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Abstract. We consider concurrent games played on graphs, in which
each player has several qualitative (e.g. reachability or Büchi) objectives,
and a preorder on these objectives (for instance the counting order, where
the aim is to maximise the number of objectives that are fulfilled).
We study two fundamental problems in that setting: (1) the value prob-
lem, which aims at deciding the existence of a strategy that ensures a
given payoff; (2) the Nash equilibrium problem, where we want to decide
the existence of a Nash equilibrium (possibly with a condition on the
payoffs). We characterise the exact complexities of these problems for
several relevant preorders, and several kinds of objectives.

1 Introduction

Games (and especially games played on graphs) have been intensively used in
computer science as a powerful way of modelling interactions between several
computerised systems [15,6]. Until recently, more focus had been put on the
study of purely antagonistic games (a.k.a. zero-sum games), useful for modelling
systems evolving in a (hostile) environment.

Over the last ten years, non-zero-sum games have come into the picture:
they are convenient for modelling complex infrastructures where each individual
system tries to fulfill its objectives, while still being subject to uncontrollable
actions of the surrounding systems. As an example, consider a wireless network
in which several devices try to send data: each device can modulate its transmit
power, in order to maximise its bandwidth and reduce energy consumption as
much as possible. In that setting, focusing only on optimal strategies for one
single agent may be too narrow, and several other solution concepts have been
defined and studied in the literature, of which Nash equilibrium [11] is the most
prominent. A Nash equilibrium is a strategy profile where no player can improve
her payoff by unilaterally changing her strategy, resulting in a configuration of
the network that is satisfactory to everyone. Notice that Nash equilibria need
not exist or be unique, and are not necessarily optimal: Nash equilibria where
all players lose may coexist with more interesting Nash equilibria.

Our contributions. In this paper, we extend our previous study of pure-strategy
Nash equilibria in concurrent games with qualitative objectives [2,4] to a (semi-)
quantitative setting: we assume that each player is given a set S of qualitative ob-
jectives (reachability, for instance), together with a preorder on 2S . This preorder



defines a preference relation (or payoff), and the aim of a player is to maximise
her payoff. For instance, the counting order compares the number of objectives
which are fulfilled. As another example, we will consider the lexicographic order,
defined in an obvious way once we have ordered the simple objectives. More
generally, preorders will be defined by Boolean circuits.

We characterise the exact complexity of deciding the existence of a Nash
equilibrium, for reachability and Büchi objectives, under arbitrary preorders.
Our techniques also provide us with solutions to the value problem, which corre-
sponds to the purely antagonistic setting described above. We prove for instance
that both problems are PSPACE-complete for reachability objectives together
with a lexicographic order on these objectives (or for the more general class of
preorders defined by Boolean circuits). On the other hand, we show that for sets
of Büchi objectives (assumed to be indexed) ordered by the maximum index
they contain, both problems are solvable in PTIME.

Related work. Even though works on concurrent games go back to the fifties,
the complexity of computing Nash equilibria in games played on graphs has only
recently been addressed [5,16]. Most of the works so far have focused on turn-
based games and on qualitative objectives, but have also considered the more
general setting of stochastic games or strategies. Our restriction to pure strate-
gies is justified by the undecidability of computing Nash equilibria in concurrent
games with qualitative reachability or Büchi objectives, when strategies can be
randomised [17]. Although their setting is turn-based, the most relevant related
work is [14], where a first step towards quantitative objectives is made: they con-
sider generalised Muller games (with a preference order on the set of states that
are visited infinitely often), show that pure Nash equilibria always exist, and give
a doubly-exponential algorithm for computing a Nash equilibrium. Generalised
Muller conditions can be expressed using Büchi conditions and Boolean circuits
(which in the worst-case can be exponential-size): from our results we derive an
EXPSPACE upper bound.

For lack of space, the technical proofs are omitted, and can be found in [3].

2 Preliminaries

2.1 Concurrent games

Definition 1 ([1]). A (finite) concurrent game is a tuple G = 〈States,Agt,Act,
Mov,Tab〉, where States is a (finite) set of states, Agt is a finite set of players,
Act is a finite set of actions, and

– Mov: States×Agt→ 2Act\{∅} is a mapping indicating the actions available
to a given player in a given state;

– Tab: States × ActAgt → States associates with a given state and a given
move1 of the players the resulting state.

1 A move is an element of ActAgt.
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Fig. 1. Example of a two-player
concurrent game A

Fig. 1 displays an example of a concurrent
game. Transitions are labelled with the moves
that trigger them. We say that a move mAgt =

〈mA〉A∈Agt ∈ ActAgt is legal at s if mA ∈
Mov(s,A) for all A ∈ Agt. A game is turn-based
if for each state the set of allowed moves is a
singleton for all but at most one player.

In a concurrent game G, whenever we ar-
rive at a state s, the players simultaneously se-
lect an available action, which results in a legal
move mAgt; the next state of the game is then
Tab(s,mAgt). The same process repeats ad in-
finitum to form an infinite sequence of states.

A path π in G is a sequence (si)0≤i<n
(where n ∈ N>0 ∪ {∞}) of states. The length
of π, denoted by |π|, is n − 1. The set of fi-
nite paths (also called histories) of G is denoted
by HistG , the set of infinite paths (also called plays) of G is denoted by PlayG ,
and PathG = HistG ∪PlayG is the set of paths of G. Given a path π = (si)0≤i<n
and an integer j < n, the j-th prefix (resp. j-th suffix , j-th state) of π, denoted
by π≤j (resp. π≥j , π=j), is the finite path (si)0≤i<j+1 (resp. (si)j≤i<n, state sj).
If π = (si)0≤i<n is a history, we write last(π) = s|π|. In the sequel, we write
HistG(s), PlayG(s) and PathG(s) for the respective subsets of paths starting in
state s. If π is a play, Occ(π) = {s | ∃j. π=j = s} is the sets of states that appear
at least once along π, and Inf(π) = {s | ∀i. ∃j ≥ i. π=j = s} is the sets of states
that appear infinitely often along π.

Definition 2. Let G be a concurrent game, and A ∈ Agt. A strategy for A is a
mapping σA : HistG → Act such that σA(π) ∈ Mov(last(π), A) for all π ∈ HistG.
A strategy σP for a coalition P ⊆ Agt is a tuple of strategies, one for each
player in P . We write σP = (σA)A∈P for such a strategy. A strategy profile is
a strategy for Agt. We write StratPG for the set of strategies of coalition P , and

ProfG = StratAgt
G .

Note that we only consider pure (i.e., non-randomised) strategies. Notice
also that strategies are based on the sequences of visited states, and not on the
sequences of actions played by the players. This is realistic when considering
multi-agent systems, where only the global effect of the actions of the agents
may be observable. When computing Nash equilibria, this restriction makes it
more difficult to detect which players have deviated from their strategies.

Let G be a game, P a coalition, and σP a strategy for P . A path π is compatible
with the strategy σP if, for all k < |π|, there exists a move mAgt such that

1. mAgt is legal at π=k,
2. mA = σA(π≤k) for all A ∈ P , and
3. Tab(π=k,mAgt) = π=k+1.
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We write OutG(σP ) for the set of paths (called the outcomes) in G which are
compatible with strategy σP of P . We write OutfG (resp. Out∞G ) for the finite

(resp. infinite) outcomes, and OutG(s, σP ), OutfG(s, σP ) and Out∞G (s, σP ) for the
respective sets of outcomes of σP with initial state s. Notice that any strategy
profile has a single infinite outcome from a given state.

2.2 Winning objectives

Objectives and preference relations. An objective (or winning condition) is an
arbitrary set of plays. With a set T of states, we associate an objective Ω(T ) in
three different ways:

Ω(T ) = {ρ ∈ PlayG | Occ(ρ) ∩ T 6= ∅} (Reachability)

Ω(T ) = {ρ ∈ PlayG | Occ(ρ) ∩ T = ∅} (Safety)

Ω(T ) = {ρ ∈ PlayG | Inf(ρ) ∩ T 6= ∅} (Büchi)

In our setting, each player A is assigned a tuple of such objectives (Ωi)1≤i≤n,
together with a preorder . on {0, 1}n. The payoff vector of a play ρ for player A
is the vector 1{i|ρ∈Ωi} ∈ {0, 1}n (1S is the vector v such that vi = 1 ⇔ i ∈
S; we write 1 for 1[1,n], and 0 for 1∅). The preorder . then defines another
preorder - on the set of plays of G, called the preference relation of A, by ordering
the plays according to their payoffs: ρ′ - ρ if and only if 1{i|ρ′∈Ωi} . 1{i|ρ∈Ωi}.
Intuitively, each player aims at a play that is preferred to most other plays.

Examples of preorders. We now describe some preorders on {0, 1}n that we
consider in the sequel (Fig. 2(a)–2(d) display four of these preorders for n = 3).
For the purpose of these definitions, we assume that max∅ = −∞.

– Conjunction: v . w iff either vi = 0 for some 0 ≤ i ≤ n, or wi = 1 for
all 0 ≤ i ≤ n. This corresponds to the case where a player wants to achieve
all her objectives.

– Disjunction: v . w iff either vi = 0 for all 0 ≤ i ≤ n, or wi = 1 for
some 0 ≤ i ≤ n. The aim here is to satisfy at least one objective.

– Counting : v . w iff |{i | vi = 1}| ≤ |{i | wi = 1}|. The aim is to maximise
the number of satisfied conditions.

– Subset : v . w iff {i | vi = 1} ⊆ {i | wi = 1}: in this setting, a player will
always struggle to satisfy a larger (for inclusion) set of objectives.

– Maximise: v . w iff max{i | vi = 1} ≤ max{i | wi = 1}. The aim is to
maximise the highest index of the satisfied objectives.

– Lexicographic: v . w iff either v = w, or there is an index i such that vi = 0,
wi = 1 and vj = wj for all 0 ≤ j < i.

– Parity : v . w iff either max{i | wi = 1} is even, or max{i | vi = 1} is odd
(or −∞). Combined with reachability objectives, this corresponds to a weak
parity condition; parity objectives as they are classically defined correspond
to parity preorders over Büchi objectives.
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– Boolean Circuit : given a Boolean circuit, with input from {0, 1}2n, v . w if
and only if the circuit evaluates to 1 on input v1 . . . vnw1 . . . wn.

– Monotonic Boolean Circuit : Same as above, with the restriction that the
input gates corresponding to v are negated, and no other negation appears
in the circuit.

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(1,1,1)

(a) Subset preorder

(0,0,0)

(1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1) (0,1,1) (1,1,1)

(b) Maximise order

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(1,1,1)

(c) Counting order

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(d) Lexicographic order

Fig. 2. Examples of preorders (for n = 3): dotted boxes represent equivalence classes
for ∼; arrows represent the preorder relation ., forgetting about ∼-equivalent elements

In terms of expressiveness, any preorder over {0, 1}n can be given as a
Boolean circuit: for each pair (v, w) with v . w, it is possible to construct a
circuit whose output is 1 if and only if the input is v1 . . . vnw1 . . . wn; taking the
disjunction of all these circuits we obtain a Boolean circuit defining the preorder.
Its size can be bounded by 22n+3n, which is exponential in general, but all of
our examples can be specified with a circuit of polynomial size.

A preorder . is monotonic if it is compatible with the subset ordering, i.e.
if {i | vi = 1} ⊆ {i | wi = 1} implies v . w. Hence, a preorder is monotonic if
fulfilling more objectives never results in a lower payoff. All the above examples
are monotonic, except the parity preorder and the general Boolean circuits.
Moreover, any monotonic preorder can be expressed as a monotonic Boolean
circuit.

2.3 Nash equilibria

Given a move mAgt and an action m′ for some player B, we write mAgt[B 7→ m′]
for the move nAgt with nA = mA when A 6= B and nB = m′. This is extended
to strategies in the natural way.

Definition 3. Let G be a concurrent game with preference relation (-A)A∈Agt,
and let s be a state of G. A Nash equilibrium of G from s is a strategy profile
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σAgt ∈ ProfG such that Out(s, σAgt[B 7→ σ′]) -B Out(s, σAgt) for all players

B ∈ Agt and all strategies σ′ ∈ StratB.

Hence, Nash equilibria are strategy profiles where no player has an incentive to
unilaterally deviate from her strategy.

Remark 4. Another possible way of defining Nash equilibrium would be to re-
quire that either Out(s, σAgt[B 7→ σ′]) -B Out(s, σAgt) or Out(s, σAgt) 6-B
Out(s, σAgt[B 7→ σ′]). This definition is not equivalent to the one we adopted
if the preorder is not total, but both can be meaningful. Notice that with our
Definition 3, any Nash equilibrium σAgt for the subset preorder is also a Nash
equilibrium for any monotonic preorder.

2.4 Decision problems

Given a game G = 〈States,Agt,Act,Mov,Tab〉, a type of objective (Reachability,
Safety or Büchi), for each player a list (TAi )A∈Agt,i∈{1,...,nA} of targets and a
preorder .A on {0, 1}nA , and a state s, we consider the following problems:

– Value: Given a player A and a payoff vector v, can player A ensure payoff v,
i.e., is there a strategy σA for player A such that any outcome of σA in G
from s with payoff v′ for A satisfies v .A v′?

– Existence: Does there exists a Nash equilibrium in G from s?
– Constrained existence: Given two vectors uA and wA for each player A,

does there exist a Nash equilibrium in G from s with some payoff (vA)A∈Agt

satisfying the constraint, i.e., uA .A vA .A wA for all A ∈ Agt?

2.5 Preliminary lemma

We first characterise outcomes of Nash equilibria as ultimately periodic runs.

Lemma 5. Assume that every player has a preference relation which only de-
pends on the set of states that are visited, and the set of states that are visited
infinitely often, i.e. if Inf(ρ) = Inf(ρ′) and Occ(ρ) = Occ(ρ′), then ρ ∼A ρ′ for
every player A ∈ Agt. If there is a Nash equilibrium with payoff v, then there
is a Nash equilibrium with payoff v for which the outcome is of the form π · τω,
where |π| and |τ | are bounded by |States|2.

3 Reachability objectives

Multiplayer games with one reachability objective per player have been studied
in [2], where the existence and constrained existence are shown NP-complete.

We now assume that each player has several reachability objectives. In the
general case where the preorders are given as Boolean circuits, we show that the
various decision problems are PSPACE-complete, where the hardness result even
holds for several simpler preorders. We then improve this result in a number of
cases. The results are summarised in Table 1.
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Table 1. Summary of the results for reachability objectives

Preorder Value problem (Constrained) existence

Disjunction, Maximise P-c NP-c
Parity P-c [12] NP-h and in PSPACE
Subset PSPACE-c NP-c

Conjunction, Counting, Lexicographic PSPACE-c PSPACE-c
(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

3.1 General case

Theorem 6. For reachability objectives with preorders given by Boolean cir-
cuits, the value, existence and constrained existence problems are in PSPACE. For
preorders having 1 as a unique maximal element, the value problem is PSPACE-
complete. If moreover there is an element v ∈ {0, 1}n such that 1 6. v′ ⇔ v′ . v,
then the existence and constrained existence problems are PSPACE-complete (even
for two-player games).

Before proving these results, let us first discuss the above conditions. The
conjunction, subset, counting and lexicographic preorders have unique maximal
element 1. The conjunction, counting and lexicographic preorders have an ele-
ment v such that 1 6. v′ ⇔ v′ . v.

As conjunction (for instance) can easily be encoded using a (monotonic)
Boolean circuit in polynomial time, the hardness results are also valid if the
order is given by a (monotonic) Boolean circuit. On the other hand, disjunction
and maximise preorders do not have a unique maximal element, so we cannot
apply the hardness result. In the same way, for the subset preorder there is no v
such that 1 6. v′ ⇔ v′ . v, so the hardness result does not apply. We prove later
(Section 3.2) that in these special cases, the complexity is actually lower.

Proof of the PSPACE upper bounds. We first focus on the constrained existence
problem, and we fix a game G with reachability objectives and a preorder for
every player, and a constraint on the payoffs. The algorithm proceeds as follows.
For every possible payoff vector that satisfies the given constraint, we will check
whether there is an equilibrium with this payoff. Fix such a payoff tuple v =
(vA)A∈Agt. We construct a new game G(v): the structure of G(v) is identical
to G, but each player A has a single objective given by a 1-weak2 deterministic
Büchi automaton A(vA). The new game satisfies the following property: there is
a Nash equilibrium in G with payoff v iff there is a Nash equilibrium in G(v) with
payoff 0 whose outcome has payoff v in G. Then, applying arguments similar
to [4, Thm. 22], we easily design a polynomial-space algorithm for deciding the
existence of a Nash equilibrium with a given payoff, and therefore more generally
for the constrained existence problem.

2 That is, each strongly connected component contains exactly one state.
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The automata A(vA) are obtained from a common structure A (whose con-
struction is illustrated by an example in Fig. 3) by adding the set of accepting
states F (vA) = {S | 1{i|S∩TA

i 6=∅} 6. vA}, where TAi is the i-th target of player A

in G. While reading a word ρ from the initial state, the current state of A(vA)
is the set of states that have been seen so far. Hence, if v is the payoff of ρ for
player A in game G, then A(vA) accepts v iff v 6. vA. With this construction,
the announced equivalence is straightforward.

∅

{s1}

{s2}

{s3}

{s1; s2}

{s1; s3}

{s2; s3}

{s1; s2; s3}

s1

s2

s3

s2

s3
s1

s3

s2
s1

s3

s2

s1

s1

s2

s3

s1, s3

s2, s3

s1, s3 s1, s2, s3

Fig. 3. Automaton A for set of states {s1, s2, s3}

We now turn to the proof for the value problem. Without loss of generality,
we assume that we are given a two-player game G, a player A and a threshold
v. We define a new game (of polynomial size), by only changing the preferences
of the players. Player A has now no objective, and her opponent wins if the
payoff is not above v in the original game, i.e. if the run has payoff v′ with
v 6. v′. Then, there is a Nash equilibrium where the opponent loses iff there is
a strategy for A that ensures v in the original game. We can thereby use the
algorithm that decides constrained existence.

Hardness of the value problem. The proof is done by encoding an instance of
QSAT. Given a formula of QSAT, we construct a two-player turn-based game
with several reachability objectives for player A, such that the formula is valid
iff player A has a strategy that visits all her target sets. We do not give details
of the construction but better illustrate it on an example.

Example 7. We consider the formula

φ = ∀x1. ∃x2. ∀x3. ∃x4. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) ∧ ¬x4 (1)

The targets for player A are given by the clauses of φ: TA1 = {x1,¬x2,¬x3},
TA2 = {x1, x2, x4}, and TA3 = {¬x4}. We fix any preorder with unique maximal
element (1, 1, 1). The structure of the game is represented in Fig. 4. In this
example, player B has a strategy that falsifies one of the clauses whatever A
does, which means that player A has no strategy to enforce all its target sets,
which means that the formula φ is not valid.
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player A

player B ∀1

x1

¬x1

∃2

x2

¬x2

∀3

x3

¬x3

∃4

x4

¬x4

z

Fig. 4. Reachability game associated with the formula (1)

Hardness of the (constrained) existence problem. The previous hardness proof
applies in particular to conjunctions of reachability objectives. We use a re-
duction from this problem to prove that the constrained existence problem is
PSPACE-hard, under the conditions specified in the statement of Theorem 6.
Let G be a turn-based game with a conjunction of reachability objectives for
player A and v be a threshold for player A. We construct a new game G′ as
follows. We add to G an initial state s′0, and a sink state z. In the initial state
s′0, the two players A and B play the matching-pennies game, to either go to
z or s0.3 We modify the targets of player A so that, in G′, reaching z exactly
gives her payoff v. The new sink state is the unique target of player B. We can
check that if there is no strategy for A ensuring v in G, then there is a Nash
equilibrium in game G′, which consists in going to z. And conversely if there is a
Nash equilibrium in G′ then its outcome goes to z, which means that A cannot
ensure 1 in game G.

3.2 Simple cases

For some preorders, the preference relation can (efficiently) be reduced to a
single reachability objective. For instance, a disjunction of several reachability
objectives can obviously be reduced to a single reachability objective, by forming
the union of the targets. Formally, we say that a preorder . is reducible to a
single (reachability) objective if, given any payoff vector v, we can construct in
polynomial time a target T̂A such that v . 1{i|Occ(ρ)∩TA

i 6=∅} iff Occ(ρ)∩T̂A 6= ∅.
It means that securing the payoff corresponds to ensuring a visit to the new
target. Similarly, we say that the preorder is co-reducible to a single reachability
objective, if for any vector v we can construct T̂A such that 1{i|Occ(ρ)∩Ti 6=∅} 6. v

if, and only if Occ(ρ)∩ T̂A 6= ∅. It means that improving the payoff corresponds
to reaching the new target. The disjunction and maximise preorders are examples
of preorders that are reducible to single reachability objectives. The disjunction,
maximise and subset preorders are co-reducible.

Proposition 8. For reachability objectives with a (non-trivial) preorder reducible
to a single reachability objective, the value problem is P-complete. For a (non-
trivial) preorder co-reducible to a single reachability objective, the existence and
constrained existence problems are NP-complete.

3 That is, A and B play with two actions 0 and 1, and for instance moves (0, 0) and
(1, 1) lead to z whereas moves (0, 1) and (1, 0) lead to s0.
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4 Safety objectives

The results for safety objectives are summarised in Table 2. We begin with a
polynomial-space algorithm when the preorder is given as a Boolean circuit,
and characterise classes of preorders for which PSPACE-hardness holds. We then
consider preorders outside those classes and establish the complexity of the as-
sociated problems.

Table 2. Summary of the results for safety

Preorder Value problem (Constr.) existence

Conjunction P-c NP-c
Subset P-c PSPACE-c

Disjunction, Parity PSPACE-c PSPACE-c
Counting, Maximise, Lexicographic PSPACE-c PSPACE-c

(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

Theorem 9. For safety objectives with preorders given as Boolean circuits, the
value, existence and constrained existence problems are in PSPACE. For preorders
having 0 as a unique minimal element, the existence and constrained existence
problems are PSPACE-complete, even for two players. If additionally there is a
vector v ∈ {0, 1}n satisfying the equivalence v 6. v′ ⇔ v′ = 0, then the value
problem is PSPACE-complete.

Proof. In the most general case (Boolean circuits), safety objectives are dual to
reachability objectives, hence the PSPACE algorithm.

The hardness proof for the existence problem and preorders with a unique
minimal element uses the same arguments as in the proof of Theorem 6. We need
to insert a matching-pennies game at the beginning however, because we are
interested in Nash equilibria here. Hardness for the value problem is obtained
by dualizing the result of Theorem 6 for conjunctions of reachability objectives.

Disjunction, counting, maximise, and lexicographic preorders are examples
of preorders that satisfy this condition, and have a unique minimal element.
The subset preorder also has a unique element. ut

Note that the hardness results extends to parity, as it can encode disjunction.

We now consider simpler cases. As for reachability, the simple cases are for
the preference relations that are reducible or co-reducible to a single safety objec-
tive. For a (non-trivial) preorder reducible to a single safety objective, the value
problem retains the same complexity as in the single objective case, namely
P-completeness. In the same way, for a (non-trivial) preorder co-reducible to a
single safety objective, the existence and constrained existence problems remain
NP-complete. The conjunction order is reducible and co-reducible to a single
safety objective. The subset preorder is reducible to a single safety objective
(but not co-reducible).
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5 Büchi objectives

We now turn to Büchi objectives, for which we prove the results listed in Table 3.
(For the definition of the class PNP

‖ , see [13, Chapter 17].)

Table 3. Summary of the results for Büchi objectives

Preorder Value Existence Constr. exist.

Maximise, Disjunction, Subset P-c P-c P-c
Conjunction, Lexicographic P-c P-h, in NP NP-c

Counting coNP-c NP-c NP-c
Monotonic Boolean Circuit coNP-c NP-c NP-c

Parity UP ∩ coUP [8] coNP-h [4], in PNP
‖ PNP

‖ -c

Boolean Circuit PSPACE-c PSPACE-c PSPACE-c

5.1 Reduction to zero-sum games

In this section, we show how, from a multiplayer game G, we can construct a
two-player game H, such that there is a correspondence between Nash equilibria
in G and certain winning strategies in H. This allows us to reuse algorithmic
techniques for zero-sum games to solve our problems.

We begin with introducing a few extra definitions. We say that a strategy
profile σAgt is a trigger strategy for payoff (vA)A∈Agt from state s if for any
strategy σ′A of any player A ∈ Agt, the outcome ρ of σAgt[A 7→ σ′A] from s
satisfies 1{i|ρ∈ΩA

i } . vA.

Remark 10. A Nash equilibrium is a trigger strategy for the payoff of its out-
come. Reciprocally, if the outcome of σAgt has payoff (vA)A∈Agt and σAgt is a
trigger strategy for (vA)A∈Agt, then σAgt is a Nash equilibrium.

Given two states s and s′, and a move mAgt, the set of suspect players [2]
for (s, s′) and mAgt, denoted with Susp((s, s′),mAgt), is the set

{A ∈ Agt | ∃m′ ∈ Mov(s,A). Tab(s,mAgt[A 7→ m′]) = s′}.

Intuitively, player A ∈ Agt is a suspect for transition (s, s′) and move mAgt

if she can unilaterally change her action to trigger the transition to s′. Notice
that if Tab(s,mAgt) = s′, then Susp((s, s′),mAgt) = Agt. Also notice that, given
a strategy profile σAgt, player A is a suspect along all the transitions of a play ρ
(i.e., for all index i, player A is in Susp((ρi, ρi+1), σAgt(ρ≤i))) iff there is a strat-
egy σ′A such that Out(s, σAgt[A 7→ σ′A]) = ρ.

With a game G and a payoff (vA)A∈Agt, we associate a two-player turn-based
game H(G, (vA)A∈Agt). The set V1 of states (configurations) of H(G, (vA)A∈Agt)
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controlled by player A1 is (a subset of) States×2Agt, and the set V2 of configura-
tions controlled by player A2 is (a subset of) States×2Agt×ActAgt. The game is
played in the following way: from a configuration (s, P ) in V1, player A1 chooses a
legal move mAgt from s; the next configuration is (s, P,mAgt), in which A2 choose
some state s′ ∈ States, and the new configuration is (s′, P ∩ Susp((s, s′),mAgt)).
In particular, when the state s′ chosen by player A2 satisfies s′ = Tab(s,mAgt)
(we say that A2 obeys A1), then the new configuration is (s′, P ).

We define projections π1 and π2 from V1 on States and 2Agt, respectively, in
the natural way. We extend these projections to plays, but only using player A1

states to avoid stutter, by setting π1((s0, P0)(s0, P0,m0)(s1, P1) · · · ) = s0s1 · · · .
For any run ρ, π2(ρ) (seen as a sequence of sets of players) is decreasing, therefore
its limit L(ρ) is well defined. An outcome ρ is winning for player A1 if, for
all A ∈ L(ρ), 1{i|π(ρ)∈ΩA

i } . vA. In general, since each ΩAi is a Büchi objective,

the winning condition for A1 can be represented using a (possibly exponential-
size) Muller condition. The winning region is the set of configurations (s, P ) from
which A1 has a winning strategy. Intuitively, player A1 tries to have the players
play a Nash equilibrium, and player A2 tries to disprove that the played strategy
profile is a Nash equilibrium, by finding a possible deviation that improves the
payoff for one of the original players.

At first sight, the number of states in H(G, (vA)A∈Agt) is exponential (in the
number of players). However, since the transition table Tab is given explicitly [9],
the size of G is

∑
s∈States

∏
A∈Agt |Mov(s,A)|, and we have the following result:

Lemma 11. The number of reachable configurations from States × {Agt} in
H(G, (vA)A∈Agt) is polynomial in the size of G.

The next two lemmas state the correctness of our construction, establish-
ing a correspondence between winning strategies in H(G, (vA)A∈Agt) and Nash
equilibria in G.

Lemma 12. Let (vA)A∈Agt be a payoff vector, and ρ be an infinite path in G.
The following two conditions are equivalent:

– player A1 has a winning strategy in H(G, (vA)A∈Agt) from (s,Agt), and its
outcome ρ′ from (s,Agt) when A2 obeys A1 is such that π1(ρ′) = ρ;

– there is a trigger strategy for (vA)A∈Agt in G from state s whose outcome
from s is ρ.

Proof. Assume there is a winning strategy σ1 for player A1 in H(G, (vA)A∈Agt)
from (s,Agt). We define the strategy profile σAgt according to the actions played
by A1. Pick a history g = s1s2 · · · sk+1 with s1 = s. Let h be the outcome of σ1

from s ending in a player A1 state and such that π1(h) = s1 · · · sk. This history
is uniquely defined as follows: the first state of h is (s1,Agt), and if its (2i+1)-th
state is (si, Pi), then its (2i+2)-th state is (si, Pi, σ

1(h≤2i+1)) and its (2i+3)-th
state is (si+1, Pi ∩ Susp((si, si+1), σ1(h≤2i+1))). Now, write (sk, Pk) for the last
state of h, and let h′ = h · (sk, Pk, σ1(h)) · (sk+1, Pk ∩ Susp((sk, sk+1), σ1(h))).
Then we define σAgt(g) = σ1(h′). Notice that when g · s is a prefix of π1(ρ′)
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(where ρ′ is the outcome of σ1 from s when A2 obeys A1), then g · s · σAgt(g · s)
is also a prefix of π1(ρ′).

We now prove that σAgt is a trigger strategy for (vA)A∈Agt. Pick a player A ∈
Agt, a strategy σ′A for A, and an infinite play g in Out(s, σAgt[A 7→ σ′A]). With g,
we associate an infinite play h in H(G, (vA)A∈Agt) in the same way as above.
Then player A is a suspect along all the transitions of g, so that she belongs
to L(h). Now, as σ1 is winning, the payoff for A of g = π1(h) is less than vA,
which proves that σAgt is a trigger strategy.

Conversely, assume that σAgt is a trigger strategy for (vA)A∈Agt, and define
the strategy σ1 by σ1(h) = σAgt(π1(h)). Notice that the outcome ρ′ of σ1 when
A2 obeys A1 satisfies π1(ρ′) = ρ.

Let η be an outcome of σ1 from s, and A ∈ L(η). Then A is a suspect for
each transition along π1(η), which means that for all i there is a move mA

i such
that π1(η)=i+1 = Tab(π1(η)=i, σAgt(π1(η)≤i)[A 7→ mA

i ]). Therefore there is a
strategy σ′A such that π1(η) = Out(s, σAgt[A 7→ σ′A]). Since σAgt is a trigger
strategy for (vA)A∈Agt, the payoff for player A of π1(η) is less than vA. As this
holds for any A ∈ L(η), σ1 is winning. ut
Lemma 13. Let ρ be an infinite path in G with payoff (vA)A∈Agt. The following
two conditions are equivalent:

– there is a path ρ′ from (s,Agt) in H(G, (vA)A∈Agt) that never leaves the
winning region of A1 and along which A2 obeys A1, such that π1(ρ′) = ρ;

– there is a Nash equilibrium σAgt from s in G whose outcome is ρ.

Proof. Let ρ be a path in the winning region of A1 inH(G, (vA)A∈Agt). We define
a strategy σ1 that follows ρ when A2 obeys. Along ρ, this strategy is defined
as follows: σ1(ρ≤2i) = mAgt such that Tab(π1(ρ)=i,mAgt) = π1(ρ)=i+1. Such a
legal move must exist since A2 obeys A1 along ρ. Now, if player A2 deviates from
the obeying strategy, we make σ1 follow a winning strategy of A1: given a finite
outcome η of σ1 that is not a prefix of ρ, we let j be the largest index such that
η≤j is a prefix of ρ. In particular, η=j belongs to the winning region W of A1,
and belongs to player A2 (otherwise η≤j+1 would also be a prefix of ρ). Hence,
all the successors of η=j are in W . Thus player A1 has a winning strategy σ̂1

from η=j+1. We then define σ1(η≤j · η′) = σ̂1(η′) for any outcome η′ of σ̂1

from η=j+1.
Each outcome of σ1 is either the path ρ or a path that, from some point

onwards, is compatible with a winning strategy. Since H(G, (vA)A∈Agt) has a
Muller winning condition, it follows that σ1 is winning. Applying Lemma 12,
we obtain a strategy profile σAgt in G that is a trigger strategy for (vA)A∈Agt.
Moreover, the outcome of σAgt from s equals π1(ρ), so that σAgt is a Nash
equilibrium.

Conversely, the Nash equilibrium is a trigger strategy, and from Lemma 12,
we get a winning strategy σ1 in H(G, (vA)A∈Agt). The outcome ρ of σ1 from s
when A2 obeys A1 is such that π1(ρ) is the outcome of the Nash equilibrium,
so that its payoff is (vA)A∈Agt. Since σ1 is winning, ρ never leaves the winning
region, which concludes the proof. ut
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5.2 Applications of the reduction

General case. As noticed in [7], the algorithm from [10] to find the winning
states in a game can be adapted to the case where the winning conditions are
given as a Boolean circuit (the circuit has as many input gates as the number of
states, and a path is declared winning if the circuit evaluates to 1 when setting
the input gates to 1 for the states that are visited infinitely often). It uses
polynomial space. Using such an algorithm we get the following result.

Proposition 14. For Büchi objectives with preorders given as Boolean circuits,
the value, existence and constrained existence problems are PSPACE-complete.

Reduction to a single Büchi objective. The preorders that were reducible
to a single reachability objectives in the case of reachability can also be reduced
to a single Büchi objective in the Büchi case: just replace Occ with Inf. The same
holds for co-reducibility. The algorithm from [4] can then be adapted.

Proposition 15. For Büchi objectives with a monotonic preorder reducible to
a single objective, the value problem is P-complete. For Büchi objectives with a
preorder co-reducible to a single objective, the existence and constrained existence
problems are P-complete.

Reduction to a deterministic Büchi automaton. For some preorders, given
any payoff u, it is possible to construct (in polynomial time) a deterministic
Büchi automaton that recognises the plays whose payoff v for player A is higher
than u (i.e. u . v). When this is the case, we say that the preorder is reducible
to a deterministic Büchi automaton.

Proposition 16. For Büchi objectives and a preorder reducible to a determin-
istic Büchi automaton, the value problem is in P. In particular, it is P-complete
for conjunction, lexicographic and subset preorders.

The idea of the algorithm is to compute the product of the game with the
Büchi automaton to which the given payoff vA reduces. Notice that reachabil-
ity objectives with the parity order are also reducible to a deterministic Büchi
automaton; we thus recover the complexity result about weak parity games
from [12].

Monotonic preorders. When the preorder is monotonic, our problems are also
simpler than in the general case. This is because we can find suspect-based trigger
strategies, corresponding to memoryless strategies in the game H(G, (vA)A∈Agt).

Proposition 17. For Büchi objectives with preorders given by a monotonic cir-
cuits, the value problem is coNP-complete, and the existence and constrained
existence problem are NP-complete. For the counting order, the value problem
is coNP-complete, and existence and constrained existence are NP-complete. For
monotonic preorders with an element v such that u 6. v ⇔ u = 1, the constrained
existence problem is NP-complete.
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Parity games. Finally, for Büchi objectives with the parity preorder, we have:

Proposition 18. For Büchi objectives with the parity preorder, the constrained
existence problem is PNP

‖ -complete.

6 Conclusion

We have contributed to the algorithmics of Nash equilibria computation in con-
current games with ordered objectives. We believe the game abstraction proposed
in Section 5.1 can be used in other contexts, which we are currently investigat-
ing. The algorithms presented in this paper have partly been implemented in
the tool PRALINE (http://www.lsv.ens-cachan.fr/Software/praline/).
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