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Abstract. Networks of timed automata (NTA) are widely used to model
distributed real-time systems. Quite often in the literature, the automata
are allowed to share clocks. This is a problem when one considers imple-
menting such model in a distributed architecture, since reading clocks a
priori requires communications which are not explicitly described in the
model. We focus on the following question: given a NTA A1 ‖ A2 where
A2 reads some clocks reset by A1, does there exist a NTA A′

1 ‖ A′
2 with-

out shared clocks with the same behavior as the initial NTA? For this,
we allow the automata to exchange information during synchronizations
only. We discuss a formalization of the problem and give a criterion us-
ing the notion of contextual timed transition system, which represents
the behavior of A2 when in parallel with A1. Finally, we e�ectively build
A′

1 ‖ A′
2 when it exists.

Keywords: networks of timed automata, shared clocks, implementation
on distributed architecture, contextual timed transition system, behav-
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1 Introduction

Timed automata [3] are one of the most famous formal models for real-time
systems. They have been deeply studied and very mature tools are available,
like Uppaal [22], Epsilon [16] and Kronos [13].

Networks of Timed Automata (NTA) are a natural generalization to model
real-time distributed systems. In this formalism each automaton has a set of
clocks that constrain its real-time behavior. But quite often in the literature,
the automata are allowed to share clocks, which provides a special way of mak-
ing the behavior of one automaton depend on what the others do. Actually
shared clocks are relatively well accepted and can be a convenient feature for
modeling systems. Moreover, since NTA are almost always given a sequential se-
mantics, shared clocks can be handled very easily even by tools: once the NTA is
transformed into a single timed automaton by the classical product construction,
the notion of distribution is lost and the notion of shared clock itself becomes
meaningless. Nevertheless, implementing a model with shared clocks in a dis-
tributed architecture is not straightforward since reading clocks a priori requires
communications which are not explicitly described in the model.
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Our purpose is to identify NTA where sharing clocks could be avoided,
i.e. NTA which syntactically use shared clocks, but whose semantics could be
achieved by another NTA without shared clocks. We are not aware of any previ-
ous study about this aspect. To simplify, we look at NTA made of two automata
A1 and A2 where only A2 reads clocks reset by A1. The �rst step is to formalize
what aspect of the semantics we want to preserve in this setting. Then the idea
is essentially to detect cases where A2 can avoid reading a clock because its
value does not depend on the actions that are local to A1 and thus unobservable
to A2. To generalize this idea we have to compute the knowledge of A2 about
the state of A1. We show that this knowledge is maximized if we allow A1 to
communicate its state to A2 each time they synchronize on a common action.

In order to formalize our problem we need an appropriate notion of behavioral
equivalence between two NTA. We explain why classical comparisons based on
the sequential semantics, like timed bisimulation, are not su�cient here. We need
a notion that takes the distributed nature of the system into account. That is, a
component cannot observe the moves and the state of the other and must choose
its local actions according to its partial knowledge of the state of the system.
We formalize this idea by the notion of contextual timed transition systems
(contextual TTS).

Then we express the problem of avoiding shared clocks in terms of contextual
TTS and we give a characterization of the NTA for which shared clocks can be
avoided. Finally we e�ectively construct a NTA without shared clocks with the
same behavior as the initial one, when this is possible. A possible interest is
to allow a designer to use shared clocks as a high-level feature in a model of a
protocol, and rely on our transformation to make it implementable.

Related work. The semantics of time in distributed systems has already been
debated. The idea of localizing clocks has already been proposed and some au-
thors [1,6,19] have even suggested to use local-time semantics with independently
evolving clocks. Here we stay in the classical setting of perfect clocks evolving
at the same speed. This is a key assumption that provides an implicit synchro-
nization and lets us know some clock values without reading them.

Many formalisms exist for real-time distributed systems, among which
NTA [3] and time Petri nets [24]. So far, their expressiveness was com-
pared [7, 12, 15, 26] essentially in terms of sequential semantics that forget con-
currency. In [5], we de�ned a concurrency-preserving translation from time Petri
nets to networks of timed automata.

While partial-order semantics and unfoldings are well known for untimed sys-
tems, they have been very little studied for distributed real-time systems [11,14].
Partial order reductions for (N)TA were proposed in [6,23,25]. Behavioral equiva-
lence relations for distributed systems, like history-preserving bisimulations were
de�ned for untimed systems only [8, 20].

Finally, our notion of contextual TTS deals with knowledge of agents in distri-
buted systems. This is the aim of epistemic logics [21], which have been extended
to real-time in [18,27]. Our notion of contextual TTS also resembles the technique
of partitioning states used in timed games with partial observability [9, 17].



Organization of the paper. The paper is organized as follows. Section 2 recalls
basic notions about TTS and NTA. Section 3 presents the problem of avoiding
shared clocks on examples and rises the problem of comparing NTA component
by component. For this, the notion of contextual TTS is developed in Section 4.
The problem of avoiding shared clocks is formalized and characterized in terms
of contextual TTS. Then Section 5 presents our construction.

The proofs are given in a research report [4].

2 Preliminaries

2.1 Timed Transition Systems

The behavior of timed systems is often described as timed transition systems.

De�nition 1. A timed transition system (TTS) is a tuple (S, s0, Σ,→) where
S is a set of states, s0 ∈ Q is the initial state, Σ is a �nite set of actions disjoint
from IR≥0, and → ⊆ S × (Σ ∪ IR≥0)× S is a set of edges.

For any a ∈ Σ ∪ IR≥0, we write s
a−→ s′ if (s, a, s′) ∈ →, and s

a−→ if for some
s′, (s, a, s′) ∈ →. A path of a TTS is a possibly in�nite sequence of transitions

ρ = s
d0−→ s′0

a0−→ · · · sn
dn−→ s′n

an−−→ · · ·, where, for all i, di ∈ IR≥0 and ai ∈ Σ.

A path is initial if it starts in s0. A path ρ = s
d0−→ s′0

a0−→ · · · sn
dn−→ s′n

an−−→
s′n · · · generates a timed word w = (a0, t0)(a1, t1) . . . (an, tn) . . . where, for all i,

ti =
∑i

k=0 dk. The duration of w is δ(w) = supi ti and the untimed word of w
is λ(w) = a0a1 . . . an . . ., and we denote the set of timed words over Σ and of

duration d as TW(Σ, d) = {w | δ(w) = d∧ λ(w) ∈ Σ∗}. Lastly, we write s w−→ s′

if there is a path from s to s′ that generates the timed word w.
In the following de�nitions, we use two TTS T1 = (S1, s

0
1, Σ1,→1) and T2 =

(S2, s
0
2, Σ2,→2), and Σ

6ε
i denotes Σi \ {ε}, where ε is the silent action.

Product of TTS. The product of T1 and T2, denoted by T1 ⊗ T2, is the TTS(
S1 × S2, (s

0
1, s

0
2), Σ1 ∪Σ2,→

)
, where → is de�ned as:

� (s1, s2)
a−→ (s′1, s2) i� s1

a−→1 s
′
1, for any a ∈ Σ1 \Σ 6ε2 ,

� (s1, s2)
a−→ (s1, s

′
2) i� s2

a−→2 s
′
2, for any a ∈ Σ2 \Σ 6ε1 ,

� (s1, s2)
a−→ (s′1, s

′
2) i� s1

a−→1 s
′
1 and s2

a−→2 s
′
2, for any a ∈ (Σ 6ε1 ∩Σ

6ε
2) ∪ IR≥0.

Timed Bisimulations. Let ≈ be a binary relation over S1×S2. We write s1 ≈ s2
for (s1, s2) ∈ ≈. ≈ is a strong timed bisimulation relation between T1 and T2 if

s01 ≈ s02 and s1 ≈ s2 implies that, for any a ∈ Σ ∪ IR≥0, if s1
a−→1 s

′
1, then, for

some s′2, s2
a−→2 s

′
2 and s′1 ≈ s′2; and conversely, if s2

a−→2 s
′
2, then, for some s′1,

s1
a−→1 s

′
1 and s′1 ≈ s′2.

Let ⇒i (for i ∈ {1, 2}) be the transition relation de�ned as:

� s
ε
=⇒i s

′ if s(
ε−→i)
∗s′,

� ∀a ∈ Σ, s
a
=⇒i s

′ if s(
ε−→i)
∗ a−→i (

ε−→i)
∗s′,

� ∀d ∈ IR≥0, s
d
=⇒i s

′ if s(
ε−→i)
∗ d0=⇒i (

ε−→i)
∗ · · · dn=⇒i (

ε−→i)
∗s′, where

∑n
k=0 dk = d.



Then, ≈ is a weak timed bisimulation relation between T1 and T2 if s01 ≈ s02
and s1 ≈ s2 implies that, for any a ∈ Σ ∪ IR≥0, if s1

a−→1 s
′
1, then, for some s′2,

s2
a
=⇒2 s

′
2 and s′1 ≈ s′2; and conversely. We write T1 ≈ T2 (resp. T1 ∼ T2) when

there is a strong (resp. weak) timed bisimulation between T1 and T2.

2.2 Networks of Timed Automata

The set B(X) of clock constraints over the set of clocks X is de�ned by the
grammar g ::= x ./ k | g ∧ g, where x ∈ X, k ∈ IN and ./ ∈ {<,≤,=,≥, >}.
Invariants are clock constraints of the form i ::= x ≤ k | x < k | i ∧ i.
De�nition 2. A network of timed automata (NTA) [3] is a parallel composition
A1 ‖ · · · ‖ An of timed automata (TA), with Ai = (Li, `

0
i , Xi, Σi, Ei, Inv i) where

Li is a �nite set of locations, `0i ∈ Li is the initial location, Xi is a �nite set of
clocks, Σi is a �nite set of actions, Ei ⊆ Li ×B(Xi)×Σi × 2Xi ×Li is a set of
edges, and Inv i : Li → B(Xi) assigns invariants to locations.

If (`, g, a, r, `′) ∈ Ei, we also write `
g,a,r−−−→ `′. For such an edge, g is the guard, a

the action and r the set of clocks to reset. Ci ⊆ Xi is the set of clocks reset by
Ai and for i 6= j, Ci ∩ Cj may not be empty.

Semantics. To simplify, we give the semantics of a network of two TA A1 ‖ A2.
We denote by ((`1, `2), v) a state of the NTA, where `1 and `2 are the current
locations, and v : X → IR≥0, with X = X1 ∪X2, is a clock valuation that maps
each clock to its current value. A state is legal only if its valuation v satis�es
the invariants of the current locations, denoted by v |= Inv1(`1) ∧ Inv2(`2).
For each set of clocks r ⊆ X, the valuation v[r] is de�ned by v[r](x) = 0 if
x ∈ r and v[r](x) = v(x) otherwise. For each d ∈ IR≥0, the valuation v + d is
de�ned by (v + d)(x) = v(x) + d for each x ∈ X. Then, the TTS generated by
A1 ‖ A2 is TTS(A1 ‖ A2) = (S, s0, Σ1∪Σ2,→), where S is the set of legal states,
s0 = ((`01, `

0
2), v0), where v0 maps each clock to 0, and → is de�ned by

� Local action: ((`1, `2), v)
a−→ ((`′1, `2), v

′) i� a ∈ Σ1 \ Σ 6ε2 , `1
g,a,r−−−→ `′1, v |= g,

v′ = v[r] and v′ |= Inv1(`
′
1), and similarly for a local action in Σ2 \Σ 6ε1 ,

� Synchronization: ((`1, `2), v)
a−→ ((`′1, `

′
2), v

′) i� a 6= ε, `1
g1,a,r1−−−−→ `′1,

`2
g2,a,r2−−−−→ `′2, v |= g1 ∧ g2, v′ = v[r1 ∪ r2] and v′ |= Inv1(`

′
1) ∧ Inv2(`

′
2),

� Time delay: ∀d ∈ IR≥0, ((`1, `2), v)
d−→ ((`1, `2), v+ d) i� ∀d′ ∈ [0, d], v+ d′ |=

Inv1(`1) ∧ Inv2(`2).

A run of a NTA is an initial path in its TTS. The semantics of a TA A
alone can also be given as a TTS denoted by TTS(A) with only local actions
and delay. A TA is non-Zeno i� for every in�nite timed word w generated by a
run, time diverges (i.e. δ(w) =∞). This is a common assumption for TA. In the
sequel, we always assume that the TA we deal with are non-Zeno.

Remark 1. Let A1 ‖ A2 be such that X1 ∩X2 = ∅. Then TTS(A1)⊗TTS(A2) is
isomorphic to TTS(A1 ‖ A2). This is not true in general when X1 ∩X2 6= ∅. For
example, in Fig. 2, performing (b, 0.5)(e, 1) is possible in TTS(A1) ⊗ TTS(A2)
but not in TTS(A1 ‖ A2), since b resets x which is tested by e.



A1

x ≤ 2

A2

x ≥ 1, a, {x} x ≤ 2 ∧ y ≤ 3, b

Fig. 1. A2 could avoid reading clock x which belongs to A1.

3 Need for Shared Clocks

3.1 Problem Setting

We are interested in detecting the cases where it is possible to avoid sharing
clocks, so that the model can be implemented using no other synchronization
than those explicitly described by common actions.

To start with, let us focus on a network of two TA, A1 ‖ A2, such that A1

does not read the clocks reset by A2, and A2 may read the clocks reset by A1. We
want to know whether A2 really needs to read these clocks, or if another NTA
A′1 ‖ A′2 could achieve the same behavior as A1 ‖ A2 without using shared clocks.

First remark that our problem makes sense only if we insist on the distributed
nature of the system, made of two separate components. On the other hand, if
the composition operator is simply used as a convenient syntax for describing a
system that is actually implemented on a single sequential component, then a
product automaton perfectly describes the system and all clocks become local.

So, let us consider the example of Fig. 1, made of two TA, supposed to
describe two separate components. Remark that A2 reads clock x which is reset
by A1. But a simple analysis shows that this reading could be avoided: because
of the condition on its clock y, A2 can only take transition b before time 3; but x
cannot reach value 2 before time 3, since it is reset between time 1 and 2. Thus,
forgetting the condition on x in A2 would not change the behavior of the system.

3.2 Transmitting Information during Synchronizations

Consider now the example of Fig. 2. Here also A2 reads clock x which is reset
by A1, and here also this reading could be avoided. The idea is that A1 could
transmit the value of x when synchronizing, and A2 could copy this value locally
to a new clock x′. Afterwards, any reading of x in A2 could be replaced by
the reading of x′. Therefore A2 can be replaced by A′2 pictured in Fig. 2, while
preserving the behavior of the NTA, but also the behavior of A2 w.r.t. A1.

We claim that we cannot avoid reading x without this copy of clock. Indeed,
after the synchronization, the maximal delay depends on the exact value of x,
and even if we �nd a mechanism to allow A′2 to move to di�erent locations
according to the value of x at synchronization time, in�nitely many locations
would be required (e.g., if s occurs at time 2, x may have any value in (1, 2]).

Coding Transmission of Information. In order to model the transmission of infor-
mation during synchronizations, we allow A′1 and A

′
2 to use a larger synchroniza-

tion alphabet than A1 and A2. This allows A
′
1 to transmit discrete information

like its current location, to A′2.



x ≤ 3

x ≤ 3

A1

`s

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e
{y}

x′ ≤ 4

y ≥ 2
s

x′ := x

x′ ≥ 1
e
{y}

A′
2

Fig. 2. A2 reads x which belongs to A1 and A′
2 does not.

But we saw that A′1 also needs to transmit the exact value of its clocks. For
this we allow an automaton to copy its neighbor's clocks into local clocks during
synchronizations. This is denoted as updates of the form x′ := x in A′2 (see
Fig. 2). This is a special case of updatable timed automata as de�ned in [10].
Moreover, as shown in [10], the class we consider, with diagonal-free constraints
and updates with equality (they allow other operators) is not more expressive
than classical TA for the sequential semantics (any updatable TA of the class is
bisimilar to a classical TA), and the emptiness problem is PSPACE-complete.

Semantics. TTS(A1 ‖ A2) can be de�ned as previously, with the di�erence

that the synchronizations are now de�ned by: ((`1, `2), v)
a−→ ((`′1, `

′
2), v

′) i�

`1
g1,a,r1−−−−→1 `′1, `2

g2,a,r2,u−−−−−−→2 `′2 where u is a partial function from X2 to X1,
v |= g1 ∧ g2, v′ = (v[r1 ∪ r2])[u], and v′ |= Inv(`′1) ∧ Inv(`′2). The valuation v[u]
is de�ned by v[u](x) = v(u(x)) if u(x) is de�ned, and v[u](x) = v(x) otherwise.

Here, we choose to apply the reset r1 ∪ r2 before the update u, because we
are interested in sharing the state reached in A1 after the synchronization, and
r1 may reset some clocks in C1 ⊆ X1.

3.3 Towards a Formalization of the Problem

We want to know whether A2 really needs to read the clocks reset by A1, or
if another NTA A′1 ‖ A′2 could achieve the same behavior as A1 ‖ A2 without
using shared clocks. It remains to formalize what we mean by �having the same
behavior� in this context.

First, we impose that the locality of actions is preserved, i.e. A′1 uses the same
set of local actions as A1, and similarly for A′2 and A2. For the synchronizations,
we have explained earlier why we allow A′1 and A

′
2 to use a larger synchronization

alphabet than A1 and A2. The correspondence between the two alphabets will
be done by a mapping ψ (this point will be re�ned later).

Now we have to impose that the behavior is preserved. The �rst idea
that comes in mind is to impose bisimulation between ψ(TTS(A′1 ‖ A′2)) (i.e.



p0x ≤ 1

p1 p2

A1

q0y ≤ 2

q1 y ≤ 2 q2y ≤ 2

q3 q4 q5 q6

A2

y ≤ 2

r1 y ≤ 2 r2y ≤ 2

A′
2

x = 1
d

x = 1
e
{x}

y = 2
c

y = 2
c

y = 2∧
x = 1

a

y = 2∧
x = 2
b

y = 2∧
x = 1

b

y = 2∧
x = 2
a

y = 2
c

y = 2
c

y = 2
a

y = 2
b

Fig. 3. A2 needs to read the clocks of A1 and TTS(A1 ‖ A2) ∼ TTS(A1 ‖ A′
2).

TTS(A′1 ‖ A′2) with synchronization actions relabeled by ψ) and TTS(A1 ‖ A2).
But this is not su�cient, as illustrated by the example of Fig. 3 (where ψ is
the identity). Intuitively A2 needs to read x when in q1 (and similarly in q2) at
time 2, because this reading determines whether it will perform a or b, and the
value of x cannot be inferred from its local state given by q1 and the value of
y. Anyway TTS(A1 ‖ A′2) is bisimilar to TTS(A1 ‖ A2), and A

′
2 does not read

x. For the bisimulation relation R, it su�ces to impose (p1, q1) R (p1, r1) and
(p2, q1) R (p2, r2).

What we see here is that, if we focus on the point of view of A2 and A′2,
these two automata do not behave the same. As a matter of fact, when A2 �res
one edge labeled by c, it has not read x yet, and there is still a possibility to
�re a or b, whereas when A′2 �res one edge labeled by c, there is no more choice
afterwards. Therefore we need a relation between A′2 and A2, and in the general
case, a relation between A′1 and A1 also.

4 Contextual Timed Transition Systems

As we are interested in representing a partial view of one of the components,
we need to introduce another notion, that we call contextual timed transition
system. This resembles the powerset construction used in game theory to capture
the knowledge of an agent about another agent.

Notations. S = Σ 6ε1 ∩Σ
6ε
2 denotes the set of common actions. Q1 denotes the set

of states of TTS(A1). When s = ((`1, `2), v) is a state of TTS(A1 ‖ A2), we also
write s = (s1, s2), where s1 = (`1, v|X1

) is in Q1, and s2 = (`2, v|X2\X1
), where

v|X is v restricted to X.

De�nition 3 (UR(s)). Let TTS(A1) = (Q1, s0, Σ1,→1) and s ∈ Q1. The set of
states of A1 reachable from s by local actions in 0 delay (and therefore not observ-

able by A2) is denoted by UR(s) = {s′ ∈ Q1 | ∃w ∈ TW(Σ1 \Σ 6ε2 , 0) : s
w−→1 s

′}.



Contextual States. The states of this contextual TTS are called contextual states.
They can be regarded as possibly in�nite sets of states of TTS(A1 ‖ A2) for
which A2 is in the same location and has the same valuation over X2 \ X1.
A2 may not be able to distinguish between some states (s1, s2) and (s′1, s2). In
TTSA1

(A2), these states are grouped into the same contextual state. However,
when X2 ∩X1 6= ∅, it may happen that A2 is able to perform a local action or
delay from (s1, s2) and not from (s′1, s2), even if these states are grouped in a
same contextual state.

De�nition 4 (Contextual TTS). Let TTS(A1 ‖ A2) = (Q, q0, Σ1 ∪Σ2,⇒).
Then, the TTS of A2 in the context of A1, denoted by TTSA1

(A2), is the TTS
(S, s0, (Σ2 \ S) ∪ (S×Q1),→), where

� S = {(S1, s2) | ∀s1 ∈ S1, (s1, s2) ∈ Q},
� s0 = (S0

1 , s
0
2), s.t. (s

0
1, s

0
2) = q0 and S0

1 = UR(s01),
� → is de�ned by

• Local action: for any a ∈ Σ2 \ S, (S1, s2)
a−→ (S′1, s

′
2) i� ∃s1 ∈ S1 :

(s1, s2)
a
=⇒ (s1, s

′
2), and S

′
1 = {s1 ∈ S1 | (s1, s2)

a
=⇒ (s1, s

′
2)}

• Synchronization: for any (a, s′1) ∈ S×Q1, (S1, s2)
a,s′1−−→ (UR(s′1), s

′
2) i�

∃s1 ∈ S1 : (s1, s2)
a
=⇒ (s′1, s

′
2)

• Local delay: for any d ∈ IR≥0, (S1, s2)
d−→ (S′1, s

′
2) i� ∃s1 ∈ S1,

w ∈ TW(Σ1 \ Σ 6ε2 , d) : (s1, s2)
w
=⇒ (s′1, s

′
2), and S′1 = {s′1 | ∃s1 ∈ S1,

w ∈ TW(Σ1 \Σ 6ε2 , d) : (s1, s2)
w
=⇒ (s′1, s

′
2)}

For example, consider A1 and A2 of Fig. 3. The initial state is(
{(p0, 0)}, (q0, 0)

)
. From this contextual state, it is possible to delay 2 time units

and reach the contextual state
(
{(p1, 2), (p2, 1)}, (q0, 2)

)
. Indeed, during this de-

lay, A1 has to perform either e and reset x, or d. Now, from this contextual state,
we can take an edge labeled by c, and reach

(
{(p1, 2), (p2, 1)}, (q1, 2)

)
. Lastly,

from this new state, a can be �red, because it is enabled by ((p2, 1), (q1, 2)) in
the TTS of the NTA, and the reached contextual state is

(
{(p2, 1)}, (q3, 2)

)
.

We say that there is no restriction in TTSA1(A2) if whenever a local step
is possible from a reachable contextual state, then it is possible from all the
states (s1, s2) that are grouped into this contextual state. In the example above,
there is a restriction in TTSA1

(A2) because we have seen that a is enabled only
by ((p2, 1), (q1, 2)), and not by all states merged in

(
{(p1, 2), (p2, 1)}, (q1, 2)

)
.

Formally, we use the predicate noRestrictionA1(A2) de�ned as follows.

De�nition 5 (noRestrictionA1
(A2)). The predicate noRestrictionA1

(A2) holds
i� for any reachable state (S1, s2) of TTSA1(A2), both

� ∀a ∈ Σ2 \ S, (S1, s2)
a−→ (S′1, s

′
2) ⇐⇒ ∀s1 ∈ S1, (s1, s2)

a
=⇒ (s1, s

′
2), and

� ∀d ∈ IR≥0, (S1, s2)
d−→⇐⇒ ∀s1 ∈ S1,∃w ∈ TW(Σ1 \Σ 6ε2 , d) : (s1, s2)

w
=⇒

Remark 2. If A2 does not read X1, then noRestrictionA1
(A2).



A1 A2

x < 1, a

a
x ≥ 1, b, {x}

Fig. 4. TTSQ1(A1)⊗ TTSA1(A2) ≈ TTSQ1(A1 ‖ A2), although there is a restriction
in TTSA1(A2).

Sharing of Information on the Synchronizations. Later we assume that during
a synchronization, A1 is allowed to transmit all its state to A2, that is why, in
TTSA1

(A2), we distinguish the states reached after a synchronization according
to the state reached in A1. We also label the synchronization edges by a pair
(a, s1) ∈ S×Q1 where a is the action and s1 the state reached in A1.

For the sequel, let TTSQ1
(A1) (resp. TTSQ1

(A1 ‖ A2)) denote TTS(A1)
(resp. TTS(A1 ‖ A2)) where the synchronization edges are labeled by (a, s1),
where a ∈ S is the action, and s1 is the state reached in A1.

We can now state a nice property of unrestricted contextual TTS that is
similar to the distributivity of TTS over the composition when considering TA
with disjoint sets of clocks (see Remark 1). We say that a TA is deterministic if
it has no ε-transition and for any location ` and action a, there is at most one
edge labeled by a from `.

Lemma 1. If there is no restriction in TTSA1
(A2), then TTSQ1

(A1) ⊗
TTSA1

(A2) ≈ TTSQ1
(A1 ‖ A2). Moreover, when A2 is deterministic, this con-

dition becomes necessary.

The example of Fig. 4 shows that the reciprocal does not hold when A2 is not
deterministic.

4.1 Need for Shared Clocks Revisited

We have argued in Section 3.3 that the existence of a NTA A′1 ‖ A′2 without
shared clocks and such that ψ(TTSQ′

1
(A′1 ‖ A′2)) ∼ TTSQ1

(A1 ‖ A2) is not su�-
cient to capture the idea that A2 does not need to read the clocks of A1. We are
now equipped to de�ne the relations we want to impose on the separate compo-
nents, namely ψ(TTSQ′

1
(A′1)) ∼ TTSQ1(A1) and ψ(TTSA′

1
(A′2)) ∼ TTSA1(A2).

And since we have seen the importance of using labeling the synchronization
actions in contextual TTS by labels in S ×Q1 rather than in S, the correspon-
dence between the synchronization labels of A′1 ‖ A′2 with those of A1 ‖ A2 is
now done by a mapping ψ : S′ ×Q′1 → S×Q1.

This settles the problem of the example of Fig. 3 where TTSA1(A
′
2) 6∼

TTSA1
(A2) (here A

′
1 = A1), but as shown in Fig. 5, a problem remains. In this

example, we can see that A2 needs to read clock x of A1 to know whether it has
to perform a or b at time 2, and yet TTSA1

(A2) ∼ TTSA1
(A′2) (here again

A′1 = A1). The intuition to understand this is that the contextual TTS merge too
many states for the two systems to remain di�erentiable. However we remark that



A1

x ≤ 1

A2

y ≤ 2

A′
2

y ≤ 2x = 1, d

x = 1, e, {x}

y = 2 ∧ x = 2, a

y = 2 ∧ x = 1, b

y = 2, a

y = 2, b

Fig. 5. A2 needs to read the clocks of A1 and TTSA1(A2) ∼ TTSA1(A
′
2).

here, the �rst condition that we have required in Section 3, namely the global
bisimulation between ψ(TTS(A′1 ‖ A′2)) and TTS(A1 ‖ A2), does not hold.

Now we show that the conjunction of global and local bisimulations actually
gives the good de�nition.

De�nition 6 (Need for shared clocks). Given A1 ‖ A2 such that A1 does not
read the clocks of A2, A2 does not need to read the clocks of A1 i� there exists
a NTA A′1 ‖ A′2 without shared clocks (but with clock copies during synchroniza-
tions), using the same sets of local actions and a synchronization alphabet S′
related to the original one by a mapping ψ : S′ ×Q′1 → S×Q1, and such that

1. ψ(TTSQ′
1
(A′1 ‖ A′2)) ∼ TTSQ1

(A1 ‖ A2) and
2. ψ(TTSQ′

1
(A′1)) ∼ TTSQ1

(A1) and
3. ψ(TTSA′

1
(A′2)) ∼ TTSA1

(A2).

Notice that this does not mean that the clock constraints that read X1 can
simply be removed from A2 (see Fig. 2).

Lemma 2. When noRestrictionA1(A2) holds, any NTA A′1 ‖ A′2 without shared
clocks and that satis�es items 2 and 3 of De�nition 6 also satis�es item 1.

We are now ready to give a criterion to decide the need for shared clocks.

Theorem 1. When noRestrictionA1
(A2) holds, A2 does not need to read the

clocks of A1. When A2 is deterministic, this condition becomes necessary.

We remark from the proof that when there is a restriction in TTSA1
(A2),

even in�nite A′1 and A′2 would not help. Next section will be devoted to the
constructive proof of the direct part of this theorem. The indirect part follows
from Lemma 1. The counterexample in Fig. 4 also works here to argue that
the conditions of Lemma 2 and Theorem 1 are not necessary when A2 is not
deterministic. Indeed A′2 with only one unguarded edge labeled by a and A

′
1 = A1

satisfy the three items of De�nition 6 but there is a restriction in TTSA1
(A2).

5 Constructing a NTA without Shared Clocks

This section is dedicated to proving Theorem 1 by constructing suitable A′1 and
A′2. To simplify, we assume that in A2, the guards on the synchronizations do
not read X1.



5.1 Construction

First, our A′1 is obtained from A1 by replacing all the labels a ∈ S on the
synchronization edges of A1 by (a, `1) ∈ S× L1, where `1 is the output location
of the edge. Therefore the synchronization alphabet between A′1 and A′2 will be
S′ = S×L1, which allows A′1 to transmit its location after each synchronization.

Then, the idea is to build A′2 as a product A1,2 ⊗ A2,mod (⊗ denotes the
product of TA as it is usually de�ned [3]), where A2,mod plays the role of A2 and
A1,2 acts as a local copy of A

′
1, from which A2,mod reads clocks instead of reading

those of A′1. For this, as long as the automata do not synchronize, A1,2 will evolve,
simulating a run of A′1 that is compatible with what A′2 knows about A′1. And,
as soon as A′1 synchronizes with A

′
2, A

′
2 updates A1,2 to the actual state of A

′
1. If

the clocks of A1,2 always give the same truth value to the guards and invariants
of A2,mod than the actual value of the clocks of A′1, then our construction behaves
like A1 ‖ A2. To check that this is the case, we equip A

′
2 with an error location, /,

and edges that lead to it if there is a contradiction between the values of the
clocks of A′1 and the values of the clocks of A1,2. The guards of these edges are
the only cases where A′2 reads clocks of A′1. Therefore, if / is not reachable,
they can be removed so that A′2 does not read the clocks of A′1. More precisely,
a contradiction happens when A2,mod is in a given location and the guard of an
outgoing edge is true according to A1,2 and false according to A′1, or vice versa,
or when the invariant of the current location is false according to A′1 (whereas
it is true according to A1,2, since A2,mod reads the clocks of A1,2).

Namely, Smod = A′1 ‖ (A1,2 ⊗ A2,mod) where A1,2 and A2,mod are de�ned as
follows. A1,2 = (L1, `

0
1, X

′
1,S′ ∪ {ε}, E′1, Inv

′
1), where

� each clock x′ ∈ X ′1 is associated with a clock c(x′) = x ∈ X1 (c is a bijection
from X ′1 to X1). γ

′ denotes the clock constraint where any clock x of X1 is
substituted by x′ of X ′1.

� ∀` ∈ L1, Inv
′
1(`) = Inv1(`)

′

� E′1= {`1
g′,εa,r

′

−−−−−→ `2 | ∃a ∈ Σ1 \Σ 6ε2 : `1
g,a,c(r′)−−−−−→ `2 ∈ E1}

∪ {` >,(a,`2),c−−−−−−→ `2 | ` ∈ L1 ∧ a ∈ S ∧ ∃`1
g,a,r−−−→ `2 ∈ E1}

where > means true, and c denotes the assignment of any clock x′ ∈ X ′1 with
the value of its associated clock c(x′) = x ∈ X1 (written x′ := x in Fig. 6).

A2,mod = (L2 ∪ {/}, `02, X2 ∪X ′1, (Σ2 \Σ1) ∪ S′, E′2, Inv
′
2), where

� ∀` ∈ L2, Inv
′
2(`) = Inv2(`)

′ and Inv ′2(/) = >,
� E′2= {`1

g′,a,r−−−→ `2 | `1
g,a,r−−−→ `2 ∈ E2 ∧ a /∈ S}

∪ {`1
g,(a,`),r−−−−−→ `2 | `1

g,a,r−−−→ `2 ∈ E2 ∧ a ∈ S ∧ ` ∈ L1}
∪ {` ¬Inv2(`),ε,∅−−−−−−−−→ / | ` ∈ L2}
∪ {` g′∧¬g,ε,∅−−−−−−→ / | ` g,a,r−−−→ `′ ∈ E2 ∧ a /∈ S}
∪ {` ¬g

′∧g,ε,∅−−−−−−→ / | ` g,a,r−−−→ `′ ∈ E2 ∧ a /∈ S}.

For the example of Fig. 2, A1,2 and A2,mod are pictured in Fig. 6.



x′ ≤ 3

x′ ≤ 3

A1,2

`s

x′ ≤ 4 /

A2,mod

x′ ≥ 1
εa

x′ = 3
εc

x′ < 1
εb
{x′}

y ≥ 2
(s, `s)

x′ ≥ 1
e

{y}

¬(x ≤ 4)

x′ ≥ 1 ∧ x < 1

x′ < 1 ∧ x ≥ 1
(s, `s)
x′ := x

(s, `s)

x′ := x

(s, `s), x
′ := x

Fig. 6. A1,2 and A2,mod for the example of Fig. 2

Lemma 3. / is reachable in Smod i� there is a restriction in TTSA1
(A2).

We �rst give a case for which Theorem 1 can be proved easily. We say that A1

has no urgent synchronization if for any location, when the invariant expires, a
local action is enabled. Under this assumption, we show that A′2 = A1,2⊗A′2,mod ,
where A′2,mod is A2,mod without location / (that is unreachable by Lemma 3) and
its ingoing edges, is suitable. Indeed, A′2 does not read X1 and ψ(TTSA′

1
(A′2)) ∼

TTSA1
(A2), where for any ((a, `1), s1) ∈ S′×Q′1, ψ(((a, `1), s1)) = (a, s1). Item 2

of De�nition 6 is immediate, and item 1 holds by Lemma 2.
When A1 has urgent synchronizations, this construction allows one to check

the absence of restriction in TTSA1
(A2), but it does not give directly a suitable

A′2. We will give the idea of the construction of A′2 for the general case later.
In the example of Fig. 2, / is not reachable in Smod (see Fig. 6), therefore A2

does not need to readX1. For an example where / is reachable, consider the same

example with an additional edge
>,f,{x}−−−−−→ from the end location of A1 to a new

location. Location / can now be reached in Smod , for example consider a run
where s is performed at time 2 leading to a state where v(x) = 2 and v(x′) = 2,
and then A1 immediately performs f and resets x, leading to a state where
the valuation v′ is such that v′(x) = 0 and v′(x′) = 2, and satis�es guard
x′ ≥ 1 ∧ x < 1 in Smod . Therefore, with this additional edge in A1, A2 needs to
read X1. Indeed, without this edge, A2 knows that A1 cannot modify x after the
synchronization, but with this edge, A2 does not know whether A1 has performed
f and reset x, while this may change the truth value of its guard x ≥ 1.

5.2 Complexity

The reachability problem for timed automata is known to be PSPACE-
complete [2]. We will reduce this problem to our problem of deciding whether
A2 needs to read the clocks of A1. Consider a TA A over alphabet Σ, with some
location `. Build the TA A2 as A augmented with two new locations `′ and `′′

and two edges, `
>,ε,∅−−−→ `′ and `′

x=1,a,∅−−−−−→ `′′, where x is a fresh clock, and a is



some action in Σ. Let A1 be the one of Fig. 4 with an action b /∈ Σ. Then, ` is
reachable in A i� A2 needs to read x which belongs to A1. Therefore the problem
of deciding whether A2 needs to read the clocks of A1 is also PSPACE-hard.

Moreover, we can show that when A2 is deterministic, our problem is
in PSPACE. Indeed, by Theorem 1 and Lemma 3, / is not reachable i�
noRestrictionA1

(A2) i� A2 does not need to read the clocks of A1. Since the
size of the modi�ed system on which we check the reachability of / is polyno-
mial in the size of the original system, our problem is in PSPACE.

5.3 Dealing with Urgent Synchronizations

If we use exactly the same construction as before and allow urgent synchroniza-
tions, the following problem may occur. Remind that A1,2 simulates a possible
run of A′1 while A′1 plays its actual run. There is no reason why the two runs
should coincide. Thus it may happen that the run simulated by A1,2 reaches a
state where the invariant expires and only a synchronization is possible. Then
A′2 is expecting a synchronization with A′1, but it is possible that the actual A

′
1

has not reached a state that enables this synchronization. Intuitively, A′2 should
then realize that the simulated run cannot be the actual one and try another
run compatible with the absence of synchronization.

But it is simpler to avoid this situation, by forcing A1,2 to simulate one of the
runs of A′1 (from the state reached after the last synchronization) that has max-
imal duration1 before it synchronizes again with A2,mod (or never synchronizes
again if possible). This choice of a run of A′1 is as valid as the others, and subtle
situation described above.

For example, consider automaton A1 in Fig. 2 without the edge labeled by c
and with guard x ≤ 1 instead of x < 1. We can see that A1,2 has to �re b at time
1 and is able to wait 3 time units before synchronizing, although it is still able
to synchronize at any time (we add the same dashed edges as in Fig. 6). This
can be generalized for any A1. The idea is essentially to force A1,2 to follow the
appropriate �nite or ultimately periodic path in the region automaton [3] of A1.

6 Conclusion

We have shown that in a distributed framework, when locality of actions and syn-
chronizations matter, NTA with shared clocks cannot be easily transformed into
NTA without shared clocks. The fact that the transformation is possible can be
characterized using the notion of contextual TTS which represents the knowledge
of one TA about the other. Checking the resulting criterion is PSPACE-complete.

One conclusion is that, contrary to what happens when one considers the
sequential semantics, NTA with shared clocks are strictly more expressive if we
take distribution into account. This somehow justi�es why shared clocks were
introduced: they are actually more than syntactic sugar.

1 There may not be any maximum if some time constraints are strict inequalities, but
the idea can be adapted even to this case.



Another interesting point is the use of transmitting information during syn-
chronizations. It is noticeable that in�nitely precise information is required in
general. This advocates the interest of updatable (N)TA used in an appropriate
way, and more generally gives a �avor of a class of NTA closer to implementation.

Perspectives. Our �rst perspective is to generalize our result to the symmetrical
case where A1 also reads clocks from A2. Then of course we can tackle general
NTA with more than two automata.

Another line of research is to focus on transmission of information. The goal
would be to minimize the information transmitted during synchronizations, and
see for example where are the limits of �nite information. Even when in�nitely
precise information is required to achieve the exact semantics of the NTA, it
would be interesting to study how this semantics can be approximated using
�nitely precise information.

Finally, when shared clocks are necessary, one can discuss how to minimize
them, or how to implement the model on a distributed architecture and how to
handle shared clocks with as few communications as possible.
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