
Almost-Sure Model-Checking
of Reactive Timed Automata

Patricia Bouyer∗, Thomas Brihaye†, Marcin Jurdziński‡ and Quentin Menet†
∗ LSV – CNRS & ENS Cachan – France

Email: bouyer@lsv.ens-cachan.fr
† Université de Mons – Belgium

Emails: {thomas.brihaye,quentin.menet}@umons.ac.be
‡ University of Warwick – UK

Email: marcin.jurdzinski@dcs.warwick.ac.uk

Abstract—We consider the model of stochastic timed automata,
a model in which both delays and discrete choices are made
probabilistically. We are interested in the almost-sure model-
checking problem, which asks whether the automaton satisfies
a given property with probability 1. While this problem was
shown decidable for single-clock automata few years ago, it
was also proven that the algorithm for this decidability result
could not be used for general timed automata. In this paper we
describe the subclass of reactive timed automata, and we prove
decidability of the almost-sure model-checking problem under
that restriction. Decidability relies on the fact that this model is
almost-surely fair. As a desirable property of real systems, we
show that reactive automata are almost-surely non-Zeno. Finally
we show that the almost-sure model-checking problem can be
decided for specifications given as deterministic timed automata.

I. INTRODUCTION

These last twenty years a huge effort has been made to de-
sign expressive models for representing computerized systems.
As part of this effort timed automata have been proposed in the
early nineties [1] as a suitable model for representing systems
with real-time constraints. Numerous works have focused on
that model, and it has received an important tool support,
with for instance the development of tools like Uppaal [2]
or Kronos [3]. Given the success of the timed-automata-based
technology for verifying real-time systems, many extensions
have been proposed, with the aim of representing the systems
more faithfully. They include timed games [4], which can
model control problems, priced timed automata [5], [6], [7],
which can model energy consumption, stochastic extensions
of timed automata [8], [9], [10], [11], [12], [13], which can
model randomized aspects of systems or protocols.

In this paper, we are interested in developping verification
algorithms for systems which integrate real-time constraints as
well as randomized aspects. These two features are important
in many applications (see e.g. [14]) but analysis of systems
integrating such features is challenging. We distinguish two
main different approaches in the literature.

A first way of handling real-time and stochastic features
is to assume the systems are modelled as continuous-time
Markov chains (CTMCs in short), and timing constraints are
given by the properties that are checked. These properties

can be given either as formulas of e.g. the logic CSL or
extensions thereof [15], [16], [17], [18], or (deterministic)
timed automata [19]. This has led to the development of exact
and approximated model-checking algorithms.

Another approach is to integrate both features into a com-
plex model (extending e.g. timed automata or Petri nets – here
we focus on timed automata), and to analyze this model. Such
models include probabilistic timed automata [9] where discrete
distributions are assigned to actions and for which tools like
Prism [20] have been developed. Delays or durations of events
can also be made randomized. This is done for instance in [21],
[22] and later in [8], yielding either independent events (in
the first papers) and exact model-checking algorithms (for a
probabilistic and timed extension of CTL), or approximate
model-checking algorithms. The present work is based on
the model that was proposed few years ago in [10], [11].
There, timed automata are given a probabilistic semantics,
where both delays and discrete choices are randomized. This
model has later been extended with non-determinism and
interaction [13], but in this paper we focus on the original
purely stochastic model. Note that the initial motivation for
defining that semantics was robustness of timed systems (since
unlikely behaviours are removed by the semantics), but this
defines as well an interesting model with real-time constraints
and stochastic information.

Our contributions: We are interested in the almost-sure
model-checking of stochastic processes defined by timed au-
tomata. This problem asks, given a timed automaton A and
a property ϕ, whether A satisfies ϕ with probability 1. This
problem has been shown decidable in [11] for single-clock
timed automata and ω-regular properties. This decidability
result relies on the construction of a finite Markov chain
MC(A) such that ϕ almost-surely holds equivalently in A and
in MC(A). It was however also shown that the abstraction
MC(A) is not correct for two-clock timed automata (the
counter-example, depicted on Fig. 3 will be commented later).
In this work, we show that if a timed automaton A is almost-
surely fair (that is, any edge which is enabled infinitely often
is taken infinitely often), then MC(A) is a correct abstraction.
The main result is then a condition on general timed automata
under which they are almost-surely fair. The condition ex-

presses that timed automata should be reactive, that is, at any
time, a discrete transition should be enabled. This assumption
is rather natural for modelling real systems. It is interesting
to notice that this assumption implies in particular that time-
converging (i.e. Zeno) behaviours have probability zero, which
is a desirable property of real(istic) systems. We can also
notice that CTMCs are very simple reactive single-clock timed
automata. The proof that reactive automata are almost-surely
fair is involved. The key ingredient is to show that almost-
surely we visit infinitely often regions where clocks are either
very large or equal to 0. Then a judicious use of Borel-Cantelli
lemma allows to deduce almost-sure fairness.

The above analysis holds for (state-based) ω-regular prop-
erties. Using a product construction, we extend it to properties
given as deterministic timed automata (with arbitrarily many
clocks), and show that almost-sure model-checking of reactive
stochastic automata against properties given as deterministic
timed automata is PSPACE-complete. Up to our knowledge
this is the first work that establishes a decidability result for
stochastic processes when properties are given as deterministic
timed automata (with arbitrarily many clocks).

Related work: stochastic processes is huge. We already
mentioned several related works, but we would like to discuss
a bit more the works [17], [19], which we think are the closest
to the present paper. In both papers the model is that of
CTMCs. Timing constraints are expressed in the properties,
either given as deterministic timed automata [19] or as an
extension of CSL called CSLTA [17], which extends CSL with
properties given as single-clock deterministic timed automata.

Paper [19] is interested in quantitative model-checking, that
is, given a CTMC C and a property given as a determinitic
(Muller) timed automaton A, the aim is to compute the
probability that runs of C are accepted by A. This probability
is characterized using Volterra integral equations, which can be
transformed into linear equations when A has a unique clock.
Therefore quantitative verification can be done for single-clock
specifications but can only be approximated in the general
case. Our results are somehow incomparable since we allow
for a more general model (stochastic timed automata instead of
CTMCs) but prove decidability only for the qualitative model-
checking problem.

Paper [17] is interested in model-checking of CTMCs
against properties expressed as formulas of CSLTA. This
logic involves probability formulas, and uses single-clock
deterministic timed automata as predicates. Model-checking
of the general logic can be approximated, but if formulas
contain only qualitative subformulas, the model-checking can
be decided. We do not consider logics, but we allow general
deterministic timed automata in our specifications.

Organisation of the paper: Section II presents stochastic
(reactive) timed automata, the almost-sure model-checking
problem, and explains how it can be reduced to proving
almost-sure fairness. part of the paper, and establishes that
reactive stochastic automata are almost-surely fair. We give
various applications (in terms of decidability of the almost-
surel model-checking problem) in Section IV before giving

conclusions and further research directions in Section V.
Detailed proofs can be found in the research report [23].

II. DEFINITIONS

A. The timed automaton model

Let X be a finite set of variables, called clocks. A clock
valuation over X is a mapping v : X → R+, where R+ is
the set of nonnegative reals. We write RX+ for the set of clock
valuations over X . If v ∈ RX+ and τ ∈ R+, we write v + τ
for the clock valuation defined by (v + τ)(x) = v(x) + τ if
x ∈ X . If Y ⊆ X , the valuation [Y ← 0]v is the valuation
assigning 0 to x ∈ Y and v(x) to x 6∈ Y . A guard (or clock
constraint) over X is a finite conjunction of expressions of the
form x ∼ c where x ∈ X , c ∈ N, and ∼ ∈ {<,≤,=,≥, >}.
We denote by G(X) the set of guards over X . The satisfaction
relation for guards over clock valuations is defined in a natural
way, and we write v |= g, if v satisfies g.

Definition 1: A timed automaton is a tuple A =
(L, `0, X,E) such that: (i) L is a finite set of locations, (ii)
`0 ∈ L is the initial location, (iii) X is a finite set of clocks,
and (iv) E ⊆ L× G(X)× 2X × L is a finite set of edges.
If e is an edge of A, we write source(e) (resp. target(e))
for the source (resp. target) of e defined by ` (resp. `′) if
e = (`, g, Y, `′). The semantics of a timed automaton A is a
timed transition system whose states are pairs (`, v) ∈ L×RX+ ,
and whose transitions are of the form (`, v)

τ,e−−→ (`′, v′) when
there exists an edge e = (`, g, Y, `′) such that v + τ |= g and
v′ = [Y ← 0](v + τ). A finite (resp. infinite) run % of A
is a finite (resp. infinite) sequence of consecutive transitions,
i.e., % = s0

τ1,e1−−−→ s1
τ2,e2−−−→ s2 . . . where for each i ≥ 0, si =

(`i, vi) is a state. We write Runsf (A, s0) (resp. Runs(A, s0))
for the set of finite runs (resp. infinite runs) of A from state s0.
If % is a finite run in A, we write last(%) for the last state of %.
Given a state s of A and an edge e, we define I(s, e) = {τ ∈
R+ | s

τ,e−−→ s′} and I(s) =
⋃
e I(s, e). The automaton A is

reactive if for every state s, I(s) = R+.
Symbolic paths: If s is a state of A and (ei)1≤i≤n is a finite

sequence of edges of A, the (symbolic) path starting from s
and determined by (ei)1≤i≤n is the following set of finite
runs: π(s, e1 . . . en) = {% = s

τ1,e1−−−→ s1 . . .
τn,en−−−→ sn}.

Given an n-variable constraint C, the constrained symbolic
path πC(s, e1 . . . en) is the subset of π(s, e1 . . . en) where the
delays τ1 to τn satisfy the constraint C. Let π be a finite
(constrained) symbolic path, we define the cylinder generated
by π as the set Cyl(π) of infinite paths % such that a prefix %′

of % is in π.

B. The timed region automaton

The well-known region automaton construction is a finite
abstraction of timed automata which can be used for verifying
many properties like ω-regular untimed properties [1]. We
recall the notion of region equivalence. Let A = (L, `0, X,E)
be a timed automaton, and let M be the largest integer
appearing in a guard of A. Let v and v′ be valuations (over
X). They are said region equivalent w.r.t. A, which we write
v ∼=A v′ whenever the following conditions hold:

• for every x ∈ X , either bv(x)c = bv′(x)c or
v(x), v′(x) > M , and {v(x)} = 0 iff {v′(x)} = 0;1

• for every x, y ∈ X such that v(x), v(y) ≤M , {v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)}.

A region of A is an equivalence class of ∼=A, and if v is a
valuation over X , [v]A is the equivalence class of v w.r.t. ∼=A.
We write RA for the set of regions of automaton A. A region
r is said memoryless whenever the following holds for every
clock x ∈ X: either v(x) = 0 for every v ∈ r, or v(x) > M
for every v ∈ r. Memoryless regions will play an important
role later. For each such region r, we distinguish a canonical
valuation vr ∈ r defined by vr(x) = 0 or vr(x) = M + 1 for
every x ∈ X .

Here we define a timed version of the standard region
automaton. Let A = (L, `0, X,E) be a timed automaton.
The timed region automaton of A is the timed automaton
R(A) = (Q, q0, X, T) such that:
• Q = L × RA, q0 = (`0, [0]A) where 0 is the valuation

assigning 0 to every clock;
• T ⊆ (Q × cell(RA) × 2X × Q) (where cell(RA) =
{cell(r) | r ∈ RA}, writing cell(r) for the tightest guard

containing r) is such that: (`, r)
cell(r′′),Y−−−−−−→ (`′, r′) is in T

iff there exists e = `
g,Y−−→ `′ in E s.t. there exist v ∈ r,

τ ∈ R+ with (`, v)
τ,e−−→ (`′, v′), v + τ ∈ r′′ and v′ ∈ r′.

In that case we say that transition (`, r)
cell(r′′),Y−−−−−−→ (`′, r′)

maps to e.
We recover the usual region automaton of [1] by interpreting
R(A) as a finite automaton. The above timed interpretation sat-
isfies strong timed bisimulation properties that we do not detail
here. To every symbolic path π((`, v), e1 . . . en) in A corre-
spond finitely many symbolic paths π(((`, [v]A), v), f1 . . . fn)
in R(A), each one corresponding to a choice in the regions
that are visited. If % is a run in A, we denote by ι(%) its unique
image in R(A). Note that if A is reactive, then so is R(A). If
q = (`, r) ∈ Q is such that r is memoryless, we distinguish
the canonical configuration sq = (`, vr) (or sq = ((`, r), vr)
if we speak of R(A)).

C. Stochastic timed automata

1) The general framework: Following [11], we will define
a probability measure over sets of infinite runs of a timed
automaton, that will quantify in some sense their likelihood.
We assume that each timed automaton A comes equipped with
probability distributions from every state of A both over delays
and over enabled edges. In [11], we have worked with rather
general classes of probability distributions over delays (the
only restrictions were to avoid pathological behaviours).

A stochastic timed automaton is a tuple A =
(L, `0, X,E, (µs, ps)s∈L×RX

+
) where:

• (L, `0, X,E) is a timed automaton;
• for every s = (`, v) ∈ L × RX+ , µs is a probability

distribution over I(s) and ps is a probability distribution
over {(`, g, Y, `′) ∈ E | v |= g}.

1b·c (resp. {·}) denotes the integral (resp. fractional) part.

We refer to [11, Section 3.1] for the restrictions on the
measures that are required in order for the following to be
well-defined. We inductively define a measure over finite
symbolic paths π(s, e1 . . . en) as:

PA(π(s, e1 . . . en)) =∫
t∈I(s,e1)

ps+t(e1)PA(π(st, e2 . . . en)) dµs(t)

where s t−→ (s+t)
e1−→ st, and we initialize with PA(π(s)) = 1.

The formula for PA relies on the fact that the probability of
taking transition e1 at time t coincides with the probability of
waiting t time units and then choosing e1 among the enabled
transitions, i.e., ps+t(e1)dµs(t). Note that time passage and
actions are independent events.

The value PA(π(s, e1 . . . en)) is the result of n successive
one-dimensional integrals, but it can also be viewed as the re-
sult of an n-dimensional integral. Hence, we can easily extend
the above definition to finite constrained paths πC(s, e1 . . . en)
when C is Borel-measurable. This extension to constrained
paths will allow to express (and later, measure) various and
rather complex sets of paths. The measure PA can then be
defined on cylinders, letting PA(Cyl(π)) = PA(π) if π is
a finite (constrained) symbolic path from state s. Finally we
extend PA in a standard and unique way to the σ-algebra
generated by these cylinders, which we note ΩsA (see [11] for
details).

Proposition 2 ([11]): Let A be a timed automaton. For
every state s, the function PA is a probability measure over
(Runs(A, s),ΩsA).

Example 3: The set Zeno(s) of all the Zeno runs2 starting
from s belongs to ΩsA. It can indeed be defined as:⋃

M∈N

⋂
n∈N

⋃
(e1,...,en)∈En

Cyl(πCM,n
(s, e1 . . . en))

where CM,n is the constraint
(∑

1≤i≤n τi
)
≤M .

2) The class of reactive stochastic timed automata: In this
paper we will be mostly interested in the subclass of reac-
tive stochastic timed automata. A stochastic timed automaton
A = (L, `0, X,E, (µs, ps)s∈L×RX) is reactive whenever the
underlying timed automaton is reactive, and:
• for every ` ∈ L, there exists a probability distribution µ`

over R+, equivalent to the Lebesgue measure,3 such that
for every v ∈ RX+ , µ(`,v) = µ`;

• for every edge e, there exists we ∈ N>0 s.t. for all s:

ps(e) =

ß
we/ (

∑
e′ enabled at s we′) if e enabled at s

0 otherwise

Note that for any constant M , for any ` ∈ L, µ`([0,M]) < 1,
this is due to the equivalence of µ` with the Lebesgue measure.
Note also that if s = (`, v) and s′ = (`, v′) are such that
v ∼=A v′, then ps(e) = ps′(e) for every edge e.

2An infinite run % : s0
τ1,e1−−−−→ s1

τ2,e2−−−−→ · · · is said Zeno whenever∑∞
i=1 τi is bounded.

3Two measures µ and µ′ are equivalent whenever for every measurable set
E, µ(E) = 0 iff µ′(E) = 0.

Example 4: Examples of distributions over delays that re-
spect the above conditions are exponential distributions, but we
can think of many other kinds of distributions like the gamma
distributions. Later, all our examples will use exponential
distributions. In that case it is characterized by a positive
parameter λ`, and the density of the distribution is then
t 7→ λ` · e−λ`·t.

Note that reactive stochastic timed automata generalise
continuous-time Markov chains (CTMC for short). A CTMC
is nothing else than a single-clock reactive stochastic timed
automaton in which (i) on all transitions, the guard is trivial,
and the clock is reset, and (ii) each location is assigned an
exponential distribution over delays.

Remark 5: Note that reactive stochastic timed automata are
simple to compose, if we assume all distributions on delays
are given by exponential distributions. Indeed applying race
conditions to pairs of states, one can rather easily define a
composed system. An example of composition is detailed later
on an example (see Section II-D below).

3) Reduction to timed region automata: In [11], it is
explained how to transfer probabilities from A to R(A), thus
allowing to prove results on R(A) and to recover them on the
original automaton A. We assume that, for every state s in A,
µAs = µ

R(A)
ι(s) , and for every t ∈ R+, pAs+t = p

R(A)
ι(s)+t. Under

those assumptions, we have the following transfer result.
Lemma 6 ([11]): Assume measures in A and in R(A) are

related as above. Then, for every set S of runs in A we
have: S ∈ ΩsA iff ι(S) ∈ Ω

ι(s)
R(A), and in this case PA(S) =

PR(A)(ι(S)).

D. Two examples

We first describe a naive cooling system, and then briefly
discuss the IPv4 Zeroconf protocol that was described in [24,
p. 751].

1) A cooling system: In order to illustrate the expressive-
ness of stochastic timed automata, we design a toy example
providing a naive model for a cooling system in a power plant.
The cooling system is composed of n similar cooling tanks
modelled by the automata Ai, 1 ≤ i ≤ n, depicted in Fig. 1.
Our model of a tank has two states: DOWNi and UPi. The state
UPi models a situation where tanki is operational and could
be used to cool the core if needed. The state DOWNi models
a situation where tanki is down and is thus unable to cool
the core if needed. The probability to leave the DOWNi (resp.
UPi) state follows an exponential law of parameter λiD (resp.
λiU). Moreover we make the hypothesis that once a cooler tank
is down, it takes at least τ ir time units to repair it.

DOWNi

λi
D

UPi

λi
U

xi<τ
i
r

xi≥τ i
r

xi:=0

xi≥0

xi:=0

Fig. 1. Ai for tanki.

The stochastic timed automaton modelling the cooling sys-
tem is then given by the product of the n tanks: A1 ×A2 ×
· · ·×An, which contains n independent clocks. Notice that the
presence of each clock is necessary, since several tanks can
be down at the same time. In particular, when tank1 is in state
DOWN1, it is needed to keep in memory (thanks to clock x1)
the last time it entered DOWN1, to evaluate the guard x1 ≥ τ1r .
In order to illustrate the composition of stochastic automata,
we represent the system A1 ×A2 in Fig. 2. Note that this is
done in the same spirit as for CTMCs [25].

To keep the picture readable, probability distributions on
locations and transitions are omitted on the figure. With
any pair of locations (`1, `2) in A1 × A2, we associate the
exponential distribution of parameter λ`1 + λ`2 , where λ`1
and λ`2 are the parameters of the exponential distribution
of `1 and `2 respectively. To any edge (`1, g, Y, `

′
1) of A1

corresponds the edges ((`1, `2), g, Y, (`′1, `2)) of A1 × A2,
where `2 is any location of A2. The probability to take an
enabled edge ((`1, `2), g, Y, (`′1, `2)) is given by λ`1

λ`1
+λ`2

. A
similar construction occurs for the edges of A2. Let us observe
that in general, the probability of the edges of a product A×B
also depends of the probability of the edges in A and in B.
In our example the latter probabilities were all equal to one.

The composition described above is motivated by the fol-
lowing properties of exponential distributions. Given X1 (resp.
X2) a random variable of exponential law exp(λ1) (resp.
exp(λ2)), the random variable given by min(X1, X2) has a
distribution exp(λ1 + λ2). Moreover we have that

P(Xi = min(X1, X2)) =
λi

λ1 + λ2
, i = 1, 2.

The memoryless property of exponential distributions also
plays an important role to give a sense to the composition.

From a syntactic point of view composition could also
be defined with other laws. However to keep the intended
meaning of composition we would need to consider measure
µs depending not only on the location, but also on the
clocks valuations, in order to cope with the absence of the
memoryless property. In the case of exponential distributions,
it is not hard to get that the composition of two (reactive)
stochastic timed automata is a (reactive) stochastic timed
automaton.

(DOWN1,UP2)

(UP1,UP2)

(DOWN1,DOWN2)

(UP1,DOWN2)

x2<τ
2
r

x1<τ
1
r

x1<τ
1
r x2<τ

2
r

x1≥τ1
r

x1:=0

x1≥0

x1:=0

x1≥τ1
r

x1:=0

x1≥0

x1:=0
x2≥0 ; x2:=0

x2≥τ2
r ; x2:=0

x2≥0 ; x2:=0

x2≥τ2
r ; x2:=0

Fig. 2. The product automaton A1 ×A2.

The core of the plant has two modes, LOW and HIGH,
modelling respectively a situation where the temperature of
the core is “normal” and “too high”. When in use, the plant
warms up and therefore can go from state LOW to state HIGH
following an exponential law of parameter λL. When in mode
HIGH, the plant needs to be cooled down, and its evolution
depends on the current state of the cooling system (the more
tanks are available the faster the plant goes back to the LOW
mode). We do not depict the whole system, but it can be
modelled as a reactive stochastic timed automaton.

We now discuss examples of desirable properties for this
system. For instance, we could verify that “At each time,
at least two tanks are operational.”. If we assume that the
core is highly damaged as soon as it is overheated for more
than τ0 time units, we would like to ensure that “The core
never spends more than τ0 time units in the HIGH state”.
We could also require that “Each time the core enters in the
HIGH state, at least two cooling tanks are operational within
τ1 time units.”. The first property can clearly be modelled via
an LTL formula, although the two others can be expressed
via a deterministic timed automaton. Later, we provide an
algorithm which checks whether these kind of properties are
almost surely satisfied. More precisely, we design an algorithm
which can check whether properties expressed via LTL formula
or deterministic timed automata are true with probability one.

2) The IPv4 Zeroconf protocol: This protocol aims at
configuring IP addresses in a local network of appliances.
It proceeds as follows when a new appliance is plugged: it
selects an IP address in a random way, and broadcasts several
probe messages to the network to know whether this address is
already used or not. If it receives an answer from the network
in a bounded delay, then a new IP address is chosen. It may
be the case that those messages get lost, in which case there
is an error. In [24, p. 751], a very simple model for the IPv4
Zeroconf protocol is given as a finite Markov chain, which
abstracts away timing constraints. We can rewrite the model
and express those constraints using stochastic timed automata.

E. The model-checking problem

1) Definition: In this paper we are interested in qualita-
tive model-checking. More precisely, we study the almost-
sure model-checking problem. This problem asks, given a
stochastic timed automaton A and a measurable linear-time
property ϕ,4 whether PA(s0 |= ϕ) = 1, where s0 = (`0, [0]A)
is the initial state of A and PA(s0 |= ϕ) = PA(JϕKs0). If the
answer is positive, we say that A almost-surely satisfies ϕ and
we write A |≈ ϕ.

2) Reduction to almost-sure fairness: Although the value
PA(s0 |= ϕ) depends on the probability distributions given
in A, we have proven in [11] that for single-clock timed
automata the almost-sure satisfaction is not affected by the
choice of these distributions. The algorithm for deciding the
almost-sure model-checking problem in single-clock automata

4A property ϕ is said measurable whenever the set JϕKs0 = {% ∈
Runs(A, s0) | % |= ϕ} is in Ωs0A . This is for instance the case of ω-regular
properties [26].

relies on the construction of a finite Markov chain MC(A)
that such that A |≈ ϕ iff the probability of satisfying ϕ in
MC(A) from the initial state is 1 (ϕ is assumed to be an ω-
regular property). The algorithm is described in Algorithm 1. It
uses the notion of singularity for an edge, which is defined as
follows: an edge e of R(A) from a region-state q is singular
whenever there is s ∈ q such that I(s, e) is a single point,
but there is also another edge e′ such that I(s, e′) is not a
single point.5 It is worth noticing that if e is singular and
leaves q, it holds that µs(I(s, e)) = 0 for every s ∈ q (this
is actually an equivalence). This is actually the reason why
those edges have to be removed: they have probability 0 to be
taken. In Algorithm 1, property ϕ̃ is just the lifting of ϕ to
MC(A) (which has not the same set of states as A), it is also
ω-regular.

Algorithm 1: Algorithm for the qualitative model-
checking .

Data: A stochastic timed automaton A and an ω-regular
property ϕ

Result: Yes iff A |≈ ϕ?

1 begin
2 Build the region automaton R(A) of A;
3 Remove singular transitions in R(A) and

non-reachable states;
4 Write MC(A) for the resulting structure, q0 for its

initial state, and interpret MC(A) as a finite Markov
chain (with uniform weights on edges);

5 if PMC(A)(q0 |= ϕ̃) = 1 then
6 answer ‘Yes’;
7 else
8 answer ‘No’;
9 end

10 end

Algorithm 1 is rather natural, but its correctness is not
obvious. And actually, it is proven in [11] that it is not
correct for two-clock automata. The automaton of Figure 3
witnesses the problem: the probability of never visiting the
top-most branch in A is positive, whereas the probability of
never visiting the top-most branch in the corresponding finite
Markov chain is 0. The intuition is: the more we loop, the
closer will be y to 1 when reaching `0, making the choice of
e1 less and less probable. See [27, Section 4.2] for detailed
computations.

We will now give a condition for Algorithm 1 to be correct,
which relies on a notion of fairness for infinite paths. An
infinite path q0

g1,Y1−−−→ q1
g2,Y2−−−→ . . . in R(A) is fair if for

every non-singular edge f of R(A), if there are infinitely
many i’s such that source(f) = qi, then there are infinitely
many i’s such that f = qi

gi+1,Yi+1−−−−−−→ qi+1. Fairness extends

5Note that if A is reactive the above condition reduces to require that
I(s, e) is a single point for some s ∈ q.

`0

`1

`2

`3

`4

e1, y<
1

e2, y=
1

y:=0

e0, x>
1∧y<1

x:=0

e3, 1<y<2
e4, y=2

y:=0

e5, x>2∧y<1

x:=0

Fig. 3. A two-clock example with non-negligible set of unfair runs .

to underlying (timed) runs and to symbolic infinite paths in
an obvious way. Note that if π is an infinite path of R(A)
which does not take any singular transition, then π is fair iff
it exists in MC(A) and it is fair (for the standard notion of
fairness in finite Markov chains). Let us also notice that the
set of fair paths is measurable since fairness can be expressed
via an ω-regular property [26].

The following theorem establishes the correctness of Algo-
rithm 1, under the hypothesis that the automaton is almost-
surely fair. It was proven as Theorem 15 in [11] in the case of
single-clock automata. However the single-clock hypothesis is
only used for proving that fairness is almost-sure. Therefore,
the proof of [11] applies here as well and we get the following
theorem.

Theorem 7: Let A be a stochastic timed automaton, and ϕ
an ω-regular property. Assume that PA(s0 |= fair) = 1.6 Then,
A |≈ ϕ iff PMC(A)(q0 |= ϕ̃) = 1, where ϕ̃ is the lifting of ϕ
to MC(A).7

Note that almost-sure fairness does not hold for the automaton
of Figure 3 at location `0: each time location `0 is visited, the
value of clock y has increased, and the “weight” of guard
y < 1 becomes small compared with that of guard 1 < y <
2. The probability of never taking edge e1 will therefore be
positive (see computations in [27]), which proves that almost-
sure fairness fails.

In [11] almost-sure fairness is proven for single-clock timed
automata using topological arguments. A topology is put on
runs of timed automata, which extends the classical Cantor
topology in finite automata, used for instance in [28]. In this
topology, large sets coincide with sets of probability 1. The
technicalities heavily rely on the characterization of large sets
using winning strategies in Banach-Mazur games [29].

The main result of this paper is a proof that almost-sure
fairness holds for reactive stochastic automata with arbitrarily
many clocks. Contrary to [11], the proof only uses probabilis-
tic arguments. In the next section we state basic properties of
probability measures. Section III contains the technical part of
the paper, and shows the following result:

6PA(s0 |= fair) is the probability of fair runs from s0.
7A run % of A with only non-singular edges satisfies ϕ iff its region

projection satisfies ϕ̃ in MC (A).

Proposition 8: Let A be a reactive stochastic timed automa-
ton. Then PA(s0 |= fair) = 1.
In Section IV, we discuss applications of this result to the
almost-sure model-checking problem, and discuss in particular
which properties can be checked.

III. PROVING ALMOST-SURE FAIRNESS

This section is devoted to the proof of Proposition 8.
We fix a reactive stochastic timed automaton A and write
R(A) = (Q, q0, X,E, (µq)q∈Q, (we)e∈E) for its timed region
automaton. We will prove that R(A) is almost-sure fair, which
will imply the proposition.

To prove almost-sure fairness in R(A), we have to show
that for every non-singular edge e, the probability to visit e
infinitely often, knowing we visit source(e) infinitely often, is
equal to 1. The key point of this proof lies in the fact that as the
automaton R(A) is reactive, the set of runs that visit infinitely
often memoryless regions has probability 1 (Subsection III-C).

More precisely, knowing we visit source(e) infinitely often,
the probability to visit infinitely often memoryless regions,
from which e is reachable with non-zero probability, will
be equal to 1. Then it remains to show that knowing we
visit infinitely often such a memoryless region, we visit e
infinitely often with probability 1 (Subsection III-D). To this
end, we investigate the set of runs that visit infinitely often
such a region and e, and we conclude thanks to a judicious
decomposition of this set and Borel-Cantelli lemma.

In the following we write M for the maximal constant
appearing in A (or R(A)), and we write P instead of PR(A).

A. Some basic results on conditional probabilities

Let P be a probability measure on some probabilistic space
Ω. We recall that if A and B are measurable and P(B) > 0,
then the conditional probability of A given B is defined by

P(A | B) :=
P(A ∩B)

P(B)
.

Lemma 9: Let A, B and C be measurable sets such that
P(B) > 0 and P(C) > 0, then

1) P(A | B) = 1 if and only if P(Ac ∩B) = 0.
2) If P(A) = 1, then P(A | B) = 1.
3) If P(A | B) = 1, P(B | C) = 1, then P(A | C) = 1.
4) If P(A | B) = 1, P(A | C) = 1, then P(A | B ∪C) = 1.

B. How should we prove almost-sure fairness?

Let s0 = (q0,0) be the initial state of R(A), e an edge in E,
and q ∈ Q. We write Re(s0) for the set of runs in R(A) that
start in s0 and take e infinitely often, and Rq(s0) for the set
of runs of R(A) that start in s0 and visit q infinitely often. In
particular, we write Rsource(e)(s0) for the set of runs that start
in s0 and visit source(e) infinitely often (hence along which
e is enabled infinitely often).

We want to prove that the probability of being fair is 1,
hence we want to prove that for every non-singular edge e
with P(Rsource(e)(s0)) > 0,

P
Ä
Re(s0) | Rsource(e)(s0)

ä
= 1.

We let Q be the set of pairs q = (`, r) where r is
memoryless and Q′e the set of elements q = (`, r) ∈ Q such
that

P(Rq(s0)) > 0 and P(Rq,e
0 (sq)) > 0

where Rq,e
0 (sq) is the set of runs that start from sq (see page 3

for the definition of sq) and take e before any other visit to q.
We assume e is a non-singular edge with

P(Rsource(e)(s0)) > 0. We will prove (Subsection III-D)
that for any q ∈ Q′e,

P (Re(s0) | Rq(s0)) = 1 (1)

and (Subsection III-C) that

P

Ñ⋃
q∈Q

Rq(s0)

é
= 1. (2)

Assume that Equations (1) and (2) have been proven.
Applying Lemma 9 (point 4.), we deduce from Equation (1)
that

P

Ñ
Re(s0) |

⋃
q∈Q′

e

Rq(s0)

é
= 1 (3)

and applying Lemma 9 (point 2.), we deduce from Equa-
tion (2) that:

P

Ñ⋃
q∈Q

Rq(s0) | Rsource(e)(s0)

é
= 1. (4)

Moreover, we can easily show that

P

Ñ⋃
q∈Q

Rq(s0) | Rsource(e)(s0)

é
= P

Ñ ⋃
q∈Q′

e

Rq(s0) | Rsource(e)(s0)

é
. (5)

Indeed, we just have to prove that

P

Ñ⋃
q∈Q

Rq(s0) ∩Rsource(e)(s0)

é
= P

Ñ ⋃
q∈Q′

e

Rq(s0) ∩Rsource(e)(s0)

é
and it is thus sufficient to prove that

P

Ñ ⋃
q∈Q\Q′

e

Rq(s0) ∩Rsource(e)(s0)

é
= 0.

However, if q ∈ Q\Q′e, we have P(Rq(s0)) = 0 or
P(Rq,e

0 (sq)) = 0. Now, if P(Rq(s0)) = 0, we have

P
Ä
Rq(s0) ∩Rsource(e)(s0)

ä
= 0

and if P(Rq,e
0 (sq)) = 0, we also have

P
Ä
Rq(s0) ∩Rsource(e)(s0)

ä
= 0.

We therefore deduce from Equations (4) and (5) that

P

Ñ ⋃
q∈Q′

e

Rq(s0) | Rsource(e)(s0)

é
= 1. (6)

Applying Lemma 9 (point 3.), we get the expected result from
Equations (3) and (6) :

P
Ä
Re(s0) | Rsource(e)(s0)

ä
= 1.

It remains to prove the two intermediary results that were used,
i.e. to prove Equations (1) and (2).

C. Proof of Equation (2)

Lemma 10: P

Ñ⋃
q∈Q

Rq(s0)

é
= 1.

Sketch of proof: We notice that the set of runs that delay
infinitely many times more than M time units before taking a
transition is a subset of

⋃
q∈QRq(s0). Indeed, if a run % delays

more than M time units before taking the n-th transition then
each clock is either reset on the n-transition (hence its value is
0), or it is above M . Now, as for every ` ∈ L, we have assumed
µ` is equivalent to the Lebesgue measure on R+, it holds that
µ`([0,M]) < 1. We can then prove that the probability of the
set of runs that delay only finitely many times more than M
time units is zero, since L is finite, which concludes the proof.

Remark 11: A side-result of the proof of this lemma is that
P(Zeno(s0)) = 0, where Zeno(s0) is the set of Zeno runs
from s0.

D. Proof of Equation (1)

Let q ∈ Q′e. We want prove that

P (Re(s0) | Rq(s0)) = 1

or equivalently that

P (Re(s0) ∩Rq(s0) | Rq(s0)) = 1.

We notice that the event Re(s0) ∩Rq(s0) coincides with⋂
n∈N

⋃
k≥n

Rq,e
k (s0)

where Rq,e
k (s0) is the set of runs starting in s0 along which an

occurrence of edge e is preceded by precisely k visits to q, i.e.
Rq,e
k (s0) = {% ∈ Runs(A, s0) | % = s0

τ1,e1−−−→ s1 . . .
τm,em−−−−→

sm . . . and there exists j s.t. ej = e and #{1 ≤ i < j |
loc(si) = q} = k}, where loc(si) is the location of state
si. We recall the following lemma, which is well-known in
probability theory (see for example [30]):

Lemma 12 (Second Borel-Cantelli Lemma): Assume
(E ,P) is a probabilistic space, and that the measurable events
(Ek)k∈N are independent. If

∑
k∈N

P(Ek) = +∞, then

P

Ñ⋂
n∈N

⋃
k≥n

Ek

é
= 1.

With the aim to apply this lemma, we will prove that the
events Rq,e

k (s0) are independent in the Rq(s0)-conditional σ-
algebra, and that

∑
k∈N P(Rq,e

k (s0) | Rq(s0)) = +∞, which
will imply Equation (1). This is non-trivial and will require
several technical lemmas that we present now. The following
arguments rely on result that will be given as Corollary 18
(which is technical, and therefore postponed).

a) Independence of events:
Lemma 13: The events Rq,e

k (s0) are conditionally indepen-
dent given Rq(s0).

Sketch of proof: Defining Rq
≥n(s0) as the set of runs

starting in s0 and visiting q at least n times, we notice that
Rq(s0) =

⋂
n>kR

q
≥n(s0). Thanks to equalities of Corol-

lary 18, we can therefore compute that

P (Rq,e
k (s0) | Rq(s0)) = P (Rq,e

0 (sq))

and that for every k 6= k′,

P (Rq,e
k (s0) ∩Rq,e

k′ (s0) | Rq(s0)) = P (Rq,e
0 (sq))

2
.

We deduce that the two events Rq,e
k (s0) and Rq,e

k′ (s0) are
conditionally independent given Rq(s0).

b) Divergence of the series:
Lemma 14:

∑
k∈N

P(Rq,e
k (s0) | Rq(s0)) = +∞.

Proof: As in the previous lemma, we can deduce from
equalities of Corollary 18 that

P (Rq,e
k (s0) | Rq(s0)) = P (Rq,e

0 (sq)) .

However, as q ∈ Q′e, we know by definition that we have

P(Rq,e
0 (sq)) > 0.

The result follows.
c) Decomposition using basic sets: This section aims to

prove Corollary 18 and so to complete the previous proofs.
Lemma 15: Let r be a memoryless region, v ∈ r, and s =

(`, v) a configuration of A. Writing q for region-state (`, r),
we have for every sequence (e1, . . . , en) ∈ En,

P(π(s, e1 . . . en)) = P(π(sq, e1 . . . en)).

Sketch of proof: We can prove a stronger result. We can
show that for every pair s = (`, v), s′ = (`, v′) satisfying for
every x ∈ X , v(x) = v′(x) or min(v(x), v′(x)) > M , we
have for every sequence (e1, . . . , en) ∈ En,

P(π(s, e1 . . . en)) = P(π(s′, e1 . . . en)).

Such pairs s and s′ cannot be discerned by the automaton and
for every s

t,e1−−→ se1t and s′
t,e1−−→ s′

e1
t , the pairs se1t and s′

e1
t

have still the same property. We can then show the result by
induction on the length n of the sequence of edges.

We define Eq(s0) the set of runs starting in s0 and visiting
q at least once.

Proposition 16: Let q ∈ Q′e. The following equalities hold
true:

1) For every n ≥ 1,

P
Ä
Rq
≥n(s0)

ä
= P (Eq(s0)) · P

Ä
Rq
≥1(sq)

än−1
.

2) For every 1 ≤ k < n,

P
Ä
Rq,e
k (s0) ∩Rq

≥n(s0)
ä

= P (Eq(s0))

· P
Ä
Rq
≥1(sq)

än−2
· P
Ä
Rq
≥1(sq) ∩Rq,e

0 (sq)
ä
.

3) For every 1 ≤ k < k′ < n,

P
Ä
Rq,e
k (s0) ∩Rq,e

k′ (s0) ∩Rq
≥n(s0)

ä
= P (Eq(s0))

· P
Ä
Rq
≥1(sq)

än−3
· P
Ä
Rq
≥1(sq) ∩Rq,e

0 (sq)
ä2
.

Sketch of proof: We proceed by decomposition. By exam-
ple, for the first equality, we decompose the runs % ∈ Rq

≥n(s0)
in %′ · %′′ where %′ is a finite run such that last(%′) ∈ q
(first visit) and %′′ ∈ Rq

≥n−1(last(%′)). Moreover, %′′ ∈
Rq
≥n−1(last(%′)) if and only if

%′′ ∈ Cyl (π(last(%′), e1, . . . , ek))

where e1, . . . , ek are such that target(ek) = q, and
#{1 ≤ i ≤ k | target(ei) = q} = n− 1. Taking into account
all these finite families (e1, . . . , ek), we can then prove our
equality by induction on n thanks to Lemma 15.

We can simplify equalities of the previous proposition
thanks to the following lemma:

Lemma 17: Let q ∈ Q′e. We have P(Rq
≥1(sq)) = 1.

Proof: By contradiction, we assume that P(Rq
≥1(sq)) =

α0 < 1. By Proposition 16, we thus have that:

P(Rq(s0)) = P
Ç⋂

n

Rq
≥n(s0)

å
= lim
n→∞

P
Ä
Rq
≥n(s0)

ä
= lim
n→∞

P (Eq(s0)) · P
Ä
Rq
≥1(sq)

än−1
= P (Eq(s0)) lim

n→∞
(α0)n−1 = 0

which contradicts the fact that q ∈ Q′e.
Corollary 18: Let q ∈ Q′e. The following equalities hold

true:
1) For every n ≥ 1,

P
Ä
Rq
≥n(s0)

ä
= P (Eq(s0)) .

2) For every 1 ≤ k < n,

P
Ä
Rq,e
k (s0) ∩Rq

≥n(s0)
ä
= P (Eq(s0)) · P (Rq,e

0 (sq)) .

3) For every 1 ≤ k < k′ < n,

P
Ä
Rq,e
k (s0) ∩Rq,e

k′ (s0) ∩Rq
≥n(s0)

ä
= P (Eq(s0)) · P (Rq,e

0 (sq))
2
.

IV. APPLICATIONS

A. ω-regular properties

In the previous sections, we have reduced the almost-
sure model-checking of an ω-regular property in a reactive
stochastic timed automaton to the almost-sure model-checking
of an ω-regular property in a finite Markov chain. From that
reduction we can therefore infer a decision procedure and
compute an upper bound for the almost-sure model-checking
problem. More precisely, we have the following result.

Theorem 19: The almost-sure model-checking of reactive
stochastic timed automata against Büchi, co-Büchi, Streett,
Rabin, Muller or parity conditions is PSPACE-complete.

Proof: We first show the PSPACE upper bound. Let A
be a reactive stochastic timed automaton and ϕ be a state-
based ω-regular property. Note first that we cannot assume
A = R(A) since R(A) is exponential-size w.r.t. A. Thus, for
complexity analysis, it is important to start from A. We have
proven in the previous sections that:

¬
(
A |≈ ϕ

)
⇔ ¬

(
R(A) |≈ ϕ̃

)
⇔ PMC(A)(q0 |= ¬ϕ̃) > 0

where ϕ̃ is the lifting of ϕ in R(A) (it is obviously ω-regular).
The size of MC(A) is that of R(A), which is exponential in

the size of A. However we will not construct MC(A), and we
will proceed as in [27, Corollary 34] for guessing reachable
BSCCs8 that satisfy the property ¬ϕ̃. Indeed in a given BSCC,
almost-surely runs visit all states of the BSCC: the property
¬ϕ̃ has therefore probability 0 or 1 in a BSCC. The property
PMC(A)(q0 |= ¬ϕ̃) > 0 holds iff there is a reachable BSCC
which satisfies ¬ϕ̃ with probability 1. Globally this can be
done using a PSPACE decision procedure.

Hardness already holds for simple safety properties, and can
be proven with a rather standard reduction from the halting
problem of linarly-bounded Turing machines.

B. Properties given as deterministic timed automata

We now extend the previous analysis to the almost-sure
model-checking of properties given as deterministic timed
automata. Let A = (L, `0, X,E, λ, (µ`)`∈L, (we)e∈E) be a
labelled reactive stochastic timed automaton, that is, a re-
active stochastic timed automaton with a labelling function
λ : L→ 2AP, where AP is a finite set of atomic propositions.
Let B = (S, s0,X,E,F) be a deterministic (labelled) timed
automaton, whose transitions are furthermore labelled by
elements of 2AP and with accepting condition given by an
ω-regular condition F . We assume w.l.o.g. that B is complete
w.r.t. time9 and that X and X are disjoint sets of clocks. We say
that an infinite run % = (`0, v0)

τ1,e1−−−→ (`1, v1)
τ2,e2−−−→ . . . of A

8BSCC stands for “bottom strongly-connected component”.
9That is, for every location s ∈ S, for every clock valuation v, there is an

outgoing transition from s that is enabled at v.

satisfies B whenever the (unique) infinite run (s0,0)
τ1,λ(`0)−−−−−→

(s1, v1)
τ2,λ(`1)−−−−−→ . . . is accepted by B. In that case we write

% |= B. The set of infinite runs of A satisfying the specification
B is obviously measurable (for PA). See Appendix ??.

To solve the almost-sure model-checking problem
for specifications given by B, we define the
product A n B as the stochastic timed automaton
(L, `0, X ∪ X, E, (µ`)`∈L, (we)e∈E) where:

• L = L× S, `0 = (`0, s0);
• E is made of the following edges: if (`

g,Y−−→ `′) ∈ E

then for all (s
g,λ(`),Y−−−−−→ s′) ∈ E, there is an edge

((`, s)
g∧g,Y ∪Y−−−−−−→ (`′, s′)) in E;

• µ(`,s) = µ` for every (`, s) ∈ L, and we = we for every
edge e ∈ E which comes from edge e.

Note that A n B is reactive since A is reactive and B is
complete. Note that any run in A has a unique image in AnB.
We define the ω-regular property ϕB in AnB as the lifting of
F in AnB (an infinite run in AnB satisfies ϕB whenever its
projection on B satisfies the accepting condition F). As F is
an ω-regular condition on states of B, ϕB is a location-based
ω-regular condition in An B.

Following arguments similar to those of [27, Lemma 31],
we get the following correspondence between A and An B:

Lemma 20: PA(s0 |= B) = PAnB((`0,0) |= ϕB).
Therefore, almost-sure model-checking in A against prop-

erties given as deterministic timed automata is reduced to
almost-sure model-checking of a (location-based) ω-regular
condition in the product automaton A n B. Thus, it can be
done in polynomial space. Note that in the above, B can be
untimed and can represent an LTL formula.

Corollary 21: Almost-sure model-checking of reactive
stochastic timed automata against specifications given as deter-
ministic timed automata with an ω-regular accepting condition
is PSPACE-complete.

C. What about branching-time logics?

Model-checking the qualitative fragment of PCTL [31],
that is, the restriction to probabilistic formulas involving only
constants 0 and 1 is possible using a tableau-method, yielding
an EXPTIME upper bound for the algorithm (the Markov
chain MC(A) is exponential-size). We do not enter into the
details here.

V. CONCLUSION

In this paper we have shown that we can solve the almost-
sure model-checking problem against a large class of proper-
ties for stochastic timed automata with several clocks, provided
they are reactive. An interesting property of reactive timed
automata is that the probability of Zeno behaviours is 0, which
is a desirable property of real systems. The main ingredient
for the decidability is that these automata are almost-sure
fair, which is a natural property satisfied by most stochastic
processes, but which was unluckily not the case in the (too)
general framework proposed in [11].

We believe this is a big step towards the modelling and
verification of stochastic real-time systems based on automata.
As suggested in Section II-D, stochastic timed automata are
a natural model for representing time-dependent stochastic
systems. Decidability of qualitative model-checking (with a
reasonable complexity) therefore gives a solid basis for their
use in a verification context.

Further work includes (approximate) quantitative verifica-
tion. We think that the memoryless states could be used as
checkpoints for decoupling the computation of probabilities, as
reset-states and states with large value for the clock in [12]. As
other challenges, the study of decision processes and stochastic
games [13] could be well pursued, under the hypothesis that
systems are reactive.

Acknowledgments: The first author is supported by the
ANR project ImpRo (ANR-2010-BLAN-0317). The second
author is supported by the ARC project (AUWB-2010–10/15-
UMONS-3) and a grant from the the National Bank of
Belgium. The fourth author is supported by an FRIA grant.

REFERENCES

[1] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[2] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” in Proc. 3rd International
Conference on Quantitative Evaluation of Systems (QEST’06). IEEE
Computer Society Press, 2006, pp. 125–126.

[3] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: a model-checking tool for real-time systems,” in Proc. 10th
International Conference on Computer Aided Verification (CAV’98), ser.
Lecture Notes in Computer Science, vol. 1427. Springer, 1998, pp.
546–550.

[4] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for
timed automata,” in Proc. IFAC Symposium on System Structure and
Control. Elsevier Science, 1998, pp. 469–474.

[5] R. Alur, S. La Torre, and G. J. Pappas, “Optimal paths in weighted timed
automata,” in Proc. 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), ser. Lecture Notes in Computer
Science, vol. 2034. Springer, 2001, pp. 49–62.

[6] G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager, “Minimum-cost reachability for priced
timed automata,” in Proc. 4th International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’01), ser. Lecture Notes in
Computer Science, vol. 2034. Springer, 2001, pp. 147–161.

[7] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey, “Quantitative
analysis of real-time systems using priced timed automata,” Communi-
cation of the ACM, vol. 54, no. 9, pp. 78–87, 2011.

[8] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Verifying
quantitative properties of continuous probabilistic timed automata,” in
Proc. 11th International Conference on Concurrency Theory (CON-
CUR’00), ser. Lecture Notes in Computer Science, vol. 1877. Springer,
2000, pp. 123–137.

[9] ——, “Automatic verification of real-time systems with discrete proba-
bility distributions,” Theoretical Computer Science, vol. 282, no. 1, pp.
101–150, 2002.

[10] C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer, “Proba-
bilistic and topological semantics for timed automata,” in Proc. 27th
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’07), ser. Lecture Notes in Computer Sci-
ence, vol. 4855. Springer, 2007, pp. 179–191.

[11] ——, “Almost-sure model checking of infinite paths in one-clock timed
automata,” in Proc. 23rd Annual Symposium on Logic in Computer
Science (LICS’08). IEEE Computer Society Press, 2008, pp. 217–226.

[12] N. Bertrand, P. Bouyer, Th. Brihaye, and N. Markey, “Quantitative
model-checking of one-clock timed automata under probabilistic seman-
tics,” in Proc. 5th International Conference on Quantitative Evaluation
of Systems (QEST’08). IEEE Computer Society Press, 2008.

[13] P. Bouyer and V. Forejt, “Reachability in stochastic timed games,”
in Proc. 36th International Colloquium on Automata, Languages and
Programming (ICALP’09), ser. Lecture Notes in Computer Science, vol.
5556. Springer, 2009, pp. 103–114.

[14] M. Stoelinga, “Fun with FireWire: A comparative study of formal
verification methods applied to the IEEE 1394 root contention protocol,”
Formal Aspects of Computing, vol. 14, no. 3, pp. 328–337, 2003.

[15] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton, “Model-checking
continuous-time Markov chains,” ACM Transactions on Computational
Logic, vol. 1, no. 1, pp. 162–170, 2000.

[16] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-checking
algorithms for continuous-time Markov chains,” IEEE Transactions on
Software Engineering, vol. 29, no. 7, pp. 524–541, 2003.

[17] S. Donatelli, S. Haddad, and J. Sproston, “Model checking timed and
stochastic properties with CSLTA,” IEEE Transactions on Software
Engineering, vol. 35, no. 2, pp. 224–240, 2009.

[18] L. Zhang, D. N. Jansen, F. Nielson, and H. Hermanns, “Automata-
based CSL model checking,” in Proc. 38th International Colloquium
on Automata, Languages and Programming (ICALP’11), ser. Lecture
Notes in Computer Science, vol. 6756. Springer, 2011, pp. 271–282.

[19] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre, “Model-checking of
continuous-time Markov chains against timed automata specifications,”
Logical Methods in Computer Science, vol. 7, no. 1:12, pp. 1–34, 2011.

[20] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. Lecture Notes in
Computer Science, vol. 6806. Springer, 2011, pp. 585–591.

[21] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking for proba-
bilistic real-time systems,” in Proc. 18th International Colloquium on
Automata, Languages and Programming (ICALP’91), ser. Lecture Notes
in Computer Science, vol. 510. Springer, 1991, pp. 115–126.

[22] ——, “Verifying automata specifications of probabilistic real-time sys-
tems,” in Proc. REX Workshop on Real-Time: Theory in Practice, ser.
Lecture Notes in Computer Science, vol. 600. Springer, 1992, pp.
28–44.

[23] P. Bouyer, T. Brihaye, M. Jurdziński, and Q. Menet, “Almost-sure
model-checking of reactive timed automata,” Laboratoire Spécification
& Vérification, ENS de Cachan, France, Research Report LSV-12-09,
2012.

[24] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[25] H. Hermanns, Interactive Markov Chains: The Quest for Quantified
Quality, ser. Lecture Notes in Computer Science. Springer, 2002, vol.
2428.

[26] M. Y. Vardi, “Automatic verification of probabilistic concurrent finite-
state programs,” in Proc. 26th Annual Symposium on Foundations of
Computer Science (FOCS’85). IEEE Computer Society Press, 1985,
pp. 327–338.

[27] C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer, “A
probabilistic semantics for timed automata,” Laboratoire Spécification
& Vérification, ENS de Cachan, France, Research Report LSV-08-13,
2008.

[28] D. Varacca and H. Völzer, “Temporal logics and model checking for
fairly correct systems.” in Proc. 21st Annual Symposium on Logic in
Computer Science (LICS’06). IEEE Computer Society Press, 2006,
pp. 389–398.

[29] J. C. Oxtoby, “The Banach-Mazur game and Banach category theorem,”
Annals of Mathematical Studies, vol. 39, pp. 159–163, 1957, contribu-
tions to the Theory of Games, volume 3.

[30] P. Billingsley, Probability and measure, 3rd ed., ser. Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons, 1995.

[31] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

