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ABSTRACT
In this paper we study conciseness of various extensions of timed automata, and prove
that several features like diagonal constraints or updates lead to exponentially more
concise timed models.
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1. Introduction

Model-checking of real-time systems. Since their introduction by Alur and Dill
in the beginning of the 90’s [2, 3], timed automata are a widely used and studied
model for real-time systems. Since that time, numerous works have been devoted
to the theoretical comprehension of this model. The success of this model is mostly
due to the decidability of reachability properties [3] and to its use in verification,
and more specifically in model-checking [1]. It is worth to notice that based on these
decidability properties, several tools analyzing timed automata have been developed
[9, 14] and successfully used.

Modelling real-time systems. With the motivation to easily model numerous real
systems, many extensions of timed automata have been proposed and studied, among
others extensions of clock constraints [5, 8], extensions of operations on clocks [6], use
of silent actions [4], variation of the slopes of clocks [12, 10, 7]. For such extensions,
several points are of interest: a) the decidability of reachability properties (to use this
model for verification purposes), b) the expressive power (to model a large class of
systems), and c) the conciseness of induced models. The first two points are classical
when studying models for verification purposes: it is fundamental to have models
which can be analyzed and which can represent many real systems (indeed models
used for verification have to be the result of a compromise between expressiveness
and decidability). Point c) is discussed below.
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Conciseness of models. It is most of the time simpler to use high-level features
when modelling real systems (as it is easier to use advanced programming languages
than assembly languages when writing programs). Induced models are often smaller,
which makes modelling less error-prone. Conciseness of features and models is then
an important property. For example it has been proved that LTL with past is as
expressive as classical LTL, but is exponentially more concise [15]. This means that
there are formulas of LTL with past which can only be expressed as formulas in LTL at
an exponential cost in the size of the formulas. On the other hand model-checking LTL
with past is not more difficult than model-checking LTL [16]. Using past modalities
should then always be considered when writing formulas. In the timed framework,
not many works can be found which report conciseness results, the only related work
is the one on concurrent timed automata [13] where relative conciseness of classes of
concurrent timed automata are established.

Contributions of this paper. Diagonal constraints (i.e. constraints of the form
x − y �� c) are commonly used features, and are known to not add expressive power
to classical timed automata [3]. The classical construction for removing diagonal
constraints in a timed automaton [4] nevertheless induces an exponential blowup in the
size of the model. Even though it seems that this construction can not be improved,
it has not been proved yet that this exponential blowup is unavoidable, or if a more
clever construction for removing diagonal constraints can be found. In this paper,
we prove that this is indeed the case, and that models using diagonal constraints are
exponentially more concise than models using only diagonal-free constraints.

Updates of clocks have been studied in [6], and though the general model of updat-
able timed automata is undecidable, several decidable subclasses have been described.
For each such subclass, a construction removing updates (thus transforming updat-
able timed automata into classical timed automata possibly with silent actions) is
proposed, and as for the diagonal constraints, the construction suffers from an expo-
nential blowup in the size of the model, and it was conjectured as unavoidable. In this
paper we prove this conjecture and state that all decidable subclasses of updatable
timed automata described in [6] are indeed exponentially more concise than classical
timed automata (possibly with silent actions).

All our conciseness proofs rely on the fact that with a linear number (in some
integer n) of clocks, when using features like diagonal constraints or updates, it is
possible to count up to 2n with no much structure in the automaton, which can not
be the case with only constraints of the form x �� c and resets to 0.

Plan of the paper. The paper is organized as follows. In Section 2 we present all
basic material that we will need in the following. In Section 3 we present in detail
the conciseness proof for timed automata using diagonal clock constraints. In Section
4 we present the conciseness proofs for updatable timed automata, by distinguishing
the nature of updates which are used: we first study in subsection 4.1 timed automata
using deterministic updates, and then in subsection 4.2 timed automata using non-
deterministic updates.
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2. Preliminaries

Timed words and clocks. If Z is any set, let Z∗ be the set of finite sequences of
elements in Z. We consider as time domain T the set Q+ of non-negative rationals or
the set R+ of non-negative reals and Σ as a finite set of actions. A time sequence over T

is a finite non decreasing sequence τ = (ti)1≤i≤n ∈ T∗. A timed word ω = (ai, ti)1≤i≤n

is an element of (Σ × T)∗, also written as a pair ω = (σ, τ), where σ = (ai)1≤i≤n is a
word in Σ∗ and τ = (ti)1≤i≤n a time sequence in T∗ of same length.

We consider a finite set X of variables, called clocks. A clock valuation over X
is a mapping v : X → T that assigns to each clock a time value. The set of all
clock valuations over X is denoted TX . Let t ∈ T, the valuation v + t is defined by
(v + t)(x) = v(x) + t, ∀x ∈ X.

Clock constraints. Given a set of clocks X, we introduce two sets of clock con-
straints over X. The most general one, denoted by C(X) or simply C, is defined by the
grammar g ::= x �� c | x−y �� c | g∧g where x, y ∈ X, c ∈ Q, and �� ∈{≤, <,=, >,≥}.

We also consider the proper subset of diagonal-free clock constraints, denoted
Cdf (X) or simply Cdf , where constraints of the form x − y �� c are not allowed.
Note that this restricted set of constraints is called diagonal-free because constraints
of the form x − y �� c are called diagonal clock constraints.

Clock constraints are interpreted over clock valuations. The satisfaction relation,
denoted as “v |= g” (g being a clock constraint and v a valuation), is defined by:
v |= x �� c if v(x) �� c, v |= x− y �� c if v(x)− v(y) �� c, and v |= g1 ∧ g2 if v |= g1 and
v |= g2. If g is a clock constraint, we note �g� the set of valuations satisfying g.

Updates. An update is a function from TX to P(TX) which assigns to each valuation
a set of valuations. In this work, updates are restricted according to the following
definitions.

A simple update over a clock z has one of the two following forms: up ::= z :�� c |
z :�� x + c where c ∈ Q, x, z ∈ X, and �� ∈{≤, <,=, >,≥}. Let v be a valuation and
up a simple update over z. A valuation v′ is in up(v) if v′(y) = v(y) for any clock
y �= z and if v′(z) �� c (resp. v′(z) �� v(x)+c) whenever up is z :�� c (resp. z :�� x+c)

In what follows, an update over a set of clocks X is a collection up = (upi)1≤i≤k,
where each upi is a simple update over some clock xi ∈ X. Let v, v′ ∈ Tn be two
clock valuations. Then we say that v′ ∈ up(v) if for all i, the clock valuation vi defined
by vi(xi) = v′(xi) and vi(y) = v(y) for any y �= xi is in upi(v). The set of updates
over the set of clocks X is denoted by U(X).

In classical timed automata [3], updates which are used are only resets, that is
updates of the form z := 0. We denote the set of resets by U0(X) (or simply U0 when
X is clear from the context). General updates have been studied in [6].

Updatable timed automata. We now define the central notion of updatable timed
automata. As we explain in details below, these automata extend the classical family
of Alur & Dill’s timed automata [2, 3].
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An updatable timed automaton over T is a tuple A = (Σ,X,Q, T, I, F ), where: Σ
is a finite alphabet of actions, X is a finite set of clocks, Q is a finite set of states,
T ⊆ Q × [C(X) × (Σ ∪ {ε}) × U(X)] × Q is a finite set of transitions, I ⊆ Q is the
subset of initial states, and F ⊆ Q is the subset of final states. The special action ε
is called silent action and a transition in Q× [C(X)×{ε}×U(X)]×Q is called silent
transition or ε-transition. Such actions will be interpreted in a classical way, see [4]
for formal definitions.

If C ⊆ C(X) is a subset of clock constraints and U ⊆ U(X) a subset of updates, the
class Utaε(C,U) denotes the set of all updatable timed automata in which transitions
only use clock constraints in C and updates in U . The subclass of automata which do
not use silent transitions is simply written Uta(C,U). Classical Alur & Dill’s timed
automata correspond to the class Uta(Cdf (X),U0(X)).

As for timed automata, a behaviour in an updatable timed automaton is obtained
through the notion of paths and runs. Let us fix for the rest of this section an updat-
able timed automaton A. A path in A is a finite sequence of consecutive transitions
P = q0

g1,a1,up1−−−−−−→ q1 . . .
gp,ap,upp−−−−−−→ qp where (qi−1, gi, ai, upi, qi) ∈ T for all i > 0. The

path is said to be accepting if it starts in an initial state (q0 ∈ I) and ends in a final
state (qp ∈ F ).

A run through the path P from the clock valuation v0, with v0(x) = 0 for
any clock x, is a sequence of the form 〈q0, v0〉 a1−−−→

τ1
〈q1, v1〉 . . .

ap−−−→
τp

〈qp, vp〉
where τ = (τi)i≥0 is a time sequence and (vi)i≥0 are clock valuations such that{

vi−1 + (τi − τi−1) |= ϕi

vi ∈ upi (vi−1 + (τi − τi−1))
with τ0 = 0. Note that any set upi(vi−1 + (τi − τi−1))

of a run has to be non empty.
The label of such a run is the timed word w = (a1, τ1)(a2, τ2) . . . If the path P is

accepting, then this timed word is said to be accepted by A. The set of all timed
words accepted by A is denoted by L(A).

Conciseness of classes of automata. Let A be a timed automaton. The size of
A, denoted Size(A), is the length of its encoding (states and transitions) on the tape
of a Turing Machine (in particular we suppose a binary encoding for constants).

Let S and S ′ be two classes of timed automata. The class S is said exponentially
more concise than the class S ′ whenever there exists a sequence of timed automata
(An)n≥0 in S of polynomial size in n such that for any sequence of timed automata
(Bn)n≥0 such that L(An) = L(Bn), Size(Bn) is at least exponential in n.

3. Conciseness of Timed Automata with Diagonal Constraints

Diagonal constraints have been introduced in the seminal paper [3]. It’s a folklore
knowledge that timed automata with diagonal constraints are not more expressive
than diagonal-free timed automata. This is formally stated by the following proposi-
tion, whose proof can be found in [4].
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Proposition 1 For every timed automaton A in the class Uta(C,U0), there exists a
timed automaton B in Uta(Cdf ,U0) such that L(A) = L(B).

The construction presented in [4] suffers from an exponential blowup of the number
of states. The question of whether this exponential blowup is unavoidable or not
was an open problem, even if intuition was that this blowup could not be avoided.
Conciseness results are known in the context of concurrent timed automata [13], but
they do not apply to classical timed automata as concurrent timed automata are
already exponentially more succinct than timed automata. We answer positively to
the aforementioned intuition and prove the following result:

Theorem 2 The class Uta(C,U0) is exponentially more concise than the class
Uta(Cdf ,U0).

To prove this theorem we define a family of languages (Ln)n≥0 as follows:

Ln = {(a2n

, τ) | 0 < τ1 < τ2 < · · · < τ2n < 1}
We then prove two properties: (i) we can construct timed automata (An)n≥0 in
Uta(C,U0) such that L(An) = Ln and Size(An) ∈ O(n2. log n), and (ii) for every
timed automaton Bn in Uta(Cdf ,U0) such that L(Bn) = Ln, Size(Bn) ≥ 2n.

Lemma 3 For every n ≥ 0, the language Ln is recognized by a timed automaton An

of Uta(C,U0) such that Size(An) ∈ O(n2. log n).

Proof. Fix an integer n ≥ 0. We construct a timed automaton An with diagonal
constraints which has 2 states, 2n + 2 clocks (denoted {xi, x

′
i}1≤i≤n, y and z), n + 1

transitions, and which uses constants 0 and 1. The idea of the construction is to
encode with clocks a binary counter c. This counter will take values between 0 and
2n − 1 and will count the number of a’s which are done along a computation. The
binary encoding b1b2 · · · bn of c (least significant bit first) will be related to the value
of A’s clocks in the following way: bi = 1 if xi−x′

i > 0 while bi = 0 if xi−x′
i = 0 (these

two conditions are invariant when time elapses). Automaton An will then increment
counter c each time an action a is done, until value of c reaches 2n − 1, and do a last
a. The general shape of An is depicted on Figure 1. Now we just need to explain
how we can increment and test counter c. We will ensure that the time sequence is
increasing using clock y which will be checked (y > 0) and reset on every transition.
We will ensure that the global time is bounded by 1 by adding a constraint z < 1 on
every transition (this clock z will never be reset). We now abstract away clocks y and
z and concentrate on the encoding of counter c.

Incrementing counter c encoded by b1b2 · · · bn can be done as follows: if the j − 1
first bits are equal to 1 and if the jth bit is 0, then we only need to set bits (bi)1≤i≤j−1

to 0 and bit bj to 1. Transitions we use to increment c are then the following: for
every 1 ≤ j ≤ n there is a loop on state � of An labelled by (gj , a, Yj) where


gj is

∧j−1
i=1 (xi − x′

i > 0) ∧ (xj − x′
j = 0)

Yj is
⋃j−1

i=1{xi, x
′
i} ∪ {x′

j}
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� �′

increment c

test c = 2n − 1

Figure 1: Shape of automaton recognizing Ln

Constraint gj precisely checks that the j − 1 first bits are 1 whereas the jth bit is
0. Resetting both clocks xi and x′

i ensures that the constraint xi − x′
i = 0 will be

satisfied (this encodes bi = 0). On the other hand, resetting clock x′
j but not xj will

ensure the constraint xj − x′
j > 0 as time is strictly increasing between two a’s. The

value of all bits bi (for i > j) remains unchanged.
When counter c equals 2n − 1 and an a is read, automaton An leaves state � and

goes to �′: there is a transition from � to �′ labelled (g′, a, ∅) where g′ is the constraint∧n
i=1(xi − x′

i > 0).
Note that automaton An is deterministic. It is then easy to check that An recog-

nizes the language Ln: if the timed word (ap, τ) can be read in An, then τ is a strictly
increasing time sequence bounded by 1, and two cases may arise:

• either p < 2n, and the current configuration of An is (�, vp) where vp is a
valuation of the clocks corresponding to the binary encoding b1b2 · · · bn of p:
vp(xi) − vp(x′

i) = 0 if bi = 0 and vp(xi) − vp(x′
i) > 0 if bi = 1.

• or p = 2n, and final state has been reached.

We now evaluate the size of An: there are n loops on state � and one transition from
state � to �′. On one loop (or transition), there are at most n diagonal constraints,
each constraint can be encoded using O(log n) space. The size of An is thus in
O(n2. log n). �

Lemma 4 For every n ≥ 0, if Bn is a timed automaton of Uta(C,U0) which recog-
nizes Ln, then Size(Bn) ≥ 2n.

Proof. We show that Bn has at least 2n states by contradiction. Suppose that Bn has
strictly less than 2n states, and note m the smallest positive constant among 1 and
constants appearing in some constraint of Bn. Consider a timed word w = (a2n

, τ)
such that 0 < τ1 < · · · < τ2n < m. This word is accepted by Bn along a path
P = q0

g1,a,Y1−−−−→ q1 . . .
g2n ,a,Y2n−−−−−−→ q2n . We assume that the run accepting w through

P is 〈q0, v0〉 a−−→
τ1

〈q1, v1〉 . . .
a−−→

τ2n
〈q2n , v2n〉. For every 0 ≤ i < 2n, for every clock

x, vi(x) + τi+1 − τi ∈]0,m[, which implies that ]0,m[X⊆ �gi�. As Bn has strictly
less than 2n states, there exist 0 ≤ i < j ≤ 2n such that qi = qj . Consider a
timed word w′ = (a2n−(j−i), τ ′) such that 0 < τ ′

1 < · · · < τ ′
2n−(j−i) < m. Using

the fact that ]0,m[X⊆ �g� for every guard g appearing along path P , we get that
there is an accepting run for w′ through the path P ′ = q0

g1,a,Y1−−−−→ q1 . . .
gi,a,Yi−−−−→ qi =

qj
gj+1,a,Yj+1−−−−−−−→ . . . q2n . We thus get that Bn accepts a word of length strictly less than

2n, which can not be the case. This concludes the proof of Lemma 4. �
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Remark. If we now consider the language

{(ai, τ) | 2n ≤ i < 2n+1 and 0 < τ1 < · · · < τi < 1}

which is a slight modification of Ln, we can prove that the construction of [4] is “op-
timal”: the size of any timed automaton from Uta(Cdf ,U0) recognizing the language
above has at least 2n+1 states, while it can be recognized by a timed automaton from
Uta(C,U0) with only two states and n different diagonal constraints. Removing di-
agonal constraints in the previous automaton using the construction in [4] leads to a
timed automaton from Uta(Cdf ,U0) with 2n+1 states.

4. Conciseness of Updatable Timed Automata

Decidability and expressiveness of updatable timed automata have been studied in
[6]. Though the whole class of updatable timed automata is undecidable, several sub-
classes have been proved decidable (a class is said decidable if the emptiness problem
(or equivalently the reachability problem) for this class is decidable). For every timed
automaton in those subclasses, it has been proved that there exists a classical timed
automaton (possibly with ε-transitions) which recognizes the same timed language.
Constructions presented in [6] suffer however from an exponential blowup of the num-
ber of states, and it was conjectured that this exponential blowup was unavoidable.
In this section we prove this conjecture. We now distinguish two cases, depending on
the nature of updates which are used.

4.1. Case of Deterministic Updates

We define several sets of updates: (i) Ux:=y is the set of updates of the form x := y
and of resets of clocks, (ii) Ux:=1 is the set of updates of the form x := 1 and of resets
of clocks, and (iii) Ux:=y+1 is the set of updates of the form x := y + 1 and of resets
of clocks.

Proposition 5 ([6]) The three classes Uta(Cdf ,Ux:=y), Uta(Cdf ,Ux:=1),
Uta(Cdf ,Ux:=y+1) are decidable. Moreover, for every timed automaton A in
one of the classes Uta(Cdf ,Ux:=y), Uta(Cdf ,Ux:=1), or Uta(Cdf ,Ux:=y+1), there
exists a timed automaton B in Uta(Cdf ,U0) such that L(A) = L(B).

As in the previous section, the above-mentioned timed automaton B suffers from
an exponential blowup of the number of states. The next theorems state that this
exponential blowup is indeed unavoidable.

Theorem 6 The two classes Uta(Cdf ,Ux:=1) and Uta(Cdf ,Ux:=y+1) are exponen-
tially more concise than Uta(Cdf ,U0).

Proof. In both cases we use the sequence (Ln)n≥0 of languages already considered
in Section 3. In Lemma 4 we have shown that any timed automaton in Uta(Cdf ,U0)
which recognizes Ln has at least 2n states. We thus only need to show that Ln can
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be recognized by timed automata in Uta(Cdf ,Ux:=1) (resp. in Uta(Cdf ,Ux:=y+1)) of
polynomial size. We use the same technics as the ones used in the proof of Lemma
3: we encode with clocks a binary counter which counts the number of a’s which are
read.

The shape of automaton An we will construct is the same as the one used in the
proof of Lemma 3 (depicted on Figure 1). Automaton An has 2 states, n + 2 clocks
(denoted {xi}i=1..n, y and z), n + 1 transitions and uses constants 0 and 1. Clocks
y and z are used in a similar way as in the proof of Lemma 3. The binary encoding
b1b2 · · · bn of the counter is done using clocks as follows: the value of bit bi is encoded
using a single clock xi, and bi = 0 if xi < 1 whereas bi = 1 if xi ≥ 1. To set bit bi

to 1, we use update xi := 1 (resp. xi := xi + 1), whereas to set bit bi to 0, we use
in both cases the reset xi := 0. It is then easy to implement the increment of the
counter and to test the value of the counter. We do not enter into more details, and
only mention that the size of the automaton we construct is in O(n2. log n). �

To show that the class Uta(Cdf ,Ux:=y) is exponentially more concise that classical
timed automata, we have to use another method, as languages (Ln)n≥0 cannot be
recognized by timed automata of polynomial size even using updates of the form
x := y. The intuition is that, even if we can use updates x := y, if time elapsed is
small, all values of clocks will remain small (which is for example not the case with
updates of the form x := 1). The following theorem is however true, but this will
require a more involved proof.

Theorem 7 The class Uta(Cdf ,Ux:=y) is exponentially more concise than the class
Uta(Cdf ,U0).

We now consider the timed languages (L′
n)n≥0 where

L′
n = {(a2n

, τ) | 1 ≤ τ1 ≤ ... ≤ τ2n < 2}

The proof of Theorem 7 then relies on the two following lemmas.

Lemma 8 For every n ≥ 0, there exists a timed automaton An in Uta(Cdf ,Ux:=y)
which recognizes L′

n such that Size(An) is in O(n2. log n).

Proof. As before we use a binary counter c encoded with n clocks (xi)i=1..n. The
binary encoding of counter c is written as b1b2 · · · bn, and we will have that bi = 1
whenever the value of xi is greater than 1, and we will have that bi = 0 whenever the
value of xi is strictly less than 1. We also use another clock y which is never reset and
which will be used to check that the time sequence is between 1 and 2. The shape
for an automaton recognizing L′

n is the same as the one for Ln and is thus depicted
on Figure 1; we only need to add a constraint 1 ≤ y < 2 on every transition of the
automaton. It remains to explain how we increment a bit of the encoding of counter
c. To set bi to 1 we use the update xi := y (as the value of y is always in the interval
[1, 2[, the new value of xi will also be in [1, 2[) and to set bi to 0 we reset clock xi.
Incrementing counter c or testing the value of counter c is done in a similar way as
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in Lemma 3 (propagating the carry). The size of the resulting automaton is also in
O(n2. log n). �

We now show that if Bn is a timed automaton of Uta(Cdf ,U0) which recognizes L′
n,

then Size(Bn) ≥ 2n. Contrary to Lemma 4 it may be the case that Bn has less than
2n states. Indeed there exists a timed automaton with two states but 2n − 1 clocks
which recognize L′

n: each time an a is done, one clock is reset, and the execution
terminates and goes to final state when all clocks are below 1 (which means that all
clocks have been reset once, and thus that a2n−1 have already be done. We will then
prove the following lemma which takes into account both the number of states and
the number of clocks used in the automaton.

Lemma 9 Let n ≥ 0. If Bn is a timed automaton of Uta(Cdf ,U0) with k clocks and
l states which recognizes L′

n, then (k + 1)l > 2n.

Proof. We show this lemma by contradiction. Suppose that (k+1)l ≤ 2n and note m
the common denominator of constants appearing in Bn. Consider a word w = (a2n

, τ)
such that 1 < τ1 < τ2 < · · · < τ2n < 1 + 1

m . Let r = 〈q0, v0〉 a−−→
t1

〈q1, v1〉 . . .
a−−→

t2n

〈qp, v2n〉 be an accepting run for w. First notice that for all index i and clock x, vi(x) is
either smaller than 1

m or between 1 and 1+ 1
m . From this remark we associate to each

valuation vi a vector in {0, 1}k, denoted π(vi), such that π(vi)h = 0 if vi(xh) ∈ [0, 1
m [

and π(v)h = 1 if vi(xh) ∈]1, 1 + 1
m [. It is easy to see that for each 1 ≤ i < 2n,

π(vi+1) ≤ π(vi) (in the sense that for every 1 ≤ h ≤ k, π(vi+1)h ≤ π(vi)h). As
π(vi) is decreasing, there are at most (k + 1)l possible pairs (qi, π(vi)) along run r.
Since we have assumed that (k + 1)l ≤ 2n, there exist two indices i < j such that
(qi, π(vi)) = (qj , π(vj)). As in the proof of Lemma 4, we can remove the transitions
in-between states qi and qj and get an accepting run with length less than 2n, which
is not possible. This concludes the proof of Lemma 9. �

It then follows that every automaton Bn which recognizes L′
n is at least of size 2

n
2 ,

which concludes the proof of Theorem 7.

4.2. Case of Non-Deterministic Updates

We distinguish several sets of non-deterministic updates: (i) Ux:<1 is the set of updates
which allow updates of the form x :< 1 and resets of clocks, (ii) Ux:>1 is the set of
updates which allow updates of the form x :> 1 and resets of clocks, (iii) Ux:<y is
the set of updates which allow updates of the form x :< y and resets of clocks, and
(iv) Ux:>y is the set of updates which allow updates of the form x :> y and resets of
clocks.

Proposition 10 ([6]) For every timed automaton A in one of the classes
Uta(Cdf ,Ux:<1), Uta(Cdf ,Ux:>1), Uta(Cdf ,Ux:<y) or Uta(Cdf ,Ux:>y) there exists a
timed automaton B in Utaε(Cdf ,U0) such that L(A) = L(B).

As previously, the above-mentioned timed automaton B suffers from an exponential
blowup of the number of states, which we will prove is unavoidable.
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Theorem 11 The four classes Uta(Cdf ,Ux:<1), Uta(Cdf ,Ux:>1), Uta(Cdf ,Ux:<y)
and Uta(Cdf ,Ux:>y) are exponentially more concise than Utaε(Cdf ,U0).

We will prove that Uta(Cdf ,Ux:<1) is exponentially more concise than
Utaε(Cdf ,U0), similar proofs can be written for the other classes. We will use the
languages Ln = {(a2n

, τ) | 0 < τ1 < τ2 < · · · < τ2n < 1}. The proof of Theorem 11
then relies on the two following lemmas.

Lemma 12 For every n ≥ 0, there exist timed automata (An)n≥0 in Uta(Cdf ,Ux:<1)
such that An recognizes Ln and Size(An) is in O(n3. log n).

Proof. As in some previous proofs, we will encode the value of a binary counter c
with n clocks (xi)i=1..n. Roughly the encoding b1b2 · · · bn of counter c will be such
that bi = 1 whenever xi ≥ 1 and bi = 0 whenever xi < 1. Setting bit bi to 0 is easy:
we only need to reset clock xi. Setting bit bi to 1 needs a more involved construction:
we use update xi :< 1 which assigns non-deterministically to xi a value less than 1,
and we will check on the next transition that the value which has been assigned to xi

was close enough to 1 by checking xi ≥ 1. Automaton An then needs several states
to remember what clock has just been updated (or equivalently what bit bi has been
updated to 1).

Automaton An will have n+2 states: an initial state, a final state, and one state for
each carry which is propagated. State i is there to remember that bit bi has just been
set to 1 when the last a has happened. This mechanism is depicted below (we do not
write other constraints for propagating carries, but this is similar to the construction
done in previous proofs).

i
. . . , a, xi :< 1∧i−1

j=1 xj := 0

xi ≥ 1 ∧ . . . , a, . . .

The complete automaton for L3 is given in Example 13.
To prove correctness of the above construction, we define the application π which

associates to each valuation v ∈ TX a value of counter c (in set {0, . . . , 2n − 1}) as
follows: the binary encoding of c is b1b2 · · · bn where bi = 1 whenever xi ≥ 1 and
bi = 0 whenever xi < 1. It is then easy to show the two properties below (we omit
the proofs here):

(i) If r = 〈q0, v0〉 a−−→
τ1

〈q1, v1〉 . . .
a−−→
τp

〈qp, vp〉 is an accepting run in An, then for

every 1 ≤ i < p, π(vi + τi+1 − τi) = i, and p = 2n.
(ii) If (σ, τ) ∈ Ln and δ = inf{τi+1 − τi | 1 ≤ i < 2n}, there is an accepting run for

(σ, τ) in An which assigns the value 1 − δ to clock xi when there is an update
xi :< 1 which is used.

Automaton An we have constructed has n + 2 states, n + 2 clocks (clocks (xi)1≤i≤n

above and two clocks y and z to ensure that the time sequence is strictly increasing
and remains in the interval ]0, 1[), at most n2 + 2 transitions, each transition has size
at most n. log n, the size of An is thus in O(n3. log n). This concludes the proof of
Lemma 12. �
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Example 13 The following automaton recognizes the language L3. Implicitly, on
each transition there is a guard y > 0 ∧ z < 1, and a reset y := 0 which enforces the
time sequence to be strictly increasing and bounded by 1.

1

23

a, x1 :< 1 x1, x2, x3 ≥ 1, a

x1 ≥ 1, x2 < 1
a

x1 := 0, x2 :< 1

x1, x2 ≥ 1, x3 < 1
a

x1, x2 := 0, x3 :< 1

x1 < 1, x3 ≥ 1
a

x1 :< 1

x1, x2 ≥ 1
x3 < 1

a

x1, x2 := 0
x3 :< 1

x1, x3 ≥ 1, x2 < 1, a

x1 := 0, x2 :< 1

x1 < 1
x2 ≥ 1

a

x1 :< 1

Lemma 14 Let n ≥ 0. If Bn is a timed automaton of Utaε(Cdf ,U0) which recognizes
Ln, then Size(Bn) ≥ 2n.

Proof. Note that we proved a close result (but in the case of timed automata without
ε-transitions) in Lemma 4. We now show that it remains true even when ε-transitions
are allowed.

Suppose that Bn has strictly less than 2n states, and note m the smallest positive
constant of Bn. We consider a word w = (a2n

, τ) such that 0 < τ1 < · · · < τ2n < m.
This word is accepted by Bn: there exists an accepting path in Bn for w. We will
show that we can remove a loop of this path, but we have to be careful when choosing
the loop, as all loops cannot be removed (which was not the case when ε-transitions
were not allowed). Consider an accepting run for w: before the first a and between
two consecutive a’s, some time has elapsed, so there is a state qi where Bn waits a
positive amount of time before taking the next (possibly ε) transition. Consider these
2n states (qi)i=1..2n , there exist i < j such that qi = qj . We can remove the loop
between qi and qj because the clock valuations before the ith(resp. jth)-transition
satisfy the following property: ∀x ∈ X 0 < v(x) < m; so the guards satisfied along
the runs with and without the loop will be the same. �

5. Conclusion

In this paper we have studied conciseness of several extensions of timed automata
(using diagonal constraints, or updates), and we have proved that all these exten-
sions, though decidable and not more expressive than classical timed automata, are
exponentially more concise, which means that models that we can build using these
features may be exponentially smaller than models based on classical timed automata.
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An example of system which can be modelled in a natural way using these features are
task scheduling problems, see for example [11]. In this case both diagonal constraints
and updates are used, and an equivalent model using only non diagonal constraints
and resets would be much bigger. Some of the updates (for example updates of the
form x := c) and diagonal constraints can be used in Uppaal [14], and we thus
encourage people to use such features for modelling real systems.
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