difference is that, in initial frames, values initially unknown to an attacker
are modeled by private constants while they are modeled by restricted names in
the applied pi-calculus. Name generation and binding are important features of
the (general) applied calculus but are unessential when considering finite processes,
and in particular frames. Given such an initial frame ϕ, we denote by dom(ϕ) its
domain dom(ϕ) = {w1, . . . , w`}. If par(M) ⊆ dom(ϕ), we write Mϕ for the term
obtained by replacing each wi by ti in M . We note that if in addition M is ground
then t = Mϕ is a ground plain term.

3.1 Deducibility, recipes

Classically (see e.g. [Abadi and Cortier 2006]), a ground term t is deducible modulo E
from an initial frame ϕ, written ϕ `E t, if there exists M ∈ Fpub[dom(ϕ)] such that
Mϕ =E t. This corresponds to the intuition that the attacker may compute (infer) t
from ϕ. For the purpose of our study, we generalize this notion to arbitrary (i.e.
non-necessarily initial) frames, and even sets of (non-necessarily ground) deduction
facts φ, using the notations �φ and �E

φ defined as follows.

Definition 3.1 (Deducibility). Let φ be finite set of deductions facts. We say
that M is a recipe of t in φ, written M �φ t, if there exist a (public, ground, non-
necessarily linear) n-ary context C and some deduction facts M1 � t1, . . . , Mn� tn
in φ such that M = C[M1, . . . ,Mn] and t = C[t1, . . . , tn]. In that case, we say that
t is syntactically deducible from φ, also written φ ` t.

We say that M is a recipe of t in φ modulo E, written M �E
φ t, if there exists

a term t′ such that M �φ t
′ and t′ =E t. In that case, we say that t is deducible

from φ modulo E, written φ `E t.

We note that M �ϕ t is equivalent to Mϕ = t when ϕ is an initial frame and
when t (or equivalently M) is ground. We also note that in the case of a frame ϕ,
since our contexts C are ground and public, M �ϕ t implies var(M, t) = ∅ and
par(M) ⊆ par(ϕ).

Example 3.2. Consider the equational theory Eenc described in Example 2.1.
Let ϕ0 = {w1 � enc(c0, k),w2 � k} where c0 is a public constant and k is a private
constant. We have that ϕ0 is a set of deduction facts. Since, these facts are
ground, ϕ0 is actually a frame. Moreover, this frame is initial. We have that
〈w2,w2〉�ϕ0 〈k, k〉, c0 �ϕ0 c0, and dec(w1,w2) �Eenc

ϕ0
c0.

The frame ϕ+
0 = {w1 � enc(c0, k),w2 � k, dec(w1,w2) � c0} is a non-initial frame

because of the deduction fact dec(w1,w2) � c0. This deduction fact is actually a
consequence of the others, it will be inferred by our algorithm.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 · Mathieu Baudet et al.

3.2 Static equivalence, visible equations

Deducibility does not always suffice for expressing the knowledge of an attacker.
In particular, it does not account for the partial information that an attacker may
obtain about secrets. Sometimes, the attacker can deduce exactly the same set
of terms from two different frames but he could still be able to tell the difference
between these two frames. This issue motivates the study of visible equations and
static equivalence (see [Abadi and Fournet 2001]), defined as follows.

Definition 3.3 (Static equivalence). Let ϕ be an initial frame. The set of visible
equations of ϕ modulo E is defined as

eqE(ϕ) = {M ./ N |M,N ∈ Fpub[dom(ϕ)], Mϕ =E Nϕ}

where ./ is a dedicated commutative symbol. Two initial frames ϕ1 and ϕ2 with
the same domain are statically equivalent modulo E, written ϕ1 ≈E ϕ2, if their sets
of visible equations are equal, i.e. eqE(ϕ1) = eqE(ϕ2).

This definition is in line with static equivalence in the applied pi calculus [Abadi
and Fournet 2001] where bound names would be replaced by free private constants.

Example 3.4. Consider again the equational theory Eenc given in Example 2.1.
Let ϕ0 = {w1 � enc(c0, k), w2 � k} and ϕ1 = {w1 � enc(c1, k), w2 � k} where c0, c1

are public constants and k is a private constant. We have that:

—(enc(c0,w2) ./ w1) ∈ eqEenc
(ϕ0), and

—(enc(c0,w2) ./ w1) 6∈ eqEenc
(ϕ1).

Hence, eqEenc
(ϕ0) 6= eqEenc

(ϕ1) and the two frames ϕ0 and ϕ1 are not statically
equivalent. However, it can be shown that {w1 � enc(c0, k)} ≈Eenc {w1 � enc(c1, k)}.

For the purpose of finitely describing the set of visible equations eqE(ϕ) of an
initial frame, we introduce quantified equations of the form ∀z1, . . . , zq.M ./ N
where z1, . . . , zq ∈ X , q ≥ 0 and var(M,N) ⊆ {z1, . . . , zq}. In what follows, finite
sets of quantified equations are denoted Ψ, Ψ0,. . . We write Ψ |= M ./ N when
the ground equation M ./ N is a consequence of Ψ in the usual, first-order logic
with equality axioms for the relation ./ (that is, reflexivity, symmetry, transitivity
and compatibility with symbols in Fpub). When no confusion arises, we may refer
to quantified equations simply as equations. As usual, quantified equations are
considered up to renaming of bound variables.

Example 3.5. Consider the equational theory Ehom given in Example 2.1. Let
ϕ = {w1 � enc(〈c0, c1〉, k), w2 � 〈enc(c0, k), enc(c1, k)〉, w3 � k} where c0 and c1 are
public constants and k is a private constant. In the set eqEhom

(ϕ), we have, among
others, w1 ./ w2 and dec(w1,M) ./ 〈dec(proj1(w1),M), dec(proj2(w1),M)〉 for every
term M ∈ Fpub[dom(ϕ)]. Indeed, we have that:

dec(w1,M)ϕ = dec(enc(〈c0, c1〉, k),Mϕ)
=Ehom

〈dec(enc(c0, k),Mϕ), dec(enc(c1, k),Mϕ)〉
=Ehom

〈dec(proj1(w1),M), dec(proj2(w1),M)〉ϕ
This infinite set will be represented with the quantified equation:

∀z. dec(w1, z) ./ 〈dec(proj1(w1), z), dec(proj2(w1), z)〉.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 9

4. MAIN PROCEDURE

In this section, we describe our algorithms for checking deducibility and static
equivalence on convergent rewrite systems. After some additional notations, we
present the core of the procedure, which consists of a set of transformation rules
used to saturate a frame and a finite set of quantified equations. The result of
the saturation can be seen as a finite description of the deducible terms and visi-
ble equations of the initial frame under consideration. We then show how to use
this procedure to decide deducibility and static equivalence, provided that satura-
tion succeeds. (Recall that static equivalence and deduction are undecidable for
convergent theories [Abadi and Cortier 2006].)

Soundness and completeness of the saturation procedure are detailed in Sec-
tion 5. We provide sufficient conditions on the rewrite systems to ensure success of
saturation and termination in Section 6 and Section 7.

4.1 Decompositions of rewrite rules

Before stating the procedure, we introduce the following notion of decomposition
to account for the possible superpositions of an attacker’s context (that is, a recipe
in our setting) with a left-hand side of rewrite rule.

Definition 4.1 Decomposition. Let n, p, q be non-negative integers. A (n, p, q)-
decomposition of a term l (and by an extension of any rewrite rule l → r) is a
(public, ground, non-necessarily linear) context D ∈ Fpub[W] such that par(D) =
{w1, . . . ,wn+p+q} and l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] where

—l1, . . . , ln are mutually-distinct non-variable terms,

—y1, . . . , yp and z1, . . . , zq are mutually-distinct variables, and

—y1, . . . , yp ∈ var(l1, . . . , ln) whereas z1, . . . , zq 6∈ var(l1, . . . , ln).

A decomposition D is proper if it is not a parameter (i.e. D 6= w1).

In order to avoid unnecessary computations, (n, p, q)-decompositions are considered
up to permutations of parameters in the sets {w1, . . . ,wn}, {wn+1, . . . ,wn+p} and
{wn+p+1, . . . ,wn+p+q} respectively.

Example 4.2. Consider the rewrite rule dec(enc(x, y), y) → x. This rule admits
two proper decompositions up to permutation of parameters:

—D1 = dec(enc(w1,w2),w2) where n = 0, p = 0, q = 2, z1 = x, z2 = y;

—D2 = dec(w1,w2) where n = 1, p = 1, q = 0, l1 = enc(x, y) and y1 = y.

Now, consider the rewrite rule dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉. This rule
also admits two proper decompositions:

—D3 = dec(〈w1,w2〉,w3) where n = 0, p = 0, q = 3, z1 = x, z2 = y, z3 = z;

—D4 = dec(w1,w2) where n = 1, p = 0, q = 1, l1 = 〈x, y〉, z1 = z.

4.2 Transformation rules

To check deducibility and static equivalence, we proceed by saturating an initial
frame, adding some deduction facts and equations satisfied by the frame. We

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 · Mathieu Baudet et al.

A. Inferring deduction facts and equations by context reduction

Assume that

l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] is a proper decomposition of (l→ r) ∈ R
M1 � t1, . . . ,Mn+p � tn+p ∈ Φ

(l1, . . . , ln, y1, . . . , yp)σ = (t1, . . . , tn+p)

(1) If there exists M = Ctx(Φ ∪ {z1 � z1, . . . , zq � zq} `?R rσ) (with M 6= ⊥), then

(Φ,Ψ) =⇒ (Φ,Ψ ∪ {∀z1, . . . , zq .D[M1, . . . ,Mn+p, z1 . . . , zq] ./ M}) (A.1)

(2) Else, if (rσ)↓R is ground, then

(Φ,Ψ) =⇒ (Φ ∪ {M0 � (rσ)↓R},
Ψ ∪ {∀z1, . . . , zq .D[M1, . . . ,Mn+p, z1 . . . , zq] ./ M0})

(A.2)

where M0 = D[M1, . . . ,Mn+p, a, . . . , a] for some fixed public constant a.

(3) Otherwise, (Φ,Ψ) =⇒ ⊥ (A.3)

B. Inferring deduction facts and equations syntactically

Assume that M0 � t0, . . . ,Mn � tn ∈ Φ t = f(t1, . . . , tn) ∈ st(t0) f ∈ Fpub

(1) If there exists M such that (M � t) ∈ Φ,

(Φ,Ψ) =⇒ (Φ,Ψ ∪ {f(M1, . . . ,Mn) ./ M}) (B.1)

(2) Otherwise, (Φ,Ψ) =⇒ (Φ ∪ {f(M1, . . . ,Mn) � t},Ψ) (B.2)

Fig. 1. Transformation rules

consider states that are either the failure state ⊥ or a pair (Φ,Ψ) formed by a
one-to-one frame Φ in R-reduced form and a finite set of quantified equations Ψ.

Given an initial frame ϕ, our procedure starts from an initial state associated
to ϕ, denoted by Init(ϕ), obtained by reducing ϕ and replacing duplicated terms
by equations. Formally, Init(ϕ) is the result of a procedure recursively defined as
follows: Init(∅) = (∅, ∅), and assuming Init(ϕ) = (Φ,Ψ), we have

Init(ϕ] {w � t}) =

{
(Φ,Ψ ∪ {w ./ w′}) if there exists some w′ � t↓R ∈ Φ

(Φ ∪ {w � t↓R},Ψ) otherwise.

Example 4.3. Consider the frames ϕ0, ϕ1 and ϕ introduced respectively in Ex-
ample 3.4 and Example 3.5. We have that Init(ϕ0) = (ϕ0, ∅), Init(ϕ1) = (ϕ1, ∅)
and Init(ϕ) = ({w1 � 〈enc(c0, k), enc(c1, k)〉,w3 � k}, {w1 ./ w2}).

The main part of our procedure consists in saturating a state (Φ,Ψ) by means of
the transformation rules described in Figure 1. Intuitively, the A rules allow us to
get rid of the equational theory, still ensuring the completeness of our procedure.
More precisely, the A rules are designed for applying a rewrite step l → r on
top of D[t1, . . . , tn+p, z1, . . . , zq] where D is a public context and t1, . . . , tn+p are
deducible terms already in Φ. Depending on the resulting term (rσ)↓R, i.e. the
one obtained after application of the rewrite rule l → r, we obtain an instance
of A.1, A.2, or A.3. If the resulting term (rσ)↓R is already deducible (in some
specific sense that we make precise below) then a corresponding equation is added
(rule A.1); or else if it is ground, the corresponding deduction fact is added to the
state (rule A.2); otherwise, the procedure may fail (rule A.3). Note that, in case of
an application of the rule A.2, the remaining variables are replaced by an arbitrary

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 11

public constant a in order to obtain a ground recipe M . The B rules do not take
into account the underlying equational theory. They are meant to add syntactically
deducible subterms (rule B.2) or related equations (rule B.1) when the subterm is
already in Φ.

For technical reasons, rule A.1 is parametrized by a function Ctx that outputs
either a recipe M or the special symbol ⊥. This function has to satisfy the following
properties:

(a) if φ ` t↓R, then Ctx(φ `?
R t) 6= ⊥;

(b) if M = Ctx(φ `?
R t) then there exists s such that M �φ s and t →∗R s. (This

justifies the notation φ `?
R t used to denote a specific deducibility problem.)

Property (a) ensures that the rules transform a state into a state (and more precisely
that the resulting frame in (A.2) is still one-to-one). Property (b) guarantees the
soundness of the new equation in (A.1). Requiring t →∗R s instead of t =E s is
necessary for the proof of completeness. In what follows, a function Ctx is any
function satisfying the two properties (a) and (b).

A simple choice for Ctx(φ `?
R t) is to solve the deducibility problem φ `? t↓R

in the empty equational theory, and then return a corresponding recipe M , if any.
(This problem is easily solved by induction on t↓R.) We will see in Section 6 that
this choice is sufficient to avoid failure for a large class of equational theories, namely
the class of layered convergent theories. However the proof of this fact relies on an
intermediate result that uses a different choice of Ctx.

Example 4.4. Consider the frame ϕ0 previously described in Example 3.4 and an
arbitrary function Ctx. First, we apply rule B.2 with t = c0, and t0 = enc(c0, k).
This leads us to add the deduction fact c0 � c0. Let Φ0 = ϕ0 ∪{c0 � c0}. Then, we
can apply rule A.1 as follows. Consider the rewrite rule dec(enc(x, y), y)→ x, the
decomposition D2 given in Example 4.2 with l1σ = t1 = enc(c0, k), and y1σ = k.
We have that Ctx(ϕ0 `?

R c0) = c0. Hence, we have that:

Init(ϕ0) = (ϕ0, ∅) =⇒ (Φ0, ∅) =⇒ (Φ0, {dec(w1,w2) ./ c0}).

In other words, since we know the key k through w2, we can check that the decryp-
tion of w1 by w2 leads to the public constant c0. Next we can apply rule B.1 with
t0 = t = enc(c0, k), t1 = c0, t2 = k and f = enc. This gives us:

(Φ0, {dec(w1,w2) ./ c0}) =⇒ (Φ0, {dec(w1,w2) ./ c0, enc(c0,w2) ./ w1}).

Lastly, we can apply A.1 with the decomposition D1 given in Example 4.2. We
have that Ctx(Φ0 ∪ {z1 � z1, z2 � z2} `?

R c0) = z1. Hence, we reach the following
state: (Φ0, {dec(w1,w2) ./ c0, enc(c0,w2) ./ w1,∀z1, z2.dec(enc(z1, z2), z2) ./ z1}).
No more rules can then modify the state.

Similarly for ϕ1, let Φ1 = ϕ1 ∪ {c1 � c1}, we obtain that:

Init(ϕ1) = (ϕ1, ∅)
=⇒ (Φ1, ∅)
=⇒ (Φ1, {dec(w1,w2) ./ c1})
=⇒ (Φ1, {dec(w1,w2) ./ c1, enc(c1,w2) ./ w1})
=⇒ (Φ1, {dec(w1,w2) ./ c1, enc(c1,w2) ./ w1,∀z1, z2.dec(enc(z1, z2), z2) ./ z1}).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 · Mathieu Baudet et al.

Example 4.5. Consider the frame ϕ described in Example 3.5 and an arbitrary
function Ctx. We can choose to apply the rule A. Consider the rewrite rule
dec(〈x, y〉, z) → 〈dec(x, z), dec(y, z)〉, the decomposition D4 given in Example 4.2
and t1 = 〈enc(c0, k), enc(c1, k)〉. We have that

rσ = 〈dec(enc(c0, k), z1), dec(enc(c1, k), z1)〉 = rσ↓R.

The condition required in case (1) is not fulfilled and the condition stated in case (2)
is false. Hence, we have that Init(ϕ) =⇒ ⊥.

However, note that another strategy of rules application allows us to consider this
decomposition. For this, it is sufficient to apply first A.2 rules to add the deduction
facts proj1(w2) � enc(c0, k) and proj2(w2) � enc(c1, k). Now, we have that rσ↓R is
syntactically deducible: the condition required in case (1) is fulfilled and we finally
add the equation: ∀z1.dec(w1, z1) ./ 〈dec(proj1(w2), z1), dec(proj2(w2), z1)〉.

We write =⇒∗ for the transitive and reflexive closure of =⇒. The definitions of
Ctx and of the transformation rules ensure that whenever S =⇒∗ S′ and S is a
state, then S′ is also a state, with the same parameters unless S′ = ⊥.

4.3 Main theorem

We now state the soundness and the completeness of the transformation rules pro-
vided that a saturated state is reached, that is, a state S 6= ⊥ such that S =⇒ S′

implies S′ = S. The technical lemmas involved in the proof of this theorem are
detailed in Section 5.

Theorem 4.6 (soundness and completeness). Let E be an equational the-
ory generated by a convergent rewrite system R. Let ϕ be an initial frame and
(Φ,Ψ) be a saturated state such that Init(ϕ) =⇒∗ (Φ,Ψ).

(1) For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have that:

Mϕ =E t ⇔ ∃N such that Ψ |= M ./ N and N �Φ t↓R.

(2) For all M , N ∈ Fpub[par(ϕ) ∪ X], we have that:

Mϕ =E Nϕ ⇔ Ψ |= M ./ N.

We note that this theorem applies to any saturated state reachable from the
initial frame. Moreover, while the saturation procedure is sound and complete, it
may not terminate, or it may fail if rule A.3 becomes the only applicable rule at
some point of computation. In Section 6 and Section 7, we explore several sufficient
conditions to prevent failure and ensure termination.

4.4 Application to deduction and static equivalence

Decision procedures for deduction and static equivalence modulo E follow from
Theorem 4.6.

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ `E t runs as follows:

(1) Apply the transformation rules to obtain (if any) a saturated state (Φ,Ψ) such
that Init(ϕ) =⇒∗ (Φ,Ψ);

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 13

(2) Return yes if there exists N such that N �Φ t↓R (that is, the R-reduced form
of t is syntactically deducible from Φ); otherwise return no.

Proof. If the algorithm returns yes, this means that there exists N such that
N �Φ t↓R. Thanks to Theorem 4.6 (1), we have that Nϕ =E t, i.e. N �E

ϕ t.
Conversely, if t is deducible from ϕ, then there exists M such that Mϕ =E t.

By Theorem 4.6 (1), there exists N such that N �Φ t↓R. The algorithm returns
yes.

Example 4.7. Consider the frame ϕ0 = {w1 � enc(c0, k),w2 � k} introduced in
Example 3.2 and let t1 = 〈k, k〉 and t2 = c0. Let (Φ0,Ψ0) be the saturated state
described in Example 4.4. We have that:

(Φ0,Ψ0) = (ϕ0, {dec(w1,w2) ./ c0, enc(c0,w2) ./ w1}).

Then, it is easy to see that our algorithm for deduction will return yes for both
terms t1 and t2. Indeed, those terms are syntactically deducible from ϕ0.

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

(1) Apply the transformation rules to obtain (if possible) two saturated states
(Φ1,Ψ1) and (Φ2,Ψ2) such that Init(ϕi) =⇒∗ (Φi,Ψi), i = 1, 2;

(2) For {i, j} = {1, 2}, for every equation (∀z1, . . . , z`.M ./ N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

(3) If so return yes; otherwise return no.

Proof. If the algorithm returns yes, this means that Mϕ2 =E Nϕ2 for every
equation (∀z1, . . . , z`.M ./ N) in Ψ1. Let M ./ N ∈ eqE(ϕ1). By definition of
eqE(ϕ1), we have that Mϕ1 =E Nϕ1. Thanks to Theorem 4.6 (2), we have that
Ψ1 |= M ./ N . As all the equations in Ψ1 are satisfied by ϕ2 modulo E, we deduce
that Mϕ2 =E Nϕ2, i.e. M ./ N ∈ eq(ϕ2). The other inclusion, eqE(ϕ2) ⊆ eqE(ϕ1),
is proved in the same way.

Conversely, assume now that ϕ1 ≈E ϕ2, i.e. eqE(ϕ1) = eqE(ϕ2). Consider a
quantified equation ∀z1, . . . , z`.M ./ N in Ψ1 and let us show that Mϕ2 =E Nϕ2.
(The other case is done in a similar way, and we will conclude that the algorithm
returns yes.) Let c1, . . . , c` be free public constants not occurring in M and N ,
and let (M ′, N ′) = (M,N){z1 7→ c1, . . . , z` 7→ c`}. Since Ψ1 |= M ′ ./ N ′, by
Theorem 4.6 (2), we have that M ′ϕ1 =E N

′ϕ1. Besides, M ′ and N ′ are ground
and par(M ′, N ′) ⊆ par(Ψ1) ⊆ par(ϕ1). Thus, (M ′ ./ N ′) ∈ eqE(ϕ1) ⊆ eqE(ϕ2) and
M ′ϕ2 =E N

′ϕ2. As the constants c1, . . . , c` are free in E and do not occur in M
and N , by replacement, we obtain that Mϕ2 =E Nϕ2.

Example 4.8. Consider the frames ϕi = {w1 � enc(ci, k),w2 � k} introduced in
Example 3.4. Let (Φ0,Ψ0) and (Φ1,Ψ1) be the two saturated states described in
Example 4.4. We have that dec(w1,w2) ./ c0 ∈ Ψ0, and

dec(w1,w2)ϕ1 =Eenc c1 6=Eenc c0 = c0ϕ1.

Hence, our algorithm returns no. The two frames ϕ0 and ϕ1 are not statically
equivalent.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 · Mathieu Baudet et al.

5. SOUNDNESS AND COMPLETENESS OF THE SATURATION

The goal of this section is to prove Theorem 4.6. Section 5.1 is devoted to estab-
lish soundness of our saturation procedure, i.e. the ⇐ direction of Theorem 4.6.
Showing the other direction, i.e. completeness, is more involved and is detailed in
Section 5.2.

5.1 Soundness

First, the transformation rules are sound in the sense that, along the saturation
process, we add only deducible terms and valid equations with respect to the initial
frame.

Lemma 5.1 (soundness). Let ϕ be an initial frame and (Φ,Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ,Ψ). Then, we have that

(1) M �Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];
(2) Ψ |= M ./ N ⇒ Mϕ =E Nϕ for all M,N ∈ Fpub[dom(ϕ) ∪ X].

Proof. We prove this result by induction on the derivation Init(ϕ) =⇒∗ (Φ,Ψ).
To prove the induction step, we perform a case analysis on the inference rule. The
case of the B rules is quite straightforward. For the A rule, we have to rely on
the definition of the function Ctx (in case of A.1) and we rely on the fact that E
is stable by replacement of variables with constants to establish soundness of A.2.
The soundness of the rule A.3 is trivial. More formally, we have that:

Base case: We have that (Φ,Ψ) = Init(ϕ) and we easily conclude.

Induction case: In such a case, we have Init(ϕ) =⇒∗ (Φ′,Ψ′) =⇒ (Φ,Ψ).
Let us first notice two facts.

(1) Let M and t be such that M �Φ t. By definition of �Φ, there exist a public
context C and some deduction facts M ′1 � t′1, . . . ,M

′
n � t′n ∈ Φ such that M =

C[M ′1, . . .M
′
n] and t = C[t′1, . . . , t

′
n]. In order to prove that Mϕ =E t, it is

sufficient to show that M ′�E
ϕ t
′ for every M ′� t′ ∈ Φ. By induction hypothesis,

this holds for the deduction facts in Φ′, thus it remains to show that M ′ �E
ϕ t
′

for every fact M ′ � t′ ∈ Φ− Φ′.

(2) Let M,N be two terms such that Ψ |= M ./ N . To establish that Mϕ =E Nϕ,
it is sufficient to prove that M ′ϕ =E N

′ϕ for every (∀z1, . . . , zq.M
′ ./ N ′) in Ψ.

By induction hypothesis, this holds for the equations in Ψ′, thus it remains to
show that M ′ϕ =E N

′ϕ for every equation (∀z1, . . . , zq.M
′ ./ N ′) in Ψ−Ψ′.

Next we perform a case analysis on the inference rule used in (Φ′,Ψ′) =⇒ (Φ,Ψ).

First, consider the case of rule A. Let l → r ∈ R be the rewrite rule, D the
decomposition, and M1 � t1, . . . ,Mn+p � tn+p the facts involved in this step.

Rule A.2 : We need to show that

—D[M1, . . . ,Mn+p, a, . . . , a]ϕ =E (rσ)↓R, and

—D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[M1, . . . ,Mn+p, a, . . . , a]ϕ.

We note that D[t1, . . . , tn+p, z1, . . . , zq] = lσ → rσ →∗ (rσ)↓R. Besides, by induc-
tion hypothesis we have that Miϕ =E ti for 1 ≤ i ≤ n + p. Given that (rσ)↓R
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 15

is ground, and applying the substitution {z1 7→ a, . . . , zq 7→ a} to the equation
D[t1, . . . , tn+p, z1, . . . , zq] =E (rσ)↓R, we obtain:

D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[t1, . . . , tn+p, z1, . . . , zq]

=E (rσ)↓R
=E D[t1, . . . , tn+p, a, . . . , a]

=E D[M1, . . . ,Mn+p, a, . . . , a]ϕ

Rule A.1 : We need to show D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E Mϕ. As before, we
have D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E (rσ)↓R. We also know that there exists s
such that M �Φ′+ s and rσ →∗R s where Φ′+ = Φ′ ∪ {z1 � z1, . . . , zq � zq} thanks
to property (b) of Ctx. Let θ be the substitution {z1 7→ a1, . . . , zq 7→ aq} where
a1, . . . , aq are public constants that do not occur in Φ′, M , and s. We have that
Mθ�Φ′ sθ. Hence, using the induction hypothesis, we have that (Mθ)ϕ =E sθ thus
Mϕ =E s, i.e. Mϕ =E (rσ)↓R. This allows us to conclude.

Rule A.3 : In such a case, the result trivially holds.

Second, we consider the case of B rules. Let t = f(t1, . . . , tn) ∈ st(t0), f ∈ Fpub

and M0 � t0, . . . ,Mn � tn ∈ Φ be involved in the step (Φ′,Ψ′) =⇒ (Φ,Ψ).

Rule B.1 : By induction hypothesis, Miϕ =E ti for every 1 ≤ i ≤ n and Mϕ =E t,
hence f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t =E Mϕ.

Rule B.2 : By induction hypothesis, Miϕ =E ti for every 1 ≤ i ≤ n, hence
f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t.

5.2 Completeness

The next three lemmas are dedicated to the completeness of B rules (Lemma 5.2
and Lemma 5.3) and A rules (Lemma 5.4).

Lemma 5.2 ensures that a saturated state (Φ,Ψ) contains all the deduction
facts M � t where t is a subterm of Φ that is syntactically deducible, whereas
Lemma 5.3 ensures that saturated states account for all the syntactic equations
possibly visible on the frame.

Lemma 5.2 (completeness, syntactic deduction). Let (Φ,Ψ) be a state,
M0 � t0 ∈ Φ. Let N , t be two terms such that t ∈ st(t0) and N �Φ t. Then there
exists (Φ′,Ψ′) and N ′ such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—N ′ � t ∈ Φ′ and Ψ′ |= N ./ N ′.

The proof of Lemma 5.2 is postponed to the appendix. It uses a simple induction
on the context C witnessing the fact that t is syntactically deducible from Φ.

Lemma 5.3 (completeness, syntactic equations). Let (Φ,Ψ) be a state,
and M , N be two terms such that M �Φ t and N �Φ t for some term t. Then
there exists (Φ′,Ψ′) such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—Ψ′ |= M ./ N .

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 · Mathieu Baudet et al.

Proof. (sketch) Let C, C ′ be the contexts witnessing M �Φ t and N �Φ t. As-
sume that C is smaller than C ′. The proof is done by induction on C. When C
is reduced to a hole, we apply Lemma 5.2 to conclude. Otherwise, we have that
C = f(C1, . . . , Cr) and C ′ = f(C ′1, . . . , C

′
r). We easily conclude by applying our

induction hypothesis on Ci, C
′
i for each 1 ≤ i ≤ r. The detailed proof is presented

in appendix A.

Now, we know that terms that are syntactically deducible from the frame and
syntactic equation visible on the frame will be added during our saturation proce-
dure. It remains to take into account the underlying equational theory. This is the
purpose of Lemma 5.4 that deals with the reduction of a deducible term along the
rewrite system R. Using the fact that R is convergent, this allows us to prove that
every deducible term from a saturated frame is syntactically deducible.

Lemma 5.4 (completeness, context reduction). Let (Φ,Ψ) be a state and
M , t, t′ be three terms such that M �Φ t and t→R t′. Then, either (Φ,Ψ) =⇒∗ ⊥
or there exist (Φ′,Ψ′), M ′ and t′′ such that

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′),

—M ′ �Φ′ t′′ with t′ →∗R t′′, and

—Ψ′ |= M ./ M ′.

Besides, in both cases, the corresponding derivation from (Φ,Ψ) can be chosen to
consist of a number of B rules, possibly followed by one instance of A rule involving
the same rewrite rule l→ r as the rewrite step t→R t′.

Proof. (sketch) The detailed proof of Lemma 5.4 is left to the appendix. We
describe here its main arguments. Since t→R t′, there exist a position α, a substi-
tution σ and a rewrite rule l→ r ∈ R such that t|α = lσ and t′ = t[rσ]α. Let C be
a context witnessing the fact that M �Φ t. Since terms in im(Φ) are R-reduced, α
is actually a position in C. Thus, the rewriting step mentioned above corresponds
to a proper (n, p, q)-decomposition D of l: l = D[l1, . . . , ln, y1, . . . yp, z1, . . . zq]. We
can show that M |α �Φ lσ and D[M1, . . . ,Mn, N1, . . . , Np+q] �Φ lσ where

—M1 � t1, . . . , Mn � tn are deduction facts in Φ,

—for every 1 ≤ j ≤ p, Nj �Φ yjσ, and

—for every 1 ≤ k ≤ q, Np+k �Φ zkσ.

Thus, by Lemma 5.3, there exists a derivation (Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules
such that Ψ1 |= M |α ./ D[M1, . . . ,Mn, N1, . . . , Np+q].

Besides, yjσ is a subterm of some liσ = ti. Since Nj �Φ yjσ, by applying
Lemma 5.2 repeatedly, we deduce that there exist some term Mn+1, . . . , Mn+p and
a derivation (Φ1,Ψ1) =⇒∗ (Φ2,Ψ2) using B rules such that for all j,

—Mn+j � yjσ is in Φ2, and

—Ψ2 |= Mn+j ./ Nj .

Let N = D[M1, . . . ,Mn+p, Np+1, . . . , Np+q]. We deduce that N �Φ2
lσ, and

Ψ2 |= M |α ./ D[M1, . . . ,Mn, N1, . . . , Np+q] ./ N

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 17

We now consider the application to (Φ2,Ψ2) of a A rule that involves the rewrite rule
l→ r, the decompositionD, the plain terms (t1, . . . , tn+p) = (l1, . . . , ln, y1, . . . , yp)σ.
Depending on whether (rσ)↓R is ground and Ctx(Φ+

2 `?
R rσ′) = ⊥, we conclude

by applying A.1, A.2 or A.3.

5.3 Main theorem

We are now able to prove soundness and completeness of our transformation rules
provided that a saturated state is reached.

Theorem 4.6 (soundness and completeness). Let E be an equational the-
ory generated by a convergent rewrite system R. Let ϕ be an initial frame and
(Φ,Ψ) be a saturated state such that Init(ϕ) =⇒∗ (Φ,Ψ).

(1) For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have that:

Mϕ =E t ⇔ ∃N such that Ψ |= M ./ N and N �Φ t↓R.

(2) For all M , N ∈ Fpub[par(ϕ) ∪ X], we have that:

Mϕ =E Nϕ ⇔ Ψ |= M ./ N.

Proof. Let ϕ be an initial frame and (Φ,Ψ) be a saturated state such that
Init(ϕ)⇒∗ (Φ,Ψ).

1.(⇐) Let M , N and t be such that Ψ |= M ./ N and N �Φ t↓R (thus in particular
N �E

Φ t). Thanks to Lemma 5.1, we have that Mϕ =E Nϕ =E t.

(⇒) Let M and t be such that Mϕ =E t. We have that M �Φ t0 →∗ t↓R for some
term t0. We show the result by induction on t0 equipped with the order < induced
by the rewriting relation (t < t′ if and only if t′ →+ t).

Base case: M �Φ t0 = t↓R. Let N = M , we have Ψ |= M ./ N and N �Φ t↓R.

Induction case: M �Φ t0 →+ t↓R. Let t′ be such that M �Φ t0 → t′ →∗ t↓R.
Thanks to Lemma 5.4 and since (Φ,Ψ) is already saturated1, we deduce that there
exist N ′ and t′′ such that N ′ �Φ t′′, t′ →∗ t′′, and Ψ |= M ./ N ′. We have that
N ′ �Φ t

′′ →∗ t↓R and t′′ ≤ t′ < t0. Thus, we can apply our induction hypothesis
and we obtain that there exists N such that Ψ |= N ′ ./ N and N �Φ t↓R.

2.(⇐) By Lemma 5.1, Ψ |= M ./ N implies Mϕ =E Nϕ.

(⇒) Let M and N such that Mϕ =E Nϕ. This means that there exists t such that
Mϕ =E t and Nϕ =E t. By applying 1, we deduce that there exists M ′, N ′ such
that: Ψ |= M ./ M ′, M ′�Φt↓R, Ψ |= N ./ N ′ andN ′�Φt↓R. Thanks to Lemma 5.3
and since (Φ,Ψ) is already saturated, we easily deduce that Ψ |= M ′ ./ N ′, and
thus Ψ |= M ./ N .

We proved that saturated frames yield sound and complete characterizations of
deducible terms and visible equations of their initial frames. Yet, the saturation
procedure may still not terminate, or fail due to rule A.3.

1Note that rule A.3 is never applicable on a saturated state.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 · Mathieu Baudet et al.

6. NON-FAILURE

As shown by the following example (from [Ciobâcă et al. 2009]), our procedure may
fail.

Example 6.1. Consider the theory Emal given below:

Emal = {dec(enc(x, y), y) = x, mal(enc(x, y), z) = enc(z, y)}.

The mal function symbol allows one to arbitrarily change the plaintext of an en-
cryption. Such a malleable encryption is not realistic. It is only used for illustrative
purpose.

By orienting from left to right the equations, we obtain a convergent rewrite
system. Thus, Emal is a convergent equational theory. Let ϕ = {w1 � enc(s, k)}
where s and k are private constants. The only rule that is applicable is an instance
of an A rule. Consider the rewrite rule mal(enc(x, y), z) → enc(z, y) and the only
deduction fact in Init(ϕ) = (ϕ, ∅). We obtain rσ↓R = enc(z, k). This term is not
ground and the condition required in case (1) is not fulfilled. Thus, we have that
Init(ϕ) =⇒ ⊥. Note that, since no other rule is applicable, there is no hope to find
a strategy of rule applications to handle this case.

In this section, we identify a class of theories, called layered convergent theories,
(a syntactically defined class of theories) for which failure is guaranteed not to
occur.

6.1 Layered convergent theories

We prove that the algorithm never fails for layered convergent theories. Layered
convergent theories consist in a generalization of subterm theories, considering each
decomposition of the rewrite rules of the theory.

Definition 6.2 (layered rewrite system). A rewrite system R, and by extension
its equational theory E, are layered if there exists an ascending chain of sub-
sets ∅ = R0 ⊆ R1 ⊆ . . . ⊆ RN+1 = R (N ≥ 0), such that for every 0 ≤
i ≤ N , for every rule l → r in Ri+1 − Ri, for every (n, p, q)-decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], one of the following two conditions holds:

(i) var(r) ⊆ var(l1, . . . , ln);

(ii) there exist C0, C1, . . . , Ck and s1, . . . , sk such that
—r = C0[s1, . . . , sk];
—for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in zero

or one step of rewrite rule in head position along Ri.
In the latter case, we say that the context C = C0[C1, . . . , Ck] is associated to the
decomposition D of l→ r. Note that C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]→∗Ri

r.

The purpose of Condition (ii) is to ensure that a term rσ coming from an instance
of l→ r ∈ Ri+1 is already deducible, applying rules of stricly smaller layers. More
precisely, when a decomposition l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] can be ap-
plied, then the resulting term r must be deducible from l1, . . . , ln, y1, . . . , yp, z1, . . . , zq,
possibly applying some (non nested) rewriting rules of Ri (of smaller layers).

The large class of weakly subterm convergent theories is an (easy) particular case
of layered convergent theories.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 19

Lemma 6.3. Any weakly subterm convergent rewrite system R is layered con-
vergent.

Proof. Let N = 0 andR1 = R. For any l→ r inR and for every decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], the term r is a subterm of l, thus either
r = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] for some context C, or r is a subterm of
some li thus var(r) ⊆ var(l1, . . . , ln).

Consider the convergent theories of blind signatures Eblind and prefix encryp-
tion Epref defined by the following sets of equations.

Eblind =

 checksign(sign(x, y), pub(y)) = ok
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

Epref = Eenc ∪

{
pref(enc(〈x, y〉, z)) = enc(x, z)

}
The theory Eblind models primitives used in e-voting protocols [Delaune et al. 2009].
The prefix theory represents the property of many chained modes of encryption
(e.g. CBC) where an attacker can retrieve any encrypted prefix out of a ciphertext.

Lemma 6.4. The rewrite system associated to the theory of homomorphism Ehom

defined in Section 2.3 as well as the rewrite systems obtained by orienting from left
to right the equations in Eblind and Epref are layered convergent.

Proof. Let us check for instance that the prefix theory Epref is layered. Let
N = 1, R1 be the rewrite system obtained from Eenc by orienting the equations from
left to right, and R2 = R1 ∪ {pref(enc(〈x, y〉, z)) → enc(x, z)}. The rewrite rules
of R1 satisfy the assumptions since R1 forms a convergent subterm rewrite system.
The additional rule pref(enc(〈x, y〉, z))→ enc(x, z) admits three decompositions up
to permutation of parameters:

—l = pref(l1) and D = pref(w1), in which case var(r) ⊆ var(l1);

—l = pref(enc(l1, z)) and D = pref(enc(w1,w2)). We have that r = enc(s1, s2) with
s1 = x and s2 = z. Consider the contexts C1 = proj1(w1) and C2 = w2. We have
that C1[l1, z]→R1

s1 and C2[l1, z] = s2.

—l = pref(enc(〈x, y〉, z)) and D = pref(enc(〈w1,w2〉),w3). We have that r =
enc(s1, s2) with s1 = x and s2 = z. Consider the contexts C1 = w1 and C2 = w3.
We have that C1[x, y, z] = s1 and C2[x, y, z] = s2.

Verifying that the convergent theories Ehom and Eblind are layered is similar.

6.2 A syntactic criterion

Definition 6.5 (Maximal). We say that the function Ctx is maximal if for every
φ and t, if there exists s such that φ ` s and t→∗R s, then Ctx(φ `?

R t) 6= ⊥.

We now prove that our algorithm never fails for layered convergent theories pro-
vided that the function Ctx in used is maximal. More precisely, we show that there
exists no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the only applicable derivation.

Proposition 6.6. Assume that the function Ctx in use is maximal. Then,
provided that R is layered convergent, there exists no state (Φ,Ψ) from which
(Φ,Ψ) =⇒ ⊥ is the only applicable derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 · Mathieu Baudet et al.

Proof. Intuition. We show this result by contradiction. Let (Φ,Ψ) be a state
from which (Φ,Ψ) =⇒ ⊥ is the only applicable derivation, and let l → r be the
rewrite rule involved in the corresponding instance of A.3. We prove the property
by induction on the index i ∈ {0 . . . N} such that l→ r ∈ Ri+1 −Ri.

Actually, we show below that either Condition (i) stated in Definition 6.2 is
satisfied and rσ↓R will be necessary ground, and thus A.2 is applicable. Otherwise,
the underlying decomposition satisfies Condition (ii) then, assuming that we have
already treated the rules in Ri and relying on the fact that the function Ctx is
maximal, we will deduce that A.1 is applicable. In any case, we can avoid the
application of A.3.

Full proof. More formally, using the notations of Figure 1 for the instance of
A.3 under consideration and the assumption on Ctx, we have that:

(a) for every rσ →∗R s, Φ ∪ {z1 � z1, . . . , zq � zq} 6` s, and

(b) (rσ)↓R is not ground.

In particular, (b) implies that var(r) is not included in var(l1, . . . , ln), otherwise
we would have

var((rσ)↓R) ⊆ var(rσ) ⊆ var(var(r)σ)

⊆ var(var(l1, . . . , ln)σ) ⊆ var(t1, . . . , tn) = ∅

By assumption on the decomposition l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] of
l→ r ∈ Ri+1 −Ri, we deduce that there exist some contexts C0, . . . , Ck and some
terms s1, . . . , sk such that:

—r = C0[s1, . . . , sk];

—for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in zero or one
step of rewrite rule in head position along Ri.

Let C = C0[C1, . . . , Ck] and t0 = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]. Note that
t0 →∗Ri

r. If t0 = r, we obtain that rσ = C[t1, . . . , tn+p, z1, . . . , zq] is syntactically

deducible from Φ ∪ {z1 � z1, . . . , zq � zq}, which contradicts (a). Hence t0 →+
Ri

r,
and in particular i > 0.

Let µ be a substitution mapping the variables zj to distinct fresh public con-
stants aj . For each 1 ≤ i ≤ k, let ui = Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]σµ . The
term ui = Ci[t1, . . . , tn+p, a1, . . . , aq] is syntactically deducible from Φ, and reduces
to u′i = siσµ in zero or one step (in head position) along Ri.

Case ui →Ri
u′i. By induction hypothesis on i − 1, no applicable rule A.3 from

(Φ,Ψ) may involve a rule in Ri. Besides, by assumption, (Φ,Ψ) is saturated for
the rules B.1, B.2, A.1 and A.2. Therefore, Lemma 5.4 applied to Φ ` ui and
ui →Ri u

′
i implies that there exists u′′i such that u′i →∗R u′′i and Φ ` u′′i .

Case u′i = ui. In such a case, trivially we have that there exists u′′i such that
u′i →∗R u′′i and Φ ` u′′i . We just have to choose u′′i = u′i.

Hence, in both cases, we have that there exists u′′i such that u′i →∗R u′′i and
Φ ` u′′i . Let s = C0[u′′1 , . . . , u

′′
k]µ−1 be the term obtained by replacing each ai by zi

in C[u′′1 , . . . , u
′′
k]. Since the ai do not occur in R nor in Φ, we deduce that s satisfies

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 21

rσ = C0[s1σ, . . . , skσ] = C0[u′1, . . . , u
′
k]µ−1 →∗R s and Φ∪{z1 � z1, . . . , zq� zq} ` s,

in contradiction with the condition (a) stated at the beginning of the proof.

6.3 Practical considerations.

Unfortunately, such a maximal Ctx is too inefficient in practice as one has to con-
sider the syntactic deducibility problem φ ` s for every t →∗R s. Proposition 6.7
below shows that the simple function context is actually sufficient to ensure non-
failure when we know that another function Ctx already prevents failure on any
state (reachable or not).

Proposition 6.7. Let R be a convergent rewrite system and Ctx0 be an arbi-
trary function Ctx. If there exists no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the
only applicable derivation when the function Ctx in use is Ctx0, then there exists
no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the only applicable derivation for any
choice of Ctx.

Proof. Let Ctx0 and Ctx′0 be two arbitrary functions Ctx (i.e. they satisfy
properties (a) and (b) defined on page 11). Assume that there exists no state
(Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥ is the only applicable derivation when the function
Ctx in use is Ctx0. Assume by contradiction that there exists a state (Φ0,Ψ0) from
which (Φ0,Ψ0) =⇒ ⊥ is the only applicable derivation for Ctx′0. This means that
there exist:

—a rewrite rule l→ r ∈ R,

—a proper decomposition D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] of l,

—some deduction facts M1 � t1, . . . ,Mn+p � tn+p ∈ Φ0, and

—a substitution σ such that (l1, . . . , ln, y1, . . . , yp)σ = (t1, . . . , tn+p).

Moreover, since this instance corresponds to an instance of A.3, we have that
rσ↓R is not ground. When the function Ctx in use is Ctx0, this instance has to
correspond to an instance of A.1 (A.2 and A.3 are impossible). Hence, we have
that Ctx0(Φ0 ∪ {z1 � z1, . . . , zq � zq} `?

R rσ) 6= ⊥. This means that there exists s
such that rσ →∗R s and Φ0 ∪ {z1 � z1, . . . , zq � zq} ` s. Since R is convergent, we
have that s→∗R rσ↓R.

Let µ be a substitution mapping the variables zj to distinct fresh public con-
stants aj . We have that sµ→∗R (rσ↓R)µ and also that Φ0 ` sµ. Since (Φ0,Ψ0) =⇒
⊥ is the only applicable derivation for Ctx′0, the rules A.2, B.1, and B.2 cannot
be applicable, even for Ctx0. We saturate (Φ0,Ψ0) with the A.1 rule for Ctx0,
reaching a state of the form (Φ0,Ψ

′
0) since only equations can be added to the

state. Note also that the A.1 rule can only be applied a finite a number of times
and does not trigger the other rules. Thus (Φ0,Ψ

′
0) is saturated for Ctx0. Us-

ing Lemma 5.4 (with the function Ctx0), we obtain that Φ0 � (rσ↓R)µ, and thus
Φ0 ∪ {z1 � z1, . . . , zq � zq} ` rσ↓R. This contradicts the fact that A.1 does not
apply on (Φ0,Ψ0) when the function Ctx in use is Ctx′0. Hence, the result.

Corollary 6.8. Let R be a layered convergent rewrite system and consider an
arbitrary function Ctx in use. There exists no state (Φ,Ψ) from which (Φ,Ψ) =⇒ ⊥
is the only applicable derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

22 · Mathieu Baudet et al.

7. TERMINATION

In the previous section, we have described a sufficient criterion for non-failure. As
shown by the example given below, this criterion does not ensure the termination
of our saturation procedure.

Example 7.1. Consider the following layered convergent rewrite system f(g(x))→
g(h(x)) where f is a public function symbol whereas g and h are private function
symbols. Let ϕ = {w0�g(a)} where a is a private constant. By repeatedly applying
the A rule on the newly generated deduction fact, we generate an infinite number
of deduction facts of the form:

f(w0) � g(h(a)), f(f(w0)) � g(h(h(a)), f(f(f(w0))) � g(h(h(h(a))), . . .

To obtain decidability for a given layered convergent theory, there remains only to
provide a termination argument. Such an argument is generally easy to develop by
hand as we illustrate on the example of the prefix theory. For the case of existing
decidability results from [Abadi and Cortier 2006], such as the theories of blind
signature and homomorphic encryption, we also provide a semantic criterion that
allows us to directly conclude termination of the procedure. Note that this semantic
criterion does not apply only to layered convergent theories but to any convergent
theories (for which failure is guaranteed not to happen).

7.1 Termination of B rules

To begin with, we note that B rules always terminate after a polynomial number
of steps. Let us write

�
=⇒n for the relation made of exactly n strict applications of

rules (S
�

=⇒ S′ iff S =⇒ S′ and S 6= S′).

Proposition 7.2. For every states S = (Φ,Ψ) and S′ such that S
�

=⇒n S′ using
only B rules, n is polynomially bounded in the size of im(Φ).

This is due to the fact that frames are one-to-one and that the rule B.2 only adds
deduction facts M � t such that t is a subterm of an existing term in Φ.

7.2 Proving termination by hand

For proving termination, we observe that it is sufficient to provide a function s
mapping each frame Φ to a finite set of terms s(Φ) including the subterms of im(Φ)
and such that rule A.2 only adds deduction facts M � t satisfying t ∈ s(Φ).

For subterm theories, we obtain polynomial termination by choosing s(Φ) to be
the subterms of im(Φ) together with the ground right-hand sides of R.

Proposition 7.3. Let E be a weakly subterm convergent theory. For every
S = (Φ,Ψ) and S′ such that S

�
=⇒n S′, n is polynomially bounded in the size

of im(Φ).

To conclude that deduction and static equivalence are decidable in polynomial
time [Abadi and Cortier 2006], we need to show that the deduction facts and the
equations are of polynomial size. This requires a DAG representation for terms and
visible equations. For our implementation, we have chosen not to use DAGs for
the sake of simplicity since DAGs require much heavier data structures. However,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 23

similar techniques as those described in [Abadi and Cortier 2006] would apply to
implement our procedure using DAGs.

For proving termination for the prefix theory Epref , it suffices to consider s(Φ) =
stpref(Φ), where the notion stpref is recursively defined as follows:

—stpref(a) = {a} if a is a constant

—stpref(f(t1, . . . , tn)) = {f(t1, . . . , tn)}∪
⋃n
i=1 stpref(ti) f ∈ {dec, 〈, 〉, proj1, proj2, pref}

—stpref(enc(t, u)) = {enc(t, u)} ∪ stpref(t) ∪ stpref(enc(t1, u)) if t = 〈t1, t2〉
—stpref(enc(t, u)) = {enc(t, u)} ∪ stpref(t) ∪ stpref(u) otherwise.

Proposition 7.4. Consider the prefix theory Epref . For every S = (Φ,Ψ) and S′

such that S
�

=⇒n S′, n is polynomially bounded in the size of im(Φ).

We then deduce that deduction and static equivalence are decidable for the equa-
tional theory Epref . For this theory, deduction was already known to be decidable
(in polynomial time) [Chevalier et al. 2003b]. However, decidability of static equiv-
alence was not known before.

Corollary 7.5. Deduction and static equivalence are decidable in polynomial
time for the equational theory Epref .

Similarly, we may retrieve decidability of deduction and static equivalence for Ehom,
Eblind, and Eadd defined in [Abadi and Cortier 2006]. For the theories Ehom and Eadd,
it is actually sufficient to consider the notion of syntactic subterms. In order to
conclude for the theory Eblind, we consider stblind defined as follows:

—stblind(a) = {a} if a is a constant

—stblind(f(t1, . . . , tn)) = {f(t1, . . . , tn)}∪
⋃n
i=1 stblind(ti) f ∈ {blind, unblind, checksign}

—stblind(sign(t, u)) = {sign(t, u)} ∪ stblind(t) ∪ stblind(sign(t1, u)) if t = blind(t1, t2)

—stblind(sign(t, u)) = {sign(t, u)} ∪ stblind(t) ∪ stblind(u) otherwise.

7.3 A semantic criterion

We now provide a semantic criterion that ensures termination. This criterion in-
tuitively states that the set of deducible terms from any initial frame ϕ should
be equivalent to a set of syntactically deducible terms. Provided that failures are
prevented and assuming a fair strategy for rule application, we prove that this
criterion is a necessary and sufficient condition for our procedure to terminate.

Definition 7.6 (Fair derivation). A (possibly infinite) derivation

(Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . .

is fair iff along this derivation,

(a) B rules are applied with greatest priority, and

(b) whenever a A.i rule is applicable for some instance (l → r,D, t1, . . . , tn, . . .),
eventually the same instance of a rule A.j (with possibly i 6= j) is applied
during the derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

24 · Mathieu Baudet et al.

Note that, for condition (b), it might be the case that A.3 is applicable for some
instance and later on, it is finally A.1 that is aplied for this instance. Fairness
implies that any deducible term is eventually syntactically deducible. This result
follows from Lemma 5.3 and Lemma 5.4.

Lemma 7.7. Let S0 = (Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 `E t, either
(Φ0,Ψ0) =⇒∗ ⊥ or there exists i such that Φi ` t↓R.

Proof. Intuition. Let t be a ground term deducible from Φi modulo E. There
exists t0 such that M �Φi

t0 and t0 →∗ t↓R. This means that there exist a (public)
context C and some deduction facts M1 � t1, . . . ,Mn � tn ∈ Φi such that M =
C[M1, . . . ,Mn] and t0 = C[t1, . . . , tn]. If t0 is in normal form then we are done.
Otherwise, this means that t0 → t′ →∗ t↓R. In a fair derivation, we know that
we will consider this rewriting step at some point along the derivation. Applying
Lemma 5.4, we will obtain that there exists t′′ such that t0 → t′ →∗ t′′. Then, we
will conclude by applying our induction hypothesis on t′′.

Full proof. More formally, we show that either (Φi,Ψi) =⇒∗ ⊥ or there exists
j ≥ i such that t↓R is syntactically deducible from Φj , by induction on t0 equipped
with the order < induced by the rewriting relation (that is t1 < t2 if and only if
t2 →+ t1).
Base case: t0 = t↓R. In such a case, since Φi ` t0, we have that Φi ` t↓R. This
allows us to conclude.

Induction step: t0 → t′ →∗ t↓R.
Along a fair derivation, B rules are applied in priority. Hence, we choose the

smallest i1 ≥ i such that no more B rules can be applied from (Φi1 ,Ψi1). Note
indeed that there is no infinite derivation with only B rules (Proposition 7.2). We
have still that C[M1, . . . ,Mn] �Φi1

t0 → t′.
Applying Lemma 5.4 and observing that no B rule can be applied from (Φi1 ,Ψi1),

we are in one of the following cases:

—(Φi1 ,Ψi1) =⇒ ⊥. In such a case, we easily conclude since (Φ0,Ψ0) =⇒∗ ⊥.

—Φi1 ` t′′ for some t′′ such that t′ →∗R t′′. In such a case, we conclude by applying
our induction hypothesis since t′′ < t′ < t0. There exists j ≥ i1 such that
Φj ` t↓R.

—Otherwise an instance (l → r, D, t1, . . . , tn, . . .) of a A rule is applicable. Note
that this instance is entirely determined by the rewrite rule l→ r involved in the
rewriting step t0 → t′, the deduction facts Mi � ti (1 ≤ i ≤ n) and the public
context that witness the fact that Φi ` t0.

By fairness, we know that a A rule will be applied along the derivation for the
same instance (l→ r, D, t1, . . . , tn, . . .). Let i2 be the index on which this instance
is applied. We have that i2 ≥ i1. Note that since B rules are applied in priority,
(Φi2 ,Ψi2) is saturated for B rules. Either, we have that (Φi2 ,Ψi2) =⇒ ⊥ (and thus
(Φi,Ψi) =⇒∗ ⊥) or (Φi2 ,Ψi2) =⇒ (Φi2+1,Ψi2+1).

We have that C[M1, . . . ,Mn]�Φi2
t0 and t0 →R t′. By Lemma 5.4 and observing

that no B rule can be applied from (Φi2 ,Ψi2), either (Φi2 ,Ψi2) =⇒ ⊥ or there
exists (Φ′i2 ,Ψ

′
i2

), M ′ and t′′ such that:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 25

—(Φi2 ,Ψi2) =⇒ (Φ′i2 ,Ψ
′
i2

);

—M ′ �Φ′
i2
t′′ with t′ →∗R t′′; and

—Ψ′i2 |= C[M1, . . . ,Mn] ./ M ′.

Actually, the instance of the A rule that is applied in this derivation is entirely
determined by the rewrite rule l → r involved in the rewriting step t0 → t′, the
public context C and the deduction facts Mi � ti (1 ≤ i ≤ n) that witness the fact
that Φi ` t0 (and thus Φi2 ` t0). Hence, we have that (Φ′i2 ,Ψ

′
i2

) = (Φi2+1,Ψi2+1).
Thus we have that M ′ �Φ′

i2+1
t′′ with t′′ →∗ t↓R and t′′ < t′ < t. We can apply

our induction hypothesis, either (Φi2+1,Ψi2+1) =⇒∗ ⊥ (and thus (Φi,Ψi) =⇒∗ ⊥)
or there exists j ≥ i2 + 1 such that Φj ` t↓R.

Our termination criterion (Property (ii) below) is a semantic criterion. It is
related to the notion locally stable introduced in [Abadi and Cortier 2006].

Proposition 7.8 criterion for termination. Let ϕ be an initial frame such
that Init(ϕ) 6=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated pair (Φ,Ψ) such that Init(ϕ) =⇒∗ (Φ,Ψ).

(ii) There exists a (finite) initial frame ϕs such that for every term t, t is deducible
from ϕ modulo E iff t↓R is syntactically deducible from ϕs.

(iii) There exists no fair infinite derivation starting from Init(ϕ).

Proof. (iii)⇒ (i): trivial. Indeed by using a fair derivation we will eventually
reach a weakly saturated state. (i) ⇒ (ii): Let Φ = {M1 � s1, . . . ,M` � s`} and
ϕs = {w1 � s1, . . . ,w` � s`}. Let t be a ground term. By Theorem 4.6, we have
that ∃M .M �E

ϕ t iff ∃M .M �Φ t↓R, i.e. ∃M .M �ϕs
t↓R. (ii)⇒ (iii): we need to

prove that there exists no fair infinite derivation starting from Init(ϕ).
Let ϕs = {w1�s1, . . . ,w`�s`} an initial frame such that for every t, ∃M .M�E

ϕ t
is equivalent to ∃M .M �ϕs t↓R. Assume by contradiction that there is an infinite
fair derivation (Φ0,Ψ0) =⇒ . . . =⇒ (Φn,Ψn) =⇒ . . . with (Φ0,Ψ0) = Init(ϕ).

By Lemma 7.7 and since Init(ϕ) 6=⇒∗ ⊥, we deduce that there exists i0 such
that each si, 1 ≤ i ≤ ` is syntactically deducible from Φi0 . Since there is no
infinite derivation with only B rules (Proposition 7.2), we can also assume that no
B rule can be applied from Φi0 . We have that ∃M .M �E

ϕ t is now equivalent to
∃M .M�Φi0

t↓R. Thanks to the property (a) of the function Ctx, we know that the
function Ctx will not return ⊥. This implies that the A.2 rule cannot be applied
either. We deduce that no deduction facts are added to Φi0 along the derivation,
that is Φj = Φi0 for every j ≥ i0. Since no deduction fact are added, only a finite
number of A.1 rules can be applied, which contradicts the existence of an infinite
chain.

Assuming a theory for which our algorithm does not fail, this criterion (Prop-
erty (ii)) shows that termination is equivalent to the local stability criterion defined
in [Abadi and Cortier 2006]. Note however that this semantic criterion cannot be
used together with the syntactic criterion described in Section 6 to establish de-
cidability of deduction and static equivalence for layered convergent theories even
if they belong to the class of locally stable theories defined in [Abadi and Cortier

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

26 · Mathieu Baudet et al.

2006]. Indeed, Proposition 7.8 requires that our algorithm never fail whereas Corol-
lary 6.8 only states that, for layered convergent theories, it is not possible to reach
a state from which failure is the only possible option.

8. IMPLEMENTATION: THE TOOL YAPA

YAPA (Yet Another Protocol Analyzer) is an Ocaml implementation of the satu-
ration procedure presented in Section 4 with several optional optimizations. It can
be freely downloaded2 together with a brief manual and examples.

The tool takes as input an equational theory described by a finite convergent
rewrite system, as well as frame definitions and queries. The procedure starts by
computing the decompositions of the rewrite system. By default, the following op-
timization is done: provided that the rewrite rules are given in an order compatible
with the sets R0 ⊆ . . . ⊆ RN+1 of Definition 6.2, the tool is able to recognize lay-
ered theories and to pre-compute the associated contexts C related to condition (ii)
of this definition. This allows resolving the failure cases as soon as they appear,
rather than later on, when the saturation procedure has made enough progress.
This optimization was studied in a first version of this article [Baudet et al. 2009]
but as the practical benefits appear to be minor (see below), we chose not to keep
these technical developments in this version for the sake of notational simplicity.

Another optimization concerns a specific treatment of subterm convergent the-
ories but does not induce any difference with the theoretical procedure presented
here. Except for the first (optional) optimization mentioned above, the algorithm
follows the procedure described in Section 4, using a minimal function Ctx in the
sense in Section 6.3, and a fair strategy of rule application (see Definition 7.6).

We have conducted several experiments on a PC Intel Core 2 Duo at 2.4 GHz
with 2 Go RAM for various equational theories (see below) and found that YAPA
provides an efficient way to check static equivalence and deducibility. Those ex-
amples are available at http://www.lsv.ens-cachan.fr/~baudet/yapa/index.

html. The figures given below are valid for the versions with and without optimiza-
tions.

For the case of Eenc, Ehom, and Epref , we have run YAPA on the frames:

—ϕn = {w1 � t0n,w2 � c0,w3 � c1}, and

—ϕ′n = {w1 � t1n,w2 � c0,w3 � c1},
where ti0 = ci and tin+1 = 〈enc(tin, k

i
n), kin〉, i ∈ {0, 1}. These examples allow us to

increase the (tree, non-DAG) size of the distinguishing tests exponentially, while the
sizes of the frames grow linearly. Despite the size of the output, we have observed
satisfactory performances for the tool.

n 10 14 16 18 20

Execution time - Eenc < 1s 1,7s 8s 30s < 3min
Execution time - Epref < 1s 2,3s 10s 43s 3min
Execution time - Ehom < 1 s 5,5s 26s 2min 10min

We have also experimented YAPA on the theory of addition Eadd defined in [Abadi
and Cortier 2006] with the frames:

2http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 27

—ϕn = {w1 � c0,w2 � sn(c0)}, and

—ϕ′n = {w1 � c0,w2 � sn+1(c0)}.
n 20 40 80 160

Execution time < 1s < 1s 2s 13s

Lastly, we have experimented YAPA on the theory Eblind with the frames encoun-
tered in the study of privacy of the e-voting protocol by Fujioka, Okamoto, and
Ohta [Fujioka et al. 1992]. Those frames are described in [Delaune et al. 2009] and
YAPA always answers in less than 1 seconde, even for frames that describe the
execution for up to 20 voters.

Comparison with ProVerif. In comparison with the tool ProVerif [Blanchet 2001;
Blanchet et al. 2008], here instrumented to check static equivalences, our test sam-
ples suggest a running time between one and two orders of magnitude faster for
YAPA. Also we did not succeed in making ProVerif terminate on the two the-
ories Ehom and Eadd. Of course, these results are not entirely surprising given
that ProVerif is tailored for the more general (and difficult) problem of protocol
(in)security under active adversaries. In particular ProVerif’s initial preprocess-
ing of the rewrite system appears more substantial than ours and does not ter-
minate on the theories Ehom and Eadd. However, ProVerif handles some theories
that YAPA does not handle (e.g. the theory Emal given in Example 6.1) and some
non-convergent theories such as commutativity and the equation exp(exp(g, x), y) =
exp(exp(g, y), x) which can be used as a basic model of Diffie-Hellman, so the set of
equational theories supported by YAPA and ProVerif are incomparable.

Comparison with KiSs. The tool KiSs (Knowledge in Security protocolS) is a
C++ implementation of the procedure described in [Ciobâcă et al. 2009]. This
procedure reused the same concepts than the one presented in a preliminary version
of this work [Baudet et al. 2009], relying however on a more general representation
of deduction facts. Actually, our procedure represents the set of deducible terms
by the means of a finite set of ground terms S. Deducible terms are those in S
and those obtained by applying public function symbols on terms in S. When it
is not possible to represent all the deducible terms with such a representation, our
procedure fails. This is exactly what happens for the theory Emal. Coming back to
Example 6.1, the set of deducible terms from ϕ = {w1 � enc(s, k)} contains at least
all the terms of the form enc(xσ, k) where xσ reprensents an arbitrary deducible
term. However, note that k itself is not deducible. Hence, our representation is not
suitable to represent this set of deducible terms.

To overcome this limitation, one possibility is to consider a more involved rep-
resentation for deducible terms. The procedure implemented in KiSs allows one
to consider deduction facts with side conditions [Ciobâcă et al. 2009]. Moreover,
the deduction facts used in KiSs include terms with variables that can be substi-
tuted by any deducible terms. This allows one to consider the fact [mal(w1, X) �
enc(x, k) | X � x] that intuitively exactly represents the set described above. How-
ever, because of this quite general representation of deducible terms, it is more
complicated to ensure termination of the procedure implemented in KiSs. Except
for the class of subterm convergent equational theories, they do not provide any
general syntactic criterion [Ciobâcă et al. 2009].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

28 · Mathieu Baudet et al.

The performances of the tool YAPA are comparable to the performances of KiSs.
However, since the tool KiSs implements DAG representations for terms, it does
better on the example developed above. Moreover, KiSs allows one to consider
some equational theories for which our procedure fails (e.g. the theory of trapdoor
bit commitment).

9. CONCLUSION AND FUTURE WORK

We have proposed a procedure for checking deducibility and static equivalence.
Our procedure is correct and complete for any convergent theory and is efficient, as
shown by its implementation within the tool YAPA. Since deducibility and static
equivalence are undecidable in general, our algorithm may fail or may not terminate.
We have identified a large class of equational theories (called layered convergent)
for which non-failure of the procedure is ensured. Since termination can then often
be easily proved by hand, we have obtained a new decidability result for the prefix
theory and retrieved decidability for the convergent theories defined in [Abadi and
Cortier 2006]. We have also proposed a semantic (and exact) characterization for
the procedure to terminate.

As further work, we would like to extend our procedure to theories with asso-
ciative and commutative operators. A first possibility would be to implement the
decidability result of [Cortier and Delaune 2007] for monoidal theories (that in-
clude many theories with associative and commutative operators) and to combine
the two procedures using the combination theorem of [Arnaud et al. 2007]. However,
it seems much more efficient to integrate associativity and commutativity directly
and this could even open the way to a more powerful combination technique.

The tool KiSs, developed recently [Ciobâcă et al. 2009], supports several equa-
tional theories for which our procedure fails. Conversely our procedure is guar-
anteed to terminate (without failure) for the prefix theory while it is not known
whether KiSs always terminates for this theory. More generally, proving termi-
nation in YAPA is usually easy and immediately yields decidability for layered
convergent theories, while proving termination in KiSs is more involved. It would
be interesting to compare the techniques and possibly to combine them in order to
capture more theories.

Lastly, as indicated in the introduction, deduction and static equivalence are
static notions. They do not take into account the dynamic behaviour of the un-
derlying protocols. Even if these notions play an important role for the analysis
of security protocols in presence of an active attacker, it remains challenging to
obtain decidability results for the active case in presence of algebraic properties.
There are already several tools for deciding various trace-based security properties
(e.g. secrecy and authentication) in presence of algebraic properties. Regarding
equivalence-based security properties, several procedures exist [Blanchet et al. 2008;
Baudet 2005; Tiu and Dawson 2010; Cheval et al. 2010; Chevalier and Rusinow-
itch 2010]. However, most of them have not yet been implemented and/or do not
deal with algebraic properties. Only the ProVerif tool [Blanchet et al. 2008] allows
one to establish automatically equivalence-based properties in presence of algebraic
properties considering however a very strong notion of equivalence.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 29

Acknowledgments

We are very grateful to the anonymous reviewers for their careful reading and
helpful suggestions

REFERENCES

Abadi, M., Baudet, M., and Warinschi, B. 2006. Guessing attacks and the computational
soundness of static equivalence. In Foundations of Software Science and Computation Struc-

tures (FOSSACS’06). 398–412.

Abadi, M. and Cortier, V. 2006. Deciding knowledge in security protocols under equational

theories. Theoretical Computer Science 387, 1-2, 2–32.

Abadi, M. and Fournet, C. 2001. Mobile values, new names, and secure communication. In

28th ACM Symposium on Principles of Programming Languages (POPL’01). ACM, 104–115.

Anantharaman, S., Narendran, P., and Rusinowitch, M. 2007. Intruders with caps. In 18th
Conference on Term Rewriting and Applications (RTA’07). LNCS, vol. 4533. Springer.

Arapinis, M., Chothia, T., Ritter, E., and Ryan, M. 2009. Untraceability in the applied pi
calculus. In Proceeding of the 1st International Workshop on RFID Security and Cryptography.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Han-
kes Drielsma, P., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von

Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., and Vigneron, L.
2005. The AVISPA Tool for the automated validation of internet security protocols and ap-

plications. In 17th Conference on Computer Aided Verification, CAV’2005. LNCS, vol. 3576.

Springer, 281–285.

Arnaud, M., Cortier, V., and Delaune, S. 2007. Combining algorithms for deciding knowledge

in security protocols. In Proc. 6th International Symposium on Frontiers of Combining Systems
(FroCoS’07). Lecture Notes in Artificial Intelligence, vol. 4720. Springer, 103–117.

Baudet, M. 2005. Deciding security of protocols against off-line guessing attacks. In 12th ACM

Conference on Computer and Communications Security (CCS’05). ACM Press, 16–25.

Baudet, M. 2007. Thèse de doctorat. Ph.D. thesis, Laboratoire Spécification et Vérification,

ENS Cachan, France.

Baudet, M., Cortier, V., and Delaune, S. 2009. YAPA: A generic tool for computing in-

truder knowledge. In 20th International Conference on Rewriting Techniques and Applications
(RTA’09). Lecture Notes in Computer Science, vol. 5595. Springer, Braśılia, Brazil, 148–163.

Baudet, M., Cortier, V., and Kremer, S. 2005. Computationally sound implementations of
equational theories against passive adversaries. In 32nd International Colloquium on Automata,

Languages and Programming (ICALP’05). LNCS, vol. 3580. Springer, 652–663.

Blanchet, B. 2001. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In 14th

Computer Security Foundations Workshop (CSFW’01). IEEE Comp. Soc. Press, 82–96.

Blanchet, B., Abadi, M., and Fournet, C. 2008. Automated verification of selected equiva-

lences for security protocols. Journal of Logic and Algebraic Programming 75, 1, 3–51.

Boichut, Y., Héam, P.-C., and Kouchnarenko, O. 2006. Handling algebraic properties in
automatic analysis of security protocols. In Theoretical Aspects of Computing (ICTAC’06).

Lecture Notes in Computer Science, vol. 4281. Springer, 153–167.

Cheval, V., Comon-Lundh, H., and Delaune, S. 2010. Automating security analysis: sym-

bolic equivalence of constraint systems. In 5th International Joint Conference on Automated
Reasoning (IJCAR’10). Lecture Notes in Artificial Intelligence, vol. 6173. Springer, 412–426.

Chevalier, Y., Küsters, R., Rusinowitch, M., and Turuani, M. 2003a. Deciding the security
of protocols with Diffie-Hellman exponentiation and product in exponents. In Proceedings of

the 23rd Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’03). LNCS, vol. 2914. Springer-Verlag, Mumbai (India), 124–135.

Chevalier, Y., Küsters, R., Rusinowitch, M., and Turuani, M. 2003b. An NP decision
procedure for protocol insecurity with XOR. In 18th IEEE Symposium on Logic in Computer

Science (LICS’03). IEEE Comp. Soc. Press.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

30 · Mathieu Baudet et al.

Chevalier, Y. and Rusinowitch, M. 2010. Decidability of symbolic equivalence of derivations.

Journal of Automated Reasoning.

Ciobâcă, Ş., Delaune, S., and Kremer, S. 2009. Computing knowledge in security protocols un-
der convergent equational theories. In 22nd International Conference on Automated Deduction

(CADE’09). Lecture Notes in Artificial Intelligence. Springer, 355–370.

Comon, H. and Shmatikov, V. 2002. Is it possible to decide whether a cryptographic protocol

is secure or not? Journal of Telecommunications and Information Technology 4/2002, 5–15.

Comon-Lundh, H. and Cortier, V. 2003. New decidability results for fragments of first-order

logic and application to cryptographic protocols. In Proc. of the 14th Int. Conf. on Rewriting
Techniques and Applications (RTA’2003). LNCS, vol. 2706. Springer-Verlag, 148–164.

Comon-Lundh, H. and Shmatikov, V. 2003a. Intruder deductions, constraint solving and inse-

curity decision in presence of exclusive or. In 18th IEEE Symposium on Logic in Computer

Science (LICS’03). IEEE Comp. Soc. Press.

Comon-Lundh, H. and Shmatikov, V. 2003b. Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive or. In Proc. of 18th Annual IEEE Symposium on Logic

in Computer Science (LICS ’03). IEEE Computer Society, Los Alamitos, CA, 271–280.

Corin, R., Doumen, J., and Etalle, S. 2004. Analysing password protocol security against

off-line dictionary attacks. In 2nd International Workshop on Security Issues with Petri Nets
and other Computational Models (WISP’04). ENTCS.

Cortier, V. and Delaune, S. 2007. Deciding knowledge in security protocols for monoidal

equational theories. In 14th International Conference on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR’07). LNAI. Springer.

Cortier, V., Delaune, S., and Lafourcade, P. 2006a. A Survey of Algebraic Properties Used
in Cryptographic Protocols. Journal of Computer Security 14, 1/2006.

Cortier, V., Delaune, S., and Lafourcade, P. 2006b. A survey of algebraic properties used
in cryptographic protocols. Journal of Computer Security 14, 1, 1–43.

Cortier, V., Keighren, G., and Steel, G. 2007. Automatic analysis of the security of xor-based

key management schemes. In 13th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’07). Lecture Notes in Computer Science, vol.
4424. Springer, Braga, Portugal, 538–552.

Cremers, C. J., Lafourcade, P., and Nadeau, P. 2009. Comparing state spaces in automatic

protocol analysis. In Formal to Practical Security. Lecture Notes in Computer Science, vol.

5458/2009. Springer Berlin / Heidelberg, 70–94.

Delaune, S. and Jacquemard, F. 2004. A decision procedure for the verification of security pro-
tocols with explicit destructors. In 11th ACM Conference on Computer and Communications

Security (CCS’04). 278–287.

Delaune, S., Kremer, S., and Ryan, M. D. 2009. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17, 4 (July), 435–487.

Escobar, S., Meadows, C., and Meseguer, J. 2008. State space reduction in the maude-nrl pro-

tocol analyzer. In 13th European Symposium on Research in Computer Security (ESORICS08).
Lecture Notes in Computer Science, vol. 5283. Springer, 548–562.

Fujioka, A., Okamoto, T., and Ohta, K. 1992. A practical secret voting scheme for large scale
elections. In Advances in Cryptology – AUSCRYPT ’92. LNCS, vol. 718. Springer, 244–251.

Goubault-Larrecq, J., Roger, M., and Verma, K. N. 2004. Abstraction and resolution modulo

AC: How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming 64, 2, 219–251.

Küsters, R. and Truderung, T. 2010. Reducing protocol analysis with XOR to the XOR-free

case in the Horn theory based approach. Journal of Automated Reasoning. To appear.

Lowe, G. 1996. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96). LNCS, vol.
1055. Springer-Verlag, 147–166.

Millen, J. and Shmatikov, V. 2001. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In 8th ACM Conference on Computer and Communications Security (CCS’01).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 31

Mödersheim, S. and Viganò, L. 2009. The open-source fixed-point model checker for symbolic

analysis of security protocols. In Fosad 2007-2008-2009. Lecture Notes in Computer Science.
Springer, 166–194.

Seidl, H. and Verma, K. N. 2009. Flat and one-variable clauses for single blind copying protocols:

The xor case. In 20th International Conference on Rewriting Techniques and Applications
(RTA’09). Lecture Notes in Computer Science, vol. 5595. Springer, 118–132.

Shmatikov, V. 2004. Decidable analysis of cryptographic protocols with products and modular

exponentiation. In Proc. 13th European Symposium On Programming (ESOP’04). LNCS, vol.

2986. Springer-Verlag, Barcelona (Spain), 355–369.

Tiu, A. and Dawson, J. E. 2010. Automating open bisimulation checking for the spi calculus. In
23rd Computer Security Foundations Symposium (CSF’10). IEEE Computer Society, 307–321.

Turuani, M. 2006. The CL-Atse Protocol Analyser. In Term Rewriting and Applications - Proc.

of RTA. Lecture Notes in Computer Science, vol. 4098. Seattle, WA, USA, 277–286.

Verma, K. N. 2003. Two-way equational tree automata for AC-like theories: Decidability and
closure properties. In Proc. 14th International Conference on Rewriting Techniques and Ap-

plications (RTA’03). LNCS, vol. 2706. Springer-Verlag, Valencia (Spain), 180–196.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

32 · Mathieu Baudet et al.

A. APPENDIX

Lemma 5.2 (completeness, syntactic deduction). Let (Φ,Ψ) be a state,
M0 � t0 ∈ Φ. Let N , t be two terms such that t ∈ st(t0) and N �Φ t. Then there
exists (Φ′,Ψ′) and N ′ such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—N ′ � t ∈ Φ′ and Ψ′ |= N ./ N ′.

Proof. By hypothesis, we have that N �Φ t. This means that there exists
a public context C and some facts M1 � t1, . . . ,Mn � tn ∈ Φ such that N =
C[M1, . . . ,Mn] and t = C[t1, . . . , tn]. Let C be such a context whose size is minimal.
We show the result by structural induction on C.

Base case: C is reduced to an hole. Let (Φ′,Ψ′) = (Φ,Ψ) and N ′ = N . The result
trivially holds.

Induction step: C = f(C1, . . . , Cr) with f ∈ Fpub of arity r. In such a case, we have
t = f(u1, . . . , ur) and Ci[M1, . . . ,Mn] �Φ ui with ui ∈ st(t0) for each 1 ≤ i ≤ r.
Thus, we can repeatedly apply our induction hypothesis. First for i = 1. Then you
can apply again our induction hypothesis to extend the resulting derivation (with
i = 2), and so on until i = r. At the end, we deduce that there exists (Φ1,Ψ1) and
terms N ′1, . . . N

′
r such that:

—(Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules,

—N ′i � ui ∈ Φ1 and Ψ1 |= Ci[M1, . . . ,Mn] ./ N ′i for each 1 ≤ i ≤ r.

From this we easily deduce that Ψ1 |= N ./ f(N ′1, . . . , N
′
r). We apply one B rule.

We have that M0 � t0, N
′
1 � u1, . . . , N

′
r � ur ∈ Φ1, t = f(u1, . . . , ur) ∈ st(t0) and

f ∈ Fpub. We distinguish two cases:

Rule B.1. Assume that there exists Mt such that Mt � t ∈ Φ1.
Let Φ′ = Φ1, Ψ′ = Ψ1 ∪ {f(N ′1, . . . , N

′
r) ./ Mt} and N ′ = Mt. In order to

conclude it remains to show that Ψ′ |= N ./ N ′. We have Ψ′ |= f(N ′1, . . . , N
′
r) ./ N

′

and Ψ′ |= N ./ f(N ′1, . . . , N
′
r). This allows us to conclude.

Rule B.2 : Assume that for all Mt we have that (Mt � t) 6∈ Φ1.
Let Φ′ = Φ1 ∪ {f(N ′1, . . . , N

′
r) � t}, Ψ′ = Ψ1 and N ′ = f(N ′1, . . . , N

′
r). In order

to conclude it remains to show that Ψ′ |= N ./ N ′. This is an easy consequence of
the fact that Ψ1 |= N ./ f(N ′1, . . . , N

′
r).

Lemma 5.3 (completeness, syntactic equations). Let (Φ,Ψ) be a state,
and M , N be two terms such that M �Φ t and N �Φ t for some term t. Then
there exists (Φ′,Ψ′) such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′) using B rules, and

—Ψ′ |= M ./ N .

Proof. By hypothesis, we have that M �Φ t and N �Φ t for some term t. By
definition of �Φ, we have that

—M = C[M1, . . . ,Mk], N = C ′[N1, . . . , N`] for some contexts C,C ′,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 33

—the facts M1 � t1, . . . ,Mk � tk and N1 � u1, . . . , N` � u` are in Φ,

—C[t1, . . . , tk] = C ′[u1, . . . , u`].

We prove the result by structural induction on C and C ′. We assume w.l.o.g. that
C is smaller than C ′ (in terms of number of symbols).

Base case: C is reduced to a hole. We have that C[M1, . . . ,Mk] = M1. By hypoth-
esis, we have that N �Φ t = t1 and thus t ∈ st(t1). Thanks to Lemma 5.2, there
exists (Φ′,Ψ′) and N ′ such that (Φ,Ψ) =⇒∗ (Φ′,Ψ′) using a B rule, N ′ � t1 ∈ Φ′

and Ψ′ |= N ./ N ′. Since M1 � t1 and N ′ � t1 are both in Φ′, we deduce that
N ′ = M1. Hence we have that N ′ = M and thus we easily conclude.

Induction step: C = f(C1, . . . , Cr) and C ′ = f(C ′1, . . . , C
′
r) where f ∈ Fpub is a

symbol of arity r and C1, . . . , Cr, C
′
1, . . . , C

′
r are contexts. Moreover, we have that

Ci[t1, . . . , tk] = C ′i[u1, . . . , u`] for every 1 ≤ i ≤ r. Thus, we can repeatedly apply
our induction hypothesis. First for i = 1 resulting in a derivation that can then be
extended by applying our induction hypothesis (with i = 2), and so on until i = r.
At the end, we deduce that there exists (Φ′,Ψ′) such that:

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′), and

—Ψ′ |= Ci[M1, . . . ,Mk] ./ C ′i[N1, . . . , N`] for every 1 ≤ i ≤ r.

Hence, we have that Ψ′ |= M ./ N . This allows us to conclude.

The following lemma justifies the notion of decomposition (Definition 4.1) as far
as completeness is concerned.

Lemma A.1 decomposition of a context reduction. Let Φ be a frame,
l a (plain) term, σ a substitution, and M a term such that M �Φ lσ. Then there
exist

—a (n, p, q)-decomposition D of l, written l = D[l1, . . . , ln, y1, . . . yp+q],

—n deduction facts M1 � t1, . . . , Mn � tn in Φ,

—p+ q recipes N1, . . . , Np+q

such that

—for every 1 ≤ i ≤ n, ti = liσ and

—for every 1 ≤ j ≤ p+ q, Nj �Φ yjσ.

In particular, D[M1, . . . ,Mn, N1, . . . Np+q] �Φ lσ.
Besides, if l is a left-hand side of rule in R and Φ is R-reduced, D is a proper

decomposition (i.e. D 6= w1).

Proof. Since M �Φ lσ, by definition there exists C and M0
1 � t01, . . . , M0

m� t0m
in Φ such that M = C[M0

1 , . . . ,M
0
m] and lσ = C[t01, . . . , t

0
m].

Let x1, . . . , xm be fresh variables. Given that C[x1, . . . , xm] and l unify and
have distinct variables, there exists a largest common context D0 such that l =
D0[l01, . . . , l

0
a, y

0
1 , . . . , y

0
b] and C = D0[wj1 , . . . ,wja , D1, . . . , Db] where the terms l0i

are not variables and D0 uses all his parameters: in particular lσ = C[t01, . . . , t
0
m]

means that

—for every 1 ≤ k ≤ a, l0kσ = t0jk , and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

34 · Mathieu Baudet et al.

—for every 1 ≤ k ≤ b, y0
kσ = Dk[t01, . . . , t

0
m]

Let n be the cardinal of {l01, . . . , l0a}. For each distinct li in {l01, . . . , l0a} (1 ≤ i ≤ n),
we choose k in {1, . . . , a} such that li = l0k and define Mi = M0

k and ti = l0kσ = liσ.
Besides, for every k′ such that l0k′ = l0k, we define wk′ = wi.

Let p be the cardinal of {y0
1 , . . . , y

0
b} ∩ var(l1, . . . , ln). For each distinct yj in

{y0
1 , . . . , y

0
b} (1 ≤ j ≤ p), we choose k in {1, . . . , b} such that yj = y0

k and define
Nj = Dk[M0

1 , . . . ,M
0
m]. Besides, for every k′ such that y0

k′ = y0
k, we define wa+k′ =

wp+j .
Let q = b−p. We repeat the same operation for each distinct yj in {y0

1 , . . . , y
0
b}−

var(l1, . . . , ln) (p+ 1 ≤ j ≤ p+ q).
Finally, we let D = D0[w1, . . . , wa+b]. By construction, we have that

—l = D[l1, . . . , ln, y1, . . . yp+q],

—the li are mutually distinct non-variable terms and the yi are mutually distinct
variables.

—yi ∈ var(l1, . . . , ln) iff i ≤ p.
—Mi � ti is in Φ,

—for every 1 ≤ i ≤ n, ti = liσ, and

—for every 1 ≤ j ≤ p+ q, Nj �Φ yjσ.

As for the last sentence, if D is a parameter, so is D0. As l = y0
k is impossible

for a convergent system R, we have D0 = wk with k ≤ a. Hence C = wjk and
t0k = C[t01, . . . , t

0
m] = lσ is not R-reduced.

Lemma 5.4 (completeness, context reduction). Let (Φ,Ψ) be a state and
M , t, t′ be three terms such that M �Φ t and t→R t′. Then, either (Φ,Ψ) =⇒∗ ⊥
or there exist (Φ′,Ψ′), M ′ and t′′ such that

—(Φ,Ψ) =⇒∗ (Φ′,Ψ′),

—M ′ �Φ′ t′′ with t′ →∗R t′′, and

—Ψ′ |= M ./ M ′.

Besides, in both cases, the corresponding derivation from (Φ,Ψ) can be chosen to
consist of a number of B rules, possibly followed by one instance of A rule involving
the same rewrite rule l→ r as the rewrite step t→R t′.

Proof. By hypothesis, there exist a (public) context C and some deduction facts
M0

1 �t
0
1, . . . , M0

m0
�t0m0

∈ Φ such that M = C[M0
1 , . . . ,M

0
m0

] and t = C[t01, . . . , t
0
m0

].
Moreover, there exist a position α, a substitution σ and a rewrite rule l→ r ∈ R

such that t|α = lσ and t′ = t[rσ]α.
We note that α must be a (symbol) position of C since the t0i are R-reduced.

Hence we may write C|α[t01, . . . , t
0
m0

] = lσ. We have that M |α �Φ lσ.
By Lemma A.1, we deduce that there exist

—a proper (n, p, q)-decomposition D of l : l = D[l1, . . . , ln, y1, . . . yp, z1, . . . zq],

—M1 � t1, . . . , Mn � tn in Φ,

—N1, . . . , Np+q

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

YAPA: A generic tool for computing intruder knowledge · 35

such that

—for every 1 ≤ i ≤ n, ti = liσ,

—for every 1 ≤ j ≤ p, Nj �Φ yjσ, and

—for every 1 ≤ k ≤ q, Np+k �Φ zkσ.

In particular, we obtain that

M |α = C|α[M0
1 , . . . ,M

0
m0

] �Φ C|α[t01, . . . , t
0
m0

] = lσ

D[M1, . . . ,Mn, N1, . . . , Np+q] �Φ D[t1, . . . , tn, y1σ, . . . , ypσ, z1σ, . . . , zqσ] = lσ

Thus, by Lemma 5.3, there exists a derivation (Φ,Ψ) =⇒∗ (Φ1,Ψ1) using B rules
such that Ψ1 |= M |α ./ D[M1, . . . ,Mn, N1, . . . , Np+q].

Besides, since yj belongs to var(l1, . . . , ln) by definition of decompositions, yjσ is
a subterm of some liσ = ti. Since Nj�Φyjσ, by applying Lemma 5.2 repeatedly, we
deduce that there exist some terms Mn+1, . . . , Mn+p and a derivation (Φ1,Ψ1) =⇒∗
(Φ2,Ψ2) using B rules such that for all j,

—Mn+j � yjσ is in Φ2, and

—Ψ2 |= Mn+j ./ Nj .

Let N = D[M1, . . . ,Mn+p, Np+1, . . . , Np+q]. We deduce that N �Φ2
lσ, and

Ψ2 |= M |α ./ D[M1, . . . ,Mn, N1, . . . , Np+q] ./ N

We now consider the application to (Φ2,Ψ2) of a A rule that involves the rewrite rule
l→ r, the decomposition D, the plain terms (t1, . . . , tn+p) = (l1, . . . , ln, y1, . . . , yp)σ
and the substitution σ′ = σ|V obtained by restricted the σ to the domain V =
var(l1, . . . , ln) = var(l1, . . . , ln, y1, . . . , yp).

Case A.3. If (rσ′)↓R is not ground and Ctx(Φ+
2 `?

R rσ′) = ⊥ where Φ+
2 =

Φ2 ∪ {z1 � z1, . . . , zq � zq}, then we may conclude that (Φ2,Ψ2) =⇒ ⊥ by an
instance of rule A.3 involving l → r, the decomposition D and the facts M1 �

t1,. . . ,Mn+p � tn+p.

Case A.1. If there exists N0 = Ctx(Φ+
2 `?
R rσ′) where Φ+

2 = Φ2∪{z1�z1, . . . , zq�
zq}. By Property (b) of Ctx, let s0 be such that N0 �Φ+

2
s0 and rσ′ →∗R s0, and

define

—Φ′ = Φ2,

—Ψ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ./ N0},
—M ′ = M [M0]α where M0 = N0 {zi 7→ Np+i}1≤i≤q,
—t′′ = t[t0]α = t′[t0]α where t0 = s0 {zi 7→ ziσ}1≤i≤q.

By construction, we have (Φ2,Ψ2) =⇒ (Φ′,Ψ′) by an instance of rule A.1.
Besides, rσ′ →∗R s0 implies t′|α = rσ →∗R t0 and t′ →∗R t′′.
Given that α ∈ pos(C) (where C is the previously context related to M �Φ t)

and M0 �Φ′ t0, we have that M ′ = M [M0]α �Φ′ t[t0]α = t′′.
It remains to show that Ψ′ |= M ./ M ′. Indeed, we have seen that Ψ2 |= M |α ./

N where N = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. Besides, by definition
of Ψ′, it holds that Ψ′ ⊇ Ψ2 ⊇ Ψ1 and we have that Ψ′ |= D[M1, . . . ,Mn+p, z1, . . . , zq] ./
N0. Therefore, Ψ′ |= M |α ./ M0 and Ψ′ |= M ./ M [M0]α = M ′.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

36 · Mathieu Baudet et al.

Case A.2: if (rσ′)↓R is ground and Ctx(Φ+
2 `?
R rσ′) = ⊥ where Φ+

2 = Φ2 ∪ {z1 �

z1, . . . , zq � zq}, define

—M0 = D[M1, . . . ,Mn+p, a, . . . , a] and t0 = (rσ′)↓R,

—Φ′ = Φ2 ∪ {M0 � t0},
—Ψ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ./ M0},
—M ′ = M [M0]α, and

—t′′ = t[t0]α.

where a is the fixed public constant of rule A.2.
By construction, (Φ2,Ψ2) =⇒ (Φ′,Ψ′) by an instance of the A.2 rule.
Since t0 is ground and σ = σ′σ, we have t0 = (rσ)↓R. Therefore t′ = t[rσ]α →∗R

t[(rσ)↓R]α = t′′.
Given that α ∈ pos(C) and by construction M0 �Φ′ t0, we have M ′ �Φ′ t′′.
It remains to show that Ψ′ |= M ./ M ′. Indeed, we have seen that Ψ2 |= M |α ./

N where N = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. By definition of Ψ′,
it holds that Ψ′ |= N ./ M0 hence Ψ′ |= M ./ M [N]α ./ M [M0]α = M ′.

The additional properties claimed on the derivation are clear from the construction
above.

Received May 2010; revised May 2011; accepted January 2012

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

