
O-Minimal Hybrid Reachability Games

Patricia Bouyer1, Thomas Brihaye2, and Fabrice Chevalier1

1 LSV, CNRS & ENS Cachan
61, avenue du Président Wilson, 94230 Cachan, France

{bouyer,chevalie}@lsv.ens-cachan.fr
2 Université de Mons

20, place du parc, 7000 Mons, Belgium
thomas.brihaye@umons.ac.be

Abstract. In this paper, we consider reachability games over general hybrid systems,
and distinguish between two possible observation frameworks for those games: either
the precise dynamics of the system is seen by the players (this is the perfect observation
framework), or only the starting point and the delays are known by the players (this
is the partial observation framework). In the first more classical framework, we show
that time-abstract bisimulation is not adequate for solving this problem, although it is
sufficient in the case of timed automata . That is why we consider an other equivalence,
namely the suffix equivalence based on the encoding of trajectories through words. We
show that this suffix equivalence is in general a correct abstraction for games. We apply
this result to o-minimal hybrid systems, and get decidability and computability results
in this framework. For the second framework which assumes a partial observation of the
dynamics of the system, we propose another abstraction, called the superword encoding,
which is suitable to solve the games under that assumption. In that framework, we also
provide decidability and computability results.

1 Introduction

Games over hybrid systems. Hybrid systems are finite-state machines equipped
with a continuous dynamics. In the last thirty years, formal verification of such
systems has become a very active field of research in computer science, with nu-
merous success stories. In this context, hybrid automata, an extension of timed
automata [AD90,AD94], have been intensively studied [Hen95,Hen96], and decid-
able subclasses of hybrid systems have been drawn like initialized rectangular hy-
brid automata [Hen96]. More recently, games over hybrid systems have appeared
as a new interesting and active field of research since, among others, they corre-
spond to a formulation of control problems, the counterpart of model checking for
open systems, i.e., systems embedded in a possibly reactive environment. In this
context, many results have already been obtained, like the (un)decidability of
control problems for hybrid automata [HHM99], or (semi-)algorithms for solving
such problems [dAHM01]. Given a system S (with controllable and uncontrol-
lable actions) and a property ', controlling the system means building another
system C (which can only enforce controllable actions), called the controller,
such that S ∥ C (the system S guided by the controller C) satisfies the property

'. In our context, the property is a reachability property and our aim is to build
a controller enforcing a given location of the system, whatever the environment
does (which plays with the uncontrollable actions).

O-minimal hybrid systems. O-minimal hybrid systems have been first proposed
in [LPS00] as an interesting class of systems (see [vdD98] for an overview of
properties of o-minimal structures). They have very rich continuous dynamics,
but limited discrete steps (at each discrete step, all variables have to be reset,
independently from their initial values). This allows to decouple the continuous
and discrete components of the hybrid system (see [LPS00]). Thus, properties of
a global o-minimal system can be deduced directly from properties of the con-
tinuous parts of the system. Since the introductory paper [LPS00], several works
have considered o-minimal hybrid systems [Dav99,BMRT04,BM05,KV04,KV06],
mostly focusing on abstractions of such systems, on reachability properties, and
on bisimulation properties.

Word encoding. In [BMRT04], an encoding of trajectories with words has been
proposed in order to prove the existence of finite bisimulations for o-minimal
hybrid systems (see also [BM05]). Let us mention that this technique has been
used in [KV04,KV06] in order to provide an exponential bound on the size of the
finite bisimulation in the case of pfaffian hybrid systems. Let us also notice that
similar techniques already appeared in the literature, see for instance the notion
of signature in [ASY01]. Different word encoding techniques have been studied
in a wider context in [Bri07]. Recently in [KRS07], the authors propose a new
algorithm for counter-example guided abstraction and refinement on hybrid sys-
tems, based on use a word encoding approach. In this paper we use the so-called
suffix encoding, which was shown to be in general too fine to provide the coarsest
time-abstract bisimulation. However, based on this encoding, a semi-algorithm
has been proposed in [Bri07,Bri06] for computing a time-abstract bisimulation,
and it terminates in the case of o-minimal hybrid systems.

Contributions of this paper. In this paper, we focus on games over hybrid sys-
tems. We describe two rather natural frameworks for such games, one assuming
a perfect observation of the dynamics of the system, and another one assuming
a partial observation of the dynamics. For the first framework, we use the above-
mentioned suffix word encoding of trajectories for giving sufficient computability
conditions for the winning states of a game. Time-abstract bisimulation is an
equivalence relation which is correct with respect to reachability properties on
hybrid systems [AHLP00] and with respect to control reachability properties on
timed automata [AMPS98]. Here, we show that the time-abstract bisimulation
is not correct anymore for solving control problems on a general class of hybrid
systems: we exhibit a system in which two states are time-abstract bisimilar,

but one of the states is winning and the other is not. Using the suffix encoding
of trajectories of [Bri07], we prove that, in the perfect observation framework,
two states having the same suffixes are equivalently winning or losing (this is
a stronger condition than the one for the time-abstract bisimulation). We then
focus on o-minimal hybrid games and prove that, under the assumption that the
theory of the underlying o-minimal structure is decidable, the control problem
can be solved and that winning states and winning strategies can be computed.
Regarding the partial observation framework, we provide a new encoding tech-
nique, the so-called superword encoding, which turns out to be sound for the
control under partial observation of the dynamics, and which allows to prove
decidability and computability results similar to those in the perfect observation
framework.

Related work. The most relevant related works are those dealing with hybrid
games [HHM99,dAHM01]. However, the framework of these papers is pretty dif-
ferent from ours:

1. In their framework, time is considered as a discrete action, and once action
“let time elapse” has been chosen, it is not possible to bound the time elapsing,
which is quite restrictive. For instance, the timed game of Figure 1 is winning
from (ℓ0, x = 0) in our framework (the strategy is to wait some amount of
time t ∈ [2, 5] and to take the controllable action c), whereas it is not winning
in their framework (once x is above 5, it is no more possible to take the
transition and reach the winning location ℓ1, and there is no way to impose
a delay within [2, 5]). This yields significant differences in the properties: in
their framework, game bisimulation is one of the tools for solving the games,
and as stated by [HHM99, Prop. 1], the classical bisimulation tool is then
sufficient to solve games. On the contrary, in our framework, the notion of
bisimulation relevant to our model (time-abstract bisimulation) is not correct
for solving games, as will be explored in this paper.

ℓ0 ℓ1
2 ⩽ x ⩽ 5, c

Fig. 1. A simple game

2. Our games are control games, they are thus asymmetric, which is not the case
of the games in the above-mentioned works; in our framework, the environ-
ment is more powerful than the controller in that it can outstrip the controller
and do an action right before the controller decides to do a controllable action.

Let us also mention the paper [WT97] on control of linear hybrid automata.
In [WT97] the author proposes a semidecision procedure for synthesizing con-
trollers for such automata. No general decidability result is given in this paper.

Plan of the paper. In Section 2, we recall results about finite games and bisim-
ulation. In Section 3, we define the games over dynamical systems (for both
perfect information and partial observation), and we show that time-abstract
bisimulation is not correct for solving them. The word encoding techniques are
presented in Section 4 and used in Section 5 to present a general framework for
solving games over dynamical systems. We apply and extend these results in Sec-
tion 6 for computing winning states and winning strategies in o-minimal games.
In the paper, we often only develop technical details of the partial observation
framework, which actually extends the perfect observation framework.

Part of the results presented in this paper have been published in [BBC06]
(the decidability of the control reachability problem and the synthesis of strate-
gies for o-minimal hybrid systems). In this paper, we give full proofs of those
results, and extend them to a natural partial observation framework.

2 Classical Finite Games

In this section, we recall some basic definitions and results concerning bisimu-
lations on a transition system (see [Acz88,Mil89,Cau95,Hen95] for general refer-
ences) and classical (untimed) games.

2.1 Classical Games

We present here the definitions of the problem of control on a finite graph (also
called finite game) and the notion of strategy (see [GTW02] for an overview on
games). These definitions are classical and will be extended to real-time systems
in the next section.

Definition 1. A finite automaton is a tuple A = (Q,Goal, �, �) where Q is a
finite set of locations, Goal ⊆ Q is a subset of winning locations, � is a finite set
of actions, and � consists of a finite number of transitions (q, a, q′) ∈ Q×�×Q.

Definition 2. A transition system T = (Q,�,→) consists of a set of states Q
(which may be uncountable), � an alphabet of events, and → ⊆ Q × � × Q a
transition relation.

A transition (q1, a, q2) ∈ → is also denoted by q1
a−→ q2. A transition system

is said finite if Q is finite. Note that a finite automaton canonically defines a
transition system TA.

A run of A is a finite or infinite sequence q0
a1−→ q1

a2−→ . . . of the transition
system TA. Such a run is said winning if qi ∈ Goal for some i. If � is a finite run
q0

a1−→ q1
a2−→ . . .

an−→ qn we define last(�) = qn. We note Runsf (A) the set of finite
runs in A.

Definition 3. A finite game is a finite automaton (Q,Goal, �, �) where � is
partitioned into two subsets �c and �u corresponding to controllable and uncon-
trollable actions.

We will consider control games. Informally there are two players in such a
game: the controller and the environment. The actions of �c belong to the con-
troller and the actions of �u belong to the environment. At each step, the con-
troller proposes a controllable action which corresponds to the action he wants
to perform; then either this action or an uncontrollable action is done and the
automaton goes into one of the next states3. In the sequel, we will only con-
sider reachability games : the controller wants to reach the Goal states and the
environment wants to prevent him from doing so.

Definition 4. A strategy is a partial function � from Runsf (A) to �c such that
for all runs � ∈ Runsf (A), if �(�) is defined, then it is enabled in last(�).

Let � = q0
a1−→ q1

a2−→ . . . be a run, and set for every i, �i the prefix of length
i of �. The run � is said compatible with a strategy � when for all i, ai+1 = �(�i)
or ai+1 ∈ �u. A run � is said maximal w.r.t. a strategy � if it is infinite or if �(�)
is not defined.

A strategy � is winning from a state q if all maximal runs starting in q
compatible with � are winning.

2.2 Bisimulation

We recall now the definition of bisimulation for transition systems:

Definition 5 ([Mil89,Cau95]). Given a transition system T = (Q,�,→), a
bisimulation for T is an equivalence relation ∼ ⊆ Q×Q such that ∀q1, q′1, q2 ∈ Q,
∀a ∈ �, (

q1 ∼ q′1 and q1
a−→ q2

)
⇒

(
∃q′2 q2 ∼ q′2 and q′1

a−→ q′2

)
Moreover, if P is a partition of Q and if ∼ respects P (i.e., q ∈ P and q ∼ q′

with P ∈ P implies q′ ∈ P), we say that ∼ is compatible with P.

3 There may be several next states as the game is not supposed to be deterministic, and we assume
that the environment chooses the next state in case there are several.

2.3 Game and Bisimulation in the Untimed Case

In the untimed framework, bisimulation is a commonly used technique to abstract
games: bisimilar states can be identified in the control problem. This is stated in
the next folklore theorem, for which we provide a proof.

Theorem 6. Let A = (Q,Goal, �, �) be a finite game, q, q′ ∈ Q and ∼ a bisim-
ulation compatible with Goal. Then, there is a winning strategy from q iff there
is a winning strategy from q′.

Proof. Assume that ∼ is a bisimulation relation compatible with Goal and such
that q ∼ q′. Assume furthermore that � is a winning strategy from q. We will
define a strategy �′ that will be winning from q′. To do that we will map finite
runs starting in q′ to finite runs starting in q, so that �′ will mimick � through
this mapping. We note f this mapping, and start by setting f(q′) = q. We then
proceed inductively as follows. If �(f(%′)) is defined, we set �′(%′) = �(f(%′)) and

for every run %′
�′(%′))−−−→ q̃′ (which is compatible with �′) there is a run f(%′)

�(%)−−→ q̃

which is compatible with � and such that q̃ ∼ q̃′. We then define f(%′
�′(%′)−−−→

q̃′) = f(%′)
�(%)−−→ q̃. The strategy �′ is winning from q′ since ∼ is compatible with

Goal. ⊓⊔

This theorem remains true for infinite-state discrete games [HHM99,dAHM01]
and can be used to solve them: if an infinite-state game has a bisimulation of
finite index, the control problem can be reduced to a control problem over a
finite graph. Real-time control problems cannot be seen as classical infinite-state
games because of the special nature of the time-elapsing action. which does not
belong to one of the players. It seems nevertheless natural to try to adapt the
bisimulation approach to solve real-time control problems.

3 Games over Dynamical Systems

3.1 Dynamical Systems

Let ℳ be a structure. When we say that some relation, subset or function
is definable, we mean it is first-order definable in the structure ℳ. A general
reference for first-order logic is [Hod97]. We denote by Th(ℳ) the theory of
ℳ. In this paper we only consider structures ℳ that are expansions of ordered
groups, we also assume that the structure ℳ contains two symbols of constants,
i.e., ℳ = ⟨M,+, 0, 1, <, . . .⟩ where + is the group operation and w.l.o.g. we
assume that 0 < 1.

Definition 7. A dynamical system is a pair (ℳ,
) where:

– ℳ = ⟨M,+, 0, 1, <, . . .⟩ is an expansion of an ordered group,
–
 : V1 × V → V2 is a function definable in ℳ (where V1 ⊆ Mk1, V ⊆ M and

V2 ⊆ Mk2).4

The function
 is called the dynamics of the system.

Classically, when M is the field of the reals, we see V as the time, V1 as the
input space, V1×V as the space-time and V2 as the (output) space. We keep this
terminology in the more general context of a structure ℳ.

The definition of dynamical system encompasses a lot of different behaviors.
Let us first give a simple example, several others will be presented later.

Example 8. We can recover the continuous dynamics of timed automata (see
[AD94]). In this case, we have that ℳ = ⟨ℝ, <,+, 0, 1⟩ and the dynamics
 :
ℝn × [0,+∞[→ ℝn is defined by
(x1, . . . , xn, t) = (x1 + t, . . . , xn + t).

Definition 9. If we fix a point x ∈ V1, the set �x = {
(x, t) ∣ t ∈ M+} ⊆ V2 is
called the trajectory determined by x.

We define a transition system associated with the dynamical system. This
definition is an adaptation to our context of the classical continuous transition
system in the case of hybrid systems (see [LPS00] for example).

Definition 10. Given (ℳ,
) a dynamical system, we define a transition system
T
 = (Q,�,→
) associated with the dynamical system by:

– the set Q of states is V2;
– the set � of events is M+ = {� ∈ M ∣ � ⩾ 0};
– the transition relation y1

t−→
 y2 is defined by:

∃x ∈ V1, ∃t1, t2 ∈ M+ such that t1 ⩽ t2,

(x, t1) = y1,
(x, t2) = y2 and t = t2 − t1

3.2 퓜-Games Under Perfect Observation

In this subsection, we define ℳ-automata, which are automata with guards,
resets and continuous dynamics definable in the ℳ-structure. We then introduce
our model of dynamical game which is an ℳ-automaton with two sets of actions,
one for each player; we finally express in terms of winning strategy the main
problem we will be interested in, the control problem in a class C of ℳ-automata
under perfect observation. The partial observation framework will be discussed
in Subsection 3.3.
4 We use these notations in the rest of the paper.

Definition 11 (ℳ-automaton). An ℳ-automaton A is a tuple (ℳ, Q,Goal, �, �,
)
where ℳ = ⟨M,+, 0, 1, <, . . .⟩ is an expansion of an ordered group, Q is a
finite set of locations, Goal ⊆ Q is a subset of winning locations, � is a fi-
nite set of actions, � consists in a finite number of transitions (q, g, a, R, q′) ∈
Q× 2V2 × � × (V2 → 2V2)×Q where g and R are definable in ℳ, and
 maps
every location q ∈ Q to a dynamics
q : V1 × V → V2.

We use a general definition for resets: a reset R is indeed a general function
from V2 to 2V2 , which may correspond to a non-deterministic update. If the
current state is (q, y) the system will jump to some (q′, y′) with y′ ∈ R(y).

Anℳ-automaton A = (ℳ, Q,Goal, �, �,
) defines a mixed transition system
TA = (S, �,→) where:

– the set S of states is Q× V2;
– the set � of labels is M+ ∪�, (where M+ = {� ∈ M ∣ � ⩾ 0});
– the transition relation (q, y)

e−→ (q′, y′) is defined when:

∙ e ∈ �, and there exists (q, g, e, R, q′) ∈ � with y ∈ g and y′ ∈ R(y), or
∙ e ∈ M+, q = q′, and y

e−→
q y
′ where
q is the dynamic in location q.

In the sequel, we will focus on behaviors of ℳ-automata which alternate
between continuous transitions and discrete transitions.

We will also need more precise notions of transitions. When (q, y)
�−→ (q, y′)

with � ∈ M+, this is due to some choice of (x, t) ∈ V1×V such that
q(x, t) = y.

We say that (q, y)
�−→x,t (q, y

′) if
q(x, t) = y and
q(x, t + �) = y′. To ease the

reading of the paper, we will sometimes write (q, x, t, y)
�−→ (q, x, t + �, y′) for

(q, y)
�−→x,t (q, y

′). We say that an action (�, a) ∈ M+ × � is enabled in a state

(q, x, t, y) if there exists (q′, x′, t′, y′) and (q′′, x′′, t′′, y′′) such that (q, x, t, y)
�−→

(q′, x′, t′, y′)
a−→ (q′′, x′′, t′′, y′′). We then write (q, x, t, y)

�,a−→ (q′′, x′′, t′′, y′′).

A run of A is a finite or infinite sequence (q0, x0, t0, y0)
�1,a1−−−→ (q1, x1, t1, y1) . . .

Such a run is said winning if qi ∈ Goal for some i.
We note Runsf (A) the set of finite runs inA. If � is a finite run (q0, x0, t0, y0)

�1,a1−−−→
. . .

�n,an−−−→ (qn, xn, tn, yn) we define last(�) = (qn, xn, tn, yn).

Definition 12 (ℳ-game). An ℳ-game is an ℳ-automaton (ℳ, Q,Goal, �,
�,
) where � is partitioned into two subsets �c and �u corresponding to control-
lable and uncontrollable actions.

Definition 13 (Strategy). A strategy5 is a partial function � from Runsf (A)
to M+ × �c such that for all runs � in Runsf (A), if �(�) is defined, then it is
enabled in last(�).

5 In the context of control problems, a strategy is also called a controller.

The strategy tells what is to be done at the current moment: at each instant
it tells what delay we will wait and which controllable action will be taken after
this delay. Note that the environment may have to choose between several edges,
each labeled by the action given by the strategy (because the original game is
not supposed to be deterministic).

A strategy � is saidmemoryless if for all finite runs � and �′, last(�) = last(�′)

implies �(�) = �(�′). Let � = (q0, x0, t0, y0)
�1,a1−−−→ . . . be a run, and set for every

i, �i the prefix of length i of �. The run � is said consistent with a strategy �
when for all i, if �(�i) = (�, a) then either �i+1 = � and ai+1 = a, or �i+1 ⩽ �
and ai+1 ∈ �u. A run � is said maximal w.r.t. a strategy � if it is infinite or if
�(�) is not defined. A strategy � is winning from a state (q,y) if for all (x, t)
such that
(x, t) = y, all maximal runs starting in (q, x, t, y) compatible with �
are winning. The set of winning states is the set of states from which there is a
winning strategy.

We can now define the control problems we will study.

Problem 1 (Control problem under perfect observation in a class C of ℳ-automata).
Given an ℳ-game A ∈ C, and a definable initial state (q, y), determine whether
there exists a winning strategy in A from (q, y).

Problem 2 (Synthesis of controller under perfect observation in a class C of ℳ-
automata). Given an ℳ-game A ∈ C, and a definable initial state (q, y), deter-
mine whether there exists a winning strategy, and compute such a strategy if
possible.6

Example 14. Let us consider the ℳ-game A = (ℳ, Q,Goal, �, �,
) (depicted
in Fig. 2) where ℳ = ⟨ℝ,+, ⋅, 0, 1, <, sin, cos⟩, Q = {q1, q2, q3}, Goal = {q2},
� = �c ∪ �u where �c = {c} (resp. �u = {u}) is the set of controllable (resp.
uncontrollable) actions. The dynamics in q1,
q1 : ℝ2× [0, 2�]×ℝ → ℝ2 is defined
as follows.

q1(x1, x2, �, t) =

{
(t. cos(�), t. sin(�)) if (x1, x2) = (0, 0),

(x1 + t.x1, x2 + t.x2) if (x1, x2) ∕= (0, 0).

We associate with this dynamical system the partition P = {A,B,C} where
A = {(0, 0)}, B = {

(
� cos(�), � sin(�)

)
∣ 0 < � ⩽ 2�} and C = ℝ2 ∖ (A ∪ C). Let

us call piece B the spiral (see Figure 2(b)). The guard gB corresponds to B-states
(i.e., points on the spiral) and the guard gC corresponds to C-states (points not
on the spiral and different from the origin). In this example, the point (q1, (0, 0))
is a winning state. Indeed a winning strategy is given by �(q1, 0, 0, �, t) = (�

2
, c)

where c consists in taking the transition leading to state q2 (which is winning).

6 In this definition, ‘compute a strategy’ means ‘give a formula for the strategy’. In particular, a
strategy which is computable is definable in the theory.

q1

q2

q3

gC,
c

gB , u

(a) The ℳ-game A

A

B

(b) Dynamics in q1

Fig. 2. Time-abstract bisimulation does not preserve winning states

3.3 퓜-Games Under Partial Observation

Subsection 3.2, we have assumed that from a given point, the environment
chooses the continuous trajectory followed by the game, and the controller reacts
accordingly. In this section, we consider partial observation of the dynamics: the
trajectory is not known by the controller, and its strategy may depend only on
the current point. In particular, this framework naturally models drift of clocks
where the slopes of the clocks lies within an interval [Pur98,ALM05]. Note that
our partial observation assumption concerns the dynamics of the system, not the
actions which are performed. This has to be contrasted with the notion of par-
tial observation studied in the framework of finite systems in [AVW03] or in the
context of timed systems in [BDMP03] where the partial observation assumption
concerns actions which are done, and not the dynamics (indeed, in these models,
there is no real choice for the dynamics; It is completely determined by the point
in the state-space). In order to formalize our partial observation framework, we
need to adapt notions such as strategy in this new setting. First, we define what
we call observation of a given run.

Definition 15 (Observation of a run). Let � = (q0, x0, t0, y0)
�1,a1−−−→ . . .

�n,an−−−→
(qn, xn, tn, yn) be a finite run. The observation of �, denoted obs(�) is the sequence

(q0, y0)
�1,a1−−−→ . . .

�n,an−−−→ (qn, yn).

Definition 16 (Strategy under partial observation). A strategy � is said
under partial observation if for all finite runs �, �′, obs(�) = obs(�′) implies
�(�) = �(�′).

All other notions, like memoryless strategies, consistency, winning strategies,
winning states, etc... naturally extend in this new context. In this setting, we
will consider the two following problems.

Problem 3 (Control problem under partial observation in a class C of ℳ-automata).
Given an ℳ-game A ∈ C, and a definable initial state (q, y), determine whether
there exists a winning strategy under partial observation in A from (q, y).

Problem 4 (Synthesis of controller under partial observation in a class C of ℳ-
automata). Given an ℳ-game A ∈ C, and a definable initial state (q, y), de-
termine whether there exists a winning strategy under partial observation in A
from (q, y), and compute such a strategy if possible.

Example 17. We consider again the spiral example (Example 14). We showed
that under perfect observation this ℳ-game has a winning strategy in (q1, (0, 0))
given by �(q1, 0, 0, �, t) = (�

2
, c). Note that this strategy depends on the precise

trajectory (parameter �). Moreover, one can show that there is no winning strat-
egy under partial observation for this game: such a strategy may only depend on
the current point, and in this precise example, whatever action (�, a) the con-
troller proposes in (q1, (0, 0)), there is a trajectory which reaches a bad state (i.e.,
points on the spiral) before � .

The previous example shows that some games can be winning under perfect
observation whereas they are not winning under partial observation. Neverthe-
less, considering a new dynamics which will roughly inform the controller of the
current trajectory, we can see the perfect observation control problem as a spe-
cial case of the partial observation framework. This is stated by the following
proposition :

Proposition 18. Given an ℳ-game A1 and a state (q, y) of A1, we can effec-
tively construct an ℳ-game A2 and a state (q′, y′) of A2 such that there exists
a winning strategy under perfect observation in A1 from (q, y) iff there exists a
winning strategy under partial observation in A2 from (q′, y′).

Proof. Let A1 = (ℳ, Q,Goal, �, �,
) where
 : V1 × V → V2. We define V ′
2 =

{(x, t, y) ∈ V1 × V × V2 ∣
(x, t) = y} and for q ∈ Q,
′
q : V1 × V → V ′

2 such
that
′

q(x, t) = (x, t,
q(x, t)). The dynamics
′ behaves exactly like
 but “gives”
to the controller the current trajectory as this information is stored in the state
space V ′

2 .
We then take A2 = (ℳ, Q,Goal, �, �′,
′), where �′ is the transition relation

� adapted to the new states V ′
2 : if (q1, g, a, R, q2) ∈ � then (q1, g

′, a, R′, q2) ∈ �′

where g′ = {(x, t,
(x, t)) ∣
(x, t) ∈ g} and for all (x, t) ∈ V1 × V , R′(
(x, t)) =
{(x′, t′,
(x′, t′)) ∣
(x′, t′) ∈ R(
(x, t))}.

W.l.o.g. we can suppose that there exists a unique (x0, t0) ∈ V1×V such that

(x0, t0) = y (if necessary, we add a location with constant continuous dynamics
pointing to the actual location of y). Then there exists a winning strategy under
perfect observation in A1 from (q, y) iff there exists a winning strategy under
partial observation in A2 from (q, (x0, t0, y)). ⊓⊔

From the above proposition we get that any definability, decidability, etc
result in the partial observation framework will hold in the perfect observation
framework.

3.4 퓜-Games and Bisimulation

Time-abstract bisimulation [Hen95,Dav99,AHLP00] is a sufficient behavioral re-
lation to check reachability properties of hybrid systems, and in particular of
ℳ-automata [Bri07]. Moreover, it has been shown that it is also a sufficient be-
havioral relation in order to solve control problems in the framework of timed
automata [AMPS98]. However, when considering wider classes of hybrid systems,
we will see that this tool is not sufficient anymore for solving control problems
in the perfect observation framework.

Definition 19. Given a mixed transition system T = (S, �,→), a time-abstract
bisimulation for T is an equivalence relation ∼ ⊆ S×S such that ∀q1, q′1, q2 ∈ S,
the two following conditions are satisfied:

∀a ∈ �,
(
q1 ∼ q′1 and q1

a−→ q2

)
⇒(

∃q′2 ∈ S s.t. q2 ∼ q′2 and q′1
a−→ q′2

)
∀� ∈ M+,

(
q1 ∼ q′1 and q1

�−→ q2

)
⇒(

∃� ′ ∈ M+, ∃q′2 ∈ S s.t. q2 ∼ q′2 and q′1
� ′−→ q′2

)
Example 20. In this example, we assume a perfect observation framework. Let
us consider the ℳ-game A = (ℳ, Q,Goal, �, �,
) where ℳ = ⟨ℝ, <,+, 0, 1,≡2⟩
(≡2 denotes the “modulo 2” relation), Q = {q1, q2, q3}, Goal = {q2}, � = �c∪�u

where �c = {c} (resp. �u = {u}) is the set of controllable (resp. uncontrollable)
actions. The dynamics in q1,
q1 : ℝ+ × {0, 1} × ℝ+ → ℝ+ × {0, 1} is defined as

q1(x1, x2, t) = (x1 + t, x2).

q1

q2

q3

gC,
c

gB , u

(a) The ℳ-game A

x2 = 0
A C B C B

x2 = 1
A B C B C

(b) Dynamics in q1

Fig. 3. Time-abstract bisimulation does not preserve winning states

We consider the partition depicted on Figure 3(b). The guard gC is satisfied
on C-states and the guard gB is satisfied on B-states. Note that this partition is
compatible with Goal and w.r.t. discrete transitions.

In this game, the controller can win when it enters a C-state by performing
action c and it loses when entering a B-state because it cannot prevent the
environment from performing a u and going in the losing state q3.

It follows that the state s1 = (q1, (0, 1)) is losing, whereas the state s2 =
(q1, (0, 0)) is winning. However, the equivalence relation induced by the partition
{A,B,C} is a time-abstract bisimulation: the two states s1 and s2 are thus
time-abstract bisimilar, but not equivalent for the game. It follows that time-
abstract bisimulation is not correct for solving control problems, in the sense
that a time-abstract bisimulation cannot always distinguish between winning
and losing states.

Proposition 21. Let ℳ be a structure and A an ℳ-game. A partition respect-
ing Goal and inducing a time-abstract bisimulation on Q×V2 does not necessarily
respect the set of winning states of A.

4 The Suffix and the Superword Abstractions

In this section we explain how to encode symbolically trajectories of dynamical
systems with “words”. We will present two different encodings (or abstractions)
depending on the observation framework (perfect or partial) we assume.

4.1 Perfect Observation and the Suffix Abstraction

In this subsection, we review the word encoding technique introduced in [BMRT04]
in order to study o-minimal hybrid systems. We focus on the suffix partition in-
troduced in [Bri07]. This encoding will be suitable in order to study control
reachability problem in the perfect observation framework (see Subsection 5.3).
We first explain how to build words associated with trajectories. Given a dy-
namical system (ℳ,
) and a finite partition P of V2, given x ∈ V1 we as-
sociate a word with the trajectory �x = {
(x, t) ∣ t ∈ V } in the following
way. We consider the sets {t ∈ V ∣
(x, t) ∈ P} for P ∈ P. This gives a
partition of the time V . In order to define a word on P associated with the
trajectory determined by x, we need to define the set of intervals ℱx =

{
I ∣

I is a time interval or a point and is maximal for the property “∃P ∈ P , ∀t ∈
I,
(x, t) ∈ P”

}
. For each x, the set ℱx is totally ordered by the order induced

from M . This allows us to define the word on P associated with the trajectory �x

denoted !x.

Definition 22. Given x ∈ V1, the word associated with �x is given by the func-
tion !x : ℱx → P defined by !x(I) = P , where I ∈ ℱx is such that ∀t ∈ I,

(x, t) ∈ P .

The set of words associated with (ℳ,
) over P gives in some sense a complete
static description of the dynamical system (ℳ,
) through the partition P . In
order to recover the dynamics, we need further information.

Given a point x of the input space V1, we have associated with x a trajectory
�x and a word !x. If we consider (x, t) a point of the space-time V1 × V , it
corresponds to a point
(x, t) lying on �x. To recover in some sense the position
of
(x, t) on �x from !x, we associate with (x, t) a suffix of the word !x denoted
!(x,t). The construction of !(x,t) is similar to the construction of !x, we only need
to consider the sets of intervals ℱ(x,t) =

{
I ∩ {t′ ∈ V ∣ t′ ⩾ t} ∣ I ∈ ℱx

}
.

Let us notice that given (x, t) a point of the space-time V1 × V there is a
unique suffix !(x,t) of !x associated with (x, t). Given a point y ∈ V2 it may
have several (x, t) such that
(x, t) = y and so several suffixes are associated
with y. In other words, given y ∈ V2, the future of y is non-deterministic, and a
single suffix !(x,t) is thus not sufficient to recover the dynamics of the transition
system through the partition P . To encode the dynamical behavior of a point y
of the output space V2 through the partition P , we introduce the notion of suffix
abstraction (called suffix dynamical type in [Bri07,Bri06]) of a point y w.r.t. P .

Definition 23. Given a dynamical system (ℳ,
), a finite partition P of V2, a
point y ∈ V2, the suffix abstraction of y w.r.t. P is denoted SufP(y) and defined
by SufP(y) = {!(x,t) ∣
(x, t) = y}.

This allows us to define an equivalence relation on V2. Given y1, y2 ∈ V2,
we say that they are suffix-equivalent if and only if SufP(y1) = SufP(y2). We
denote Suf (P) the partition induced by this equivalence, which we call the suffix
partition w.r.t. P . We say that a partition P is suffix-stable if Suf(P) = P (it
implies that if y1 and y2 belong to the same piece of P then SufP(y1) = SufP(y2)).

To understand the suffix abstraction technique, we provide several examples.

Example 24. We start with example 14. The suffix abstraction in (0, 0) is com-
posed of a unique suffix ACBC because any trajectory leaving (0, 0) crosses
exactly once the spiral at some point. By looking at Fig. 2 one can convince
oneself that the suffixes associated with the other points of the plane are given
by suffixes of ACBC; for instance, the points lying on the spiral (the piece B)
have suffix BC.

Example 25. We first consider a two dimensional timed automata dynamics (see
Example 8). In this case we have that
(x1, x2, t) = (x1 + t, x2 + t). We associate
with this dynamics the partition P = {A,B} where B = [1, 2]2 and A = ℝ2 ∖B.

x2

0 x1

BA

A

ABA

Fig. 4. Suffixes for the timed automata dynamics

In this example the suffix partition is made of three pieces, which are depicted
in Figure 4.

The suffix abstraction allows to encode more sophisticated continuous dynam-
ics than the previous suffix encoding of a trajectory. In the next example we re-
cover in some sense the continuous dynamics of rectangular automata [HKPV98],
which requires to use the suffix abstraction (some of the points do not have a
unique suffix).

Example 26. We consider the dynamical system (ℳ,
) whereℳ = ⟨ℝ,+, ⋅, 0, 1, <
⟩ and
 : ℝ2 × [1, 2]× ℝ+ → ℝ2 is defined by
(x1, x2, p, t) = (x1 + t, x2 + p ⋅ t).
We associate with this dynamical system the partition P = {A,B,C} where
B = [2, 5]× [3, 4], C = [3, 5]× [1, 2] and A = ℝ2 ∖ (B ∪C) (see Figure 5(a)). Let
us focus on the suffix abstractions of the two points y1 = (1, 2.5) and y2 = (2, 0.5).
We have that SufP(y1) = {A,ABA} and SufP(y2) = {ABA,ACABA}. Though
several points have several possible suffixes, the partition induced by the suffix
abstraction is finite and illustrated in Figure 5(b).

C

B

y1

y2

A

(a) The dynamics

y1

y2

{A,ABA}

{ABA,ACABA}

(b) The suffix partition

Fig. 5. A rectangular dynamics

4.2 Partial Observation and the Superword Abstraction

The suffix-partition proposed in Subsection 4.1 is not suitable for the partial
observation framework. We will intuitively convince the reader of this fact. Let
(ℳ,
) be a dynamical system, y be a point of V2 and P be a partition of V2.
Since several trajectories cross the point y, there exist several y′ such that y

�−→ y′,
for some � ∈ M+. In the partial observation framework, the controller does not
know which trajectory will be chosen by the environment and have to choose a
pair (�, c) independently. In particular, starting from y, one can potentially be in
several different pieces of P after � time units. The notion of suffix abstraction is
not sufficient in order to capture these behaviors, that is why we now associate
a word !y on 2P with a given y ∈ V2. We will see in Subsection 5.2 that this new
encoding is suitable in order to study control reachability problem in the partial
observation framework. In order to define the word on 2P associated with y ∈ V2,
we need to introduce further definitions.

Definition 27. Let y be a point of V2 and � be a time in M+.

ℱy(�) =
{
P ∈ P ∣ ∃x ∈ Mk1 ∃t ∈ M
(x, t) = y and
(x, t+ �) ∈ P

}
.

The set ℱy(�) represents the set of pieces that we have potentially reached after
� time units when starting from y.

Definition 28. Let y be a point of V2.

ℱy =
{
I ∣ I is a time interval and is maximal for the property

∃S ∈ 2P ∀� ∈ I ℱy(�) = S
}

For each y ∈ V2, the set ℱy exactly consists of the connected components of the
sets {� ∈ M+ ∣ ℱy(�) = S}, for S ∈ 2P . We can now define the superword
SupP(y) associated with a given y ∈ V2.

Definition 29. Let (ℳ,
) be a dynamical system, y be a point of V2, and P
be a partition of V2. The superword associated with y is given by the function
SupP(y) : ℱy → 2P defined by:

SupP(y)(I) = S where I ∈ ℱy is such that ∀� ∈ I ℱy(�) = S.

Let us notice that given (ℳ,
) a dynamical system, P a partition of V2, and
y a point of V2, there exists a unique superword SupP(y) associated with y. If
(ℳ,
) is a dynamical system and P a finite partition of V2, we write Sup(P) for
the partition induced by superwords. We say that a partition P is superword-
stable if Sup(P) = P . Let us illustrate this new notion on examples.

Example 30. Let us consider the three dynamical systems depicted on Figures 6.
In the three cases, the dynamical system consists of two trajectories exiting the
point yi. What differs in the three systems is the way the partition P = {A,B,C}
is crossed. We are interested in the superword associated with yi. For the two
first dynamical systems we have that SupP(y1) = SupP(y2) = {A}{B,C}, and
for the last one we have that SupP(y3) = {A}{B,C}{B}{B,C}{C}{B,C}.

y1

A
B C B

C B C

(a) {A}{B,C}

y2

A
B

C

(b) {A}{B,C}

y3

A
B C B

C B C

(c) {A}{B,C}{B}{B,C}{C}{B,C}

Fig. 6. Suffix and superword are not comparable

Let us notice that the notions of suffix abstraction and superword abstraction
are incomparable. To illustrate this fact, let us consider again the three dynamical
systems of Figure 6. We have that SupP(y1) = SupP(y2) ∕= SupP(y3). Let us now
consider the suffix abstractions of these points:

Suf(y1) = {ABCB,ACBC} ; Suf(y2) = {AB,AC} ; Suf(y3) = {ABCB,ACBC}.

This shows that the superword abstraction can distinguish between y1 and y3,
but cannot distinguish between y1 and y2, although the suffix abstraction can
distinguish between y1 and y2, but cannot distinguish between y1 and y3.

5 Solving an 퓜-Game

In this section we first present a general procedure to compute the set of winning
states for an ℳ-game under partial observation. We then show that if a partition
is superword-stable, the procedure can be performed symbolically on pieces of the
partition. The procedure described is not always effective and we will later point
out specific ℳ-structures for which each step of the procedure is computable.
By Proposition 18, we know that the perfect observation control problem can be
seen as a special case of the partial observation framework; however at the end of
this section, we explain how the suffix partition can be used in order to directly
solve the perfect observation control problem.

5.1 Controllable Predecessors under Partial Observation

As for classical reachability games [GTW02], one way of computing winning
states is to compute the attractor of goal states by iterating a controllable prede-
cessor operator. Let A = (ℳ, Q,Goal, �, �,
) be an ℳ-game. For W ⊆ Q× V2,

a ∈ �c and u ∈ �u we first define the notion of controllable discrete predecessors.
For every a ∈ � = �c ∪�u, we have

Preda(W) =

⎧⎨⎩(q, y) ∈ Q× V2

∣
∣
∣
∣
∣

a is enabled in (q, y),
and ∀(q′, y′) ∈ Q× V2,(
(q, y)

a−→ (q′, y′) ⇒ (q′, y′) ∈ W
)
⎫⎬⎭ .

The intuition of this operator is the following: a state is in Preda(W) if action a
can be done from (q, y), and whichever transition is taken leads to a state in W

(action a ensures W in one step). We also define cPred(W) =
∪
c∈�c

Predc(W) and

uPred(W) =
∪

u∈�u

Predu(W).

As for timed and hybrid games [AMPS98,HHM99], we also define a safe time
predecessor of a set W w.r.t. a set W ′, that is specific to the partial observation
framework: a state (q, y) is in time-Predpartial(W,W ′) if a delay � can be chosen
such that for all trajectories starting from (q, y), one can let � time units pass
avoiding W ′ and then reach (q′, y′) ∈ W . Formally the operator time-Predpartial is
defined as follows:

time-Predpartial(W,W ′) =

⎧⎨⎩(q, y) ∈ Q× V2

∣
∣
∣
∣
∣

∃� ∈ M+, ∀(x, t) ∈ V1 × V s.t.

q(x, t) = y, and (q, y)
�−→x,t (q

′, y′)
implies

(
(q′, y′) ∈ W and Postq,x[t,t+�] ⊆ W ′

)
⎫⎬⎭ .

where Postq,x[t,t+�] = {
q(x, t′) ∣ t ⩽ t′ ⩽ t+ �}.

The controllable predecessor operator under partial observation �partial is then
defined as:

�partial(W) = W ∪
∪
a∈�c

time-Predpartial(Preda(W), uPred(W)).

Remark 31. Note that the operator �partial is definable in any expansion of an
ordered group. Hence, if W is definable, so is �partial(W).

Example 32. We first illustrate the computation of the operator �partial on Exam-
ple 14 (see page 9). In this case, �partial does not induce a winning strategy from
(q1, (0, 0)) under partial observation. Setting W = Goal×V2 = {q2}×V2, we have
that �partial(W) does not contain the point (q1, (0, 0)) because there is no uniform
choice for a positive delay � before taking action c so that the spiral (area B)
can be avoided. Notice however that �partial(W) is not empty because it includes
all points different from (q1, (0, 0)) (from which there is a unique trajectory).

Remark 33. Note also that due to the partial observation assumption, in the
definition of �partial, the action a for controlling the system has to be chosen
before choosing the delay � . Indeed, the controller does not know which precise
trajectory will be chosen by the environment, in particular, action a should be
available after time � independently of the choice of trajectory made by the
environment. This is illustrated in the next example.

Example 34. Let us consider the ℳ-game A depicted on Figure 7(a) where
Goal = {q2, q3} and where c1, c2 ∈ �c are distinct controllable actions. The
dynamics in q1 is depicted on Figure 7(b), roughly speaking, it consists of of
two trajectories exiting the point y. perfect observation from y; indeed depend-
ing on the trajectory we are following, we will either play (�, c1) or (�, c2), for
some well-chosen � ∈ ℝ+. However, there is no winning strategy under partial
observation from y. Although we can find � ∈ ℝ+ such that a controllable action
will be (safely) available (from y) after � time units, we are unable to tell which
controllable action will be taken.

In fact if W = Goal × V2 we have that �partial(W) = {(q1, z) ∣ z ∈ V2∖{y}}.
Indeed if (q1, z) ∕= (q1, y), the controller can deduce the trajectory from the
current state and choose its action accordingly.

q1

q2

q3

gB,
c1

gC , c2

(a) The ℳ-game A

y
A

B

C

(b) Dynamics in q1

Fig. 7.

The next proposition states the soundness of this operator for computing
winning states in the games under a partial observation hypothesis.

Proposition 35. Let A = (ℳ, Q,Goal, �, �,
) be an ℳ-game. If there exists
n ∈ ℕ s.t. �n

partial(Goal) = �n+1
partial(Goal) then �∗

partial(Goal) = �n
partial(Goal) is the set

of winning states of A under partial observation.

Proof. We first prove that if (q, y) ∈ �∗
partial(Goal) then there exists a winning

strategy under partial observation from (q, y). To this aim, we define a memo-
ryless winning strategy from any (q, y) ∈ �∗

partial(Goal). By notation misuse, we
define the strategy � on states (q, y) instead of executions.

We define a strategy � on all sets
∪

0⩽i⩽k �
i
partial(Goal) by induction on k, and

prove that it is a winning strategy. If k = 0, we assume � is defined nowhere, it
is thus winning from all states in Goal.

Suppose now that � is already defined on W =
∪

0⩽i⩽k �
i
partial(Goal) and is

winning on these states. We now define � on �partial(W). Let (q, y) ∈ Q × V2: if
(q, y) ∈ W , � is already defined; if (q, y) ∈ �partial(W) ∖ W , then we know that
there exists a ∈ �c with (q, y) ∈ time-Predpartial

(
Preda(W), uPred(W)

)
. There

exists � ∈ M+ with (�, a) enabled7 in (q, y) such that for every (x, t) if
q(x, t) =

y, then (q, y)
�,a−→x,t (q′, y′), (q′, y′) ∈ W and Postq,x[t,t+�] ⊆ uPred(W). We set

�(q, y) = (�, a) and show that this is a winning choice.
We show by induction on k that � is winning for every state of W =∪

0⩽i⩽k �
i
partial(Goal). This is immediate for k = 0. Suppose now that the result is

true for k and let (q, y) ∈ �partial(W). Let � = (q, x, t, y)
�1,a1−−−→ (q1, x1, t1, y1)

�2,a2−−−→
. . . be an execution compatible with �. We have that either �1 = � and a1 = a, in
which case (q1, y1) ∈ W , or �1 ⩽ � and a1 ∈ �u, in which case (q, y)

�1−→x,t

(q′, y′)
a1−→ (q1, y1) with (q′, y′) /∈ uPred(W) so (q1, y1) ∈ W . In both cases,

(q1, y1) ∈ W so by induction hypothesis, � is winning.

We now show that if there exists a strategy under partial observation � win-
ning from (q, y) then (q, y) ∈ �∗

partial(Goal). SetW = �∗
partial(Goal), by contradiction

suppose that (q, y) /∈ W , we will construct a non-winning execution compatible
with �. By hypothesis �partial(W) = W so (q, y) /∈ �partial(W), it follows that for
all a ∈ �c, for all � ∈ M+ there exists (x, t) ∈ V1×V such that
q(x, t) = y, and
(q, y) →�

x,t (q
′, y′) implies (q′, y′) /∈ Preda(W) or Postq,x[t,t+�] ∩ uPred(W) ∕= ∅. Let

(�, a) = �(q, y) (as � is a strategy under partial observation it does not depend
of x and t) and let (x, t) ∈ V1 ×M+ be as in the previous statement.

There exists (q1, x1, t1, y1) with (q1, y1) /∈ W such that either (q, x, t, y)
�,a−→

(q1, x1, t1, y1) or there exists �
′ ⩽ � and u ∈ �u with (q, x, t, y)

� ′,u−−→ (q1, x1, t1, y1).
In both cases, the constructed execution is compatible with �. As (q1, y1) /∈ W
we can repeat the same argument and construct inductively an execution � =
(q, x, t, y)

�1,a1−−−→ (q1, x1, t1, y1)
�2,a2−−−→ . . . compatible with � and such that for every

i, (qi, xi, ti, yi) /∈ W . By definition of W , for every i, qi /∈ Goal, which contradicts
the assumption that � is a winning strategy. ⊓⊔

�∗
partial(Goal), but this does not imply that we can compute this set, as some

ℳ-structures have an undecidable theory. The following corollary states that if
some conditions on the structure and on �partial are satisfied, then this procedure
provides an algorithmic solution to the control problem.

7 We say that (�, a) ∈ M+ ×� is enabled in (q, y) if there exists (x, t) ∈ V1 ×V such that
(x, t) = y
and (�, a) is enabled in (q, x, t, y).

Corollary 36. Let ℳ be a structure such that Th(ℳ) is decidable.8 Let C be a
class of ℳ-games such that for every A in C, there exists a finite partition P
of Q× V2 definable in ℳ, respecting Goal9, and stable under �partial.

10 Then the
control problem under partial observation in the class C is decidable. Moreover if
A ∈ C, the set of winning states under partial observation of A is computable.

Proof. Let ℳ be a structure and C a class of automata satisfying the hypotheses
and take A ∈ C. As P is stable under �partial, �

∗
partial(Goal) is a finite union of

pieces of P . Hence there exists n ∈ ℕ such that �∗
partial(Goal) = �n

partial(Goal).
Thus proposition 35 shows that the set of winning states is �∗

partial(Goal).
As �partial and Goal are definable, we have that �i

partial(Goal) is definable and

as Th(ℳ) is decidable we can test if �i
partial(Goal) = �i+1

partial(Goal), we can thus
effectively find a representation of �∗

partial(Goal).
As Th(ℳ) is decidable, if a state (q, y) is definable we can test if (q, y) ∈

�∗
partial(Goal). It follows that the control problem in an ℳ-structure is decidable.

⊓⊔

5.2 Superwords and the �partial Operator

We now present a sufficient condition for a partition to be stable under the
operator �partial: we require that the partition is stable under Preda (for all a ∈ �)
to handle the discrete part of the automaton and we show that the stability by
superwords is fine enough to be correct for solving control problems under partial
observation.

Proposition 37. Let A be an ℳ-game and P be a partition of Q × V2. If P
respects Goal, is stable under Preda (for all a ∈ �) and superword-stable, then P
is stable under the operator �partial.

Proof. We fix a location q of the automaton and we take y1, y2 ∈ V2 such that
there exists A ∈ P with y1, y2 ∈ A. We now show that if y1 ∈ �partial(X), for
some X ∈ P then y2 ∈ �partial(X). In case y1 ∈ X then X = A and y2 ∈ Y .

We assume y1 ∈ �partial(X) ∖X. There exists a ∈ �c and �1 ∈ M+ such that

for all (x, t) ∈ V1 × V with
q(x, t) = y1 and for all y′1 such that y1
�1−→x,t y

′
1, we

have that y′1 ∈ Preda(X), and Postq,x[t,t+�1]
⊆ uPred(X). Let us now express the

previous condition in term of superword. Assume that

SupP(y1) = S1S2 ⋅ ⋅ ⋅Sk, where Si ∈ 2P ,

8 We recall that a theory Th(ℳ) is decidable iff there is an algorithm which can determine whether
or not any sentence (i.e., a formula with no free variable.) is a member of the theory (i.e., is true).
We suggest to readers interested in general decidability issues on o-minimal hybrid systems to refer
to Section 5 of [BM05].

9 I.e., Goal is a union of pieces of P.
10 Meaning that if P is a piece of P then �partial(P) is a union of pieces of P.

the previous condition means that SupP(y1) contains a prefix S1 ⋅ ⋅ ⋅Sl is such
that:

– for all Pi ∈ Sl, we have that Pi ⊆ Preda(X) (this condition makes sense
since P is stable under Preda; indeed, a priori we only have that there exists
y′1 ∈ Pi such that y′1 ∈ Preda(X), the stability of P under Preda implies that
Pi ⊆ Preda(X)),

– for all j ⩽ l, for all Pi ∈ Sj, we have that uPred(X) ∩ Pi = ∅ (again this
condition makes sense since P is stable under Preda).

Since P = Sup (P) and both y1 and y2 belong to the same piece of P , we have
that SupP(y1) = SupP(y2) = S1S2 ⋅ ⋅ ⋅Sk. In particular, we can find �2 ∈ M+ such
that if y2

�2−→ y′2, we have that y
′
2 corresponds to the letter Sl. Thus we have that

y′2 ∈ Preda(X) and Postq,x[t,t+�2]
⊆ uPred(X), i.e. y2 ∈ �partial(X). ⊓⊔

As an immediate corollary of this proposition and of Corollary 36, we get the
following general decidability result.

Corollary 38. Let ℳ be a structure such that Th(ℳ) is decidable. Let C be
a class of ℳ-games such that for every A in C, there exists a finite partition
P of Q× V2 definable in ℳ, respecting Goal, superword-stable, and stable under
Preda for every action a ∈ �. Then the control problem under partial observation
(Problem 3) in the class C is decidable, and if A ∈ C, the set of winning states
under partial observation of A is computable.

5.3 A Note on the Perfect Observation Framework

We briefly discuss the perfect observation framework. We have already seen that
it is a special case of the partial observation framework (see Proposition 18).
Hence, we can reuse the previous results and get decidability and computability
results. However, we can also define an appropriate controllable predecessor op-
erator �perfect that will be correct in the perfect observation framework. The new
operator �perfect is just a twist of the previous operator, which we define as:

�perfect(W) = W ∪ time-Predperfect
(
cPred(W), uPred(W)

)
where time-Predperfect existentially quantifies on pairs (x, t) such that y =
q(x, t)
(instead of universally quantifying on those pairs, as in time-Predpartial).

Remark 39. In the perfect observation framework, the controller is aware of the
precise trajectory that will be followed, hence his choice of action can be done
after his choice of delay contrarily to the partial observation case (remember
Remark 33). That is why the union over actions is put within the scope of the
safe time predecessor in �perfect.

Applying similar reasoning as in the previous sections, we can prove that
�∗
perfect(Goal) corresponds to the set of winning states of A, and that a partition,

which is both stable under Preda (for every a ∈ �) and suffix-stable, is actually
correct for solving control problems in the perfect observation framework. We
can thus state the following theorem.

Theorem 40. Let ℳ be a structure such that Th(ℳ) is decidable. Let C be a
class of ℳ-games such that for every A in C, there exists a finite partition P
of Q × V2 definable in ℳ, respecting Goal, suffix-stable, and stable under Preda
for every action a ∈ �. Then the control problem under perfect observation
(Problem 1) in the class C is decidable, and if A ∈ C, the set of winning states
under perfect observation of A is computable.

Note that being suffix-stable is a stronger condition than being a time-
abstract bisimulation [Bri07], and we see here that this is one of the right
tools to solve control problems. For instance in Example 20 the partition P
is a time-abstract bisimulation but is not suffix-stable. Indeed s1, s2 ∈ A but
SufP(s1) ∕= SufP(s2).

Remark 41. Using the results of this section, we recover the results of [AMPS98]
about control of timed automata. Note that for the timed automata dynamics
(remember Example 8) partial or perfect observation do not make a difference
(the dynamics is deterministic). Indeed we consider the classical finite partition
of timed automata that induces the region graph (see [AD94]). Let us call PR this
partition, and notice that PR is definable in ⟨ℝ, <,+, 0, 1⟩. PR is stable under the
action of Preda for every action a ∈ �. By Example 8 the continuous dynamics
of timed automata is definable in ⟨ℝ, <,+, 0, 1⟩. Hence it makes sense to encode
continuous trajectories of timed automata as words. Then one can easily verify
that Suf(PR) = PR. By Theorem 40 we get the decidability and computability
of winning states under perfect information in timed games [AMPS98] as a side
result.

Corollary 42. The control problem under perfect information in the class of
timed automata is decidable. Moreover the set of winning states under perfect
observation is computable.

6 O-Minimal Games

In this section, we focus on the particular case of o-minimal games (i.e., ℳ-
games where ℳ is an o-minimal structure and in which extra assumptions are
made on the resets). We first briefly recall definitions and results related to
o-minimality [PS86]. We show that existence of finite partitions which are sta-
ble w.r.t. the controllable predecessor operator can be guaranteed for o-minimal

games. More precisely, we first show that, in this framework, a partition stable
under the controllable predecessor operator can easily be obtained via the su-
perword abstraction (this is due to the assumptions on the resets). Then, we
use properties of o-minimality to prove the finiteness of the previously obtained
partition. Finally we focus on o-minimal structures with a decidable theory in
order to obtain full decidability and computability results. As in the previous
section, we mostly focus on the partial observation framework, but also mention
results in the perfect observation framework.

6.1 O-Minimality

We recall here the definition of o-minimality and the “Uniform Finiteness The-
orem” that will be applied later in this section. The reader interested in o-
minimality should refer to [vdD98] for further results and an extensive bibliog-
raphy on this subject.

Definition 43. An extension of an ordered structure ℳ = ⟨M,<, . . .⟩ is o-
minimal if every definable subset of M is a finite union of points and open in-
tervals (possibly unbounded).

In other words the definable subsets of M are the simplest possible: the ones
which are definable in ⟨M,<⟩. This assumption implies that definable subsets
of Mn (in the sense of ℳ) admit very nice structure theorems (like the cell
decomposition [KPS86]) or Theorem 44 below. The following are examples of
o-minimal structures: the ordered group of rationals ⟨ℚ, <,+, 0, 1⟩, the ordered
field of reals ⟨ℝ, <,+, ⋅, 0, 1⟩, the field of reals with exponential function, the field
of reals expanded by restricted pfaffian functions and the exponential function,
and many more interesting structures (see [vdD98,Wil96]). An example of non
o-minimal structure is given by ⟨ℝ, <, sin, 0⟩, since the definable set {x ∣ sin(x) =
0} is not a finite union of points and open intervals. However, let us mention that
the structure11 ⟨ℝ,+, ⋅, 0, 1, <, sin∣[0,2�]

, cos∣[0,2�]
⟩ is o-minimal (see [vdD96]).

Theorem 44 (Uniform Finiteness [KPS86]). Let ℳ = ⟨M,<, . . .⟩ be an
o-minimal structure. Let S ⊆ Mm ×Mn be definable (in ℳ), we denote by Sa

the fiber {y ∈ Mn∣(a, y) ∈ S}. Then there is a number NS ∈ ℕ such that for each
a ∈ Mm the set Sa ⊆ Mn has at most NS definably connected components.

6.2 Generalities on O-Minimal Games

Definition 45. Given A an ℳ-game, we say that A is an o-minimal game if
the structure ℳ is o-minimal and if all transitions (q, g, a, R, q′) of A belong to12

Q× 2V2 ×� × 2V2 ×Q.

11 sin∣[0,2�]
and cos∣[0,2�]

correspond to the sinus and cosinus functions restricted to the segment [0, 2�].
12 This is a particular case of reset for ℳ-game where we consider only constant functions for resets.

Let us notice that the previous definition implies that given A an o-minimal
game, the guards, the resets and the dynamics are definable in the underlying
o-minimal structure. We denote by PA the coarsest partition of the state space
S = Q×V2 which respects Goal, and all guards and resets in A. Note that PA is
a finite definable partition of S.

Due to the strong reset condition we have that PA is stable under the action
of Preda for every action a. This holds by the same argument that allows to
decouple the continuous and discrete components of a hybrid system in [LPS00].
Let us also notice that, in the framework of o-minimal games, any refinement of
PA is stable under the action of Preda for every a ∈ �.

Example 46. The continuous dynamics of timed automata (see Example 25) is
definable in the o-minimal structure ⟨ℝ,+, 0, 1, <⟩. The continuous dynamics of
rectangular automata (see Example 26) is definable in the o-minimal structure
⟨ℝ,+, ⋅, 0, 1, <⟩. Hence games on timed (resp. rectangular) automata with strong
resets are particular cases of o-minimal games. The ℳ-game of Example 14 is in
fact an o-minimal game; indeed one can see that it can be defined in the structure
⟨ℝ,+, ⋅, 0, 1, <, sin∣[0,2�]

, cos∣[0,2�]
⟩ which is o-minimal (see [vdD96]).

6.3 Solving O-Minimal Games

In this subsection, we will see how we can (easily) build a partition which is
stable under the actions of the controllable predecessor operator. The key ingre-
dients to build this partition will be (i) the strong resets conditions and (ii) the
superword abstraction. The finiteness of the obtained partition will be discussed
in Subsection 6.4.

Proposition 47. Let A be an o-minimal game, and PA the partition correspond-
ing to its guards and resets. The superword (resp. suffix) partition Sup(PA) (resp.
Suf(PA)) is stable under the action of �partial (resp. �perfect).

Proof. This proposition is not a corollary of Proposition 37, since Sup(PA) is not
superword-stable. However, the proof of Proposition 37 only relied on the fact
that in a superword-stable partition, two points in a piece of the partition have
the same superword abstraction, which is precisely what we have in the current
case. Hence the previous proof can be mimicked, and we do not write all details.
It is worth noting also that we do not use all properties of o-minimal games, but
only the strong reset property, which ensures that the partition is stable under
Preda for every action a ∈ �. ⊓⊔

6.4 Definability and Finiteness Issues.

In the previous subsection, we have proved that, given A an o-minimal game, the
partition Sup(PA) (resp. Suf(PA)) is stable under the action of the controllable

predecessor operator under the partial (resp. perfect) observation framework. We
will now show that this partition is finite. For this we will exploit the finiteness
property of o-minimality and in order to do so, we first need to prove that our
encodings are definable.

Definability. Let (ℳ,
) be a dynamical system and P be a finite partition of
V2. We now would like to show that in the case of o-minimal dynamical system
the superword encoding previously discussed can be done in a definable way.
The approach closely follows the one used in [Bri06, Section 12.2] for the suffix
abstraction (called suffix dynamical type in this paper).

Let (ℳ,
) be an o-minimal dynamical system and P be a finite definable
partition of V2. First let us notice that, since P is finite and definable, given
S ∈ 2P one can easily write a first-order formula '(y, �) which is true if and only
if ℱy(�) = S (where ℱy is defined similarly to ℱx – see page 13). Let us give this
formula, assuming that S = {A1, . . . , An}:

'S(y, �) ≡ ∃x1 ∃t1 ⋅ ⋅ ⋅ ∃xn ∃tn
⋀

i=1,...,n

(

(xi, ti) = y ∧
(xi, ti + �) ∈ Ai

)
∧ ∀x ∀t

(

(x, t) = y

)
⇒

(

(x, t+ �) ∈ A1 ∪ ⋅ ⋅ ⋅ ∪ An

)
.

Thus, for each y ∈ V2, the set ℱy exactly consists of the connected components of
the sets {� ∈ M+ ∣ 'S(y, �)}, for S ∈ 2P ; i.e. ℱy is a set of intervals. In order to
show that ℱy is first-order definable we need to encode each interval I ⊆ M as a
point in some cartesian power of M . An interval I ⊆ M is entirely characterized
by (i) its end-points and (ii) the fact of being right (resp. left) open or closed.
For (i) we formally need a couple to represent a single end point in order to
recover −∞ and +∞ (as in the projective line case). For (ii) we can use a binary
encoding, let us say 0 means open and 1 closed. Thus any interval I ⊆ M will
be encoded by an element (a1, a2, a3, b1, b2, b3) ∈ M6. For instance, the interval
I = {x ∈ ℝ ∣ x ⩾ 5} is encoded by (5, 1, 1, 1, 0, 0). Thanks to this “trick”, one
can find a first-order formula 'y defining ℱy. The writing of the formula 'y is not
difficult but rather tedious: different cases have to be considered (depending on
whether the interval I, encoded by an element of M6, is left (resp. right) bounded
and left (resp. right) open or closed). Further details of the construction of the
formula can be found in [Bri06, Section 12.2].

Finiteness. We will now prove that when considering o-minimal dynamical
systems, only finitely many finite superwords are needed to encode all possible
trajectories.

Proposition 48. Let (ℳ,
) be an o-minimal dynamical system and P be a
finite definable partition of V2. There exists finitely many finite superwords asso-
ciated with (ℳ,
) w.r.t. P.

Proof. Given S ∈ 2P let us first consider the set

ℱy(S) =
{
� ∈ M+ ∣ ℱy(�) = S

}
=

{
� ∈ M+ ∣ 'S(y, �)

}
.

By the above discussion, the set ℱy(S) is a definable subset of M . Hence by
o-minimality it is a finite union of points and open intervals, in particular, it
has only finitely many connected components. By definition of ℱy we have the
following equality.

∣ℱy∣ =
∑
S∈2P

(
number of connected components of ℱy(S)

)
.

Since P is finite we can conclude that ℱy is finite.

Using the uniform finiteness theorem (Theorem 44) we obtain that there
exists N ∈ ℕ such that for all y ∈ V2 we have that

∣∣ℱy

∣∣ ⩽ N .
In terms of word encoding, this means that there are only finitely many su-

perwords associated with the points of the (output) space V2. More precisely, the
superwords SupP(y) have lengths uniformly bounded by N . Since the superwords
SupP(y) are words on the finite alphabet 2P , this completes the proof. ⊓⊔

The previous proposition directly implies the finiteness of the partition Sup(P).
Moreover we have that this partition is definable, as stated in the following propo-
sition.

Proposition 49. Let (ℳ,
) be an o-minimal dynamical system, P be a finite
definable partition of the output space V2. The partition Sup(P) is finite and
definable.

Proof. Since there are only finitely many superwords, it suffices to show that
given y ∈ V2 and SW a superword on P (i.e. a word on 2P), we can define (by
a first-order formula) that SW = SupP(y). Suppose that SW = S1 ⋅ ⋅ ⋅Sk ⋅ ⋅ ⋅Sn,
where Sk ∈ 2P . We have that SW = SupP(y) if and only if the following formula
holds.

∃�1 ∈ M+, ∃�2 ∈ M+, ⋅ ⋅ ⋅ ∃�n ∈ M+, ∃I1 ∈ ℱy, I2 ∈ ℱy, ⋅ ⋅ ⋅ ∃In ∈ ℱy

(�1 < �2 < ⋅ ⋅ ⋅ < �n) ∧
n⋀

k=1

ℱy(�k) = Sk ∧ ℱy = {I1, I2, . . . , In}.

Notice that the above formula is first-order since ℱy is first-order definable and
testing whether ℱy(�k) = Sk is also first-order definable. ⊓⊔

6.5 Synthesis of Winning Strategies

We now prove that given A an o-minimal game definable in ℳ, we can construct
a definable strategy (in the same structure ℳ) for the winning states under
partial observation. The effectiveness of this construction will be discussed later.

Theorem 50. Given A an o-minimal game, there exists a definable memory-
less winning strategy under partial (resp. perfect) observation for each (q, y) ∈
�∗
partial(Goal) (resp. �

∗
perfect(Goal)).

Proof. By Proposition 47, the partition Sup(PA) is finite, definable and stable
under �partial. In particular, there exists thus n ∈ ℕ such that �∗

partial(Goal) =
�n
partial(Goal). Hence, by Proposition 35, �n

partial(Goal) is the set of winning states.
Given (q, y) ∈ �n

partial(Goal), we know that there exists a winning strategy from
(q, y). We now have to point out a definable winning strategy from (q, y). Follow-
ing the proof of Proposition 35, we build the definable strategy by induction on
the number of iterations of �partial. Let us suppose we have already built a strategy

on each piece of W =
∪

0⩽i⩽k

�i
partial(Goal), let us now consider �partial(W) ∖W .

By Proposition 47, we know that �partial(W) ∖W is a finite union of pieces of
Sup(PA). Let P be one of these pieces. We know that P corresponds to a finite
superword on PA. Thus given (q, y) ∈ P we have that

SupPA
(y) = S1S2 ⋅ ⋅ ⋅Sk, where Si ∈ 2PA .

Since (q, y) ∈ �partial(W) ∖ W , the superword SupPA
(y) contains a prefix

S1 ⋅ ⋅ ⋅Sl such that there is a ∈ �c with:

– for all Pi ∈ Sl, Pi ⊆ Preda(W),
– for all j ⩽ l, for all Pi ∈ Sj, uPred(W) ∩ Pi = ∅.

Since for all Pi ∈ Sl, we have that Pi ⊆ Preda(W), the controllable action a ∈ �c

is such that given any (q, y) ∈ Sl a transition labelled by a is enabled and all
such transitions lead to W . The strategy for (q, y) will be to perform action a
after some delay. We now explain how to choose this delay.

Let (q, y) be such that (q, y) ∈ P . Let us consider Time(y) the subset of M+

defined as follows:

Time(y) = {� ∈ M+ ∣ ∃y′ ∈ Sl such that (q, y)
�−→ (q, y′)}.

This set is definable since Sl is definable.
By o-minimality, we have that Time(y) is a finite union of points and open

intervals. Let us denote by I the leftmost point or interval. Let us notice that
I is definable. If I has a minimum m, we define �(q, y) = (m, c). Otherwise two

cases may occur. If I is bounded then it is of the form (m,m′) or (m,m′] in this
case we define13 �(q, y) = (1

2
(m + m′), c). Finally if I has no minimum and is

unbounded it is of the form (m,∞) and in this case we define �(q, y) = (m+1, c).
We summarize14 the definition of � on Sl as follows:

�(q, y) =

⎧⎨⎩
(
min(I), c

)
if '1(y)(

1
2

(
inf(I) + sup(I)

)
, c
)

if '2(y)(
inf(I) + 1, c

)
otherwise

where '1(y) is a formula which is true if and only if I (or Time(y)) has a minimum
and '2(y) is a formula which is true if and only if I has no minimum and is
bounded. Thus clearly � is definable.

Since there are finitely many P ∈ Sup(PA), we can conclude that � is defin-
able. ⊓⊔

Remark 51. Note that the memoryless strategy given by Theorem 50 is com-
putable if �∗

partial(Goal) is.

Remark 52. Let us notice that in the case of timed automata dynamics (de-
scribed in Example 8), our definable strategies correspond to the realizable strate-
gies computed in [BCFL04].

6.6 Decidability Result

Theorem 50 is an existential result. It claims that given an o-minimal game,
there exists a definable memoryless strategy for each y ∈ �∗

partial(Goal), and by
Theorem 47 we know that Sup(PA) is finite. The conclusion of the previous
subsection is that given an o-minimal game there exists a definable memoryless
winning strategy for each y ∈ �∗

partial(Goal).
In general, Theorem 50 does not allow to conclude that the control problem

in an ℳ-structure is decidable. Indeed it depends on the decidability of Th(ℳ).
We can state the following theorem:

Theorem 53. Let ℳ be an o-minimal structure such that Th(ℳ) is decidable
and C a class of ℳ-automata. Then the control problem under partial (resp.
perfect) observation in class C is decidable. Moreover if A ∈ C, the set of winning
states �∗

partial(Goal) (resp. �∗
perfect(Goal)) under partial (resp. perfect) observation

is computable and a memoryless winning strategy can be effectively computed for
each (q, y) ∈ �∗

partial(Goal) (resp. �
∗
perfect(Goal)).

13 Let us recall that every o-minimal ordered group is torsion free and divisible (see [PS86]), this
implies there exists a unique y satisfying y + y = (m+m′), which we note 1

2
(m+m′).

14 Let us notice that the way we extract a single point from Time(y) is nothing more than the curve
selection for o-minimal expansions of ordered abelian groups, see [vdD98, chap.6].

Proof. By Proposition 49, for each A ∈ C, Sup(PA) is a definable finite partition
respecting Goal. Moreover by Proposition 47, Sup(PA) is stable under �partial. Hy-
pothesis of Corollary 36 are thus satisfied and we get that the control problem in
class C is decidable and that the winning states of a game A ∈ C are computable.
Moreover Theorem 50 ensures that a memoryless strategy can be effectively de-
fined from such winning states. ⊓⊔

Remark 54. ⟨ℝ, <,+, 0, 1⟩ and ⟨ℝ, <,+, ⋅, 0, 1⟩ are examples of o-minimal struc-
tures with decidable theory and so o-minimal games based on theses structures
can be solved by Theorem 53.

Remark 55. In this paper we did not distinguish Zeno behaviours. In particular,
in our framework, if the environment has a strategy that prevents the game to
reach the Goal locations by blocking time, we say that the controller loses the
game. In the framework of timed automata, an ad-hoc solution to this problem
of Zenoness has been proposed in [AFH+03]. However, due to the strong reset
conditions of o-minimal hybrid systems, the method of [AFH+03] cannot be easily
applied to our framework, but this problem is somehow orthogonal to ours.

7 Conclusion

In this paper we have studied games based on dynamical systems with general
dynamics, both under a prefect and a partial observation of the dynamics. Under
the first hypothesis, we have shown that time-abstract bisimulation is not fine
enough to solve these games, which is a major difference with the case of timed
automata. By means of an encoding of trajectories by words, we have obtained
a good abstraction for control problems (with reachability winning conditions,
but it applies also to basic safety winning conditions). We have finally provided
decidability and computability results for o-minimal games under both perfect
and partial observation hypothesis. Our technique applies to timed automata,
and we recover decidability of timed games [AMPS98], as well as the construction
of winning strategies [BCFL04] as side results.

Acknowledgment

The two first authors have been partly supported by the ESF project GASICS.
The first author has been partly supported by the project DOTS (ANR-06-SETI-
003) and by the EU project QUASIMODO. The second author has been partly
supported by a grant from the National Bank of Belgium and by a FRFC grant:
2.4530.02.

References

[Acz88] Peter Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes. Center for the
Study of Language and Information, Stanford University, 1988.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems. In Proc. 17th
International Colloquium on Automata, Languages and Programming (ICALP’90), volume
443 of Lecture Notes in Computer Science, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AFH+03] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rapuk Majumdar, and Mariëlla
Stoelinga. The element of surprise in timed games. In Proc. 14th International Conference
on Concurrency Theory (CONCUR’03), volume 2761 of Lecture Notes in Computer Science,
pages 142–156. Springer, 2003.

[AHLP00] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappa. Discrete
abstractions of hybrid systems. Proc. of the IEEE, 88:971–984, 2000.

[ALM05] Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Perturbed timed automata. In Proc.
8th International Workshop on Hybrid Systems: Computation and Control (HSCC’05),
volume 3414 of Lecture Notes in Computer Science, pages 70–85. Springer, 2005.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and Control, pages 469–
474. Elsevier Science, 1998.

[ASY01] Eugene Asarin, Gerardo Schneider, and Sergio Yovine. On the decidability of the reach-
ability problem for planar differential inclusions. In Proc. 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC’01), volume 2034 of Lecture Notes in
Computer Science, pages 89–104. Springer, 2001.

[AVW03] André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of controllers
with partial observation. Theoretical Computer Science, 1(303):7–34, 2003.

[BBC06] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control in o-minimal hybrid
systems. In Proc. 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06),
pages 367–378. IEEE Computer Society Press, 2006.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies
in priced timed game automata. In Proc. 24th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FST&TCS’04), volume 3328 of Lecture Notes
in Computer Science, pages 148–160. Springer, 2004.

[BDMP03] Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine Petit. Timed control
with partial observability. In Proc. 15th International Conference on Computer Aided
Verification (CAV’03), volume 2725 of Lecture Notes in Computer Science, pages 180–192.
Springer, 2003.

[BM05] Thomas Brihaye and Christian Michaux. On the expressiveness and decidability of o-
minimal hybrid systems. Journal of Complexity, 21(4):447–478, 2005.

[BMRT04] Thomas Brihaye, Christian Michaux, Cédric Rivière, and Christophe Troestler. On o-
minimal hybrid systems. In Proc. 7th International Workshop on Hybrid Systems: Compu-
tation and Control (HSCC’04), volume 2993 of Lecture Notes in Computer Science, pages
219–233. Springer, 2004.

[Bri06] Thomas Brihaye. Verification and Control of O-Minimal Hybrid Systems and Weighted
Timed Automata. PhD thesis, Université de Mons-Hainaut, Belgium, 2006.

[Bri07] Thomas Brihaye. Words and bisimulations of dynamical systems. Discrete Math. Theor.
Comput. Sci., 9(2):11–31, 2007.

[Cau95] Didier Caucal. Bisimulation of Context-Free Grammars and of Pushdown Automata, vol-
ume 53 of CSLI Lecture Notes, pages 85–106. Stanford University, 1995.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for
infinite-state games. In Proc. 12th International Conference on Concurrency Theory (CON-
CUR’01), volume 2154 of Lecture Notes in Computer Science, pages 536–550. Springer,
2001.

[Dav99] Jennifer M. Davoren. Topologies, continuity and bisimulations. Informatique Théorique et
Applications, 33(4-5):357–382, 1999.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and In-
finite Games: A Guide to Current Research, volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

[Hen95] Thomas A. Henzinger. Hybrid automata with finite bisimulations. In Proc. 22nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’95), volume 944 of
Lecture Notes in Computer Science, pages 324–335. Springer, 1995.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th Annual Symposim
on Logic in Computer Science (LICS’96), pages 278–292. IEEE Computer Society Press,
1996.

[HHM99] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hybrid
games. In Proc. 10th International Conference on Concurrency Theory (CONCUR’99),
volume 1664 of Lecture Notes in Computer Science, pages 320–335. Springer, 1999.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
[KPS86] Julia F. Knight, Anand Pillay, and Charles Steinhorn. Definable sets in ordered structures

ii. Transactions of the American Mathematical Society, 295(2):593–605, 1986.
[KRS07] Felix Klaedtke, Stefan Ratschan, and Zhikun She. Language-based abstraction refinement

for hybrid system verification. In Proc. 8th International Conference on Verification, Model
Checking, and Abstract Interpretation, volume 4349 of Lecture Notes in Computer Science,
pages 151–155. Springer-Verlag, 2007.

[KV04] Margarita V. Korovina and Nicolai Vorobjov. Pfaffian hybrid systems. In Proc. 18th In-
ternational Workshop on Computer Science Logic (CSL’04), volume 3210 of Lecture Notes
in Computer Science, pages 430–441. Springer, 2004.

[KV06] Margarita V. Korovina and Nicolai Vorobjov. Upper and lower bounds on sizes of finite
bisimulations of Pfaffian hybrid systems. In CiE, volume 3988 of Lecture Notes in Computer
Science, pages 267–276. Springer, 2006.

[LPS00] Gerardo Lafferriere, George J. Pappas, and Shankar Sastry. O-minimal hybrid systems.
Mathematics of Control, Signals, and Systems, 13(1):1–21, 2000.

[Mil89] Robert Milner. Communication and Concurrency. Prentice Hall International, 1989.
[PS86] Anand Pillay and Charles Steinhorn. Definable sets in ordered structures. Transactions of

the American Mathematical Society, 295(2):565–592, 1986.
[Pur98] Anuj Puri. Dynamical properties of timed automata. In Proc. 5th International Symposium

on Formal techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486
of Lecture Notes in Computer Science, pages 210–227. Springer, 1998.

[vdD96] Lou van den Dries. O-minimal structures. In Proc. Logic, From Foundations to Applications,
Oxford Science Publications, pages 137–185. Oxford University Press, 1996.

[vdD98] Lou van den Dries. Tame Topology and O-Minimal Structures, volume 248 of London
Mathematical Society Lecture Note Series. Cambridge University Press, 1998.

[Wil96] Alex J. Wilkie. Model completeness results for expansions of the ordered field of real
numbers by restricted Pfaffian functions and the exponential function. Journal of the
American Mathematical Society, 9(4):1051–1094, 1996.

[WT97] Howard Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc.
36th IEEE Conference on Decision and Control, pages 4607–4612. IEEE Computer So-
ciety Press, 1997.

